DARON ACEMOGLU (MIT) & PASCUAL RESTREPO (BOSTON UNIVERSITY) **AUTOMATION AND RENT DISSIPATION NBER Growth Meeting, July 2023**

THE CHANGING US WAGE STRUCTURE

EFFECTS OF AUTOMATION ON WAGE STRUCTURE

- This paper: effects of automation with distorted labor markets and worker rents.
- Automation targets higher-rent jobs \Rightarrow rent dissipation mechanism
 - reduces within-group wage differentials
 - more adverse effect on wages of exposed groups of workers than in CLM
 - pushes workers to low MRP jobs, smaller TFP gains than in CLM —
- Today: task model and empirical application to US
 - automation accounts for 60% of changes in wage structure with 16% due to rent dissipation

$$(k_{x}/q_{x}) \cdot dx$$

$$\mathcal{T}$$
th k_{x} , $\frac{W_{g} \cdot \mu_{g,x}}{\Psi_{g,x}}$ if produced with $\ell_{g,x}$

$$(y_x)^{\frac{\lambda-1}{\lambda}} \cdot dx \Big)^{\frac{\lambda}{\lambda-1}}$$

$$x \cdot \ell_{g,x}$$

Here $q_x = 0$ for tasks that are not technologically automatable

$$(k_x/q_x) \cdot dx$$

th
$$k_{x}$$
, $\frac{\mathcal{W}_{g} \cdot \mu_{g,x}}{\mathcal{\Psi}_{g,x}}$ if produced with $\mathcal{C}_{g,x}$

$$(k_{x}/q_{x}) \cdot dx$$

$$\mathcal{T}$$
th k_{x} , $\frac{W_{g} \cdot \mu_{g,x}}{\Psi_{g,x}}$ if produced with $\ell_{g,x}$

Invention: q_x (investment productivity) up from zero to $q'_x > 0$ in \mathscr{A}_g^T

Adoption: automate tasks in $\mathscr{A}_g \subseteq \mathscr{A}_g^T$

Invention: q_x (investment productivity) up from zero to $q'_x > 0$ in \mathscr{A}_g^T

Adoption: automate tasks in $\mathscr{A}_g \subseteq \mathscr{A}_g^T$

Invention: q_x (investment productivity) up from zero to $q'_x > 0$ in \mathscr{A}_g^T

Adoption: automate tasks in $\mathscr{A}_g \subseteq \mathscr{A}_g^T$

Questions:

- Which tasks in \mathscr{A}_g^T are automated?
- Implications for wages and TFP?

AUTOMATION TARGETS HIGH RENT TASKS OR JOBS

Proposition

If (i) not all tasks in \mathscr{A}_g^T automated and (ii) advances in automation orthogonal to rents:

1) adoption targets higher-rents tasks,

 $\mu_{\mathscr{A}g} > \mu_g.$

2) displacement of workers from \mathscr{A}_g brings more pronounced decline at top quantiles of within-group wage distribution

AUTOMATION TARGETS HIGH RENT TASKS OR JOBS

Proposition

If (i) not all tasks in \mathscr{A}_g^T automated and (ii) advances in automation orthogonal to rents:

1) adoption targets higher-rents tasks,

 $\mu_{\mathcal{A}g} > \mu_g.$

2) displacement of workers from \mathscr{A}_g brings more pronounced decline at top quantiles of within-group wage distribution

JTOMATION AND ITS EFFECT ON AGGREGATES

Average group wages:

Task share of group g (importance of tasks assigned to g)

AUTOMATION AND ITS EFFECT ON AGGREGATES

$$\Gamma_g := \frac{1}{M} \cdot \int_{x \in \mathcal{T}_g} \psi_{g,x}^{\lambda - 1} \cdot \mu_{g,x}^{-\lambda} \cdot dx$$

Task share of group g (importance of tasks assigned to g)

- Automation affects group average wages by:
- 1) Increasing output
- 2) Reducing their task share by removing \mathscr{A}_g
- 3) Pushing workers to lower-rent jobs
- 4) Ripple effects

EFFECTS OF AUTOMATION ON GROUP WAGES

Proposition

Let $d \ln \Gamma_g^d$ = reduction in Γ_g due to the automation of tasks in \mathscr{A}_g and π_g = average cost-reduction in automated tasks. With no ripples, the effects of automation on wages and TFP are

$$d\ln \bar{w}_g = \frac{1}{\lambda} \cdot d\ln y - \frac{1}{\lambda} \cdot d\ln \Gamma_g^d - \left(\frac{\mu_{\mathscr{A}g}}{\mu_g} - 1\right) \cdot d\ln \Gamma_g^d$$
$$d\ln tfp = \sum_g s_g \cdot \frac{\mu_{\mathscr{A}g}}{\mu_g} \cdot d\ln \Gamma_g^d \cdot \pi_g - \sum_g s_g \cdot \left(\frac{\mu_{\mathscr{A}g}}{\mu_g} - 1\right) \cdot d\ln \Gamma_g^d$$

$$d\ln \bar{w}_g = \frac{1}{\lambda} \cdot d\ln y - \frac{1}{\lambda} \cdot d\ln \Gamma_g^d - \left(\frac{\mu_{\mathcal{A}g}}{\mu_g} - 1\right) \cdot d\ln \Gamma_g^d$$
$$d\ln tfp = \sum_g s_g \cdot \frac{\mu_{\mathcal{A}g}}{\mu_g} \cdot d\ln \Gamma_g^d \cdot \pi_g - \sum_g s_g \cdot \left(\frac{\mu_{\mathcal{A}g}}{\mu_g} - 1\right) \cdot d\ln \Gamma_g^d$$

EFFECTS OF AUTOMATION ON GROUP WAGES

Proposition

Let $d \ln \Gamma_g^d$ = reduction in Γ_g due to the automation of tasks in \mathscr{A}_g and π_g = average cost-reduction in automated tasks. With no ripples, the effects of automation on wages and TFP are

$$d\ln \bar{w}_g = \frac{1}{\lambda} \cdot d\ln y - \frac{1}{\lambda} \cdot d\ln \Gamma_g^d$$
(1) Prod effect
(2) Direct task
displacement
$$d\ln tfp = \sum_g s_g \cdot \frac{\mu_{\mathcal{A}g}}{\mu_g} \cdot d\ln \Gamma_g^d \cdot \sigma$$

EFFECTS OF AUTOMATION ON GROUP WAGES

Proposition

Let $d \ln \Gamma_g^d$ = reduction in Γ_g due to the automation of tasks in \mathscr{A}_g and π_g = average cost-reduction in automated tasks. With no ripples, the effects of automation on wages and TFP are

$$d \ln \bar{w}_g = \frac{1}{\lambda} \cdot d \ln y - \frac{1}{\lambda} \cdot d \ln \Gamma_g^d$$
(1) Prod effect
(2) Direct task
displacement
$$d \ln t f p = \sum_g s_g \cdot \frac{\mu_{\mathscr{A}g}}{\mu_g} \cdot d \ln \Gamma_g^d \cdot \pi$$
(1) Hulten's theorem
($\pi_g \ge 0$)

EFFECTS ACCOUNTING FOR RIPPLES

Proposition

Let
$$\Theta = \left(\mathbb{I} - \frac{1}{\lambda} \frac{\partial \ln \Gamma}{\partial \ln w}\right)^{-1}$$
 and $\mathcal{M} = \frac{\partial \ln \mu}{\partial \ln w} \cdot \left(\mathbb{I} - \frac{1}{\lambda} \frac{\partial \ln \Gamma}{\partial \ln w}\right)^{-1}$. With ripples, the effects of automation on wages and TFP are

$$d\ln \bar{w}_{g} = \frac{1}{\lambda} \cdot (\Theta_{g} + \mathcal{M}_{g}) \cdot \operatorname{stack}(d\ln y - d\ln\Gamma_{j}^{d}) - (\mu_{\mathcal{A}g}/\mu_{g} - 1) \cdot d\ln\Gamma$$
$$d\ln tfp = \sum_{g} s_{g} \cdot \frac{\mu_{\mathcal{A}g}}{\mu_{g}} \cdot d\ln\Gamma_{g}^{d} \cdot \pi_{g}$$
Column vector of all "shocks"
$$+ \sum_{g} s_{g} \cdot (\frac{1}{\lambda} \cdot \mathcal{M}_{g} \cdot \operatorname{stack}(d\ln y - d\ln\Gamma_{j}^{d}) - (\mu_{\mathcal{A}g}/\mu_{g} - 1) \cdot d\ln\Gamma_{g}^{d}$$

EFFECTS ACCOUNTING FOR RIPPLES

Proposition

Let
$$\Theta = \left(\mathbb{I} - \frac{1}{\lambda} \frac{\partial \ln \Gamma}{\partial \ln w}\right)^{-1}$$
 and $\mathcal{M} = \frac{\partial \ln \mu}{\partial \ln w} \cdot \left(\mathbb{I} - \frac{1}{\lambda} \frac{\partial \ln \Gamma}{\partial \ln w}\right)^{-1}$. With ripples, the effects of automation on wages and TFP are

$$d\ln \bar{w}_{g} = \frac{1}{\lambda} \cdot (\Theta_{g} + \mathcal{M}_{g}) \cdot \operatorname{stack}(d\ln y - d\ln\Gamma_{j}^{d}) - (\mu_{\mathcal{A}g}/\mu_{g} - 1) \cdot d\ln\Gamma$$
$$d\ln tfp = \sum_{g} s_{g} \cdot \frac{\mu_{\mathcal{A}g}}{\mu_{g}} \cdot d\ln\Gamma_{g}^{d} \cdot \pi_{g}$$
$$+ \sum_{g} s_{g} \cdot (\frac{1}{\lambda} \cdot \mathcal{M}_{g} \cdot \operatorname{stack}(d\ln y - d\ln\Gamma_{j}^{d}) - (\mu_{\mathcal{A}g}/\mu_{g} - 1) \cdot d\ln\Gamma_{g}^{d}$$

 \Rightarrow Formulas to compute effects of automation shock $\{d \ln \Gamma_g^d, \mu_{\mathcal{A}g}/\mu_g, \pi_g\}_g$

EMPIRICS: OUR APPROACH

Automation shock described by $\{d \ln \Gamma_g^d, \mu_{\mathcal{A}g}/\mu_g, \pi_g\}_g$:

- Step 1: create measures of direct task displacement $d \ln \Gamma_q^d$ for different groups of US workers over 1980–2016 (Acemoglu-Restrepo 2022)
- Step 2: provide reduced form evidence on effects of automation on groups directly exposed to it, both for wages and rents, which gives $\mu_{\mathcal{A}\varrho}/\mu_{\varrho}$
- Step 3: estimate propagation matrices $\{\Theta, \mathcal{M}\}$ (in paper)
- Step 4: combine with estimates of π_g to compute effects of automation

MEASURING DIRECT TASK DISPLACEMENT

Direct task displacement experienced by g ("share tasks" lost to automation):

$$d\ln\Gamma_g^d = \sum_i \omega_{gi} \cdot \operatorname{RCA}_{g,i}^{rout} \cdot \frac{1}{a_i} \cdot \frac{\operatorname{automati}}{\operatorname{declines}}$$

- Measured from 1980-2016 for 500 worker groups (education, gender, age, race, US born).
- Employment and wages by industry and in routine jobs from 1980 US Census
- d ln s^d_{li} from cross-industry regression of labor share changes on automation proxies
 Note: a_i is an extra adjustment term given in paper

ion-driven s in $d \ln s_{e_i}$

TASK DISPLACEMENT. WAGES. AND RENTS

Regression for average wage changes in group g $d \ln \bar{w}_g = \beta \cdot \text{task displacement}_g^d + \text{covariates}_g + u_g$

- Left panel: raw data
- Right panel: controls for industry shifts, education, gender, manufacturing exposure
- 10 pp ↑ in task displacement reduces mean wage by 20%

TASK DISPLACEMENT, WAGES, AND RENTS

How much of the relative wage decline is due to rent dissipation?

Two strategies:

- Proxy rents as wage premia by industry and occupation (Katz-Summers 89)
- Estimate group-quantile regression, building on theory

TASK DISPLACEMENT, WAGES, AND RENTS

Estimate changes in (unconditional) wage quantiles **within exposed groups:**

$$d \ln w_g(p) = \beta(p) \cdot \text{task displaceme} + \text{covariates}_g$$

- Wage decline in exposed group more pronounced above its 30th percentile
- Decline in rents inferred from within-group wage compression

• Implies
$$\mu_{\mathscr{A}_g}/\mu_g = 1.5 \Rightarrow 50\%$$
 rent

TASK DISPLACEMENT, WAGES, AND RENTS

Estimate changes in (unconditional) wage quantiles within exposed groups:

$$d \ln w_g(p) = \beta(p) \cdot \text{task displaceme} + \text{covariates}_g$$

- Wage decline in exposed group more pronounced above its 30th percentile
- Decline in rents inferred from within-group wage compression

• Implies
$$\mu_{\mathscr{A}_g}/\mu_g = 1.5 \Rightarrow 50\%$$
 rent

QUANTITATIVE FINDINGS

QUANTITATIVE FINDINGS. 1980–2016

Mode dis

Share group wage changes explained

Wages for men with no college

Average wages (comp adjusted)

TFP

Welfare (aggregate consumption)

el (ignoring rent sipation, CLM)	Model (with rent dissipation)	Data (1980–201
44%	60%	
-2.5%	-10.4%	-6.5%
4.5%	-1%	9%
3%	-0.7%	30%
4.5%	-1%	60%

CONCLUDING REMARKS

- In non-competitive labor markets, automation creates rent dissipation
- Reduced-form results:
 - exposed worker groups from 1980-2016
 - and creates within group wage compression
- Quantitative results:
 - automation accounts for 60% of changes in wage structure since 1980s (16 pp due to rent dissipation)
 - TFP and utilitarian social welfare
 - inequality, but not aggregate consumption or TFP growth

- rent dissipation accounts for 25% of negative wage effects of automation on

- rent dissipation has large effect on allocative efficiency. "Zero" net effects on

- Automation has been an important force shaping the wage structure and

EXTRA: TASK DISPLACEMENT AND RENTS I

Regression for **wage compression** in group *g* $d \ln \bar{w}_g - d \ln w_g^{30th} = \beta \cdot \mathsf{td}_g^d + \mathsf{covariates}_g + e_g$

- Left panel: raw data
- Right panel: controls
- 10 pp ↑ in task
 displacement reduces
 rents by 4%
- Suggests $\mu_{\mathscr{A}g}/\mu_g = 1.4$ (rises to 1.5 when controlling for ripples)

EXTRA: TASK DISPLACEMENT AND RENTS II

Regression for **proxy for rent changes** in group g $d \ln \mu_g^{\text{proxy}} = \beta \cdot \mathsf{td}_g^d + \mathsf{covariates}_g + e_g$

- Alternative rent proxy: Change in group employment at highwage jobs in 1980 (industry × occupation) from Mincer equation
- Suggests $\mu_{\mathcal{A}g}/\mu_g = 40\%$

EXTRA: MORE EVIDENCE CONSISTENT WITH RENT DISSIPATION

- Kogan et al.: exposure to technological advances in an occupation reduces wages the most for highest-paid workers.
- Acemoglu et al.: high-wage firms more likely to adopt automation technologies (conditional on size, age, and industry).
- Braxton-Taska: workers displaced from job for technological reasons experience a 30% drop in earnings (compared to 5% for others)
- Winkler: loss of firm rents accounts for 70% of wage losses of workers exposed to import competition

EXTRA: ESTIMATE PROPAGATION AND RENT IMPACT MATRICES

• Take $\lambda = 0.5$ (Humlum, 22) and estimate

$$d\ln w_g = \frac{1}{\lambda} \cdot \Theta_g(\beta) \cdot \operatorname{stack}(d\ln y - d)$$

$$d\ln\mu_g = -\left(\mu_{\mathcal{A}g}/\mu_g - 1\right) \cdot d\ln\Gamma_g^d + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + Z_j + u_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + U_j + U_j) + Z_g^\mu + \frac{1}{\lambda} \cdot \mathcal{M}_g(\beta) \cdot (d\ln y - d\ln\Gamma_j^d + U_j + U_j) + Z_g^\mu + U_j + U$$

- Identification: $d \ln \Gamma_j^d, Z_j, Z_j^\mu \perp u_g, e_g$ for all g, j and different shocks $\{Z_g, Z_g^\mu\}$
- and overlap at high-wage jobs

 $d\ln\Gamma_i^d + Z_i + u_i)$

• **Restrictions:** Matrices parametrized in terms of employment similarity across groups

EXTRA: ESTIMATE PROPAGATION AND RENT IMPACT MATRICES

• Take $\lambda = 0.5$ (Humlum, 22) and estimate

$$d\ln w_g = \frac{1}{\lambda} \cdot \Theta_g(\beta) \cdot \operatorname{stack}(d\ln y - d)$$

$$d\ln\mu_g = -\left(\frac{\mu_{\mathcal{A}g}}{\mu_g} - 1\right) \cdot d\ln\Gamma_g^d + \frac{1}{\lambda}$$

- Identification: $d \ln \Gamma_j^d, Z_j, Z_j^\mu \perp u_g, e_g$ for all g, j and different shocks $\{Z_g, Z_g^\mu\}$
- **Restrictions:** Matrices parametrized in terms of employment similarity across groups and overlap at high-wage jobs

 - Propagation matrix has diagonal term 1.4 and off-diagonal terms sum of 0.4 • Rent impact matrix has small entries; average rent dissipation $\mu_{\mathcal{A},g}/\mu_g = 1.5$

- $d\ln\Gamma_i^d + Z_i + u_i)$
- $-\cdot \mathcal{M}_{g}(\beta) \cdot (d \ln y d \ln \Gamma_{i}^{d} + Z_{i} + u_{i}) + Z_{\varrho}^{\mu} + e_{\varrho}$

EXTRA: QUANTITATIVE FINDINGS

EXTRA: WAGE QUANTILE FUNCTIONS I

Rent quantiles for group g

 $\ln \mu_g(p)$

Automation targeted at high rent jobs

Change in wage quantiles for group g $\int d \ln w_g(p)$ No rent dissipation for workers Change of outside \mathscr{A}^T $d \ln w_g$ for jobs earning high that pay no rents rents Loss of highrent jobs within \mathscr{A} Percentiles, p

EXTRA: WAGE QUANTILE FUNCTIONS II

Rent quantiles for group g

 $\ln \mu_g(p)$

Automation targeted at low rent jobs and not all low rent jobs eliminated

Percentiles, p

EXTRA: WAGE QUANTILE FUNCTIONS III

Rent quantiles for group g

 $\ln \mu_g(p)$

Automation targeted at low rent jobs and <u>all</u> low rent jobs eliminated

EXTRA: EXAMPLE I

- Two tasks performed by g: welding and delivery
- Welding pays a rent $\mu_{welding} = 1.2$ and delivery pays no rent $\mu_{deliverv} = 1$
- MRPL at welding exceeds MRPL at delivery by 20%
- Imagine that firm given chance to automate welding job at cost κ per worker
- Firm benefits $\pi = \mu_{welding} \cdot W \kappa$
- Social benefit $\pi_{social} = \pi 0.2 \cdot w = w \kappa$
- Automation reduces social welfare if $\pi > 0 > w \kappa$

EXAMPLE II: COX'S CAPPER VS. CRAFT LABOR (BOWLES 87)

- Capping of cans done by specialized tinsmiths with high bargaining power
- Development of mechanical capper by James Cox motivated by this issue
- Mechanical capper operated by unorganized workers earning no rents
- After its development, mechanical capper substituted for some of the specialized tinsmiths, even though it was not as productive.
- Wasteful from a social point of view: specialized tinsmith might have a lower opportunity cost than combo of mechanical capper plus operator.
- Following introduction around 1870, subsequent compression of wage structure in canneries (from bimodal to unimodal)