Inflation is Conflict

Guido Lorenzoni + Ivan Werning

Inflation Is Conflict

- Mechanism for inflation?
- Proximate cause of inflation?
- Useful minimal common framework for wide set of models?

- Mechanism for inflation?
- Proximate cause of inflation?
- Useful minimal common framework for wide set of models?
- Our answer: two ingredients...
 - Conflict = Disagreement on relative prices
 - Staggered prices (distill best of NK models!)

- Mechanism for inflation?
- Proximate cause of inflation?
- Useful minimal common framework for wide set of models?
- Our answer: two ingredients...
 - Conflict = Disagreement on relative prices
 - Staggered prices (distill best of NK models!)

- Mechanism for inflation?
- Proximate cause of inflation?
- Useful minimal common framework for wide set of models?
- Our answer: two ingredients...
 - Conflict = Disagreement on relative prices
 - Staggered prices (distill best of NK models!)
- **Our contribution...**

 - Extends existing ideas and creates bridge to modern macro Isolate conflict in a stylized model
 - Network economy, non-stationary, inflation expectations, REE, stability

Expectations

Expectations

Labor Market Institutions

Expectations

Labor Market Institutions

Fiscal Policy

Energy Shocks

Demand

Monetary Policy

Expectations

Labor Market Institutions

Expectations

Labor Market Institutions

Staggered Pricing Game (Conflict)

aspirations

Staggered Pricing Game (Conflict)

Staggered Pricing Game (Conflict)

Staggered Pricing Game

(Conflict)

Conflict Perspective: Two Parts

Conflict Perspective: Two Parts

#1 Stylized Model...

- stylized, simple, conceptual, "intuition pump", "shock to the system"
- far from standard traditional models (on purpose)
- Goal: not realism, isolate conflict

no money, no credit, no savings, no interest rates, no output, no employment

Conflict Perspective: Two Parts

#1 Stylized Model...

- stylized, simple, conceptual, "intuition pump", "shock to the system"
- far from standard traditional models (on purpose)
- Goal: not realism, isolate conflict
- **#2 General Framework...**
 - akin to macro models...
 - but stripped down and N sectors (fewer special assumptions)
 - result: decomposition of conflict and adjustment inflation
 - $^{\circ}$ Goal: conflict \rightarrow standard modern macro bridge

no money, no credit, no savings, no interest rates, no output, no employment

Stylized Model General Framework Applications

#1 Stylized Model

- Two agents: A and B
- Two goods: A and B
- No production: endowments (1,0) for A (0,1) for B
- Utility: $U^{A} = U(c^{A}, c^{B})$ $U^{B} = U(c^{B}, c^{A})$ Symmetry: U(c, c') where
- Agents meet each period: identical exchange economy

#1 Stylized Model

- Two agents: A and B
- Two goods: A and B
- No production: endowments (1,0) for A (0,1) for B
- Utility: $U^A = U(c^A, c^B)$ $U^B = U(c^B, c^A)$ Symmetry: U(c, c') where
- Agents meet each period: identical exchange economy

- Staggered sticky prices, agents take turn setting prices...
 - A in even periods
 - B in odd periods

- **Staggered sticky prices**, agents take turn setting prices...
 - A in even periods
 - B in odd periods
- Prices are "nominal" (not relative)...
 - $^{\circ}$ formally: just numbers in \mathbb{R}
 - economically: maybe some unit of account (but <u>not goods</u>)
 - Informally: unit of account is by convention in some currency

- **Staggered sticky prices**, agents take turn setting prices...
 - A in even periods
 - B in odd periods
- Prices are "nominal" (not relative)...
 - $^{\circ}$ formally: just numbers in \mathbb{R}
 - economically: maybe some unit of account (but <u>not goods</u>)
 - Informally: unit of account is by convention in some currency
- No currency or money held nor exchanged

- **Staggered sticky prices**, agents take turn setting prices...
 - A in even periods
 - B in odd periods
- Prices are "nominal" (not relative)...
 - $^{\circ}$ formally: just numbers in \mathbb{R}
 - economically: maybe some unit of account (but <u>not goods</u>)
 - Informally: unit of account is by convention in some currency
- No currency or money held nor exchanged
- Trade by barter...
 - using prevailing relative prices taken as ratio of nominal ones
 - alternating who chooses quantities (buyer) and who does not (seller)

 $p_{B,-1}$

t = 1 t = 2

t = 1 t = 2

B seller: sets $p_1^* = p_{B1}$

A seller: sets $p_2^* = p_{A2}$

$$P_t^* = P_t^A = P_{t+1}^A \qquad t = 0, 2, \dots$$
$$P_t^* = P_t^B = P_{t+1}^B \qquad t = 1, 3, \dots$$

$$P_t^* = P_t^A = P_{t+1}^A \qquad t = 0, 2, \dots$$
$$P_t^* = P_t^B = P_{t+1}^B \qquad t = 1, 3, \dots$$

t = 1 t = 2

seller: sets
$$p_1^* = p_{B1}$$
 A seller: sets $p_2^* = p_{A2}$
buyer with $\frac{p_{B1}}{p_{A0}}$ B buys with $\frac{p_{A2}}{p_{B1}}$

Barter: Buyer take-it-or-leave-it offer

buy $c' \rightarrow \text{pay} \frac{P_t^*}{P_{t-1}^*}c'$ in own good

$$P_t^* = P_t^A = P_{t+1}^A \qquad t = 0, 2, \dots$$
$$P_t^* = P_t^B = P_{t+1}^B \qquad t = 1, 3, \dots$$

 $\sum_{t=0}^{\infty}$

t = 1 t = 2

seller: sets
$$p_1^* = p_{B1}$$
 A seller: sets $p_2^* = p_{A2}$
buyer with $\frac{p_{B1}}{p_{A0}}$ B buys with $\frac{p_{A2}}{p_{B1}}$

Barter: Buyer take-it-or-leave-it offer

buy
$$c' \rightarrow \text{pay} \frac{P_t^*}{P_{t-1}^*}c'$$
 in own good

$$\beta^t u(c_t, c_t')$$

seller accept/reject

 P_t^*

buyer offer

seller accept/reject

seller accept/reject

seller accept/reject

$$p) = \max_{c,c'} u(c,c')$$

$$c = 1 - pc'$$

$$1 - c', pc') \ge u(1,0)$$

И(

seller accept/reject

$$p) = \max_{c,c'} u(c,c')$$

 $c = 1 - pc'$
 $1 - c', pc') \ge u(1,0)$
(not binding)

И(

seller accept/reject

$$p) = \max_{c,c'} u(c,c')$$

$$c = 1 - pc'$$

$$1 - c', pc') \ge u(1,0)$$
(not binding)

И(

c' = D(p) $\implies \qquad \text{(standard demand)}$

seller accept/reject

$$p) = \max_{c,c'} u(c,c')$$

$$c = 1 - pc'$$

$$1 - c', pc') \ge u(1,0)$$
(not binding)

c' = D(p)

---->

(standard demand)

$$P_t^* = p^* \cdot P_{t-1}^*$$

seller accept/reject

$$p) = \max_{c,c'} u(c,c')$$

$$c = 1 - pc'$$

$$1 - c', pc') \ge u(1,0)$$
(not binding)

c' = D(p)

(standard demand)

seller accept/reject

$$p) = \max_{c,c'} u(c,c')$$

$$c = 1 - pc'$$

$$1 - c', pc') \ge u(1,0)$$
(not binding)

c' = D(p)

(standard demand)

Seller acts as a monopolist against some given demand function...

... wants relative price > 1

Seller acts as a monopolist against some given demand function...

... wants relative price > 1

OR

Seller acts as a monopolist against some given demand function...

... wants relative price > 1

D* 0×

NO

Seller acts as a monopolist against some given demand function...

... wants relative price > 1

No Role for Inflation Expectations here!

Does not depend on β discount

NO

- Previous: permanent matches
- Now: random matches (not observed a priori)
- Price resetter: price will now affect relative price tomorrow!

- Previous: permanent matches
- Now: random matches (not observed a priori)
- Price resetter: price will now affect relative price tomorrow!

$$P_t^* = p^*(\Pi^e) P_{t-1}^*$$
$$p^*(\Pi) \equiv \arg\max_p \left\{ v(p) + \beta V((\Pi_p)) \right\}$$

 $(I^{e})^{2}/p)$

Previous: permanent matches

- Now: random matches (not observed a priori)
- Price resetter: price will now affect relative price tomorrow!

$$P_t^* = p^*(\Pi^e) P_{t-1}^*$$
$$p^*(\Pi) \equiv \arg\max_p \left\{ v(p) + \beta V((\Pi_p)) \right\}$$

Rational **Expectations Fixed Point**

 $I^{e})^{2}/p)$

Previous: permanent matches

- Now: random matches (not observed a priori)
- Price resetter: price will now affect relative price tomorrow!

$$P_t^* = p^*(\Pi^e) P_{t-1}^*$$
$$p^*(\Pi) \equiv \arg\max_p \left\{ v(p) + \beta V((\Pi_p)) \right\}$$

Rational **Expectations Fixed Point**

- Previous: permanent matches
- Now: random matches (not observed a priori)
- Price resetter: price will now affect relative price tomorrow!

$$\frac{P_{t}^{*}}{P_{t-1}^{*}} > 1$$

$$\Pi = p^{*}(\Pi)$$
Rational
Expectation

- Can we have a unit of account without money?
- If add money, fixed money supply stops inflation?

without money? oly stops inflation?

- Can we have a unit of account without money?
- If add money, fixed money supply stops inflation?

without money? oly stops inflation?

- Can we have a unit of account without money?
- If add money, fixed money supply stops inflation?

Extension....

- Add money to stylized model (with random matches)
- Main result: nominal money fixed...
 ... money is used in exchange...
 - ... but conflict inflation persists! M/P shrinks towards zero...
- Converge to moneyless equilibrium studied earlier!

- Can we have a unit of account without money?
- If add money, fixed money supply stops inflation?

Extension....

- Add money to stylized model (with random matches)
- Main result: nominal money fixed... ... money is used in exchange...
 - ... but conflict inflation persists! M/P shrinks towards zero...
- Converge to moneyless equilibrium studied earlier!

Yes we can!

- Can we have a unit of account without money?
- If add money, fixed money supply stops inflation?

Extension....

- Add money to stylized model (with random matches)
- Main result: nominal money fixed... ... money is used in exchange...
 - ... but conflict inflation persists! M/P shrinks towards zero...
- Converge to moneyless equilibrium studied earlier!

Yes we can! No....

Stylized Model General Framework Now! Applications

A network of N "sectors" each sector n:

- A network of N "sectors" each sector n:
 - good or factor (labor)
 - continuum of varieties

- A network of N "sectors" each sector n:
 - good or factor (labor)
 - continuum of varieties
- Each sector cares about relative price (in logs)

 $P_n - \sum_{n'} m_{nn'} P_{n'}$

Input-output Or Consumption baskets of workers

Network Economy

- A network of N "sectors" each sector n:
 - good or factor (labor)
 - continuum of varieties
- Each sector cares about relative price (in logs)

$$P_n$$
 –

Each sector has aspiration for relative price...

 $\sum m_{nn'}P_{n'}$ n'

Input-output Or Consumption baskets of workers

 a_n

Network Economy

Network Economy

Wage-Price Example $W - P = a_W$ $P - W = a_P$

Is there a vector P such that...?

 $P_n - \sum_{n'} m_{nn'} P_{n'} = a_n$

Is there a vector P such that...?

n'

Definition: conflict if above is not possible.

 $P_n - \sum m_{nn'} P_{n'} = a_n$

Is there a vector P such that...?

n'

Definition: conflict if above is not possible.

Result. No Conflict if and only if

$$\gamma' a = \sum \gamma_n a_n =$$

N

where γ is network centrality $\gamma' M = \gamma'$.

 $P_n - \sum m_{nn'} P_{n'} = a_n$

Is there a vector P such that...?

n'

Definition: conflict if above is not possible.

Result. No Conflict if and only if

$$\gamma' a = \sum \gamma_n a_n =$$

N

where γ is network centrality $\gamma' M = \gamma'$.

 $P_n - \sum m_{nn'} P_{n'} = a_n$

Wage-Price Example $a_W + a_P = 0$

 $\dot{P}_{nt} = \lambda_n (P_{nt}^* - P_{nt})$

 $\dot{P}_{nt} = \lambda_n (P_{nt}^* - P_{nt})$ $P_{nt}^* = a_{nt} + \sum_{n'} m_{nn'} P_{n't}$

 $\dot{P}_{nt} = \lambda_n (P_{nt}^* - P_{nt})$ $P_{nt}^* = a_{nt} + \sum m_{nn'} P_{n't}$ n' $\dot{P}_{nt} = \lambda_n \left(a_{nt} + \sum m_{nn'} P_{n't} - P_{nt} \right)$ n'

 $\dot{P}_{nt} = \lambda_n (P_{nt}^* - P_{nt})$ $P_{nt}^* = a_{nt} + \sum m_{nn'} P_{n't}$ n' $\dot{P}_{nt} = \lambda_n \left(a_{nt} + \sum m_{nn'} P_{n't} - P_{nt} \right)$ n' $\dot{P}_t = \Lambda \left(a_t - A P_t \right)$

 $P_{nt} = \lambda_n (P_{nt}^* - P_{nt})$ $P_{nt}^* = a_{nt} + \sum m_{nn'} P_{n't}$ n' $\dot{P}_{nt} = \lambda_n \left(a_{nt} + \sum m_{nn'} P_{n't} - P_{nt} \right)$ n' $\dot{P}_t = \Lambda \left(a_t - A P_t \right)$

Conflict Inflation

 $P_{nt} = \lambda_n (P_{nt}^* - P_{nt})$ $P_{nt}^* = a_{nt} + \sum m_{nn'} P_{n't}$ n' $\dot{P}_{nt} = \lambda_n \left(a_{nt} + \sum m_{nn'} P_{n't} - P_{nt} \right)$ n' $\dot{P}_t = \Lambda \left(a_t - A P_t \right)$ $\bar{P}_t = \sum \psi_n P_{nt}$

n

 $\left(\psi_n = \frac{d_n}{\bar{d}}\gamma_n\right)$

Conflict Inflation

 $P_{nt} = \lambda_n (P_{nt}^* - P_{nt})$ $P_{nt}^* = a_{nt} + \sum m_{nn'} P_{n't}$ n' $\dot{P}_{nt} = \lambda_n \left(a_{nt} + \sum m_{nn'} P_{n't} - P_{nt} \right)$ n' $\dot{P}_t = \Lambda \left(a_t - A P_t \right)$

N

 $\left(\psi_n = \frac{d_n}{\bar{d}}\gamma_n\right)$

Conflict Inflation

 $P_{nt} = \lambda_n (P_{nt}^* - P_{nt})$ $P_{nt}^* = a_{nt} + \sum m_{nn'} P_{n't}$ $\dot{P}_{nt} = \lambda_n \left(a_{nt} + \sum m_{nn'} P_{n't} - P_{nt} \right)$ $\dot{P}_t = \Lambda \left(a_t - A P_t \right)$ $\bar{P}_t = \sum \psi_n P_{nt}$

N

 $\left(\psi_n = \frac{d_n}{\bar{d}}\gamma_n\right)$

Conflict Inflation

Generalized Sectoral Inflation is Conflict

Average or Persistent Inflation is Conflict

Wage-Price Example

 $\dot{P}_{t} = \lambda_{p}(a_{pt} + \omega_{t})$ $\dot{W}_{t} = \lambda_{w}(a_{wt} - \omega_{t})$ ($\omega_{t} = w_{t} - p_{t}$)

Wage-Price Example

$$\dot{P}_t = \lambda_p (a_{pt} + \omega_t)$$

 $\dot{W}_t = \lambda_w (a_{wt} - \omega_t)$
 $(\omega_t = w_t - p_t)$

$$a_{pt} = -a_{wt} = \Delta > 0$$
$$\omega_0 = 0$$

Wage-Price Example

$$\dot{P}_t = \lambda_p (a_{pt} + \omega_t)$$

 $\dot{W}_t = \lambda_w (a_{wt} - \omega_t)$
 $(\omega_t = w_t - p_t)$

Wage-Price Example

$$\dot{P}_t = \lambda_p (a_{pt} + \omega_t)$$

 $\dot{W}_t = \lambda_w (a_{wt} - \omega_t)$
 $(\omega_t = w_t - p_t)$

0.5

Opposite signs No long run inflation -1 ^L 0

Wage-Price Example

$$\dot{P}_t = \lambda_p (a_{pt} + \omega_t)$$

 $\dot{W}_t = \lambda_w (a_{wt} - \omega_t)$
 $(\omega_t = w_t - p_t)$

0.5

Opposite signs No long run inflation -1 ^L 0

Example 2: Disagreement

$$a_{pt} = \Delta > 0 = a_{wt}$$
$$\omega_0 = 0$$

3

Wage-Price Example

$$\dot{P}_t = \lambda_p (a_{pt} + \omega_t)$$

 $\dot{W}_t = \lambda_w (a_{wt} - \omega_t)$
 $(\omega_t = w_t - p_t)$

0.5

0

Opposite signs + No long run inflation

Wage-Price Example

$$\dot{P}_t = \lambda_p (a_{pt} + \omega_t)$$

 $\dot{W}_t = \lambda_w (a_{wt} - \omega_t)$
 $(\omega_t = w_t - p_t)$

0.5

0

Opposite signs + No long run inflation

We take $\{a_t\}$ as given...

- exogenous? No!...
- ... determined by full model

- We take $\{a_t\}$ as given...
 - exogenous? No!...
 - ... determined by full model
- Wage-Price Example (standard model)

$a_{w} = mrs + union markup + expected inflation$ $a_p = -mpl + firm markup + expected inflation$

- We take $\{a_t\}$ as given...
 - exogenous? No!...
 - ... determined by full model
- Wage-Price Example (standard model)

$a_{w} = mrs + union markup + expected inflation$ $a_p = -mpl + firm markup + expected inflation$

- We take $\{a_t\}$ as given...
 - exogenous? No!...
 - ... determined by full model
- Wage-Price Example (standard model)
 - $a_p = mpl + firm markup + expected inflation$
- Other possibilities? real wage rigidities (Blanchard-Gali) ...?

$$P_{nt}^* = (\rho + \lambda_n) \hat{\mathbb{E}}_{nt} \int_t^\infty e^{-(\rho + \lambda_n)(s-t)} (\hat{a}_{ns}) \hat{\mathbb{E}}_{nt} \int_t^\infty e^{-(\rho + \lambda_n)(s-t)} (\hat{a}_{ns}) \hat{\mathbb{E}}_{nt} \hat{\mathbb{E}}_{nt} \int_t^\infty e^{-(\rho + \lambda_n)(s-t)} (\hat{a}_{ns}) \hat{\mathbb{E}}_{nt} \hat{\mathbb{E}}_{nt$$

$$P_{nt}^* = (\rho + \lambda_n) \hat{\mathbb{E}}_{nt} \int_t^\infty e^{-(\rho + \lambda_n)(s-t)} (\hat{a}_{ns}) \hat{\mathbb{E}}_{nt} \int_t^\infty e^{-(\rho + \lambda_n)(s-t)} (\hat{a}_{ns}) \hat{\mathbb{E}}_{nt} \hat{\mathbb{E}}_{n$$

$$P_{nt}^* = (\rho + \lambda_n) \hat{\mathbb{E}}_{nt} \int_t^\infty e^{-(\rho + \lambda_n)(s-t)} (\hat{a}_{ns}) \hat{\mathbb{E}}_{nt} \int_t^\infty e^{-(\rho + \lambda_n)(s-t)} (\hat{a}_{ns}) \hat{\mathbb{E}}_{nt} \hat{\mathbb{E}}_{nt} \int_t^\infty e^{-(\rho + \lambda_n)(s-t)} (\hat{a}_{ns}) \hat{\mathbb{E}}_{nt} \hat{\mathbb{E}}_{nt$$

$$a_{nt} = \hat{\mathbb{E}}_{nt} \int_{t}^{\infty} e^{-(\rho + \lambda_n)(s - t)} ds$$

Steady State Example

$$a_n = \hat{a}_n + \frac{\sum_{n'} m_{nn'} \pi_{nn'}^e}{\rho + \lambda_n}$$

 $^{-t)}((\rho + \lambda_n)\hat{a}_{ns} + \sum m_{nn'}\pi_{n's})ds$ n'

$$P_{nt}^* = (\rho + \lambda_n) \hat{\mathbb{E}}_{nt} \int_t^\infty e^{-(\rho + \lambda_n)(s-t)} (\hat{a}_{ns}) \hat{\mathbb{E}}_{nt} \int_t^\infty e^{-(\rho + \lambda_n)(s-t)} (\hat{a}_{ns}) \hat{\mathbb{E}}_{nt} \hat{\mathbb{E}}_{n$$

$$a_{nt} = \hat{\mathbb{E}}_{nt} \int_{t}^{\infty} e^{-(\rho + \lambda_n)(s - t)} ds ds$$

Steady State Example

$$a_n = \hat{a}_n + \frac{\sum_{n'} m_{nn'} \pi_{nn'}^e}{\rho + \lambda_n}$$

 $^{-t)}((\rho + \lambda_n)\hat{a}_{ns} + \sum m_{nn'}\pi_{n's})ds$ n'

 $\gamma' a = \gamma' \hat{a} + \gamma' \frac{\sum_{n'} m_{nn'} \pi^{e}_{nn'}}{\rho + \lambda}$ 1 n

Conflict

Rational Expectations $\pi^e = \pi$ $P_{nt}^{*} = (\rho + \lambda_{n}) \int_{t}^{\infty} e^{-(\rho + \lambda_{n})(s-t)} (\hat{a}_{ns} + \sum_{n'} m_{n'n} P_{n's}) ds$

Rational Expectations $\pi^e = \pi$

 $P_{nt}^* = (\rho + \lambda_n) \int_t^\infty e^{-(\rho + \lambda_n)(s-t)} (\hat{a}_{ns} + \sum_{n'} m_{n'n} P_{n's}) ds$ $\longrightarrow \rho \dot{P} = \hat{\Lambda} \left(\hat{a} - AP \right) + \ddot{P}$

Rational Expectations $\pi^e = \pi$

Rational Expectations $\pi^e = \pi$

 $\hat{\Pi}_t^C = \frac{1}{\bar{D}} \int_0^\infty e^{-\rho s} \gamma' \hat{a}_{t+s} \, ds$
Rational Expectations $\pi^e = \pi$

n

 $\hat{\Pi}_t^C = \frac{1}{\bar{D}} \int_0^\infty e^{-\rho s} \gamma' \hat{a}_{t+s} \, ds$

Generalized Price-Wage Inflation is Conflict

Rational Expectations $\pi^e = \pi$

n

 $\hat{\Pi}_t^C = \frac{1}{\bar{D}} \int_0^\infty e^{-\rho s} \gamma' \hat{a}_{t+s} \, ds$

Generalized Price-Wage Inflation is Conflict

Average or Persistent Inflation is Conflict

Stylized Model General Framework Applications • Now!

- What is a wage price spiral? A shock or alternative model?
 - NO: mechanism, at work also in standard NK models

- What is a wage price spiral? A shock or alternative model?
 - NO: mechanism, at work also in standard NK models
- Can we gauge if mechanism is at work by looking at W/P?
 - NO: total power of mechanism vs. relative power on W and P

- What is a wage price spiral? A shock or alternative model?
 - NO: mechanism, at work also in standard NK models
- Can we gauge if mechanism is at work by looking at W/P?
 - NO: total power of mechanism vs. relative power on W and P
- Does W/P tell us about shocks?
 - $^{\circledast}$ NO: Demand & Supply shocks can <code>†inflation</code> and <code>↓W/P</code>

- What is a wage price spiral? A shock or alternative model?
 - NO: mechanism, at work also in standard NK models
- Can we gauge if mechanism is at work by looking at W/P?
 - NO: total power of mechanism vs. relative power on W and P
- Does W/P tell us about shocks?
- Optimistic perspective: wage price spiral but inflation falling

- Build on previous conflict framework
- Specialize to NK model with some features...
 - price and wage stickiness (as before)
 - output: labor AND input (supply constrained, energy, chips, lumber, etc)

Staggered Pricing Game

(Conflict)

$$\int_{0}^{\infty} e^{-\rho t} \left(\frac{1}{1 - \sigma} C_{t}^{1 - \sigma} - \frac{\Phi_{t}}{1 + \eta} \int_{0}^{1} N_{jt}^{1 - \eta} \right)^{1} dt$$

 $\binom{1+\eta}{jt}dt$

$$\int_{0}^{\infty} e^{-\rho t} \left(\frac{1}{1 - \sigma} C_{t}^{1 - \sigma} - \frac{\Phi_{t}}{1 + \eta} \int_{0}^{1} N_{jt}^{1 - \sigma} \right)$$

$$Y_{jt} = F\left(L_{jt}, X_{jt}\right) \equiv \left(a_L L_{jt}^{\frac{\epsilon - 1}{\epsilon}} + a_X X_{jt}\right)$$

 $\left(\int_{jt}^{1+\eta} dj \right) dt,$

$$\int_{0}^{\infty} e^{-\rho t} \left(\frac{1}{1 - \sigma} C_{t}^{1 - \sigma} - \frac{\Phi_{t}}{1 + \eta} \int_{0}^{1} N_{jt}^{1 - \sigma} \right)$$

$$Y_{jt} = F\left(L_{jt}, X_{jt}\right) \equiv \left(a_L L_{jt}^{\frac{\epsilon - 1}{\epsilon}} + a_X X_{jt}\right)$$

 $\binom{1+\eta}{t}dj dt,$

 $\left(X_{jt}^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}} \qquad L_{jt} = \left(\int_{0}^{1} L_{jkt}^{1-1/\zeta} dk\right)^{\frac{1}{1-1/\zeta}}$

$$\int_{0}^{\infty} e^{-\rho t} \left(\frac{1}{1 - \sigma} C_{t}^{1 - \sigma} - \frac{\Phi_{t}}{1 + \eta} \int_{0}^{1} N_{jt}^{1 - \sigma} \right)$$

$$Y_{jt} = F\left(L_{jt}, X_{jt}\right) \equiv \left(a_L L_{jt}^{\frac{\epsilon-1}{\epsilon}} + a_X X_{jt}^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}} \qquad L_{jt} = \left(\int_0^1 L_{jkt}^{1-1/\zeta} dk\right)^{\frac{1}{1-1/\zeta}}$$

$$p_t^* = \left(\rho + \lambda_p\right) \int_t^\infty e^{-\left(\rho + \lambda_p\right)(\tau - t)} \left(w_\tau - mpl_\tau\right) d\tau$$

$$w_t^* = \left(\rho + \lambda_w\right) \int_t^\infty e^{-(\rho + \lambda_w)(\tau - t)} \left(p_\tau + mrs_{\tau,t}\right) d\tau$$

 $\binom{1+\eta}{jt}dt$

$$\int_{0}^{\infty} e^{-\rho t} \left(\frac{1}{1 - \sigma} C_{t}^{1 - \sigma} - \frac{\Phi_{t}}{1 + \eta} \int_{0}^{1} N_{jt}^{1 - \sigma} \right)$$

$$Y_{jt} = F\left(L_{jt}, X_{jt}\right) \equiv \left(a_L L_{jt}^{\frac{\epsilon - 1}{\epsilon}} + a_X X_{jt}\right)$$

$$p_t^* = \left(\rho + \lambda_p\right) \int_t^\infty e^{-\left(\rho + \lambda_p\right)} w_t^* = \left(\rho + \lambda_w\right) \int_t^\infty e^{-\left(\rho + \lambda_w\right)} v_t^\infty e^{-\left(\rho + \lambda_w\right)} v_t$$

 $^{+\eta}dj$ dt,

 $\left(X_{jt}^{\frac{\epsilon-1}{\epsilon}}\right)^{\frac{\epsilon}{\epsilon-1}} \qquad L_{jt} = \left(\int_{0}^{1} L_{jkt}^{1-1/\zeta} dk\right)^{\frac{1}{1-1/\zeta}}$

 $(\lambda_p)^{(\tau-t)} (w_{\tau} - mpl_{\tau}) d\tau$

 $(\lambda_w)(\tau - t) \left(p_{\tau} + mrs_{\tau,t}\right) d\tau$

Shocks and Real Wage

Supply Constrained Demand Shock

- Explore...
 - monetary policy mistake increases demand temporarily

Real Wage Falls...

A supply-constrained demand shock

 $\frac{\Lambda_p \, s_X}{\Lambda_w \, \epsilon} > \sigma s_L + \eta$

Prices relatively less sticky than wages

Scarce input has high share and low elasticity of substitution with labor Relatively weak response of real wage demands to hot labor market

Supply Shock

- Availability of input falls temporarily
- Two different responses of monetary policy captured by path
- Response: keep y on original path (zero)

Supply Shock

- Availability of input falls temporarily
- Two different responses of monetary policity
- Response: keep y on original path (zero)

Supply Shock

Why Does Inflation Fall when Wages Rise?

- Price inflation can fall with higher wage inflation
- Price of other input falls (negative inflation)...
 ... supply constraints easing...
 - ... also: profit margin high, room for real wages to recover;
- Wage increases already partially priced in (forward-looking rational expectations)

- useful way to think, research and teach inflation
- Mechanism for inflation: intuitive (important!)

- useful way to think, research and teach inflation
- Mechanism for inflation: intuitive (important!)
- Provide general yet simple framework...
 - fits many traditional models...
 - … helps think of new ones or outside the box

- useful way to think, research and teach inflation
- Mechanism for inflation: intuitive (important!)
- Provide general yet simple framework...
 - fits many traditional models...
 - … helps think of new ones or outside the box

- useful way to think, research and teach inflation
- Mechanism for inflation: intuitive (important!)
- Provide general yet simple framework...
 - fits many traditional models...
 - … helps think of new ones or outside the box

- Needed: motivate the use of money, give it some edge...
- Split each period into an interval with [0,1] instants
 - Fraction 1δ instants as before
 - Fraction δ are "disasters"
 - buyer has no endowment
 - Cannot trade via barter
 - the second seco
- Monetary policy: fixed M

Well known: hard to keep track of money distribution

- Well known: hard to keep track of money distribution
- Here...
 - M initially held by buyers
 - only buyers get disaster shock
 - buyers want to spend cash only during disasters (guess & verify)
 - buyers want to spend all their cash during disasters (guess & verify)

- Well known: hard to keep track of money distribution
- Here...
 - M initially held by buyers
 - only buyers get disaster shock
 - buyers want to spend cash only during disasters (guess & verify)
 - buyers want to spend all their cash during disasters (guess & verify)
- Additive utility

- Well known: hard to keep track of money distribution
- Here...
 - M initially held by buyers
 - only buyers get disaster shock
 - buyers want to spend cash only during disasters (guess & verify)
 - buyers want to spend all their cash during disasters (guess & verify)
- Additive utility

$$u(c,c') = F(c)$$

- Well known: hard to keep track of money distribution
- Here...
 - M initially held by buyers
 - only buyers get disaster shock
 - buyers want to spend cash only during disasters (guess & verify)
 - buyers want to spend all their cash during disasters (guess & verify)
- Additive utility

$$u(c,c') = F(c)$$

- Well known: hard to keep track of money distribution
- Here...
 - M initially held by buyers
 - only buyers get disaster shock
 - buyers want to spend cash only during disasters (guess & verify)
 - buyers want to spend all their cash during disasters (guess & verify)
- Additive utility

$$u(c,c') = F(c)$$

-H''(c')c'/H'(c') < 1

- Well known: hard to keep track of money distribution
- Here...
 - M initially held by buyers
 - only buyers get disaster shock
 - buyers want to spend cash only during disasters (guess & verify)
 - buyers want to spend all their cash during disasters (guess & verify)
- Additive utility

$$u(c,c') = F(c)$$

- Well known: hard to keep track of money distribution
- Here...
 - M initially held by buyers
 - only buyers get disaster shock
 - buyers want to spend cash only during disasters (guess & verify)
 - buyers want to spend all their cash during disasters (guess & verify)
- Additive utility

$$u(c,c') = F(c)$$

-H''(c')c'/H'(c') < 1

Adding Money

- Well known: hard to keep track of money distribution
- Here...
 - M initially held by buyers
 - only buyers get disaster shock
 - buyers want to spend cash only during disasters (guess & verify)
 - buyers want to spend all their cash during disasters (guess & verify)
- Additive utility

$$u(c,c') = F(c)$$

) + H(c')

 $(1-\delta)v(\tilde{p}_t) + \delta F(1-m_t/\tilde{p}_t) + \beta \left((1-\delta)V\left(\frac{p_t p_{t+1}}{\tilde{p}_t}\right) + \delta H\left(\frac{m_t}{p_t p_{t+1}}\right) \right)$

$(1 - \delta)v(\tilde{p}_t) + \delta F(1 - m_t/\tilde{p}_t) + \beta F(1 - m_t/\tilde{p}_t) + \beta$

$\longrightarrow v'(p_t)p_t + m_{t+1}\frac{0}{1}$

$$\beta \left((1-\delta)V\left(\frac{p_t p_{t+1}}{\tilde{p}_t}\right) + \delta H\left(\frac{m_t}{p_t p_{t+1}}\right) \right)$$
$$\frac{\delta}{-\delta} u(1-m_{t+1},0) = \beta V'(p_{t+1})p_{t+1}$$

$(1 - \delta)v(\tilde{p}_t) + \delta F(1 - m_t/\tilde{p}_t) + \beta F(1 - m_t/\tilde{p}_t) + \beta$

$\rightarrow v'(p_t)p_t + m_{t+1}\frac{0}{1}$

$H'(m_t)m_t \ge \beta^2 m_{t+2} H'(m_{t+2})$

$$\beta \left((1-\delta)V\left(\frac{p_t p_{t+1}}{\tilde{p}_t}\right) + \delta H\left(\frac{m_t}{p_t p_{t+1}}\right) \right)$$
$$\frac{\delta}{-\delta} u(1-m_{t+1},0) = \beta V'(p_{t+1})p_{t+1}$$

$(1 - \delta)v(\tilde{p}_t) + \delta F(1 - m_t/\tilde{p}_t) + \beta F(1 - m_t/\tilde{p}_t) + \beta$

$\rightarrow v'(p_t)p_t + m_{t+1}\frac{b}{1-t}$

 $H'(m_t)m_t \geq \beta^2 m_{t+2}H'(m_{t+2})$

 $G'(D(p_t)) \leq G'(m_t/p_t)$

$$\beta \left((1-\delta)V\left(\frac{p_t p_{t+1}}{\tilde{p}_t}\right) + \delta H\left(\frac{m_t}{p_t p_{t+1}}\right) \right)$$
$$\frac{\delta}{-\delta} u(1-m_{t+1},0) = \beta V'(p_{t+1})p_{t+1}$$

$(1 - \delta)v(\tilde{p}_t) + \delta F(1 - m_t/\tilde{p}_t) + \beta F(1 - m_t/\tilde{p}_t) + \beta$

$\rightarrow v'(p_t)p_t + m_{t+1}\frac{0}{1-t}$

 $H'(m_t)m_t \geq \beta^2 m_{t+2}H'(m_{t+2})$

 $G'(D(p_t)) \leq G'(m_t/p_t)$

$$\beta \left((1-\delta)V\left(\frac{p_t p_{t+1}}{\tilde{p}_t}\right) + \delta H\left(\frac{m_t}{p_t p_{t+1}}\right) \right)$$
$$\frac{\delta}{-\delta} u(1-m_{t+1},0) = \beta V'(p_{t+1})p_{t+1}$$

Result. For all M low enough...

$$\frac{P_{t}^{*}}{P_{t-1}^{*}} > 1$$

