
From Predictive Algorithms to
Automatic Generation of Anomalies∗

Sendhil Mullainathan Ashesh Rambachan†

July 10, 2023

Abstract

We ask how machine learning can change a crucial step of the scientific process in
economics: the advancement of theories through the discovery of “anomalies.” Canoni-
cal examples of anomalies include the Allais Paradox and the Kahneman-Tversky choice
experiments, which are concrete examples of menus of lotteries that highlighted flaws
in expected utility theory and spurred the development of new theories for decision-
making under uncertainty. We develop an econometric framework for anomaly gen-
eration and two algorithmic procedures to generate anomalies (if they exist) when
provided a formal theory and data that the theory seeks to explain. Our algorithmic
procedures are general since anomalies play an important role across a wide variety of
fields in economics. As an illustration, we apply our procedures to generate anomalies
for expected utility theory using simulated lottery choice data by an individual who
behaves according to cumulative prospect theory. We produce novel anomalies for the
independence axiom based on the probability weighting function that to our knowl-
edge have not been noticed before. While this illustration is specific, it is our view that
automatic anomaly generation can accelerate the development of new theories.
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1 Introduction

Anomalies play a central role in developing new economic theories. An anomaly is neither

a hypothesis test nor a test statistic for whether an existing model is misspecified.1 But

rather it is a carefully constructed example that provides clues as to how or why a theory

fails empirically. In this paper, we ask whether machine learning can change the scientific

process in economics by automatically generating anomalies for existing theories.

As a concrete example, consider the field of decision-making under uncertainty. Shortly

after the axiomatization of expected utility theory (von Neumann and Morgenstern, 1944),

questions arose surrounding its descriptive accuracy: how well does expected utility theory

describe the risky choices of people? To illustrate its empirical weakness, Allais (1953)

produced the now celebrated “Allais Paradox,” a hypothetical pair of menus of lotteries

depicted in Table 1. The hypothetical menus in the Allais Paradox are crafted so that

(a) Menu A

Lottery 0 $1 million
100%

Lottery 1 $1 million $0 $5 million
89% 1% 10%

(b) Menu B

Lottery 0 $0 $1 million
89% 11%

Lottery 1 $0 $5 million
90% 10%

Table 1: Menus of lotteries in the Allais Paradox (Allais, 1953).

Notes: We highlight in green the typically observed choices made by subjects when presented these two
menus (e.g. Slovic and Tversky, 1974). Allais (1953) originally denominated the payoffs in French Francs,
and we reproduce the version of the Allais Paradox used in Slovic and Tversky (1974).

expected utility theory restricts the possible choices across the two menus. Due to the

independence axiom, choices that are consistent with expected utility theory must either

select lotteries (A0, B0) or lotteries (A1, B1) (e.g., Machina, 1987). In contrast, individuals

tend to empirically select lotteries (A0, B1) (e.g., Slovic and Tversky, 1974). This was

only the beginning as researchers steadily accumulated more anomalies for expected utility

1Constructing test statistics and hypothesis tests for model misspecification is a celebrated and founda-
tional literature in econometrics and economic theory. See, for example, Sargan (1958); Afriat (1967, 1973);
Hansen (1982); Varian (1982, 1990); Choi et al. (2014); Bugni, Canay and Shi (2015); Kitamura and Stoye
(2018); Polisson, Quah and Renou (2020) among many others.
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theory.2 Eventually, Tversky and Kahneman (1992) suggested that cumulative prospect

theory could resolve many of these anomalies. Armed with a new theory, the cycle repeated

itself: researchers have since crafted new anomalies, suggesting elements that were missing

from cumulative prospect theory that in turn prompted the development of new theories of

choice under uncertainty.3

Indeed the field of decision-making under uncertainty is not exceptional.4 Economics

often advances through the discovery of anomalies that highlight inconsistencies between

our current theories and nature. As anomalies accumulate, researchers eventually develop

new theories to resolve them, and the cycle repeats itself. Scientific discovery in economics

therefore iterates between theory development and anomaly generation.

While theory development inherently relies on abstraction, anomaly generation is an

empirical activity at its core. To generate an anomaly, a researcher like Allais reflects on

“mental” data about how individuals make choices between lotteries, contrasts these patterns

against the theoretical predictions made by an existing theory like expected utility theory,

and then generates a concrete example where the theory’s predictions differ from what they

believe are the likely empirical patterns. We rely on the creativity and intuition of researchers

for all of these steps in generating anomalies.

Yet machine learning algorithms can process far more domain-specific data than any one

person. They can uncover novel predictive signals, ones that our existing theories do not

2For example, Allais (1953); Kahneman and Tversky (1979) produced the certainty effect or common ratio
effect choice experiments, Slovic and Lichtenstein (1983); Tversky and Kahneman (1986); Tversky, Slovic
and Kahneman (1990) produced choice experiments to highlight framing effects and preference reversals,
and finally Kahneman and Tversky (1984); Tversky and Kahneman (1991) produced choice experiments to
highlight loss aversion.

3Some more recent examples include salience theory (Bordalo, Gennaioli and Shleifer, 2012), betweenness
preferences and certainty independence (Dekel, 1986; Cerreia-Vioglio, Dillenberger and Ortoleva, 2015, 2020),
preferences for simplicity (Oprea, 2022; Puri, 2022), and cognitive uncertainty (Enke and Graeber, 2023)
among many others.

4For example, Richard H. Thaler’s series of articles entitled “Anomalies” in The Journal of Economic
Perspectives highlighted anomalies in asset pricing (e.g., Lamont and Thaler, 2003), game theory (e.g.,
Camerer and Thaler, 1995), international finance (e.g., Froot and Thaler, 1990), public finance (Hines and
Thaler, 1995), decision-making under uncertainty (e.g., Kahneman, Knetsch and Thaler, 1991), intertemporal
choice (Loewenstein and Thaler, 1989), and auction theory (Thaler, 1988). See also Loewenstein and Prelec
(1992) for further discussion of anomalies for intertemporal choice.
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model and we may overlook ourselves.5 How then can we go from these predictive algorithms

to the automatic generation of anomalies?

Our main contributions are to develop algorithmic procedures that take as inputs any

formal theory and data that it seeks to explain, apply a supervised learning algorithm to that

data, and then automatically generate anomalies, if they exist. As an illustration, we gener-

ate anomalies for expected utility theory in simulated lottery choice data from an individual

behaves according to cumulative prospect theory. Our procedures intriguingly uncover novel

anomalies for expected utility theory based on the probability weighting function that to our

knowledge have not been noticed before.

In order to develop algorithmic procedures for anomaly generation, we must first develop

a common econometric framework for analyzing theories that abstracts from any particular

scientific domain. Anomalies play a key role in choice under uncertainty, game theory and

asset pricing, yet theories across these scientific domains share little resemblance. Expected

utility theory is expressed as a collection of axioms that restrict preferences over lotteries,

Nash equilibrium is an equilibrium condition on choices in normal-form games, and the cap-

ital asset pricing model in finance is a model of homogeneous investors optimizing portfolios

in a frictionless market.6 Any econometric framework for anomaly generation must therefore

capture this immense diversity of theories.

To tackle this challenge, we abstractly model theories as black-boxes that derive im-

plications between some features and modeled outcomes from any hypothetical dataset.

For example, expected utility theory derives implications about choice behavior from hy-

pothetical datasets of menus of lotteries and choice probabilities, Nash equilibrium derives

implications about strategic behavior from hypothetical datasets of normal-form games and

5See, for example, Varian (2014), Athey (2017), Mullainathan and Spiess (2017), Athey (2019) among
many others. Outside of economics, machine learning algorithms are increasingly used as aids in the process
of scientific discovery. See, for example, Raghu and Schmidt (2020) and Pion-Tonachini et al. (2021) for
recent reviews.

6Even more, the same theory often has multiple equivalent representations: expected utility theory as
a collection of Bernoulli utility function over payoffs; Nash equilibrium as the fixed point of players’ best
response functions; or the capital asset pricing model as a procedure for calculating assets’ covariances with
the market return and an asset pricing equation.
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strategy profiles, and the capital asset pricing model models expected returns from hypothet-

ical datasets on the cross-section of asset price returns. We introduce four intuitive axioms

that restrict the properties of a black-box theory such that it behaves as-if it has some un-

derlying structure (whatever that may be) and establish two results. First, for any theory

satisfying these axioms, we show that there exists anomalies or minimal datasets that are

logically incompatible with the theory like the Allais Paradox. Second, we show that any

theory satisfying these axioms can be equivalently represented as an implicit allowable func-

tion class. The allowable function class summarizes all mappings between the features and

modeled outcomes that are consistent with the theory’s underlying structure (whatever that

may be). Any theory can therefore be cast into an empirical risk minimization framework,

and all anomalies can be interpreted through the lens of the theory’s allowable function class.

These results serve as the basis of our procedures for automatic anomaly generation.

Given the existence of anomalies and the tractable characterization of theories based

on their allowable function classes, we next ask how can we efficiently search for anomalies.

Using this framework, we develop two algorithmic procedures that take as input an existing

theory and data it seeks to explain, estimate a supervised machine learning algorithm to

summarize the empirical relationship between the features and modeled outcome, and then

generate anomalies if they exist.

Our first procedure is based on an adversarial characterization of anomalies over a the-

ory’s allowable function class. To capture the intuition, consider the following zero-sum

game between a theory and a falsifier. The falsifier proposes datasets to the theory, and the

theory then attempts to explain those datasets by fitting an allowable function via empirical

risk minimization. The falsifier’s payoff is increasing in the theory’s expected loss over the

proposed dataset, and the theory’s payoff is decreasing its is expected loss. We show that

anomalies can be characterized as datasets that induce a strictly positive expected loss for

the theory in such a game, or equivalently datasets that cannot be explained by any of the

theory’s allowable functions. We therefore build our first procedure for anomaly genera-
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tion based on a feasible implementation of this game as a max-min optimization program

over the theory’s allowable functions. We analyze the statistical properties of this feasible

implementation and establish conditions under which it approximates the population ver-

sion. Practically solving this max-min optimization problem may be challenging as the outer

maximization will typically be non-concave, and so standard optimization techniques may

not be applied (e.g., Rockafellar, 1970; Freund and Schapire, 1996). Instead, we leverage re-

cent breakthroughs in adversarial learning and non-convex/concave min-max optimization in

computer science (e.g., Jin, Netrapalli and Jordan, 2019; Razaviyayn et al., 2020) to solve a

feasible implementation via a gradient descent ascent procedure and analyze its convergence

properties.

While this adversarial procedure exploits nothing beyond the theory’s allowable func-

tions, there in fact exists additional structure that can be used for anomaly generation.

We show that any theory satisfying our axiomatization has a non-trivial, lower-dimensional

representation of the features; that is, there exists some pair of feature values that all al-

lowable functions assign the same modeled outcome value. It is as-if the theory collapses

these feature values together. As a consequence, some anomalies reveal what we call rep-

resentational errors that the theory’s implicit lower-dimensional representation has failed

to capture some relevant dimension of nature. In economics, we are often most interested

in such representational anomalies; and canonical anomalies like the Allais Paradox are in

fact representational anomalies for our existing theories. We therefore develop a dataset

morphing procedure to generate representational anomalies for a theory, if they exist. Given

an initial feature value, the dataset morphing procedure locally searches for another feature

value that is representationally equivalent under the theory but across which nature varies.

Finally, as an illustration, we apply our algorithmic procedures to choice under uncer-

tainty, returning to our motivating example of anomalies for expected utility theory. We

explore what anomalies for expected utility theory would be uncovered if our procedures are

provided with simulated lottery choice data from an individual whose choices are consistent
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with cumulative prospect theory. In other words, we imagine ourselves in the early 1950s,

having access to the formal model of expected utility theory and wishing to understand

its descriptive accuracy in a world where individuals make choices between risky lotteries

according to a probability weighting function. We compare and contrast the anomalies pro-

duced by our algorithmic procedures with known anomalies such as the Allais Paradox and

the Kahneman-Tversky choice experiments.

We find that our algorithms recover known anomalies for probability weighting functions

and generate novel categories of anomalies for the independence axiom. These category can-

not be cast as examples of the common consequence or common ratio effects. We particularly

highlight two such categories that we dub a “dominated consequence effect,” and a “strictly

dominated consequence effect” respectively. These are all anomalies for expected utility the-

ory that use only two possible payoffs but involve mixing lotteries with certain prospects.

Even in simulated data, our anomaly generation procedures therefore appear to have made

genuine discoveries about properties of the probability weighting function. In ongoing work,

we are collecting real lottery choice data in order to verify these anomalies and understand

whether they can inform our theories of decision-making under uncertainty.

Related work: Substantial progress has already been made in exploring how machine

learning interacts with economics theories. Several recent papers compare the out-of-sample

predictive performance of black-box machine learning models against that of economic the-

ories in domains, such as choice under uncertainty and initial play in normal-form games,

measuring the “completeness” of economic theories (Fudenberg et al., 2022). When a super-

vised machine learning algorithm predicts more accurately out-of-sample than an existing

theory, researchers then attempt to open the black-box prediction function and understand

its properties (e.g., Peysakhovich and Naecker, 2017; Camerer, 2019; Peterson et al., 2021;

Hirasawa, Kandori and Matsushita, 2022). By contrast, we use supervised machine learning

algorithms as a stepping stone to automatically generate anomalies or concrete examples
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that are incompatible with the theory.

In this sense, our work is more closely related to Fudenberg and Liang (2019) that use

supervised learning models to predict on which normal-form games observed play will differ

from alternative theories of strategic behavior and then generate new normal-form games

where a particular theory will predict poorly.7 This intuitive procedure can be formally

reinterpreted as a heuristic solution to our adversarial characterization of anomalies tailored

to the the models of strategy behavior they study. Similarly, Ludwig and Mullainathan

(2023) develop a morphing procedure for images based on generative adversarial networks in

order to uncovered implicit characteristics of defendant mug-shots that affect pretrial release

decisions. Our adversarial learning and dataset morphing procedures enable researchers to

search for anomalies given any formal theory.

More broadly, our econometric framework for analyzing theories and defining anoma-

lies builds upon a classic literature in economics on measuring the predictive success and

restrictiveness of economics theories, tracing back to Selten and Krischker (1983) and Sel-

ten (1991). Selten (1991) measures the predictive success of a theory as the comparison

between the fraction of correct predictions it makes and the fraction of outcomes it deems

possible. Harless and Camerer (1994) measures the predictive success of alternative theories

for decision-making under uncertainty over three pairs of lotteries and proposes methods for

aggregating evidence of predictive success across experiments. See also Beatty and Crawford

(2011) for an application to consumer demand. Fudenberg, Gao and Liang (2020) measure

the “restrictiveness” of economic theories, which generalizes Selten’s definition.8 Our exis-

tence result for anomalies establishes that any black-box theory satisfying our axiomatization

must be restrictive in the sense that there exists some minimal hypothetical datasets that it

cannot explain.

7See also Camerer, Ho and Chong (2004) which compares the actual rewards earned by individuals
against the expected rewards they would achieve under alternative theories of strategic behavior across
different games.

8Further afield, Andrews et al. (2022) develops procedures based on conformal inference to measure the
out-of-distribution predictive performance of economic theories.
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2 A Model of Theories

By positing some underlying structure, theories derive logical implications about the rela-

tionship some features and modeled outcomes from any hypothetical dataset. For example,

by inferring preference relations, expected utility theory derives logical implications about an

individual’s choices from menus of lotteries from hypothetical datasets of menus and choice

probabilities. How exactly theories model their underlying structure varies greatly, and any

econometric framework for anomaly generation must capture this diversity.

In this section, we analyze theories as black-box mappings that return correspondences

between the features and modeled outcome given any hypothetical dataset. We introduce

four intuitive axioms on the properties of these black-box mappings and establish two main

results. First, there exists anomalies, or minimal logically incompatible datasets, for any such

theory. Second, any such theory can be equivalently represented by an allowable function

class, which summarizes all mappings between the features and modeled outcomes that are

consistent with theory’s underlying structure. These two results serve as the foundation of

our algorithmic procedures for anomaly generation.

2.1 Setting and theories

Let x ∈ X be some feature vector and y∗ ∈ Y∗ be some modeled outcome. A dataset D :=

{(x1, y
∗
1), . . . , (xn, y

∗
n)} is a finite collection of hypothetical observations (x, y∗) ∈ X × Y∗.

We let D denote the collection of all hypothetical datasets, F denote the collection of all

mappings f(·) : X → Y∗, and C denote the collection of all correspondences c(·) : X ⇒ Y∗.

In such a scientific domain, a theory posits an underlying structure that enables it to

derive novel implications about the relationship between the features and modeled outcome

from any hypothetical dataset. Rather than focusing on any particular model, we abstractly

model a theory as a reduced-form black-box.

Definition 2.1. A theory consists of the pair (T (·),M), where T (·) : D → C is a mapping

from hypothetical datasets to correspondences between the features and modeled outcome
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andM is some finite set with elements m ∈M.

Given any hypothetical dataset D ∈ D, theory T (·) returns a correspondence that summa-

rizes all implications that it can draw about the relationship between the features and the

modeled outcome. We write T (·;D) ∈ C to be the theory’s correspondence when applied

to hypothetical dataset D ∈ D and T (x;D) ⊆ Y∗ to be the theory’s implications about

the modeled outcome at x ∈ X . All else about the scientific domain is left unmodeled and

collapsed into modeled contexts m ∈M. The modeled contexts summarize the theory’s own

scope constraints – the theory refines its underlying structure within a modeled context and

does not extrapolate across modeled contexts. We take a theory’s modeled contexts as a

primitive in this paper. We instead focus on the behavior of the theory’s correspondence

T (·).

Definition 2.1 is necessarily abstract in order to capture the diversity of theories across

scientific domains. To make it concrete, we illustrate how several leading economic theories

map into this framework.

Example: choice under uncertainty Consider individuals making choices from menus

of two lotteries over J > 1 monetary payoffs (e.g., Allais, 1953; Kahneman and Tversky,

1979). The features are a complete description of the menu of lotteries x = (z0, p0, z1, p1),

where z0, z1 ∈ RJ are the payoffs and p0, p1 ∈ ∆J−1 are the probabilities associated with

lottery 0 and lottery 1 respectively. The features may include information about how each

lottery is presented (e.g., presented as a two-stage lottery) or the ordering of lotteries in

the menu. The modeled outcome is the choice probability y∗ ∈ [0, 1] for lottery 1, and the

modeled contexts m ∈ M are each individual. Given a dataset D of hypothetical menus

and choices, expected utility theory searches for utility functions u(·) that “rationalize” the

lottery choice probabilities, meaning y∗ ∈ argmaxk∈{0,1}
∑J

j=1 pk(j)u(zk(j)) for all (x, y
∗) ∈

D. On any new menu of lotteries x, expected utility theory returns T (x;D), where y∗ ∈

T (x;D) if and only if y∗ ∈ argmaxk∈{0,1}
∑J

j=1 pk(j)u(zk(j)) for some utility function u(·)
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that rationalizes D.

Alternatively, Harless and Camerer (1994) consider expected utility theory with idiosyn-

cratic errors, which searches for utility functions u(·) and error rate ϵ ∈ [0, 0.5] satisfy-

ing y∗ = (1 − ϵ)1{
∑J

j=1 p1(j)u(z1(j)) ≥
∑J

j=1 p0(j)u(z0(j))} + ϵ1{
∑J

j=1 p1(j)u(z1(j)) <∑J
j=1 p0(j)u(z0(j))} for all (x, y∗) ∈ D. For our purposes, this is an alternative theory that

jointly imposes the axioms of expected utility theory and a particular model of idiosyncratic

noise. ▲

Example: initial play in normal-form games Consider individuals playing J × J

normal-form games (e.g., Wright and Leyton-Brown, 2010; Hartford, Wright and Leyton-

Brown, 2016; Wright and Leyton-Brown, 2017; Fudenberg and Liang, 2019; Hirasawa, Kan-

dori and Matsushita, 2022). Let {1, . . . , J} denote the actions available to the row and

column players, πrow(j, j
′), πcol(j, j

′) denote the payoff to the row player and column player

respectively from action profile (j, j′). The features are a complete description of the

normal-form payoff matrix with x = (πrow(1, 1), πcol(1, 1), . . . , πrow(J, J), πcol(J, J)) ∈ R2·J ·J .

The modeled outcome is the row player’s strategy profile, which is a probability distri-

bution over actions y∗ ∈ ∆J−1. The modeled contexts m ∈ M are again each individ-

ual. Given a dataset D of hypothetical normal-form games and strategies for the row

player, Nash equilibrium returns T (x;D) satisfying y∗ = T (x;D) for all (x, y∗) ∈ D and

y∗ ∈ T (x;D) for any x /∈ D if and only if there exists some y∗col ∈ ∆J−1 such that∑J
j=1

∑J
j̃=1 y

∗(j)y∗col(j̃)πrow(j, j̃) ≥
∑J

j=1

∑J
j̃=1 ỹ

∗(j)y∗col(j̃)πrow(j, j̃) for all ỹ
∗ ∈ ∆J−1. ▲

Example: asset pricing Consider the evolution of asset prices over time. The features

x enumerate the expected return for all assets, the full variance-covariance matrix of asset

returns and possibly higher-order moments of asset returns over a particular time period. The

modeled outcome y∗ ∈ R is the expected return of some asset j in the next period and each

modeled context m ∈M is an asset. Given a hypothetical dataset D of expected returns and

their variance-covariance matrix in several periods, the capital asset pricing model (CAPM)
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provides a procedure for calculating the expected market return ȳmarket, the risk-free rate

ȳrisk-free, and the asset’s covariance with the market return β. On any new period x, CAPM

returns T (x;D), where y∗ ∈ T (x;D) if and only if y∗ = ȳrisk-free + β (ȳmarket − ȳrisk-free). ▲

2.2 Incompatible datasets and anomalies

A hypothetical dataset is logically incompatible with theory T (·) if its underlying structure

cannot make sense of the configuration of features and modeled outcomes. For example, a

hypothetical collection of lottery menus and choice probabilities may not be rationalizable

under expected utility theory. Otherwise, a hypothetical dataset is compatible with theory

T (·).

Definition 2.2. A hypothetical dataset D ∈ D is

i. compatible with theory T (·) if T (x;D) ̸= ∅ for all x ∈ X .

ii. incompatible with theory T (·) if T (x;D) = ∅ for all x ∈ X .

Many incompatible datasets are opaque and it may be difficult for researchers to exactly

understand what drives the failure of the theory’s underlying structure. For this reason,

researchers such as Allais are not simply interested in characterizing the collection of incom-

patible datasets of a theory. But rather they construct minimal incompatible datasets that

highlight how or why the theory’s underlying structure fails. We call these anomalies and

offer a formal definition.

Definition 2.3. A hypothetical dataset D ∈ D is an anomaly for theory T (·) if D is

incompatible with theory T (·) andD\{(x, y∗)} is compatible with theory T (·) for all (x, y∗) ∈

D.

An anomaly is a minimal incompatible dataset in the sense that T (·) is compatible with

any of its subsets. Let us return to our earlier example of the Allais Paradox for expected

utility theory (Table 1). In Appendix B, we discuss anomalies for our other examples. The

Allais Paradox is a hypothetical dataset that consists of two menus xA, xB and associated
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outcomes y∗A = 0, y∗B = 1. The independence axiom of expected utility theory implies that

the implies that the choice on menu xA uniquely pins down the choice on menu xB and vice

versa. As a result, T (xA;D) = T (xB, D) for all hypothetical datasets D ∈ D and the Allais

Paradox dataset is incompatible with expected utility theory. Yet any choice on any single

menu xA or xB is compatible with expected utility theory. The Allais Paradox therefore

satisfies Definition 2.3 for expected utility theory.9

2.3 Axiomatization

We next introduce four axioms on the properties of theory’s correspondence T (·). These

axioms place restrictions on the behavior of T (·) such that it behaves as-if it has some un-

derlying structure, whatever that may be. We establish that there exists anomalies for any

theory satisfying these axioms and that any theory satisfying these axioms can be equiva-

lently represented by an allowable function class.

Axiom 1 (Compatibility). For any D ∈ D, T (·) is either compatible or incompatible with

D.

Axiom 2 (Consistency). If theory T (·) is compatible with D ∈ D, then T (x;D) = y∗ for all

(x, y∗) ∈ D.

Axiom 3 (Refinement). For any pair D,D′ ∈ D with D ⊆ D′, T (x;D′) ⊆ T (x;D) for all

x ∈ X .

Axiom 4 (Non-trivial implications). There exists some hypothetical dataset D ∈ D and

x /∈ D such that T (x;D) ⊂ Y∗.

Axiom 1 states that theory T (·) is either compatible or incompatible with any hypothet-

ical dataset but not both. Axiom 2 states that whenever the theory is compatible with a

9Of course, the set of anomalies depends on the researcher’s choice of theory T (·). As a simple example,
any hypothetical dataset containing (x, y∗) with choice probability y∗ ∈ (0, 1) would be an anomaly for
expected utility theory without idiosyncratic errors (ignoring possible indifferences), but need not be an
anomaly if we incorporate idiosyncratic errors as in Harless and Camerer (1994).
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hypothetical dataset, it is consistent with all observations in the dataset. Axiom 3 states that

the theory can only refine its implications as more hypothetical observations are collected.

Finally, Axiom 4 states that there exists some hypothetical dataset and unseen feature at

which theory T (·) derives non-trivial implications.

All of our previous examples of leading economic theories satisfy these axioms. Con-

sider expected utility theory. Appendix B discusses our other examples. First, expected

utility theory satisfies Axiom 1 and Axiom 2. For any dataset D of hypothetical menus

and choice probabilities, either (i) there exists no rationalizing utility function in which

case expected utility theory is incompatible with D, or (ii) there exists a rationalizing

utility function. Second, for any pair of hypothetical datasets D,D′ satisfying D ⊆ D′,

the rationalizing utility functions for dataset D′ must be a subset of the rationalizing

utility functions for dataset D. This implies expected utility theory satisfies Axiom 3.

Finally, consider any (x, y∗) ∈ D with x = (p1, z1, p0, z0) and y∗ ∈ {0, 1}. The inde-

pendence axiom implies the the same choice would be made on all other menus x′ =

(αp1 + (1− α)p̃, αz1 + (1− α)z̃, αp0 + (1− α)p̃, αz0 + (1− α)z̃) for any lottery (p̃, z̃) and

α ∈ [0, 1).10 Expected utility theory therefore satisfies Axiom 4.

2.4 Representation result and existence of anomalies

For any theory T (·) satisfying Axioms 1-4, we establish that there exists anomalies and it

can be equivalently represented by an allowable function class that summarizes all logical

implications T (·) may draw from any hypothetical dataset.

To state this result, we say a mapping f(·) ∈ F is consistent with hypothetical dataset

D ∈ D if f(x) = y∗ for all (x, y∗) ∈ D. Hypothetical dataset D is inconsistent with function

class F̃ ⊆ F if there exists no f(·) ∈ F̃ that is consistent with D.

Proposition 2.1.

i. Any theory T (·) satisfies Axioms 1-4 if and only if there exists a function class FT ⊂ F
10We write the compound lottery that yields lottery (p, z) with probability α ∈ [0, 1) and lottery (p′, z′)

with probability (1− α) as (αp+ (1− α)p′, αz + (1− α)z′).
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that is inconsistent with some hypothetical datasets and satisfies, for all x ∈ X and

D ∈ D,

T (x;D) =
{
f(x) : f(·) ∈ FT and f(·) is consistent with D

}
. (1)

ii. There exists anomalies for any theory T (·) satisfying Axioms 1-4.

We call FT the allowable function class of theory T (·). The allowable function class

FT summarizes all mappings from features to the modeled outcome that are consistent with

theory T (·)’s underlying structure, whatever that may be. As a result, theory T (·) can

be analyzed as-if it applies empirical risk minimization given hypothetical dataset D ∈ D

over the allowable function class FT . Furthermore, the theory’s underlying structure is not

compatible with all possible datasets – in fact, there exists anomalies for any theory T (·)

satisfying Axioms 1-4. By establishing the existence of anomalies and placing all theories into

a common allowable function representation irrespective of its scientific domain or underlying

structure, Proposition 2.1 serves as the launching point of our subsequent analysis.

We provide the complete proof in Appendix A but we briefly sketch our proof strategy

here. It is clear that the allowable function representation (1) satisfies Axioms 1-3. To show

it also satisfies Axiom 4, consider the smallest dataset Dmin ∈ D that is inconsistent with

FT (i.e., the fewest number of observations). For any (x, y∗) ∈ Dmin, Axiom 4 is satisfied for

D = Dmin\{(x, y∗)} and x. For this choice, T (x;D) ⊂ Y must be satisfied since otherwise FT

could not have been inconsistent with Dmin. This establishes necessity. To show sufficiency,

we construct an allowable function representation FT ⊂ F for any theory T (·) satisfying

Axioms 1-4. To do so, we define D¬T as the collection of all falsifying datasets for T (·),

which is non-empty by Axiom 4. We define F¬T to be the collection of all mappings that

are consistent with any falsifying dataset D ∈ D¬T . We construct the allowable functions

as FT = F \ F¬T , and the proof establishes that this construction satisfies Equation (1)

at all D ∈ D and x ∈ X . This proves part (i). To show part (ii), we establish that there

exists a smallest incompatible dataset for theory T (·) and this must also be an anomaly by
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Definition 2.3.

2.5 Observable data and theories

To this point, we only modeled the logical content of theory T (·). Our goal is to contrast

theory T (·)’s underlying structure with nature in order to understand how it may be im-

proved.

Towards this, suppose each modeled context m ∈ M is associated with some joint

distribution over (Xi, Yi) ∼ Pm(·) where Yi ∈ Y is some observed outcome. We assume the

observed outcome is related to the theory’s modeled outcome statistically. For example,

in choice under uncertainty, we only observe an individual’s binary choices on a menu but

not their choice probabilities. In initial play in normal-form games, we only observe an

individual’s action but not their chosen strategy profile. We capture this by defining the

empirical modeled outcome of the theory T (·) as

f ∗
m(x) := Em [g(Yi) | Xi = x] (2)

for some known function g(·), where Em[·] denotes the expectation under Pm(·). We therefore

assume that the modeled outcome of theory T (·) is some identified functional of each modeled

context’s underlying joint distribution.

At first glance, it may seem odd to label this an assumption since it is the starting point of

much theoretically-motivated empirical work. Indeed, researchers often first estimate choice

probabilities from data on discrete choices, strategy profiles in normal-form games from data

on actions, or expected returns from data on historical realized returns. Yet it implies that

any residual variation in the observed outcome Yi given the observed features Xi within a

modeled context is irrelevant for the structure that the theory purports to model. We view

this as a desirable attribute of our framework. The set of anomalies for a fixed theory T (·)

may depend on the researcher’s choice of function gm(·) and richness of the feature vector

x ∈ X . The choice of features and modeled outcome is therefore an important input by the
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researcher.

3 An Adversarial Algorithm for Anomalies

We established that there exists anomalies among hypothetical datasets D ∈ D for any

theory T (·) satisfying Axioms 1-4. In this section, we now ask whether there exists em-

pirical anomalies for theory T (·), and if so how to efficiently find them. That is, given

modeled contexts m ∈ M with true functions f ∗
m(·), we search for empirical anomalies

D = {(x1, f
∗
m(x1)), . . . , (xn, f

∗
m(xn))} for theory T (·). We develop an adversarial learning

algorithm to generate candidate empirical anomalies when given access to the theory’s al-

lowable functions FT and data that the theory seeks to explain.

3.1 Adversarial algorithm

Incompatible datasets and anomalies have a simple characterization in terms of theory T (·)’s

allowable functions.

Proposition 3.1. Suppose theory T (·) satisfies Axioms 1-4 and consider any loss function

ℓ : Y∗ × Y∗ → R+ satisfying ℓ(y, y′) = 0 if and only if y = y′. Then,

i. Dataset D ∈ D is incompatible with theory T (·) if and only if

min
f(·)∈FT

|D|−1
∑

(x,y∗)∈D

ℓ (f(x), y∗) > 0. (3)

ii. If there exists no incompatible datasets of size strictly less than n > 1, then any in-

compatible dataset of size n is also an anomaly.

If given access to theory T (·)’s allowable functions, searching for incompatible datasets is

equivalent to searching for hypothetical datasets that induce a strictly positive loss for the

theory’s allowable functions. Furthermore, we can search for anomalies by iteratively search-

ing for larger incompatible datasets. We next build on Proposition 3.1 in order to develop

our first procedure for automatic anomaly generation.
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Consider modeled contextm ∈M with true function f ∗
m(·) ∈ F . For x1:n := (x1, . . . , xn),

define

ET (x1:n) := min
f(·)∈FT

n−1

n∑
i=1

ℓ(f(xi), f
∗
m(xi)) (4)

to be the empirical loss over the theory T (·)’s allowable functions. Proposition 3.1 establishes

that the empirical dataset {(x1, f
∗
m(x1)), . . . , (xn, f

∗
m(xn))} is incompatible with theory T (·)

if and only if ET (x1:n) > 0. Furthermore, it is also an anomaly if there exists no smaller

empirical datasets that are incompatible with theory T (·).

If we had oracle access to the true function f ∗
m(·), we could therefore search for anoma-

lies by (i) searching for empirical incompatible datasets, or equivalently x1:n such that

ET (x1:n) > 0; and (ii) iterating that search over successively larger dataset sizes n. Searching

for empirical incompatible datasets x1:n can be accomplished by searching for solutions to

the following optimization program

max
x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ(f(xi), f
∗
m(xi)) (5)

for dataset size n ≥ 1. This max-min optimization program (5) can be interpreted as

an adversarial game between the theory (the min-player) and a falsifier (the max-player).

The falsifier proposes empirical datasets {(x1, f
∗
m(x1)), . . . , (xn, f

∗
m(xn))} to the theory and

the theory attempts to explain them using its allowable functions. The theory’s payoffs

are decreasing its average loss over those empirical datasets and the falsifier wishes to find

empirical datasets that generate large, positive loss for the theory.

The max-min optimization program also has connections to a recent literature in com-

puter science on adversarial learning (e.g., Madry et al., 2017; Akhtar and Mian, 2018; Kolter

and Madry, 2018). In particular, the max-min optimization program can be loosely inter-

preted as a “data-poisoning” attack on the theory T (·)’s allowable functions with two key

differences. Typical data-poisoning attacks fix a prediction function (e.g., an estimated neu-

ral network for image classification) and evaluate its worst-case empirical loss over a family
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of data perturbations that manipulate the features but leave the outcome fixed (e.g., ma-

nipulations of particular pixel values). By contrast, the theory moves after the falsifier in

(5), and so the falsifier must search for empirical datasets that simultaneously “poison” the

performance of all allowable functions f(·) ∈ FT . The falsifier’s manipulation of the features

also both induce variation in the theory’s allowable functions and the true function f ∗
m(·),

making the optimization program difficult to solve. We nonetheless exploit these connections

to develop an algorithmic procedure for solving a feasible implementation of the max-min

program.

We base our iterative search for anomalies on solving the max-min optimization program

(5). For some maximal dataset size n ≥ 1, we iterate over n = 1, . . . , n and solve (5). Let

n∗ denote the smallest dataset size for which the optimal value of the max-min optimization

program is strictly positive. Proposition 3.1 implies that any empirical dataset x1:n∗ with

ET (x1:n∗) > 0 is an anomaly. We therefore can search for anomalies by searching for other

elements in the set {x1:n∗ : ETm(x1:n∗) > 0}. We summarize this oracle search procedure in

Algorithm 1.

Algorithm 1: Oracle search for anomalies based on max-min optimization.

Input: True function f ∗
m(·), maximal dataset size n̄ ≥ 1.

1 n← 1;
2 while n < n do
3 E(n)← maxx1:n minf(·)∈FT n−1

∑n
i=1 ℓ (f(xi), f

∗(xi));
4 if E(n) > 0 then
5 n∗ ← n;
6 Break.

7 n← n+ 1;

8 return Anomaly size n∗, collection of anomalies {x1:n∗ : ETm(x1:n∗) > 0}.

Of course, directly implementing Algorithm 1 is not feasible. First, we do not directly

observe the true function f ∗
m(·). Second, practically solving the max-min optimization pro-

gram may be quite difficult. Both the inner minimization of the theory’s allowable functions

and the outer maximization over the features may be intractable. We tackle both of these
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challenges next in order to construct a feasible implementation of Algorithm 1.

3.1.1 Statistical analysis of plug-in max-min optimization

Recall that the true function f ∗
m(·) is some identified functional of the joint distribution of

the observable data in modeled context m – that is, f ∗
m(x) = Em[g(Yi) | Xi = x] for some

known function g(·). We now suppose that we observe a random sample (Xi, Yi) ∼ Pm(·)

i.i.d. for i = 1, . . . , Nm from modeled context m and construct an estimator f̂ ∗
m(·). We

plug-in this estimator into the max-min optimization program

max
x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)
(6)

and analyze its resulting properties.

In order to analyze the plug-in max-min optimization program, we assume that we have

access to approximate inner minimization and outer maximization routines.

Assumption 3.1.

i. For any x1:n and f̂ ∗
m(·) ∈ F , the approximate inner minimization routine returns an

allowable function f̃(·;x1:n) ∈ FT satisfying

n−1

n∑
i=1

ℓ
(
f̃(xi;x1:n), f̂

∗
m(xi)

)
≤ min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)
+ δ (7)

for some δ > 0.

ii. For any f(·;x1:n) and f̂ ∗
m(·) ∈ F , the approximate outer maximization routine returns

x̃1:n satisfying

n−1

n∑
i=1

ℓ
(
f(x̃i; x̃1:n), f̂

∗
m(x̃i)

)
≥ max

x1:n

n−1

n∑
i=1

ℓ
(
f(xi, x1:n), f̂

∗
m(xi)

)
− ν (8)

for some ν > 0.

19



This high-level assumption allows us to separate out the effects of optimization errors that

arise from solving the inner minimization and outer maximization from the statistical error

introduced by estimating f ∗
m(·). Our analysis of the plug-in max-min optimization program

will depend on the optimization errors associated with the approximate optimization rou-

tines.

Define f̃T (·;x1:n) to be the allowable function returned when the approximate inner

minimization routine is applied to solve minf(·)∈FT n−1
∑n

i=1 ℓ
(
f(xi), f̂

∗
m(xi)

)
at any feature

values x1:n. Analogously define x̃1:n to be the feature values returned when the approximate

outer maximization routine is applied to solve maxx1:n n
−1
∑n

i=1 ℓ
(
f̃T (xi;x1:n), f̂

∗
m(xi)

)
. Fi-

nally, consider the optimal values of the plug-in and population optimal values of the max-

min optimization program

Ên := n−1

n∑
i=1

ℓ
(
f̃T (x̃i, x̃1:n), f̂

∗
m(x̃i)

)
and E∗n = max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ (f(xi), f
∗
m(xi)) (9)

respectively. We analyze the difference between these two quantities.

Proposition 3.2. Suppose the loss function ℓ(·, ·) is differentiable with gradients bounded

by some K <∞ and α-strongly convex in its second argument. Then, for any n ≥ 1,

∥∥∥Ên − E∗n∥∥∥ ≤ (δ + ν) + 3
(
K +

α

2

)
∥f̂ ∗

m(·)− f ∗
m(·)∥∞, (10)

where ∥f1(·) − f2(·)∥∞ = supx∈X |f1(x) − f2(x)| is the sup-norm between two functions

f1(·), f2(·) ∈ F .

The difference between the plug-in and population optimal values of the max-min optimiza-

tion program is bounded by the optimization error introduced by the approximate optimiza-

tion routines and the estimation error of f̂ ∗
m(·) for the true function f ∗

m(·). Furthermore, the

estimation error contributes to the bound through the worst-case error of f̂ ∗
m(·) for f ∗

m(·)

as measured by the sup-norm. Equivalently, ignoring optimization error, the rate at which
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the plug-in optimal value converges to the population optimal value is bounded the rate

at which f̂ ∗
m(·) converges uniformly to the true function f ∗

m(·). While strong, it is perhaps

unsurprising that this strong form of convergence is necessary for the plug-in optimal value

to approximate the population optimal value well as the max-min optimization program

explores f ∗
m(·) in searching for incompatible datasets.

3.1.2 Gradient descent ascent optimization

While Proposition 3.2 analyzes the statistical properties of the plug-in max-min optimization

program, this still leaves open the question of how to practically solve the inner minimization

and outer maximization. To do so, we leverage recent results on non-convex/concave max-

min optimization (e.g., Jin, Netrapalli and Jordan, 2019; Razaviyayn et al., 2020) and propose

a feasible gradient descent ascent (GDA) optimization routine.

We first simplify the inner minimization problem over the theory’s allowable functions.

We assume that the theory’s allowable functions can be flexibly parametrized, meaning

FT = {fθ(·) : θ ∈ Θ} for some (possibly high-dimensional) parameter vector θ and com-

pact parameter space Θ. For example, we may construct such a parametrization using a

flexible sieve basis or class of neural networks. With this parametrization, the inner mini-

mization over the theory’s allowable functions becomes minθ∈Θ n−1
∑n

i=1 ℓ
(
fθ(xi), f̂

∗
m(xi)

)
.

For particular parametrizations and loss functions, this may be convex and so it can be

solved accurately using convex optimization methods. Otherwise, we can apply standard

gradient descent procedures since it is equivalent to an empirical risk minimization problem.

Therefore, we can implement an approximate inner minimization routine using standard

optimization methods and so we maintain our Assumption 3.1(i).

By contrast, the outer maximization over features remains difficult as varying the feature

values simultaneously induces variation in the estimated function f̂ ∗
m(·), the theory’s allow-

able function fθ(·) and the theory’s best-fitting parameter vector θ ∈ Θ. The outer maximiza-

tion problem will therefore typically be non-concave. We nonetheless propose a gradient-
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based optimization procedure. As notation, let ÊT (x1:n, θ) := n−1
∑n

i=1 ℓ
(
fθ(xi), f̂

∗
m(xi)

)
and we assume ÊT (x1:n, θ) is differentiable in x1:n for all θ ∈ Θ. For a collection of initial

feature values x0
1:n, some chosen step size sequence ηt > 0 and maximum number of iterations

T > 0, we iterate over t = 0, . . . , T and calculate at each iteration

θt+1 = argmin
θ∈Θ
Ê(xt

1:n; θ) (11)

xt+1
1:n = xt

1:n + η∇Ê(xt
1:n; θ

t+1). (12)

At each step t of the optimization procedure, we construct a solution to the inner minimiza-

tion problem θt+1 by either convex optimization or gradient descent and then take a gradient

ascent step on the feature values plugging in θt+1. Recent results in non-convex/concave

max-min optimization implies that such a gradient descent ascent algorithm converges to

an approximate stationary point of the outer maximization problem (Jin, Netrapalli and

Jordan, 2019), loosely meaning that ∇Ê(x1:n, θ) ≈ 0 at the returned feature values and

parameter vectors. We state this result formally in Appendix C.

3.2 Average anomalies across modeled contexts

Our adversarial search procedure so far focused on searching for anomalies in a single mod-

eled context, whereas we may be most empirically interested in generating anomalies that

hold across many modeled contexts m ∈M. The Allais Paradox is after all an anomaly for

expected utility theory over the choices made by a large fraction of individuals. Our algo-

rithmic procedure can be directly applied across modeled contexts to search for “average”

anomalies and incompatible datasets.

Suppose we observe a random sample (Mi, Xi, Yi) ∼ P (·) for i = 1, . . . , N across modeled

contexts. Under this joint distribution, define f̄ ∗(x) := E[g(Yi) | Xi = x] as the average

relationship between features and the modeled outcome across all modeled contexts. We

write P (m | x) = P (Mi = m | Xi = x) and define f ∗
m(x) = Em[g(Yi) | Xi = x] in each
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modeled context m ∈ M as before. An average incompatible dataset is a collection of

features x1:n such that {(x1, f̄
∗(xi)), . . . , (xn, f̄

∗(xn))} is incompatible with theory T (·). An

average anomaly is defined analogously. We next show that if x1:n is an average incompatible

dataset, then it is also an incompatible dataset in some modeled context m. Furthermore,

provided x1:n is a “systematically” incompatible dataset across modeled contexts, then it is

also an average incompatible dataset.

Proposition 3.3. Suppose theory T (·) satisfies Axioms 1-4. Then,

i. If x1:n is an average incompatible dataset, then there exists some modeled context

m ∈ M with true function f ∗
m(·) such that {(x1, f

∗
m(x1)), . . . , (xn, f

∗
m(xn))} is an in-

compatible dataset.

ii. Provided x1:n is incompatible in some modeled context and satisfies

∑
m ̸=m̃

(
n−1

n∑
i=1

P (m | x)P (m̃ | x)
(
fT
m(xi)− f ∗

m(xi)
) (

fT
m̃(xi)− f ∗

m̃(xi)
))
≥ 0,

for all fm(·), fm̃(·) ∈ FT , then x1:n is also an average incompatible dataset.

The condition in Proposition 3.3(ii) requires that x1:n be “systematically” incompatible with

theory T (·) across modeled contexts in these sense that the errors of the theory’s best fitting

allowable functions across modeled contexts do not cancel out on average.

Proposition 3.3 suggests that we can search for anomalies across modeled contexts by

plugging in an estimator ̂̄f ∗
(·) into our adversarial search procedure. Our same theoretical

analysis applies, except now the difference between the plug-in optimal value and the popu-

lation optimal value now depends on the estimation error ∥̂̄f ∗
(·)− f̄ ∗(·)∥∞. By pooling data

across modeled contexts, we may hope to obtain better control of this estimation error in

finite samples.
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4 Representational Anomalies and Dataset Morphing

The adversarial learning algorithm for anomaly generation exploits no structure about the-

ory T (·) beyond its allowable functions. In this section, we next show that there often exists

additional structure that can be exploited for anomaly generation. If a strengthened Axiom

4 (“non-trivial implications”) is satisfied, then we show that theory T (·) must have a non-

trivial, lower-dimensional representation of the features, meaning the theory always behaves

as-if it pools together it pools some feature values. In this case, we may be particularly

interested in uncovering “representational anomalies” that highlight ways in which the the-

ory’s lower dimensional representation has failed to capture some part of nature, and so we

propose a dataset morphing algorithm to generate representational anomalies.

4.1 Implicit representation of theories

To this point, we modeled theory T (·) as a reduced-form black-box that can draw implications

about the relationship between the features and modeled outcomes from any hypothetical

dataset and placed no restrictions on the behavior of this black-box across feature values.

However, a theory may draw similar implications across feature values x, x′ and we capture

this with the following definition.

Definition 4.1. Features x1, x2 ∈ X are representationally equivalent under theory T (·) if

T (x;D) = T (x;D′) for all D ∈ D.

Two feature values are representationally equivalent if theory T (·) draws the same implica-

tions on these values for all possible hypothetical datasets. The theory always behaves as-if

it groups together these two features and derives the same implications across them.

Furthermore, representational equivalence has a simple statement in terms of a theory’s

allowable functions.

Corollary 4.1. Suppose theory T (·) satisfies Axioms 1-4. Features x1, x2 are representa-

tionally equivalent if and only if f(x1) = f(x2) for all f(·) ∈ FT .
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This is an immediate consequence of Proposition 2.1. That is, two feature values are rep-

resentationally equivalent under theory T (·) if and only if all allowable functions assign the

same modeled outcome values to them. It need not be the case that each allowable function

assigns the same modeled outcome value.

We next introduce a strengthening of Axiom 4 (”non-trivial implications”) that implies

theory T (·) has a non-trivial, lower-dimensional representation of the features.

Axiom 5 (Sharp implications). There exists pair x1, x2 ∈ X such that T (xk;D) = y∗j for all

D ∈ D compatible with theory T (·) and (xj, y
∗
j ) ∈ D for j ̸= k.

Proposition 4.1. Suppose theory T (·) satisfies Axiom 1, 2, 3 and 5. Then, there exists

some pair x1, x2 ∈ X that are representationally equivalent under theory T (·).

To prove the result, we establish that the pair x1, x2 ∈ X in Axiom 5 must be representa-

tionally equivalent under theory T (·) by contradiction. If not, there exists some hypothetical

dataset D ∈ D at which T (x1;D) ̸= T (x2;D) and we can construct an augmented dataset

D̃ satisfying D ⊂ D̃ that is compatible with theory T (·) but violates Axiom 5.

Proposition 4.1 establishes that Axiom 5 is sufficient for there to exist a non-trivial

representation of the features under theory T (·). Axiom 5 states that there exists some

pair of feature values x1, x2 ∈ X such that if theory T (·) is provided with either potential

observation (x1, y
∗
1) or (x2, y

∗
2), then it sharply generalizes to the other feature value in the

pair. To make this more concrete, we return to some of our earlier examples to illustrate

that Axiom 5 is often satisfied in economic theories.

Example: choice under uncertainty Consider again individuals making choices from

menus of two lotteries over J > 1 monetary payoffs and expected utility theory. Any utility

function u(·) is associated with an allowable function f(·) ∈ FT under expected utility

theory that is given by f(x) = argmax
{∑J

j=1 p0ju(z0j),
∑J

j=1 p1ju(z1j)
}

for menu x1 =

(p0, z0, p1, z1). For any menu x2 that consists of the compound lotteries λ(p0, z0)+(1−λ)(p̃, z̃)

and λ(p1, z1) + (1 − λ)(p̃, z̃), f(x1) = f(x2) due to the linearity in probabilities of each
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allowable function. Expected utility theory therefore satisfies Axiom 5. Proposition 4.1

implies that any pair of menus x1, x2 of this form are representationally equivalent under

expected utility theory. ▲

Example: asset pricing Consider again the evolution of asset prices over time and

the capital asset pricing model (CAPM). CAPM provides a procedure for calculating the

expected market return ȳmarket, risk-free rate ȳrisk-free, and the asset’s covariance with

the market return β from any feature x1 consisting of the expected returns of all assets

and higher moments. As a result, the allowable functions of CAPM can be written as

f(x1) = ȳrisk-free + β(ȳmarket − ȳrisk-free). For any other feature x2 that leads to the same

expected market return, risk-free rate and asset’s covariance with the market return, we have

that f(x1) = f(x2). CAPM therefore satisfies Axiom 5. Any pair of features x1, x2 of this

form are representationally equivalent under CAPM. ▲

4.2 Taxonomy of anomalies

If theory T (·) has a non-trivial representation of the features, then all anonalies for theory

T (·) can be classified into two categories.

Observation 4.1. Consider any anomaly T (·) satisfying Axioms 1, 2, 3 and 5. Any anomaly

D for theory T (·) satisfies either

i. There exists (x1, y
∗
1), (x2, y

∗
2) ∈ D such that x1, x2 are representationally equivalent

under T (·) and y∗1 ̸= y∗2.

ii. There exists no pair (x1, y
∗
2), (x1, y

∗
2) ∈ D such that x1, x2 are representationally equiv-

alent.

We refer to anomalies satisfying Observation 4.1(i) as representational anomalies. A

representational anomaly highlights that there exists some pair of features that are represen-

tationally equivalent under theory T (·) but behave differently in nature. A representational

anomaly therefore highlights that there is some dimension of nature that is not captured
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by the theory’s allowable functions. By contrast, we refer to anomalies satisfy Observation

4.1(ii) as specification anomalies. Specification anomalies highlight that while theory T (·)

models variation across the features, it does so incorrectly.

Researchers in economics are typically most interested in uncovering representational

anomalies for theories as many classic examples of anomalies fall into this category. Consider

once again the Allais Paradox for expected utility theory (Table 1). Due to the indepen-

dence axiom, expected utility theory requires that T (xA;D) = T (xB;D) for all hypothetical

datasets and so the menus xA, xB are representationally equivalent. Yet, the Allais Paradox

highlights that choices vary across these two menus. In this sense the Allais Paradox is an

example of a representational anomaly and satisfies Observation 4.1(i). Indeed, other fa-

mous examples in decision-making under uncertainty such as the certainty effect or common

ratio experiments (e.g., Allais, 1953; Kahneman and Tversky, 1979) are also representational

anomalies.

4.3 Dataset morphing for representational anomalies

Our previous result establish that any theory T (·) satisfying Axioms 1, 2, 3 and 5 has

a non-trivial representation of the features. We next ask whether there exists empirical

representational anomalies and if so how we might find them. That is, given modeled con-

texts m ∈ M with true functions f ∗
m(·), we search for empirical representational anomalies

{(x1, f
∗
m(x1)), (x2, f

∗
m(x2))} for theory T (·).

To motivate our procedure, we further assume that the theory T (·)’s representation is

local.

Assumption 4.1 (Differentiability and local representational equivalence).

1. f ∗
m(·) and all f(·) ∈ FT are differentiable.

2. If features x1, x2 ∈ X are representationally equivalent, then so are λx1 + (1 − λ)x2

for any λ ∈ (0, 1) (i.e., f(x1) = f(x2) = f(λx1 + (1− λ)x2) for any allowable function

f(·) ∈ FT .
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That is, given that two features x1, x2 ∈ X are representationally equivalent, any feature

in their convex hull is also representationally equivalent. Under this assumption, repre-

sentations are local in the sense that there exists a small deviation from x1 or x2 that is

also representationally equivalent. Expected utility theory satisfies this assumption per our

earlier discussion.

Under Assumption 4.1, we might hope to uncover representational anomalies by taking

local steps. Suppose we have oracle access to the true function f ∗
m(·). Given an initial feature

values x0, we would like to search for directions v ∈ Rdim(x) along which no allowable function

f(·) ∈ FT changes but f ∗
m(·) changes substantially and then morph x0 in the direction v.

More precisely, let N T (x) = {v ∈ Rdim(x) : ∇f(x)′v = 0 for all f(·) ∈ FT} denote the

subspace of directions that are orthogonal to the gradient of each allowable function. Under

Assumption 4.1, N T (x) is non-empty at any x for which there exists some representationally

equivalent x′. For an initial feature value x0, step size η and maximum number of iterations,

we would iterate over t = 0, . . . , T and compute the update step

xt+1 = xt − ηProj
(
∇f ∗

m(x
t) | N T (xt)

)
, (13)

where Proj (·) is the projection operator and Proj
(
∇f ∗

m(x) | N T (x)
)
is the projection of

the gradient of the true function f ∗
m(·) onto the null space of the allowable functions. We

therefore update in descent directions of the true function f ∗
m(·) that hold fixed the value of

any allowable function f(·) ∈ FT . We focus on descent directions, but the same idea applies

if we instead constructed an ascent step.

Of course, this is not feasible since we do not directly observe the true function f ∗
m(·).

But recall that f ∗
m(·) is an identified functional of the joint distribution of the observable

data in modeled context m – that is, f ∗
m(x) = Em [g(Yi) | Xi = x] for some known function

g(·). We now construct an estimator f̂ ∗
m(·) based on a random sample (Xi, Yi) ∼ Pm(·) i.i.d.

for i = 1, . . . , n. We then plug-in this estimator into the morphing procedure and apply the
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update step

xt+1 = xt − ηProj
(
∇f̂ ∗

m(x
t) | N T (xt)

)
. (14)

Our next result establishes that this remains a descent direction for the true function f ∗
m(·)

provided the error ∇f̂ ∗
m(x

t)−∇f̂ ∗
m(x

t) is sufficiently small.

Proposition 4.2. Under Assumption 4.1, −Proj
(
∇f ∗

m(x) | N T (x)
)
is a descent direction

for f ∗
m(·). Furthermore, −Proj

(
∇f̂ ∗

m(x) | N T (x)
)
is also a descent direction for f ∗

m(·) pro-

vided ∥∇f̂ ∗
m(x)−∇f ∗

m(x)∥ ≤ ∥Proj
(
∇f ∗

m(x) | N T (x)
)
∥ is satisfied.

While Proposition 4.2 analyzes the statistical properties of plugging in the estimated

gradient of the true function into the morphing procedure, it still leaves open the question of

how to practically implement the projection operator. To do so, we will again assume that

the theory’s allowable functions can be flexibly parameterized, meaning FT = {fθ(·) : θ ∈ Θ}

for some θ ∈ Θ as in Section 3.1.2. With this parametrization, we implement the projection

operator by sampling B > 0 parameter values θ ∈ Θ at each update step and directly

orthogonalizing the gradient ∇f̂ ∗
m(x) with respect to the gradients ∇fθ(x). As B grows

large, this better approximates the null space of the allowable function N T (x). Algorithm 2

summarizes our practical implementation of the morphing procedure.

Algorithm 2: Feasible dataset morphing for representational anomalies.

Input: f̂ ∗
m(·), B > 0, maximum iterations T , learning rate η, initial feature x0.

1 t← 0;
2 while t < T do
3 Sample θb ∈ Θ for b = 1, . . . , B;

4 Construct N T
Θ (x

t) = {v ∈ Rdim(x) s.t. ∇fθb(x0)
Tv = 0 for all b};

5 xt+1 ← xt − ηProj
(
∇f̂ ∗

m(x
t) | N T (xt)

)
;

6 t← t+ 1;

7 return n∗, {x1:n∗ : ETm(x1:n∗) > 0}.
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4.4 Average representational anomalies across modeled contexts

Our procedure so far searches for representational anomalies in a single modeled context,

whereas we may be most empirically interested in generating representational anomalies

across many modeled contexts m ∈ M. Our morphing procedure can be extended across

modeled contexts to search for “average” representational anomalies.

As in Section 3.2, suppose we observe a random sample (Mi, Xi, Yi) ∼ P (·) for i =

1, . . . , N across modeled contexts, letting f̄ ∗(x) := E[g(Yi) | Xi = x] and P (m | x) =

P (Mi = m | Xi = x) as before. We define an average representational anomaly as a pair of

features x1, x2 such that f̄ ∗(x1) ̸= f̄ ∗(x2). We next show that if there are no compositional

changes in modeled contexts across these features, then x1, x2 is an average representational

anomaly if and only if it is a representational anomaly in some modeled context m.

Proposition 4.3. Consider features x1, x2 ∈ X and suppose P (m | x1) = P (m | x2) for

all m ∈ M. Then,if x1:n is an average representational anomaly, then there exists some

modeled context m ∈ M with true function f ∗
m(·) such that {(x1, f

∗
m(x1), (x2, f

∗
m(x2))} is a

representational anomaly.

The condition in Proposition 4.3 requires that there exists the same composition of modeled

context across features x1, x2. If not, there could exist variation in f̄ ∗(·) across these features

even though there exists no representational anomaly in any modeled context. Proposition

4.3 suggests that we can search for average representational anomalies across modeled con-

texts by simply plugging in an estimator ̂̄f ∗
(·) into our morphing procedure. Our same

theoretical analysis applies, except now the difference between the plug-in gradient and the

population gradient now depends on the quantity ∥∇̂̄f ∗
(·) − ∇f̄ ∗(·)∥2. By pooling data

across modeled contexts, we may hope to obtain better control of this estimation error.
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5 Generating Anomalies for Choice under Uncertainty

In this section, we apply our procedures to generate anomalies for expected utility theory

in simulated lottery choice data from an individual whose preferences are consistent with

cumulative prospect theory. In other words, we imagine ourselves in the 1950s, having access

to the formal model of expected utility theory and wishing to understand its descriptive

accuracy in a hypothesized world where individuals make choices according to cumulative

prospect theory.

Since the properties of cumulative prospect theory have been well-studied by behavioral

economists, we can compare and contrast the anomalies generated by our procedures against

known anomalies for expected utility theory such as Allais (1953), Kahneman and Tversky

(1979) and others. Our procedures recover known anomalies for probability weighting func-

tions. Intriguingly, we also uncover novel anomalies for expected utility theory that either

generalize or differ from those which spurred the development of cumulative prospect the-

ory. We particularly highlight two such categories generated by our algorithmic procedures,

which we dub a “dominated consequence” anomaly and a “strictly dominated consequence”

anomaly. This suggests that lottery choices consistent with cumulative prospect theory may

imply the existence of new Allais Paradox-like anomalies.

5.1 Simulation design

We simulate lottery choice data from an individual m with CRRA utility function parame-

terized by ρ ≥ 0. For ρ ̸= 1, we define the utility function as

u(z; ρ) =


z1−ρ−1
1−ρ

if z ≥ 0

− (−z)1−ρ−1
1−ρ

if z < 0.

(15)

For ρ = 1, we define u(z) = log(z) for z > 0 and − log(−z) for z < 0. Throughout, we set

ρ = 0.5 when generating lottery choices by this individual.
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Figure 1: Probability weighting function (16) for level parameter δ = 0.1 and curvature parameter
γ = 0.1

Importantly, the individual evaluates lotteries with the parametric probability weighting

function

πj(p; δ, γ) =
δpγj

δpγj +
∑

k ̸=j p
γ
k

for j = 1, . . . , J, (16)

for p ∈ ∆J−1 the vector of lottery probabilities and δ ≥ 0, γ ≥ 0 parameters governing the

curvature and level of the probability weighting function (Lattimore, Baker and Witte, 1992).

We set δ = 0.1, γ = 0.1 throughout, plotting the resulting probability weighting function in

Figure 1 below. For this choice of parameter values, the individual distorts probabilities by

over-weighting probabilities close to zero and under-weighting probabilities close to one. This

non-linearity in the probability weighting function can generate several known anomalies

for the independence axiom of expected utility, such as the Allais Paradox (Table 1) or

the certainty effect (e.g., Kahneman and Tversky, 1979). In addition to non-linearity in

the probability weighting function, this choice of parameter values additionally introduces

“subcertainty” or “prospect pessimism,” meaning that the individual’s probability weights

do not sum to one (i.e.,
∑J

j=1 πj(p; δ, γ) < 1). Subcertainty in the probability weighting

function implies that the individual’s choices may violate first-order stochastic dominance,

meaning the individual may select a lottery in the menu that is first-order stochastically

dominated by the other lottery. This is another anomaly that we may hope to find since

expected utility maximization over any utility function that is weakly increasing in payoffs

cannot violate first-order stochastic dominance.

For some payoff vector z ∈ RJ , the individual evaluates lottery (p, z) by its subjective
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expected utility EU(p, z; δ, γ, ρ) :=
∑J

j=1 πj(p; δ, γ)u(zj; ρ) On a menu of two lotteries x =

(p0, z0, p1, z1), we simulate the individual’s choice probability of selecting lottery 1 according

to f ∗
m(x) = P (EU(p1, z1; δ, γ, ρ)− EU(p0, z0; δ, γ, ρ) + ξ ≥ 0), where ξ is some i.i.d. logistic

shock.

We then generate anomalies for expected utility theory by applying our adversarial proce-

dure and dataset morphing procedure to the true choice probability function f ∗
m(·). To do so,

we flexibly parametrize the allowable functions of expected utility theory FT = {fθ(·) : θ ∈

Θ} by specifying the utility function must be some linear combination of a polynomial basis

or monotone I-splines (e.g., Ramsay, 1988) – that is, we set uθ(z) =
∑K

k=1 θkbk(z) for some

basis functions b1(·), . . . , bK(·) and the parameters θ ∈ Θ specify the weights on each basis

function. We then generate anomalies for expected utility theory over lotteries on two pay-

offs (“binary lotteries”) and lotteries on three payoffs (“ternary lotteries”). In Appendix D,

we provide more details on our practical implementation.

5.2 Anomalies generated by the probability weighting function

First consider the individual with probability weighting function (16) parameterized by δ =

0.1, γ = 0.1. Our adversarial procedure and dataset morphing procedure uncover several

distinct categories of anomalies in this case, and we particularly highlight three of them.

First order stochastic dominance violations: We provide several examples of menus

of binary lotteries from the first category in Table 2 generated by our adversarial proce-

dure. All anomalies in the first category are violations of first-order stochastic dominance –

the individual is selecting a lottery that is first-order stochastically dominated in the menu.

As mentioned earlier, it is well-known that probability weighting functions that demon-

strate subcertainty can produce this behavior. Furthermore, it is generally viewed that such

first-order stochastic dominance violations may be an undesirable “bug” in the particular

specification of the probability weighting function since we may be unlikely to hold in real
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choices.11 In Appendix D, we report first-order stochastic dominance anomalies that were

generated by our dataset morphing procedure. What is intriguing is that our anomaly gen-

eration procedures uncovered these first-order stochastic dominance violations on its own.

(a) Generated Anomaly #1 (x1)

Lottery 0 12.453 15.295
0.882 0.118

Lottery 1 1.704 4.470
ε 1− ε

(b) Generated Anomaly #2 (x2)

Lottery 0 7.260 12.124
0.747 0.253

Lottery 1 1.687 4.760
ε 1− ε

(c) Generated Anomaly #3 (x3)

Lottery 0 7.444 14.943
0.626 0.374

Lottery 1 3.212 5.501
ε 1− ε

Table 2: Examples of generated first-order stochastic dominance anomalies for the probability
weighting function with subcertainty (δ = 0.1, γ = 0.1).

Notes: We color the lottery selected by the individual with probability at least 0.5 in green. Since the
gradient of the probability weighting function π(p; δ, γ) in (16) diverges as p → 0 and p → 1, we clip the
probabilities to be bounded below by ε and 1 − ε for ε = 1 × 10−6. These anomalies are produced using
our adversarial procedure and polynomial basis function parametrization of expected utility theory. See
Appendix D for additional discussion.

Dominated consequence anomalies: Our second category of anomalies, however, ap-

pears to be a genuine discovery. Table 3 provides two representative pairs of menus of binary

lotteries from this second category. These are anomalies for expected utility theory that arise

due to the non-linearity of the probability weighting function and therefore are violations of

the independence axiom.

To make this more concrete, consider the pair of menus in Table 3(a) generated by our

dataset morphing procedure. We first observe that the lotteries in menu B can be expressed

as a compound lottery over the lotteries in menu A and some degenerate lotteries that yield

certain payoffs. Lottery B0 can be expressed as a compound lottery over A0 and a degenerate

lottery that yields payoff 8.006 with certainty; that is, B0 = α0A0 + (1− α0)δ8.006 for some

α0 ∈ (0, 1). Analogously, lottery B1 can be written as B1 = α1A1 + (1− α1)δ8.401 for some

α1 ∈ (0, 1) satisfying α1 > α0. The individual’s choices in these menus express the preference

11Indeed, Kahneman and Tversky (1979) include an “editing pahse” prior to choice that eliminates such
first-order stochastic dominated lotteries prior. We refer the reader to Lattimore, Baker and Witte (1992)
for further discussion.
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relation

A1 ≻ A0 and α0A0 + (1− α0)δ8.006 ≻ α1A1 + (1− α1)δ8.401. (17)

However, this contradicts the independence axiom of expected utility theory since it can be

shown that A1 ≻ A0 must imply that α1A1 + (1 − α1)δ8.401 ≻ α0A0 + (1 − α0)δ8.006 (see

Appendix D for the proof). A similar argument can be applied to show that the pair of

menus in Table 3(b) is an anomaly as well.

(a) Generated Anomaly #1

Menu A (xA)
Lottery 0 8.006 10.254

0.797 0.203
Lottery 1 8.401 9.841

0.158 0.842

Menu B (xB)
Lottery 0 8.006 10.254

0.965 0.035
Lottery 1 8.401 9.841

0.231 0.769

(b) Generated Anomaly #2

Menu A (xA)
Lottery 0 16.590 18.057

0.334 0.666
Lottery 1 15.616 18.140

0.771 0.229

Menu B (xB)
Lottery 0 16.590 18.057

0.360 0.640
Lottery 1 15.616 18.140

0.958 0.042

Table 3: Examples of generated “dominated consequence anomalies” for the probability weighting
function with subcertainty (δ = 0.1, γ = 0.1) over binary lotteries.

Notes: We color the lottery selected by the individual with probability at least 0.5 in green. These anomalies
are produced using our dataset morphing procedure and I-spline basis function paramterization of expected
utility theory. See Appendix D for additional discussion.

These anomalies for the independence axiom have a common structure. In particular,

defining the appropriate pair of lotteries ℓ0 = (p0, z0), ℓ1 = (p1, z1) with z0 = (z0,1, z0,2) and

z1 = (z1,1, z1,2) with z0 := minj∈{1,2} z0j < minj∈{1,2} z1j := z1, both menus in Table 3 can be

summarized as a more general pattern for this parameterization of the probability weighting

function: for some α0 ≤ α1, one menu consists of the choice between lottery ℓ0 and lottery ℓ1,

and the other menu consists of the choice between the compound lotteries α0ℓ0+(1−α0)δz0

and α1ℓ1+(1−α1)δz1 . The other menu mixes lotteries ℓ0 and ℓ1 with their minimal payoffs,

and selecting ℓ1 over ℓ0 implies that the individual also prefers α1ℓ1 + (1 − α1)δz1 over

α0ℓ0 + (1− α0)δz0 . We therefore refer to this as a “dominated consequence” anomaly.
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While sharing some similarities, this general pattern is importantly different than the

common consequence and common ratio effects (e.g., see Machina, 1987), which were im-

portant motivating anomalies for the development of the probability weighting function in

cumulative prospect theory. It has the distinct feature of highlighting violations of the inde-

pendence axiom while only using two possible payoffs (like the common ratio effect) but still

involving mixing lotteries with particular certain prospects (like the common consequence

effect). Our algorithm has therefore uncovered interesting violations of the independence

axiom of expected utility theory that solely arise due to the probability weighting function.

Strictly dominated consequence anomalies: Finally, Table 4 provides two examples

of pairs of menus of binary lotteries from yet another anomaly category.

Consider the pair of menus in Table 4(a) generated by our dataset morphing procedure.

The lotteries in menu B can once more be expressed as a compound lottery over the lotteries

in menu A and some degenerate lotteries that yield certain payoffs. Lottery B0 is a compound

lottery over lottery A0 and a degenerate lottery that yields payoff 9.196 with certainty; that

is, B0 = α0A0+(1−α0)δ9.196 for some α0 ∈ [0, 1]. Analogously, lottery B1 can be expressed

as B1 = α1A1 + (1 − α1)δ4.114 for some α1 ∈ [0, 1]. This, however, implies that lottery

B0 first order stochastically dominates lottery A0, and lottery A1 first order stochastically

dominates lottery B1. Since A0 ≻ A1 by the individual’s choice on menu A, it must then

be the case that B0 ⪰ B1 by transitivity. A similar argument can be applied to show that

the pair of menus in Table 4(b) is an anomaly as well.

This anomaly category also has a shared structure. In particular, defining the pair

of lotteries ℓ0 = (p0, z0), ℓ1 = (p1, z1) with z0 = (z0,1, z0,2), z1 = (z1,1, z1,2) and z0 :=

maxj∈{1,2} z0j, minj∈{1,2} z1j := z1, both menus in Table 4 can be summarized as a more

general pattern for this parameterization of the probability weighting function: for α0, α1 ∈

(0, 1], menu A consists of the choice between lottery ℓ0 and lottery ℓ1, and menu B consists of

the choice between the compound lotteries α0ℓ0+(1−α0)δz0 and α1ℓ1+(1−α1)δz1 . Lottery
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(a) Generated Anomaly #1

Menu A (xA)
Lottery 0 1.751 9.196

0.470 0.530
Lottery 1 4.114 5.304

0.875 0.125

Menu B (xB)
Lottery 0 1.751 9.196

0.439 0.561
Lottery 1 4.114 5.304

0.989 0.011

(b) Generated Anomaly #2

Menu A (xA)
Lottery 0 15.145 19.094

0.760 0.240
Lottery 1 13.856 15.205

0.852 0.148

Menu B (xB)
Lottery 0 15.145 19.094

0.547 0.453
Lottery 1 13.856 15.205

0.998 0.002

Table 4: Examples of generated “strictly dominated consequence anomalies” for the probability
weighting function with subcertainty (δ = 0.1, γ = 0.1) over binary lotteries.

Notes: We color the lottery selected by the individual with probability at least 0.5 in green. These anomalies
are produced using our dataset morphing procedure and I-spline basis function parametrization of expected
utility theory. See Appendix D for additional discussion.

B0 mixes lottery A0 with a certain payoff equal to its maximal payoff and lottery B1 mixes

lottery A1 with a certain payoff equal to its minimal payoff. We therefore refer to this as a

“strictly dominated consequence” anomaly.

6 Conclusion

By now, it is clear that machine learning has the capacity to change the way nearly every sec-

tor operates (e.g., Brynjolfsson and McAfee, 2014; Agarwal, Gans and Goldfarb, 2018). Why

should economic research be any different? Of course, substantial progress is already being

made in incorporating machine learning into many of the tasks performed by economic re-

searchers, such as digitizing historical archives (e.g., Shen et al., 2021), processing novel data

such as text and images for econometric analysis (e.g., Glaeser et al., 2018; Gentzkow, Kelly

and Taddy, 2019; Adukia et al., 2021), uncovering treatment effect heterogeneity (Athey

and Wager, 2018; Chernozhukov et al., 2018) and hypothesis generation (Ludwig and Mul-

lainathan, 2023).

In this paper, we ask whether machine learning can accelerate the development of new

theories through the automatic generation of anomalies. To tackle this problem, we devel-
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oped an econometric framework for anomaly generation. We then proposed two algorithmic

procedures for anomaly generation, one based on adversarial learning and another based on

dataset morphing, that take as inputs any formal theory and data from a scientific domain,

summarizes the empirical relationship between some features and modeled outcomes using

supervised learning, and then automatic generates anomalies, if they exist. The framework

and procedures apply to a wide variety of theories across scientific domains. While our il-

lustration is specific to expected utility theory, we believe these procedures can be applied

in any place there exists a formal theory and rich data that the theory seeks to explain.
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A Omitted Proofs

Proof of Proposition 2.1

To prove part (i), we first note that the main text established that the allowable function
representation (1) satisfies Axioms 1-4. This establishes necessity. We prove sufficiency
here. Consider any theory T (·) satisfying Axioms 1-4. We construct an allowable function
representation FT satisfying (1).

Towards this, define D¬T to be the set of falsifying datasets for theory T (·). That is,
D ∈ D¬T if and only if T (x;D) = ∅ for all x ∈ X . By Axiom 4, there exists some D ∈ D
such that T (x;D) ⊂ Y∗ for some x /∈ D. We can therefore define D′ = D ∪ {(x, ỹ∗)} for any
ỹ∗ ∈ Y∗ \ T (x;D). By construction, T (x;D′) = ∅ for all x ∈ D′ since otherwise T (·) would
violate Axiom 3. D¬T is therefore non-empty.

We next define F¬T to be the set of mappings f(·) ∈ F that are consistent with D¬T .
That is, f(·) ∈ F¬T if and only if f(·) is consistent with some D ∈ D¬T . Finally, we define
the allowable functions of T (·) as FT = F \ F¬T . We will next show that

T (x;D) = {f(x) : f(·) ∈ FT consistent with D} (18)

is satisfied for all D ∈ D and x ∈ X .
By Axioms 1-2, there are only two cases to consider. First, consider D ∈ D such that

T (x;D) = ∅ for all x ∈ X . By construction, {f(·) ∈ FT consistent with D} = ∅ since D is
a falsifying dataset for T (·). We therefore focus on the second case in which D ∈ D satisfies
T (x;D) = y∗ for all (x, y∗) ∈ D and T (x;D) ̸= ∅ for all x /∈ D.

Observe that {f(·) ∈ FT consistent with D} ≠ ∅ by construction. It therefore follows
that {f(x) : f(·) ∈ FT consistent with D} = y∗ for all (x, y∗) ∈ D. All that remains to
show is that {f(x) : f(·) ∈ FT consistent with D} = T (x;D) for all x /∈ D. As notation, for
correspondence c(·) : X ⇒ Y∗ and mapping f(·) : X → Y∗, we write f(·) ∈ c(·) if and only if
f(x) ∈ c(x) for all x ∈ X .

Lemma A.1. For any dataset D ∈ D such that T (x;D) ̸= ∅ for all x ∈ X , f(·) ∈ T (·;D)
implies that f(·) ∈ {f(x) : f(·) ∈ FT consistent with D}.

Proof. Suppose for sake of contradiction there exists some f(·) ∈ T (·;D) such that f(·) /∈
{f(x) : f(·) ∈ FT consistent with D}. Since D is not a falsifying dataset of T (·), D /∈ D¬T

and therefore f(·) /∈ F¬T by construction. But this then implies that f(·) ∈ FT , generating
the desired contradiction.

Lemma A.2. For any dataset D ∈ D such that T (x;D) ̸= ∅ for all x ∈ X , f(·) ∈
{f(x) : f(·) ∈ FT consistent with D} implies f(·) ∈ T (·;D).
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Proof. To prove this result, we will prove the contrapositive: f(·) /∈ T (·;D) implies f(·) /∈
{f(x) : f(·) ∈ FT consistent with D}.

Suppose for sake of contradiction there exists some f(·) /∈ T (·;D) with f(·) ∈ {f(x) : f(·) ∈
FT consistent with D}. Since any f(·) that is not consistent with D cannot be an element
of {f(x) : f(·) ∈ FT consistent with D} by construction, we focus on the case in f(x) = y∗

for all (x, y∗) ∈ D.
Pick any x ∈ X with f(x) /∈ T (x;D). Since D is consistent with f(·), define D′ =

D ∪ {(x, f(x))} and consider T (·;D′). There are only two cases to consider by Axiom 2.
First, if T (·;D′) = ∅, then D′ is a falsifying dataset for T (·) and f(·) /∈ FT by construction.
This yields a contradiction. Second, if T (·;D′) ̸= ∅, then T (x;D′) = f(x) by Axiom 2. But
this then contradicts Axiom 3 since T (x;D′) ̸⊆ T (x;D).

Lemma A.1 implies T (x;D) ⊆ {f(x) : f(·) ∈ FT consistent with D} for all x ∈ X .
Lemma A.2 establishes that {f(x) : f(·) ∈ FT consistent with D} ⊆ T (x;D). It therefore
follows that T (x;D) = {f(x) : f(·) ∈ FT consistent with D}, and this proves the result.
This proves part (i). To prove part (ii), consider D ∈ D such that T (x;D) ⊂ Y∗ for some
x /∈ D which must exist by Axiom 4. Define D′ = D ∪ {(x, ỹ∗)} for any ỹ∗ ∈ Y∗ \ T (x;D).
By construction, this is an incompatible dataset for T (·). Since there exists incompatible
datasets, there must exist a smallest incompatible dataset D ∈ D for theory T (·). This must
be an anomaly. If |D| = 1, then the definitions of an incompatible dataset and anaomly
coincide. If |D| > 1 but |D| is not an anomaly, then there exists a smaller incompatible
dataset which is a contradiction. □.

Proof of Proposition 3.1

Part (i) is an immediate consequence of the allowable function representation in Proposi-
tion 2.1. First, suppose D is an incompatible dataset for theory T (·) and T (x;D) = ∅
for all x ∈ X . Proposition 2.1 implies that there exists no f(·) ∈ FT consistent with
D. It immediately follows that minf(·)∈FT |D|−1

∑
(x,y∗)∈D ℓ (f(x), y∗) > 0. Next, suppose

minf(·)∈FT |D|−1
∑

(x,y∗)∈D ℓ (f(x), y∗) > 0. This implies that there exists no f(·) ∈ FT

consistent with D, and so D must be an incompatible dataset by Proposition 2.1.
Part (ii) is an immediate consequence of Definition 2.3. If there exists no incompatible

datasets of size strictly less than n, any incompatible dataset of size n must also be an
anomaly as it must be the case that D \ {(x, y∗)} is compatible with theory T (·) for all
(x, y∗) ∈ D. □

Proof of Proposition 3.2

As a first step, we establish that the Ên approximately solves the plug-in max-min op-
timization program up to the optimization errors associated with the approximate inner
minimization and outer maximization routines.

Lemma A.3. Under the same conditions as Proposition 3.2,∥∥∥∥∥Ên −max
x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)∥∥∥∥∥ ≤ δ + ν.
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Proof. As notation, let f̂T (·;x1:n) denote the optimal solution to minf(·)∈FT n−1
∑n

i=1 ℓ
(
f(xi), f̂

∗
m(xi)

)
.

Observe that∥∥∥∥∥n−1

n∑
i=1

ℓ
(
f̃(x̃i; x̃1:n), f̂

∗
m(x̃i)

)
−max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)∥∥∥∥∥ (1)

≤

∥∥∥∥∥n−1

n∑
i=1

ℓ
(
f̃(x̃i; x̃1:n), f̂

∗
m(x̃i)

)
−max

x1:n

n−1

n∑
i=1

ℓ
(
f̂T (·;x1:n), f̂

∗
m(xi)

)∥∥∥∥∥+∥∥∥∥∥max
x1:n

n−1

n∑
i=1

ℓ
(
f̂T (·;x1:n), f̂

∗
m(xi)

)
−max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)∥∥∥∥∥ (2)

≤

ν +

∥∥∥∥∥max
x1:n

n−1

n∑
i=1

ℓ
(
f̂T (·;x1:n), f̂

∗
m(xi)

)
−max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)∥∥∥∥∥ (3)

≤

ν +

∥∥∥∥∥max
x1:n

{
n−1

n∑
i=1

ℓ
(
f̂T (·;x1:n), f̂

∗
m(xi)

)
− min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)}∥∥∥∥∥ (4)

≤ ν + δ

where (1) adds/subtracts maxx1:n minf(·)∈FT n−1
∑n

i=1 ℓ
(
f(xi), f̂

∗
m(xi)

)
and applies the tri-

angle inequality, (2) follows from properties of the approximate outer maximization routine,
(3) uses the sub-additivity of the maximum, and (4) follows from the properties of the
approximate inner minimization routine.

To analyze the convergence of the plug-in estimator, observe that

∥∥∥Ên − E∗n∥∥∥ ≤
∥∥∥∥∥Ên −max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)∥∥∥∥∥+
∥∥∥∥∥max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)
− E∗n

∥∥∥∥∥ .
Lemma A.3 establishes that the first term is bounded by ν + δ. Therefore, we only need to
establish a bound on the second term. Towards this, we rewrite the second term as∥∥∥∥∥max

x1:n

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)
− E∗n

∥∥∥∥∥ ≤∥∥∥∥∥max
x1:n

{
min

f(·)∈FT
n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)
− min

f(·)∈FT
n−1

n∑
i=1

ℓ (f(xi), f
∗
m(xi))

}∥∥∥∥∥ .
Defining f̂T (·;x1:n) to be the minimizer for minf(·)∈FT n−1

∑n
i=1 ℓ

(
f(xi), f̂

∗
m(xi)

)
and fT (·;x1:n)

as the minimizer for minf(·)∈FT n−1
∑n

i=1 ℓ (f(xi), f
∗
m(xi)), we rewrite

min
f(·)∈FT

n−1

n∑
i=1

ℓ
(
f(xi), f̂

∗
m(xi)

)
− min

f(·)∈FT
n−1

n∑
i=1

ℓ (f(xi), f
∗
m(xi)) =
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n−1

n∑
i=1

ℓ
(
f̂T (xi;x1:n), f̂

∗
m(xi)

)
− n−1

n∑
i=1

ℓ
(
fT (xi;x1:n), f

∗
m(xi)

)
=

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n), f̂

∗
m(xi)

)
− ℓ
(
f̂T (xi;x1:n), f

∗
m(xi)

)}
︸ ︷︷ ︸

(a)

+

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n), f

∗
m(xi)

)
− ℓ
(
fT (xi;x1:n), f

∗
m(xi)

)}
︸ ︷︷ ︸

(b)

.

Consider (a). Since ℓ(·, ·) is α-strongly convex in its second argument, (a) is bounded above
by

n−1

n∑
i=1

{
∇2ℓ

(
f̂T (xi;x1:n), f̂

∗
m(xi)

)(
f̂ ∗
m(xi)− f ∗

m(xi)
)
− α

2
∥f̂ ∗

m(xi)− f ∗
m(xi)∥2

}
≤

n−1K∥f̂ ∗
m(x1:n)−f ∗

m(x1:n)∥1−
αn−1

2
∥f̂ ∗

m(x1:n)−f ∗
m(x1:n)∥22 ≤ (K+

α

2
)∥f̂ ∗

m(x1:n)−f ∗
m(x1:n)∥∞

where we defined the shorthand notation f(x1:n) = (f(x1), . . . , f(xn)), (1) uses that the loss
function has bounded gradients, and (2) uses the inequalities ∥f(x1:n)∥1 ≤ n∥f(x1:n)∥∞ and
∥f(x1:n)∥22 ≤ n∥f(x1:n)∥∞. Next, we can rewrite (b) as being bounded by

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n), f

∗
m(xi)

)
− ℓ
(
fT (xi;x1:n), f

∗
m(xi)

)} (1)

≤

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n), f

∗
m(xi)

)
− ℓ
(
fT (xi;x1:n), f̂

∗
m(xi)

)}
−

n−1

n∑
i=1

{
∇2ℓ

(
fT (xi;x1:n), f̂

∗
m(xi)

)
(f ∗

m(xi)− f̂ ∗
m(xi))−

α

2
∥f ∗

m(xi)− f̂ ∗
m(xi)∥2

} (2)

≤

n−1

n∑
i=1

{
ℓ
(
f̂T (xi;x1:n), f

∗
m(xi)

)
− ℓ
(
f̂T (xi;x1:n), f̂

∗
m(xi)

)}
−

n−1

n∑
i=1

{
∇2ℓ

(
fT (xi;x1:n), f̂

∗
m(xi)

)
(f ∗

m(xi)− f̂ ∗
m(xi))−

α

2
∥f ∗

m(xi)− f̂ ∗
m(xi)∥2

} (3)

≤

n−1

n∑
i=1

{
∇2ℓ(f̂

T (xi;x1:n), f̂
∗
m(xi))

(
f̂ ∗
m(xi)− f ∗

m(xi)
)
− α

2
∥f̂ ∗

m(xi)− f ∗
m(xi)∥2

}
−

n−1

n∑
i=1

{
∇2ℓ

(
fT (xi;x1:n), f̂

∗
m(xi)

)
(f ∗

m(xi)− f̂ ∗
m(xi))−

α

2
∥f ∗

m(xi)− f̂ ∗
m(xi)∥2

}
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where (1) uses that the loss is strongly convex in its second argument, (2) uses n−1
∑n

i=1 ℓ(f
T (xi;x1:n), f̂

∗
m(xi)) ≥

n−1
∑n

i=1 ℓ(f̂
T (xi;x1:n), f̂

∗
m(xi)), and (3) again uses that the loss is strongly convex in it sec-

ond argument. By the same argument as before, it follows that this is bounded by

≤ (2K + α)
∥∥∥f̂ ∗

m(x1:n)− f ∗
m(x1:n)

∥∥∥
∞
.

Combining the bound on (a), (b) yields the desired result. □

Proof of Proposition 3.3

To prove this result, it suffices to focus on the squared loss function ℓ(y, y′) = (y − y′)2. To
show (i), we define f̄T (x;x1:n) :=

∑
m∈M P (m | x)fT

m(x;x1:n). We then observe that

n−1

n∑
i=1

(
f̄T (xi;x1:n)− f̄ ∗(xi)

)
= n−1

n∑
i=1

(∑
m∈M

P (m | xi)
(
fT
m(xi;x1:n)− f ∗

m(xi)
))2

≤ 2n−1

n∑
i=1

∑
m∈M

P (m | xi)
2
(
fT
m(xi;x1:n)− f ∗

m(xi)
)2 ≤ 2

∑
m∈M

(
n−1

n∑
i=1

P (m | xi)
(
fT
m(xi;x1:n)− f ∗

m(xi)
)2)

.

Then, since x1:n is an average incompatible dataset, this implies

0 < min
f(·)∈FT

n−1

n∑
i=1

(f(xi)− f̄ ∗(xi))
2 ≤ 2

∑
m∈M

(
n−1

n∑
i=1

P (m | xi)
(
fT
m(xi;x1:n)− f ∗

m(xi)
)2)

,

which in turn implies that n−1
∑n

i=1 P (m | xi)
(
fT
m(xi;x1:n)− f ∗

m(xi)
)2

> 0 for some modeled
context m ∈M. To show (ii), observe that

min
f(·)∈FT

n−1

n∑
i=1

(
f(xi)− f̄ ∗(xi)

)2 ≥ min
fm(·)∈FT

n−1

n∑
i=1

(∑
m∈M

P (m | xi)(fm(xi)− f ∗
m(xi))

)2

,

where

n−1

n∑
i=1

(∑
m∈M

P (m | xi)(fm(xi)− f ∗
m(xi))

)2

=

n−1
∑
m∈M

n∑
i=1

P (m | xi)
2(fm(xi)−f ∗

m(xi))
2+n−1

∑
m̸=m̃

n∑
i=1

P (m | xi)P (m̃ | xi)(fm(xi)−f ∗
m(xi))(fm̃(xi)−fm̃(xi)).

Then, under the assumption that x1:n is a systematically incompatible with theory T (·)
across modeled contexts, it follows that

min
f(·)∈FT

n−1

n∑
i=1

(
f(xi)− f̄ ∗(xi)

)2 ≥ ∑
m∈M

{
n∑

i=1

P (m | xi)
2(fm(xi)− f ∗

m(xi))
2

}
.
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The result then follows as x1:n is also an incompatible dataset for some modeled context m.
□

Proof of Proposition 4.1

We first observe that Axiom 5 implies Axiom 4 and therefore there exists an allowable
function representation FT for theory T (·). Then, we will show that the pair x1, x2 ∈ X
in Axiom 5 are representationally equivalent. There are three cases to consider. First, if
D ∈ D is incompatible with T (·), then T (x1;D) = T (x2;D) = ∅. Second, if D ∈ D is
such that (xj, y

∗
j ) ∈ D for j ̸= k, the T (xk;D) = y∗j by Axiom 5. Finally, suppose for sake

of contradiction x1, x2 /∈ D but T (x1;D) ̸= T (x2;D). If there exists some y∗1 ∈ T (x1;D)

with y∗1 /∈ T (x2;D), construct the augemented dataset D̃ = D∪{(x1, y
∗
1)}. By the allowable

function representation (1), D̃ is a compatible dataset. But Axiom 3 implies that y∗1 /∈
T (x2; D̃), contradicting Axiom 5. □

Proof of Proposition 4.2

To prove the first result, let us define the shorthand notation g∗ = ∇f ∗
m(x), g = Proj

(
∇f ∗

m(x) | N T (x)
)
,

and g⊥ = g∗ − g. Observe that

⟨−Proj
(
∇f ∗

m(x) | N T (x)
)
,∇f ∗

m(x)⟩ = ⟨−g, g∗⟩ = ⟨−g, g⊥ + g⟩ = −∥g∥2 ≤ 0,

and so −Proj
(
∇f ∗

m(x) | N T (x)
)
is a descent direction for f ∗

m(·).
To prove the second result, let Ω to be the orthogonal projection matrix onto N T (x) and

define ĝ∗ = ∇f̂ ∗
m(x), ĝ = Proj

(
∇f̂ ∗

m(x) | N T (x)
)
and ĝ⊥ = ĝ∗ − ĝ. Observe that

⟨−Proj
(
∇f̂ ∗

m(x) | N T (x)
)
,∇f ∗

m(x)⟩ = ⟨−ĝ, g∗⟩ = ⟨−ĝ, g + g⊥⟩ = ⟨−ĝ, g⟩ =

⟨−ĝ + g − g, g⟩ = −∥g∥2 + ⟨g − ĝ, g⟩ ≤ −∥g∥2 + ∥g − ĝ∥∥g∥,

where the last inequality follows by the Cauchy-Schwarz inequality. The stated condition
implies that

∥g − ĝ∥ ≤ ∥g∥

since ∥g− ĝ∥ = ∥Ω(g∗− ĝ∗)∥ ≤ ∥Ω∥op∥g∗− ĝ∗∥ and ∥Ω∥op ≤ 1. But the previous display can
be equivalently rewritten as

−∥g∥2 + ∥g − ĝ∥∥g∥ ≤ 0

thus proving the result. □

Proof of Proposition 4.3

To prove this result, we observe that

f̄ ∗(x1)− f̄ ∗(x2) =
∑
m∈M

P (m | x1)f
∗
m(x1)−

∑
m∈M

P (m | x2)f
∗
m(x2)
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=
∑
m∈M

P (m | x1) (f
∗
m(x1)− f ∗

m(x2)) +
∑
m∈M

(P (m | x1)− P (m | x2)) fm(x2).

Assuming that P (m | x1) = P (m | x2) for all m ∈ M implies that the second term in the
previous display equals zero. The result is then immediate. □

B Additional Examples for the Model of Scientific The-

ories
In this section, we introduce anomalies for other theories in economics and show how these
theories satisfy Axioms 1-4.

B.1 Anomalies for other examples

Initial play in normal-form games Consider the normal-form game in Table 5. In our
framework, such a normal form game is a particular feature x ∈ X . The iterated elimination
of strictly dominated strategies implies that (Top, Left) is the unique Nash equilibrium of
the game. Therefore, T (x;D) = ∅ or T (x;D) = (1, 0, 0) for any hypothetical dataset D ∈ D.
Suppose instead the individual m was a level-1 thinker. In this case, she would eliminate
Bottom since it is strictly dominated but would fail to recognize the Right is now strictly
dominated for her opponent by the iterated elimination of strictly dominated strategies. She
would then play the game as-if her opponent randomizes across all of her actions, and we
may observe her strategy profile y∗ placing positive probability on both Top and Middle. By
construction, such a hypothetical dataset would be an anomaly for Nash equilibrium. ▲

Asset pricing As mentioned in the main text, CAPM models the expected return of an
asset as ȳrisk-free + β

(
ȳmarket − ȳrisk-free

)
based on the expected returns of all assets and

their covariances. Consider a dataset D with two hypothetical observations (x1, y
∗
1), (x2, y

∗
2),

where x1, x2 are such that the risk-free rate, market return and covariances are constant yet
y∗1, y

∗
2 vary. By construction, such a hypothetical dataset would be an anomaly for CAPM.

For example, Barberis and Huang (2008) find that the skew (i.e., a higher moment) of an
asset’s returns influence asset returns in the cross-section. ▲

B.2 Axiomatization for other examples

Initial play in normal-form games We define Nash equilibrium as the correspon-
dence T (·) satisfying: (i) if for all (x, y∗) ∈ D there exists some y∗col ∈ ∆J−1 such that∑J

j=1

∑J
j̃=1 y

∗(j)y∗col(j̃)πrow(j, j̃) ≥
∑J

j=1

∑J
j̃=1 ỹ

∗(j)y∗col(j̃)πrow(j, j̃) for all ỹ∗ ∈ ∆J−1, then
T (x;D) is defined as in the main text for all x ∈ X ; (ii) otherwise, T (x;D) = ∅ for all x ∈ X .
We immediately observe that Axiom 1, Axiom 2, and Axiom 4 are satisfied by construction.

Left Center Right

Top (10, 4) (5,3) (3,2)
Middle (0,1) (4,6) (6,0)
Bottom (2,1) (3,5) (2,8)

Table 5: An example anomaly for Nash equilibrium based on Level-1 thinking.
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Axiom 3 is also satisfied as T (x;D′) ⊆ T (x;D) for all pairs of datasets D,D′ with D ⊆ D′.
▲

Asset pricing We observe that CAPM as described in the main text immediately satisfies
Axiom 1 and Axiom 2 on hypothetical datasets of moments of historical asset prices. Second,
consider any pair of datasets D,D′ satisfying D ⊆ D′. There are only three cases to consider
– either both D,D′ are inconsistent with CAPM, D is consistent with CAPM but D′ is not,
and both are consistent with CAPM (in which case β(D) = β(D′)). In all such cases, Axiom
3 is satisfied. Finally, Axiom 4 is satisfied for any dataset D that either point or partially
identifies the assets’ parameter βj.

C Analysis of Gradient Descent Ascent Optimization

over Allowable Functions
In Section 3.1.2 of the main text, we proposed a gradient descent ascent (GDA) procedure
to optimize the max-min optimization program. Recall that for some parametrization of
the theory’s allowable functions FT = {fθ(·) : θ ∈ Θ}, initial feature values x0

1:n, step size
sequence ηt > 0 and maximum number of iterations T > 0, we iterate over t = 0, . . . , T and
calculate

θt+1 = argmin
θ∈Θ
Ê(xt

1:n; θ)

xt+1
1:n = xt

1:n + η∇Ê(xt
1:n; θ

t+1)

at each iteration, where ÊT (x1:n, θ) := n−1
∑n

i=1 ℓ
(
fθ(xi), f̂

∗
m(xi)

)
. In this Appendix, we

apply recent results from Jin, Netrapalli and Jordan (2019) on non-convex/concave max-min
optimization to establish that this GDA procedure converges to an approximate stationary
point of the outer maximization problem

Define x̄1:n to be the random variable drawn uniformly over {x0
1:n, . . . , x

T
1:n} and define

Ê(x1:n) = minθ∈Θ ÊT (x1:n, θ). To formally state the result, we define the Moreau envelope of

Ê(x1:n) as

ϕλ(x1:n) = min
x′
1:n

Ê(x′
1:n) +

1

2λ
∥x1:n − x′

1:n∥22

For non-convex functions, the Moreau envelope is a smooth, convex approximation that
is often used to analyze the properties of gradient descent algorithms (e.g, see Davis and
Drusvyatskiy, 2018). Our analysis of the properties of the GDA procedure will be stated in
terms of a bound on the gradient of the Moreau envelope ϕλ(·). Standard results in convex
optimization establish that a bound on the gradient of the Moreau envelope implies a bound
on the subdifferentials of Ê(x1:n).

Lemma C.1 (Lemma 30 in Jin, Netrapalli and Jordan (2019)). Suppose Ê(x1:n) is b-weakly

convex. For an λ < 1
b
and x̃1:n = argminx′

1:n
Ê(x′

1:n) +
1
2λ
∥x1:n − x′

1:n∥22, ∥∇ϕλ(x1:n)∥ ≤ ϵ
implies

∥x̃1:n − x1:n∥ = λϵ and min
g∈∂Ê(x̃1:n)

∥g∥ ≤ ϵ,
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where ∂ denotes the subdifferential of a weakly convex function.

Proposition C.1. Suppose ℓ(·, ·), f̂ ∗
m(·) and {fθ(·) : θ ∈ Θ} are k-times continuously dif-

ferentiable with K-bounded gradients. Then, the output x̄1:n of the gradient descent ascent
algorithm with step size ηt = η0/

√
T + 1 for some η0 > 0 satisfies

E
[
∥∇ϕ0.5b(x̄1:n)∥22

]
≤ 2

(
ϕ0.5b(x

0
1:n)−minx1:n Ê(x1:n)

)
+ bK2η20

η0
√
T + 1

+ 4bδ

Proof. This result is an immediate consequence of Theorem 31 in Jin, Netrapalli and Jordan
(2019).

D Implementation Details and Additional Results for

Choice under Uncertainty Simulations
In this section of the Appendix, we describe the implementation details for our adversarial
learning algorithm and dataset morphing algorithm in the choice under uncertainty simula-
tions. We also present anomalies uncovered by our dataset morphing procedure. The main
text focuses on anomalies generated by the adversarial procedure.

D.1 Implementation details of anomaly generation procedures

In this section, we describe the implementation details of our anomaly generation procedures
in more detail.

For both the adversarial procedure and dataset morphing procedure, we clip the lottery
probabilities at either ε or 1−ε for ε = 1×10−6 during each gradient descent step (that is, if
the gradient descent step pushes some probability pj to be less than ε or greater than 1− ε,
we round this value back to ε or 1 − ε respectively). We implement this clipping because

the gradient of the parametric probability function πj(p; δ, γ) =
δpγj

δpγj+
∑

k ̸=j p
γ
k
for j = 1, . . . , J

diverges to infinity as pj → 0 or pj → 1 for γ < 1.
For both the adversarial procedure and dataset morphing procedure, we constructed

randomly initialized menus of lotteries in the following manner. We simulated the payoffs of
the lottery from a truncated normal distribution with mean zero and variance equal to ten.
We simulated the probabilities by drawing each lottery probability uniformly from the unit
interval, and then normalizing the draws so they lie on the simplex.

D.1.1 Adversarial procedure

To implement the adversarial procedure based on gradient descent ascent described in Sec-
tion 3.1.2, we must first specify a parametric basis for the allowable functions of expected
utility theory. In the simulations, we parametrize the utility function of the individual
uθ(·) as either a linear combination of polynomials up to order K or I-splines with some
number of knot points q and degree K (see Ramsay, 1988). We experimented with both
choice of basis functions, varying the maximal degree of the polynomial bases as well as
the number of knot points and degree of the I-spline bases. Since we found qualitatively
similar results, we focus on presenting anomalies generated by a polynomial utility function
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basis with order K = 6. We also experimented with varying the choice of learning rate
η ∈ {0.5, 0.1, 0.05, 0.01, 0.005, 0.0005}.

For any particular choice of utility function basis and learning rate, we ran the gra-
dient descent ascent procedure for 500 randomly initialized menus x0. We set the maxi-
mum number of iterations to be T = 30. For either choice of utility basis function, we
solve the inner minimization problem (11) by minimizing the cross-entropy loss between
the true choice probabilities on the menus f ∗

m(x
t) and the implied expected utility theory

choice probabilities fθ(x
t) = P

(∑J
j=1 p

t
1juθ(z1j)−

∑J
j=1 p0juθ(z0j) + ξ

)
for ξ an i.i.d. lo-

gistic shock. We then implement the outer gradient ascent step (12) directly. A subtlety

arises as the gradients of the cross-entropy loss Ê(xt; θt+1) vanish whenever expected utility
theory can exactly match the choice probabilities. To avoid this vanishing gradients prob-
lem, we instead implement the outer gradient ascent step (12) by following the gradient of

log
(

f∗
m(xt)

1−f∗
m(xt)

)(∑J
j=1 p

t
1juθt+1(z1j)−

∑J
j=1 p0juθt+1(z0j)

)
. This alternative loss function for

the gradient ascent step applies the logit transformation to the choice probabilities so that

log
(

f∗
m(xt)

1−f∗
m(xt)

)
is positive whenever f ∗

m(x
t) > 0.5 and weakly negative otherwise. The over-

all loss function is therefore positive the expected utility difference between the lotteries is
positive but f ∗

m(x
t) < 0.5 and vice versa. We consider either taking gradient ascent steps on

all of the payoffs and probabilities in the menu or only taking gradient ascent steps on the
probabilities in the menu. We then collect together the anomalies produced across all runs
of the adversarial procedure and report only a handful in the main text of the paper.

D.1.2 Dataset morphing procedure

To implement the dataset morphing procedure described in Algorithm 2, we again must
specify a parametric basis for the allowable functions of expected utility theory. Like the
adversarial procedure, we experimented with both a polynomial bases up to order K and I-
spline bases varying the number of knot points q and degree K. Since we found qualitatively
similar results, we focus on presenting anomalies generated by the I-spline basis with q = 10
know points and degree K = 3. We also experimented with varying the choice of learning
rate over η ∈ {0.1, 0.5, 1.0, 5.0, 10.0}. We presented anomalies generated with η = 10 in the
main text.

For any particular utility function basis and learning rate, we ran the dataset morphing
procedure for 500 randomly initialized menus x0. We set the maximum number of iterations
to be T = 30. We consider either taking gradient ascent steps on all of the payoffs and
probabilities in the menu or only taking gradient ascent steps on the probabilities in the menu.
We then collect together the anomalies produced across all runs of the dataset morphing
procedure and report only a handful in the main text of the paper.

D.2 Proofs of dominated consequence anomalies

In this section, we now prove that the pairs of menus of lotteries presented in Table 3 are
anomalies for expected utility theory and inconsistent with the independence axiom.

First, consider the pair of menus of binary lotteries depicted in Table 3(a). As mentioned
in the main text, we first observe that the lotteries in menu B can be expressed as a compound
lottery over the corresponding lottery in menu A and some degenerate lottery that yields

54



a payoff with certainty. In particular, B0 = α0A0 + (1 − α0)δ8.006 for α0 = 0.172 and
B1 = α1A1+ (1−α1)δ8.401 for α1 = 0.913, where α0 < α1. The individual’s choices on these
menus express the preference relation

A1 ≻ A0 and α0A0 + (1− α0)δ8.004 ≻ α1A1 + (1− α1)δ8.401.

Observe that A1 ≻ A0 implies that α1A1 + (1 − α1)δ8.401 ≻ α1A0 + (1 − α1)δ8.401 by the
independence axiom. A further application of the independence axiom and that the utility
function must be weakly increasing in payoffs implies that α1A0+(1−α1)δ8.401 ≻ α1A0+(1−
α1)δ8.004. Finally, we use the fact that α0 < α1 to conclude that α1A0+(1−α1)δ8.004 ≻ α0A0+
(1−α0)δ8.004. By tying these preference relations together through transitivity, we have shown
that if A1 ≻ A0, then it must be the case that α1A1+ (1−α1)δ8.401 ≻ α0A0+ (1−α0)δ8.004
or any preference consistent with expected utility theory at some weakly increasing utility
function. It therefore follows that Table 3(a) is an anomaly.

Second, consider the pair of menus of binary lotteries depicted in Table 3(b). To show
that this is an anomaly, we again observe that the lotteries in menu A can be written as a
compound lottery over the corresponding lotteries and some degenerate lottery that yields
a payoff with certainty. In particular, B0 = α0A0 + (1 − α0)δ16.590 and B1 = α1A1 +
(1 − α1)δ15.616 for α1 < α0. The individual’s choices on these menus express the preference
relation

A0 ≻ A1 and α1A1 + (1− α1)δ15.616 ≻ α0A0 + (1− α0)δ16.590.

We can therefore apply the same argument to show that this is also an anomaly.

D.3 Additional anomalies generated by the probability weighting
function with subcertainty

Our dataset morphing procedure also uncovered anomalies that are violations of the first-
order stochastic dominance for the probability weighting function with δ = 0.1, γ = 0.1. We
provide several such examples in Table 6 below.

(a) Generated Anomaly #1 (x1)

Lottery 0 5.883 15.903
ε 1− ε

Lottery 1 19.597 19.842
0.943 0.057

(b) Generated Anomaly #2 (x2)

Lottery 0 6.555 7.951
ε 1− ε

Lottery 1 11.870 12.563
0.396 0.604

Table 6: Examples of generated first-order stochastic dominance anomalies for the probability
weighting function with subcertainty (δ = 0.1, γ = 0.1).

Notes: We color the lottery selected by the individual with probability at least 0.5 in green. Since the
gradient of the probability weighting function π(p; δ, γ) in (16) diverges as p → 0 and p → 1, we clip the
probabilities to be bounded below by ε and 1 − ε for ε = 1 × 10−6. These anomalies are produced using
our dataset morphing procedure and I-spline basis function parametrization of expected utility theory. See
Appendix D for additional discussion.
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