NILS LEHR & PASCUAL RESTREPO, BOSTON UNIVERSITY

AL GRADUALIS

- But create costly adjustment period for some workers

Technology, trade, and reforms might make everyone better off in long run...

- But create costly adjustment period for some workers

Technology, trade, and reforms might make everyone better off in long run...

- But create costly adjustment period for some workers

Question 1: Do short-run disruptions justify using temporary taxes on trade and automation technologies to induce a more gradual transition?

Question 2: Does society benefit from slower technological progress?

Technology, trade, and reforms might make everyone better off in long run...

- Technology, trade, and reforms might make everyone better off in long run...
- But create costly adjustment period for some workers
 - **Question 1:** Do short-run disruptions justify using temporary taxes on trade and automation technologies to induce a more gradual transition?
 - Yes. Positive optimal tax in short run and zero tax in long run
 - Even if (i) this crowds out reallocation effort
 - (ii) there are income-based assistance programs/taxes
 - **Question 2:** Does society benefit from slower technological progress?

- Technology, trade, and reforms might make everyone better off in long run...
- But create costly adjustment period for some workers
 - **Question 1:** Do short-run disruptions justify using temporary taxes on trade and automation technologies to induce a more gradual transition?
 - Yes. Positive optimal tax in short run and zero tax in long run
 - Even if (i) this crowds out reallocation effort
 - (ii) there are income-based assistance programs/taxes
 - **Question 2:** Does society benefit from slower technological progress?
 - Not in most cases, in particular if optimal taxes in place

THIS PAPER

- Empirical applications:
 - Routine jobs automation (Cortes, 2016) and China shock (Autor et al. 2014)
 - calibrate model to match income decline for exposed workers
 - optimal policy calls for temporary taxes of 10%, phased out over time
 - Colombia's 1990 trade liberalization: optimal reform more gradual

• **Theory:** model of technological disruptions and formulas for optimal taxes

- Small open economy with *r* fixed
- Mass 1 of workers with ℓ_x allocated to island $x \in \mathcal{X}$ (jobs, products, occupation)
- Final good produced by combining islands' output
- Initial steady state with common wage $\bar{w} = 1$ across islands
- At time t = 0, new technology arrives. For $x \in \mathcal{D}$, good x can be replaced by k_x produced (or exchanged) for $1/A_{x,t}$ units of final good
- Government sets tax $au_{x,t}$ on new technology and does lump-sum rebate T_t
- Workers in $x \in \mathcal{D}$ reallocate at Poisson rate α_{r}

 $y_t = f(\{y_{x,t}\}_{x \in \mathcal{X}})$ Final good Disrupted islands Other $y_{x,t} = \ell_{x,t} \text{ if } x \notin \mathcal{D}$ islands $\dot{\ell}_{x,t} = -\alpha_x \cdot \ell_{x,t} \text{ if } x \in \mathcal{D}$ Reallocation Resource $y_t = C_t + \sum_{x,t} (k_{x,t}/A_{x,t}),$ constraint $x \in \mathcal{D}$ Indirect utility

$y_{x,t} = \ell_{x,t} + k_{x,t}, \quad w_{x,t} = (1 + \tau_{x,t})/A_{x,t} \text{ if } x \in \mathcal{D}$

 $U_{x,0} = \mathcal{U}_{x} \left(\{ w_{x,t} + T_{t}, w_{t} + T_{t} \}_{t=0}^{\infty}, a_{x,0}; \alpha_{x} \right) - \kappa(\alpha_{x})$

 $y_t = f(\{y_{x,t}\}_{x \in \mathcal{X}})$ Final good Disrupted islands Other islands $\dot{\ell}_{x,t} = -\alpha_x \cdot \ell_{x,t} \text{ if } x \in \mathcal{D}$ Reallocation Resource $y_t = C_t + \sum (k_x)$ constraint $x \in \mathcal{D}$ Indirect utility

$y_{x,t} = \ell_{x,t} + k_{x,t}, \quad w_{x,t} = (1 + \tau_{x,t})/A_{x,t} \text{ if } x \in \mathcal{D}$

$y_{x,t} = \ell_{x,t}$ if $x \notin \mathcal{D} \Rightarrow$ assume single undisrupted island with $\ell_t = 1 - \sum_{x,t} \ell_{x,t}$ and wage w_t *x*∈∅

$$_{x,t}/A_{x,t}),$$

 $U_{x,0} = \mathcal{U}_{x} \left(\{ w_{x,t} + T_{t}, w_{t} + T_{t} \}_{t=0}^{\infty}, a_{x,0}; \alpha_{x} \right) - \kappa(\alpha_{x})$

 $y_t = f(\{y_{x,t}\}_{x \in \mathcal{X}})$ Final good Disrupted islands Other $y_{x,t} = \ell_{x,t} \text{ if } x \notin \mathcal{D}$ islands $\dot{\ell}_{x,t} = -\alpha_x \cdot \ell_{x,t} \text{ if } x \in \mathcal{D}$ Reallocation Resource $y_t = C_t + \sum_{x,t} (k_{x,t}/A_{x,t}),$ constraint $x \in \mathcal{D}$ Indirect utility

$y_{x,t} = \ell_{x,t} + k_{x,t}, \quad w_{x,t} = (1 + \tau_{x,t})/A_{x,t} \text{ if } x \in \mathcal{D}$

 $U_{x,0} = \mathcal{U}_{x} \left(\{ w_{x,t} + T_{t}, w_{t} + T_{t} \}_{t=0}^{\infty}, a_{x,0}; \alpha_{x} \right) - \kappa(\alpha_{x})$

 $y_t = f(\{y_{x,t}\}_{x \in \mathcal{X}})$ Final good Disrupted islands Other $y_{x,t} = \ell_{x,t} \text{ if } x \notin \mathcal{D}$ islands $\dot{\ell}_{x,t} = -\alpha_x \cdot \ell_{x,t} \text{ if } x \in \mathcal{D}$ Reallocation Resource $y_t = C_t + \sum_{x,t} (k_{x,t}/A_{x,t}),$ constraint $x \in \mathcal{D}$ Indirect utility

 $y_{x,t} = \ell_{x,t} + k_{x,t}, \quad (w_{x,t} = (1 + \tau_{x,t})/A_{x,t}) \text{ if } x \in \mathcal{D}$

 $U_{x,0} = \mathcal{U}_x \left(\{ w_{x,t} + T_t, w_t + T_t \}_{t=0}^{\infty}, a_{x,0}; \alpha_x \right) - \kappa(\alpha_x)$

Definition: $\chi_{x,t}$ = marginal social value of income at island x time t per worker For disrupted islands, this can be computed as

$$\chi_{x,t} = g_x \cdot e^{-\rho t} \cdot u'(c_{x,d,t})$$

 For undisrupted island, this can be computed as $\chi_t = \frac{\ell_0}{\ell_t} \cdot g \cdot e^{-\rho t} \cdot u'(c_t) + \sum_{x \in \mathcal{D}} (1)$

$$-e^{-\alpha_{x}t})\cdot\frac{\ell_{x,0}}{\ell_{t}}\cdot g_{x}\cdot e^{-\rho t}\cdot\mathbb{E}[u'(c_{x,t,t_{r}})|t_{r}\cdot$$

• For disrupted islands, this can be computed as

$$\chi_{x,t} = g_x \cdot e^{-\rho t} \cdot u'(c_{x,d,t})$$

Pareto weight for hhs initially at x

• For undisrupted island, this can be computed as

$$\chi_t = \frac{\ell_0}{\ell_t} \cdot g \cdot e^{-\rho t} \cdot u'(c_t) + \sum_{x \in \mathcal{D}} (1 - e^{-\alpha_x t}) \cdot \frac{\ell_{x,0}}{\ell_t} \cdot g_x \cdot e^{-\rho t} \cdot \mathbb{E}[u'(c_{x,t,t_r}) | t_r]$$

- **Definition:** $\chi_{x,t}$ = marginal social value of income at island x time t per worker
 - **Consumption disrupted hhs**
 - that have not reallocated

Definition: $\chi_{x,t}$ = marginal social value of income at island x time t per worker For disrupted islands, this can be computed as

$$\chi_{x,t} = g_x \cdot e^{-\rho t} \cdot u'(c_{x,d,t})$$

 For undisrupted island, this can be computed as $\chi_t = \frac{\ell_0}{\ell_t} \cdot g \cdot e^{-\rho t} \cdot u'(c_t) + \sum_{x \in \mathcal{D}} (1)$

$$-e^{-\alpha_{x}t})\cdot\frac{\ell_{x,0}}{\ell_{t}}\cdot g_{x}\cdot e^{-\rho t}\cdot\mathbb{E}[u'(c_{x,t,t_{r}})|t_{r}\cdot$$

Definition: $\chi_{x,t}$ = marginal social value of income at island x time t per worker For disrupted islands, this can be computed as

$$\chi_{x,t} = g_x \cdot e^{-\rho t} \cdot u'(c_{x,d,t})$$

• For undisrupted island, this can be computed as

$$\chi_t = \frac{\ell_0}{\ell_t} \cdot g \cdot e^{-\rho t} \cdot u'(c_t) + \sum_{x \in \mathcal{D}} (1 - e^{-\alpha_x t}) \cdot \frac{\ell_{x,0}}{\ell_t} \cdot g_x \cdot e^{-\rho t} \cdot \mathbb{E}[u'(c_{x,t,t_r}) \mid t_r]$$

Pareto weight for undisrupted hhs

Consumption for undisrupted hhs

Objective: Pick $\{\tau_{x,t}\}_{t=0}^{\infty}$ to maximize welfare along transition $\mathscr{W}(U_h) \cdot dh$

Consumption for disrupted hhs that reallocated at t_r

Definition: $\chi_{x,t}$ = marginal social value of income at island x time t per worker For disrupted islands, this can be computed as

$$\chi_{x,t} = g_x \cdot e^{-\rho t} \cdot u'(c_{x,d,t})$$

 For undisrupted island, this can be computed as $\chi_t = \frac{\ell_0}{\ell_t} \cdot g \cdot e^{-\rho t} \cdot u'(c_t) + \sum_{x \in \mathcal{D}} (1)$

$$-e^{-\alpha_{x}t})\cdot\frac{\ell_{x,0}}{\ell_{t}}\cdot g_{x}\cdot e^{-\rho t}\cdot\mathbb{E}[u'(c_{x,t,t_{r}})|t_{r}\cdot$$

Key Lemma: a variation in taxes that induces a change in wages $\{dw_{x,t}\}$ and the utilization of the new technology by $\{dk_{x,t}\}$ changes welfare by

$$dW_0^{reform} = \int_0^\infty \bar{\chi}_t \cdot \left(\sum_x \tau_{x,t} \cdot \frac{dk}{A_y}\right)$$
Aggregat
efficiency
(fiscal external)

OPTIMAL TAX WITH EXOGENOUS REALLOCATION

vs distributional gains from change in wages (RHS)

Proposition 1: Let $m_{x,t} = k_{x,t}/A_t$. Optimal tax sequence with exogenous α_x satisfies

$$\left(\frac{d\ln w_{x,t}}{d\ln k_{x',t}}\right)$$

Intuition: Reducing $k_{x,t}$ leads to **decline in income via fiscal externality (LHS)**

OPTIMAL TAX WITH EXOGENOUS REALLOCATION

$$\tau_{x',t}^* = \sum_{x} \underbrace{ \begin{cases} \ell_{x,t} \cdot w_{x,t} \\ m_{x',t} \end{cases}}_{x} \left(\frac{\chi_{x,t}}{\bar{\chi}_t} - 1 \right) \cdot \left(-\frac{d \ln w_{x,t}}{d \ln k_{x',t}} \right)$$

1 Force towards gradualism: benefits from reducing future use of new tech small Long run: $\ell_{x,t} \rightarrow 0$ implies $\tau_{x,t} \rightarrow 0$

MAL TAX WITH EXOGENOUS REALLOCA

Force towards higher taxes: distributional considerations summarized by χ 's

MAL TAX WITH EXOGENOUS REALLOCA

 $\tau_{x',t}^* = \sum_{x} \frac{\ell_{x,t} \cdot w_{x,t}}{m_{x',t}} \cdot \left(\frac{\chi_{x,t}}{\bar{\chi}_t} - 1\right) \cdot \left(\frac{d\ln t}{d\ln t}\right)$

3 Force towards higher taxes: large negative elasticity of wages of disrupted workers wrt technology utilization

$$\frac{d\ln w_{x,t}}{d\ln k_{x',t}}$$

OPTIMAL TAX WITH ENDOGENOUS REALLOCATION EFFORT

Proposition 2: Optimal tax sequence with endogenous α_r satisfies

 $\chi_{x,t}^{end}$ and χ_t^{end} account for reduced incentives for reallocation

 $\chi_{x,t}^{end} \approx \chi_{x,t} + \mu_x \cdot \varepsilon \cdot \mathcal{U}_{x,\alpha,d,t}$ $\chi_t^{end} \approx \chi_t + \sum \left(\ell_{x,0} / \ell_t \right) \cdot \mu_x \cdot \varepsilon \cdot \mathcal{U}_{x,\alpha,n,t}$ xۯ

- $\mathcal{U}_{x,\alpha,d,t} < 0$ and $\mathcal{U}_{x,\alpha,n,t} > 0$: adverse incentives from redistribution
- ε : responsiveness reallocation effort α_x
- $\mu_{r} \ge 0$: social value of reallocation

OPTIMAL TAX WITH ENDOGENOUS REALLOCATION EFFORT

Proposition 2: Optimal tax sequence with endogenous α_r satisfies

 $\chi_{x,t}^{end}$ and χ_t^{end} account for reduced incentives for reallocation

 $\chi_{x,t}^{end} \approx \chi_{x,t} + \mu_x \cdot \varepsilon \cdot \mathcal{U}_{x,\alpha,d,t}$ $\chi_t^{end} \approx \chi_t + \sum \left(\ell_{x,0} / \ell_t \right) \cdot \mu_x \cdot \varepsilon \cdot \mathcal{U}_{x,\alpha,n,t}$ xۯ

OPTIMAL TAX WITH OTHER GOVERNMENT TOOLS

- Income taxes and assistance programs with marginal tax rate $\mathcal{R}_t \in [0,1]$
- Endogenous work effort $n_{x,t}$ responds with elasticity ε_{ℓ}

Proposition 3: When income taxes are $\tau_{x',t}^* - \mathscr{R}_t^* \cdot \varepsilon_{\ell} \cdot \frac{d \ln \operatorname{avg wage}}{d \ln k_{x',t}} = (1 - \mathscr{R}_t^*)$

Proposition 3: When income taxes are available, optimal tax sequence satisfies*

$$) \cdot \left[\sum_{x} \frac{\ell'_{x,t} \cdot n_{x,t} \cdot w_{x,t}}{m_{x',t}} \cdot \left(\frac{\chi_{x,t}}{\bar{\chi}_t} - 1 \right) \cdot \left(-\frac{d \ln w_{x,t}}{d \ln k_{x',t}} \right) \right]$$

OPTIMAL TAX WITH OTHER GOVERNMENT TOOLS

- Income taxes and assistance programs with marginal tax rate $\mathcal{R}_t \in [0,1]$
- Endogenous work effort $n_{x,t}$ responds with elasticity ε_{ℓ}

Proposition 3: When income taxes are $\tau_{x',t}^* - \mathcal{R}_t^* \cdot \varepsilon_{\ell} \cdot \frac{d \ln \operatorname{avg wage}}{d \ln k_{x',t}} = (1 - \mathcal{R}_t^*)$

Proposition 3: When income taxes are available, optimal tax sequence satisfies*

$$) \cdot \left[\sum_{x} \frac{\ell_{x,t} \cdot n_{x,t} \cdot w_{x,t}}{m_{x',t}} \cdot \left(\frac{\chi_{x,t}}{\bar{\chi}_t} - 1 \right) \cdot \left(-\frac{d \ln w_{x,t}}{d \ln k_{x',t}} \right) \right]$$

Dampened distributional considerations

OPTIMAL TAX WITH OTHER GOVERNMENT TOOLS

- Income taxes and assistance programs with marginal tax rate $\mathcal{R}_t \in [0,1]$
- Endogenous work effort $n_{x,t}$ responds with elasticity ε_{ℓ}

Proposition 3: When income taxes are $\tau_{x',t}^* - \mathscr{R}_t^* \cdot \varepsilon_{\mathscr{C}} \cdot \frac{d \ln \operatorname{avg wage}}{d \ln k_{x',t}} = (1 - \mathscr{R}_t^*)$

- If $\varepsilon_{\ell} > 0$, taxing tech has tagging value (Naito, 1999; Costinot-Werning, 2023)
- Note: Formula for \mathscr{R}_t^* in paper (as in Tsyvinski-Werquin 2017)

Proposition 3: When income taxes are available, optimal tax sequence satisfies*

$$\sum_{x} \frac{\ell'_{x,t} \cdot n_{x,t} \cdot w_{x,t}}{m_{x',t}} \cdot \left(\frac{\chi_{x,t}}{\bar{\chi}_t} - 1\right) \cdot \left(-\frac{d \ln w_{x,t}}{d \ln k_{x',t}}\right)$$

Dampened distributional considerations

TAX IT DON'T TRASH IT

- Slower path for A_{x,t} does not lead to higher welfare
- Start from undistorted allocation with $\tau_{x',t} = 0$:
 - Perturbation 1: reducing $k_{x',t}$ via taxes

• Perturbation 2: reduction in $A_{x',t}$

Welfare change $\propto -1 +$

• Faster increase in $A_{x,t}$ always welcomed if optimal taxes in place.

$$-\sum_{x} \frac{\ell'_{x,t} \cdot w_{x,t}}{m_{x',t}} \cdot \left(\frac{\chi_{x,t}}{\bar{\chi}_t} - 1\right) \cdot \left(-\frac{d\ln w_{x,t}}{d\ln A_{x',t}}\right)$$

TAX IT DON'T TRASH IT

- Slower path for A_{x,t} does not lead to higher welfare
- Start from undistorted allocation witl
 - Perturbation 1: reducing k_{x',t} via tax

• Perturbation 2: reduction in $A_{x',t}$

Welfare change $\propto -1$ +

• Faster increase in $A_{x,t}$ always welcomed if optimal taxes in place.

h
$$\tau_{x',t} = 0$$
 :

Second-order fiscal externality on

$$+ \sum_{x} \frac{\ell'_{x,t} \cdot w_{x,t}}{m_{x',t}} \cdot \left(\frac{\chi_{x,t}}{\bar{\chi}_{t}} - 1\right) \cdot \left(-\frac{d \ln w_{x,t}}{d \ln k_{x',t}}\right)$$
First-order reduction in AE

$$-\sum_{x} \frac{\ell_{x,t} \cdot w_{x,t}}{m_{x',t}} \cdot \left(\frac{\chi_{x,t}}{\bar{\chi}_{t}} - 1\right) \cdot \left(-\frac{d \ln w_{x,t}}{d \ln A_{x',t}}\right)$$

APPLICATIONS

Automation of routine jobs

The China Shock

Colombia's trade liberalization

Using PSID, Cortes (2016) documents wage decline in routine jobs since 1985. And large incidence on workers who held these jobs in 1985 (blue line on right).

- Output is CES of islands with elasticity of substitution $\sigma = 0.85$ (Goos et al. 2014)
- 4 disrupted islands. Island $x \in \mathcal{D}$ represents the share $s_{o(x)}$ of jobs in occupation o(x) (sales, clerks, production, material handling) being replaced.
- $S_{o(x)}, A_{x,t}, \alpha$ jointly calibrated to match:
 - 1. estimates of cost-saving gains of 30% (Acemoglu-Restrepo, 2020) $\Rightarrow A_{x,2007}$
 - 2. path for occupational wages in Cortes (2016) $\Rightarrow A_{x,t}, S_{o(x)}$
 - 3. average incidence of 70% across routine jobs from Cortes (2016) $\Rightarrow \alpha = 2.7 \%$
- Remaining parameters: $r = \rho = 5\%$; inverse IES of 2.

- - hand-to-mouth

 - II. shared transition risk but no borrowing/saving outside initial island III. borrowing/saving but transition risk
 - IV. ex-post complete markets
- Last two scenarios assume zero initial assets (Kaplan et al. 2017)
- Scenarios illustrate sources of welfare gains from distorting automation/trade (as in decomposition by Dávila-Schaab, 2022)

Consumption paths (relevant for policy) obtained from model in four scenarios:

- Optimal taxes with exogenous effort
 - Optimal short run tax of 10-18%
 - Large welfare gains for disrupted households (from 5-7% loss under LF to 1-2% with optimal tax)
 - Optimal to delay when hhs can save

Optimal tax with endogenous
 effort and different levels of offset

• Optimal tax with **endogenous** effort and different levels of offset

• Optimal tax with **progressive taxes** and assistance programs ($\varepsilon_{\ell} = 0.35$)

 Optimal tax with endogenous effort and different levels of offset

• Optimal tax with **progressive taxes** and assistance programs ($\varepsilon_{\ell} = 0.35$)

- Using SSA data, Autor et al. (2014) document large income decline for workers who held these jobs by 1990.

• Autor et al. (2013): rapid increase in Chinese import penetration since 1991.

- Output is CES of islands with $\sigma = 2$ (Broda and Weinstein et al. 2006)
- 20 disrupted islands. Island $x \in \mathcal{D}$ represents the share $s_{i(x)}$ of varieties in 2-digit industry i(x) being outcompeted by China.
- $s_{i(x)}, A_{x,t}, \alpha$ jointly calibrated to match:
 - 1. price declines associated with China Shock (Bai and Stumpner, 2019) $\Rightarrow A_{x,2007}$
 - 2. path for imports by 2-digit industry in Autor et al. (2013) $\Rightarrow A_{x,t}, S_{i(x)}$
 - 3. income decline for exposed workers in Autor et al. (2014) $\Rightarrow \alpha = 1.8\%$
- Remaining parameters: $r = \rho = 5\%$; inverse IES of 2.

Model reproduces key evidence for the China Shock

- Optimal taxes with exogenous effort
 - Optimal short run tax of 10-20%
 - Large welfare gains for disrupted households (from 15% loss under LF to 10% with optimal tax)
 - Optimal to delay when hhs can save

• Optimal tax with **endogenous** effort and different levels of offset

• Optimal tax with **progressive taxes** and assistance programs ($\varepsilon_{\ell} = 0.35$)

 Optimal tax with endogenous effort and different levels of offset

• Optimal tax with **progressive taxes** and assistance programs ($\varepsilon_{\ell} = 0.35$)

THE SOURCES OF WELFARE GAINS (DAVILA-SCHAAB)

COLOMBIA'S TRADE LIBERALIZATION

- In 1990, Colombia embarked in ambitious reform program, dropping effective tariffs from 75% to 25% in 2 years
- Swift rise in import penetration from 10 to 15% of GDP
- Goldberg-Pavcnik (2005): a 10 pp drop in tariffs leads to a 1% decline in wages of workers in that industry.

COLOMBIA'S TRADE LIBERALIZATION

- Output is CES of islands with $\sigma = 2$ (Broda and Weinstein et al. 2006)
- 25 disrupted islands. Island $x \in \mathcal{D}$ represents the share $s_{i(x)}$ of varieties in 2-digit industry i(x) being outcompeted by imports after the liberalization.
- We assume that for these islands, $(1 + \tau_{x,0})/A_x = \bar{w}$ before reform
- $S_{i(x)}$, α jointly calibrated to match:
 - 1. Rise in imports by 2-digit industry $\Rightarrow s_{i(x)}$
 - 2. income decline associated with drop in protection $\Rightarrow \alpha = 3\%$
- Remaining parameters: $r = \rho = 5\%$; inverse IES of 2

COLOMBIA'S TRADE LIBERALIZATION

Summary of findings:

- Optimal reform requires gradual tariff decline, with 5-10% tariffs by 2010
- Similar results with endogenous effort or with reforms to income tax/saftey net
- Sudden reform reduces welfare of disrupted households by 16%, gradual reform by 11%

CONCLUDING REMARKS

Question 1: Should gradualism be encouraged via temporary taxes? Yes. Positive optimal tax in short run and zero tax in long run

Question 2: Does society benefit from more gradual technological advances? Not in our calibration for China Shock and the automation of routine jobs (taxes yield revenue, slow technological progress does not)

Some additional insights:

- preserve incentives for reallocation

 When losers from trade and technology concentrated and hard to identify, better to assist them by distorting technology than by reforming income tax / safety net

• Endogenous effort: protect in short run and commit to subsidy in medium run to

