The Labor Market Returns to Delaying Pregnancy

Yana Gallen University of Chicago AU & IZA Juanna Schrøter Joensen University of Chicago SSE, AU & IZA

Eva Rye JohansenGregory F. VeramendiAarhus University (AU)Royal Holloway, University of London

Women are delaying childbirth at increasing rates

• US: Average age at first birth 27.1 compared to 21.4 in 1970

Women are delaying childbirth at increasing rates

• US: Average age at first birth 27.1 compared to 21.4 in 1970

Motherhood associated with negative labor market effects

• Earnings losses of around 30%

(Kleven, Landais & Søgaard, 2019; Kleven, Landais, Posch, Steinhauer & Zweimüller, 2019; Angelov, Johansson & Lindahl, 2016; Datta Gupta & Smith, 2002)

· Challenging to study causal impacts

(Bronars & Grogger, 1994; Hotz, McElroy, & Sanders, 2005; Miller, 2011; Herr, 2012; Lundborg, Plug & Rasmussen, 2017; Bíró, Dieterle & Steinhauer, 2019; Miller, Wherry & Foster, 2020; Brooks & Zohar, 2020; Gonzáles et al 2021; Bensnes, Huitfeldt & Leuven, 2023)

This paper

Research Questions

- 1. Does delaying pregnancy mitigate the labor market impacts of motherhood?
- 2. How does impact vary with circumstances?
 - Age
 - Investment in human capital
 - Pregnancy intentions

Data

• Swedish labor market + prescriptions + medical data

Methodology

• LARC failures

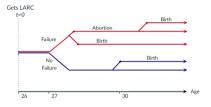
This paper

Research Questions

- 1. Does delaying pregnancy mitigate the labor market impacts of motherhood?
- 2. How does impact vary with circumstances?
 - Age
 - Investment in human capital
 - Pregnancy intentions

Data

• Swedish labor market + prescriptions + medical data


Methodology

• LARC failures

LARC = Long Acting Reversible Contraception Intrauterine Device/"IUD" or Birth Control Implant

Estimates: Pregnancy vs. Birth

- What is the impact of unplanned pregnancy?
 - Compare women who received LARC at same time, same age
 - Some become pregnant \longrightarrow abortion, birth
 - Those who don't are the counterfactual
- What is the impact of unplanned birth?
- How does it vary with circumstances?

- What is the impact of unplanned birth?
 - Use pregnancy as an instrument for birth
- How does it vary with circumstances?
 - Challenging to answer this by looking at pregnancy impacts!
 - Differences in reduced form arise from
 - 1. First stage (rate of abortions)
 - 2. Treatment effect (differences in impact of birth depending on circumstances)
 - 3. Future treatment (dynamic non-compliance)
 - 4. Different compliers (e.g. other characteristics)

Estimates: Pregnancy vs. Birth

- What is the impact of unplanned birth?
 - Use pregnancy as an instrument for birth
- How does it vary with circumstances?
 - Challenging to answer this by looking at pregnancy impacts!
 - Differences in reduced form arise from
 - 1. First stage (rate of abortions)
 - 2. Treatment effect (differences in impact of birth depending on circumstances)
 - 3. Future treatment (dynamic non-compliance)
 - 4. Different compliers (e.g. other characteristics)

Estimates: Pregnancy vs. Birth

- What is the impact of unplanned birth?
 - Use pregnancy as an instrument for birth
- How does it vary with circumstances?
 - Challenging to answer this by looking at pregnancy impacts!
 - Differences in reduced form arise from
 - 1. First stage (rate of abortions)
 - 2. Treatment effect (differences in impact of birth depending on circumstances)
 - 3. Future treatment (dynamic non-compliance)
 - 4. Different compliers (e.g. other characteristics)
- Show identification of local average dynamic treatment effects using IV
- Develop dynamic IV-GMM methodology for estimating LATE

Results

- Unplanned pregnancy has large impact on earnings, occupation trajectory
- Women who give birth following unplanned pregnancy have earnings loss 25% 1-7 years later
- More than 20% less likely to be in medium-high skilled occ when child is 5
- Effects are larger for younger women and women enrolled in education
- More muted effects for women who intended to have children

Data: Swedish Administrative Data

- Sample women born in 1965-83
- Labor market data (1990-2013) collected and administered by Statistics Sweden (SCB) ("Statistiska Centralbyrån")
 - Earnings, paid leave, employment, sector, occupation
 - Level and field of highest completed education
 - Age, civil status, family status, household composition,...
- Health data collected and administered by the National Board of Health and Welfare
 - Medical Birth Registry (MFR) from 1973-2012
 - Prescribed Drug Register (LMED) from 2005-2013
 - National Patient Register (NPR)
 - Does not include primary or midwife care

Identifying LARC Failures

- Identified from women who get IUD and implant prescriptions
- Define pregnancies as "unplanned" if occur within 9 months of prescription
 - Observe 355 unplanned LARC pregnancies

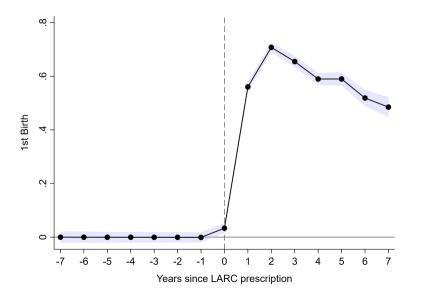
Identifying LARC Failures

- Identified from women who get IUD and implant prescriptions
- Define pregnancies as "unplanned" if occur within 9 months of prescription
 - Observe 355 unplanned LARC pregnancies
- Concern #1: Measurement Error
 - e.g. Women may not use LARC or have them removed
 - Compare 1-year failure rates including abortions to medical literature (" $\approx 0.5\%$ "):
 - IUD: 1,168/308,900 = 0.38%
 - Implant: 392/54,357 = 0.72%
 - Results robust to using different windows

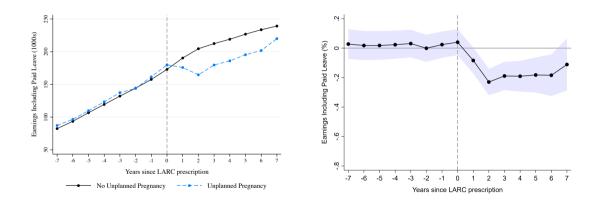
LARC Failures as Quasi-random variation

- Concern #2: Failures are more likely when more fertile, more intercourse
 - Results robust to matching additionally on, e.g., civil status and education
 - Also robust to adding rich HH composition and labor market controls
 - Balance after matching women based on age and year of prescription:

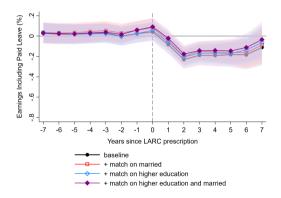
	Unplanned	No Unplanned	p-value
	Pregnancy	Pregnancy	diff.
Earnings Including Paid Leave (1000s)	161.609	157.600	0.597
Fraction of Full-time Employment	82.843	82.248	0.673
Employed	0.642	0.658	0.540
Occupation Requiring Medium or High Skills	0.220	0.236	0.517
High School	0.434	0.409	0.339
College Degree or Higher	0.317	0.358	0.098
Married	0.223	0.132	0.000
Observations	341	27,507	

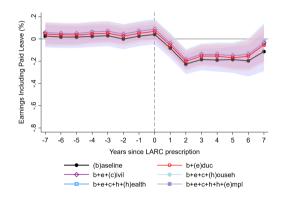

Estimation of Impact of Pregnancy (Reduced Form)

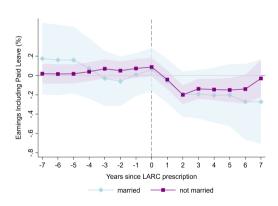
$$Y_{is} = \sum_{t=-7}^{7} \alpha_t^{LARC} \mathbf{1} [t = s - year_i] UnplannedPregnancy_i$$

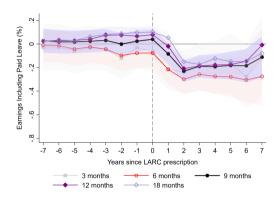

$$+ \sum_{t=-7}^{7} \sum_{y} \sum_{j} \delta_{tyj}^{LARC} \mathbf{1} [t = s - year_i] \mathbf{1} [y = year_i] \mathbf{1} [j = age_{i,year_i}] + \varepsilon_{is}$$
(1)

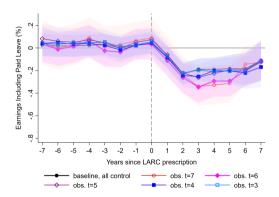
- Y_{is} is the outcome of interest (e.g., labor market earnings) in year s for woman i
- *s* calendar year; *year_i* year of LARC for woman *i*; *t* year relative to *year_i* for *i*
- α_t^{LARC} is the parameter of interest: difference in outcome for women who had unplanned pregnancy vs. not, matching on prescription year and age

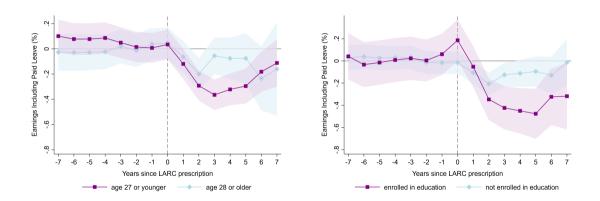

Impact of Pregnancy on Childbirth

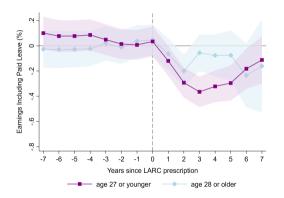

Impact of Pregnancy on Earnings


- Match additionally on civil status, education
- Add controls
- Married vs. unmarried (partner shocks)
- Window robustness
- Panel balance


- Match additionally on civil status, education
- Add controls
- Married vs. unmarried (partner shocks)
- Window robustness
- Panel balance


- Match additionally on civil status, education
- Add controls
- Married vs. unmarried (partner shocks)
- Window robustness
- Panel balance


- Match additionally on civil status, education
- Add controls
- Married vs. unmarried (partner shocks)
- Window robustness
- Panel balance


- Match additionally on civil status, education
- Add controls
- Married vs. unmarried (partner shocks)
- Window robustness
- Panel balance

Heterogeneity

Heterogeneity

- Are all older women having children sooner?
- Are they more likely to get an abortion?
- Or is this heterogeneous effect of children?

IV Strategy for Identifying Impact of Birth

- Goal: Estimate (dynamic) LATE $_{\tau}$
- Assumptions when instrumenting birth (T_{it}) with $Z_i \equiv UnplannedPregnancy_i$
 - 1. **Relevance**: Z_i affects birth in first period
 - 2. Independence: Conditional on T_{i1} : Outcomes (Y_{it}) and future fertility decisions $(T_{i,t>1}) \perp$ of Z_i
 - 3. Exclusion Restr: Z_i does not directly affect outcomes or future fertility decisions
 - e.g. abortions of unplanned pregnancies do not affect outcomes
 - 4. Monotonicity:
 - 5. No anticipation: Pre-treatment Y_{it} do not vary by timing of future treatment
- Notation: *s* calendar year; *t* year relative to *year*_{*i*}; τ years since 1st childbirth

Identifying Impact of Birth in First Year

- The first year is simply the static IV setting
- Wald (1940) estimator is the average treatment effect for first-period compliers

Wald_{t=1}
$$\equiv \frac{E[Y_{i1}|Z=1] - E[Y_{i1}|Z=0]}{P[T_{i1}=1|Z=1] - P[T_{i1}=1|Z=0]} = LATE_{\tau=1}$$

Identifying the Dynamic Impact of Birth

- Compliance refers to the first year after the LARC
 - BUT first-year compliers with Z = 0 may have children in later years
- Wald estimator for second year after LARC identifies

Wald_{t=2}
$$\equiv \frac{E[Y_{i2}|Z=1] - E[Y_{i2}|Z=0]}{P[T_{i1}=1|Z=1] - P[T_{i1}=1|Z=0]}$$

 $= LATE_{\tau=2} - [LATE_{\tau=1}|T_{i2}=1]P[T_{i2}=1|compliens]$

• Need two assumptions to identify $LATE_{\tau=2}$ using period 1 estimate:

1. $[LATE_{\tau=1}|T_{i2}=1] = LATE_{\tau=1}$

2. $P[T_{i2} = 1 | \text{compliers}] = P[T_{i2} = 1 | \text{compliers} + \text{never takers}]$

Need similar assumptions to identify later impacts (LATE_{τ>2})

Estimating the Dynamic Impact of Birth via IV-GMM

• Our baseline dynamic IV-GMM estimator is

$$g_{it}^{1}(\theta) = Z_{i}\left(Y_{it}-\sum_{\tau=0}^{T}\rho_{\tau}\mathbf{1}[\tau=t-t_{i}^{b}]\right)$$

where $\rho_{\tau} = \text{LATE}_{\tau}$

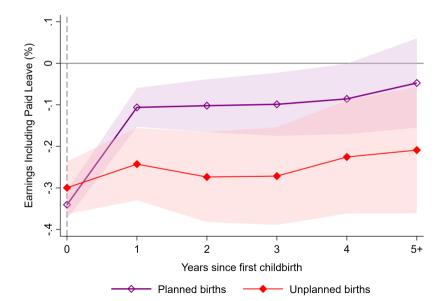
Estimating the Dynamic Impact of Birth via IV-GMM

• Our baseline dynamic IV-GMM estimator is

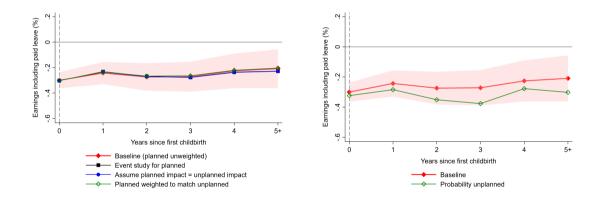
$$g_{it}^1(\theta) = Z_i\left(Y_{it} - \sum_{\tau=0}^T \rho_{\tau} \mathbf{1}[\tau = t - t_i^b]\right)$$

where $\rho_{\tau} = LATE_{\tau}$

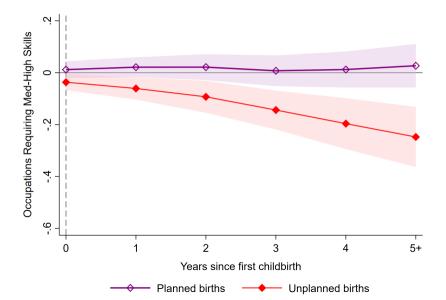
- Our IV-GMM approach allows for heterogeneous impacts
- Important: later births are not unplanned!
- Use IVF success as an instrument for impact of "planned" birth

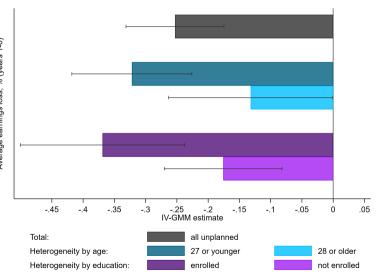

Estimating the Dynamic Impact of Birth via IV-GMM

Our joint LARC-IVF IV-GMM estimator is

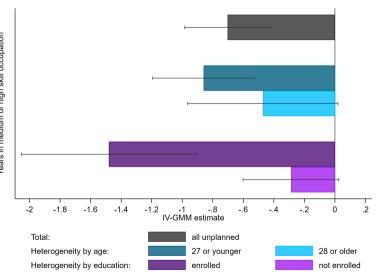

$$g_{it}^{2}(\theta) = \begin{cases} Z_{i}^{p} \left(Y_{it} - \sum_{\tau=0}^{T} \rho_{\tau}^{p} \mathbf{1}[\tau = t - t_{i}^{b}, b_{i} = p] \right) \\ Z_{i}^{u} \left(Y_{it} - \sum_{\tau=0}^{T} \rho_{\tau}^{u} \mathbf{1}[\tau = t - t_{i}^{b}, b_{i} = u] - \sum_{\tau=0}^{T} \rho_{\tau}^{p} \mathbf{1}[\tau = t - t_{i}^{b}, b_{i} = p] \right) \end{cases}$$

where *p* is "planned" (IVF) and *u* is "unplanned" (LARC)


Impact of Birth on Earnings


Robustness: Impact of Birth on Earnings

Impact of Birth on Occupation


Earnings Effect Heterogeneity

Average earnings loss, % (years 1-6)

30

Occupation Effect Heterogeneity

- Unplanned pregnancy associated with large earnings impacts
- Impact of unplanned birth is around 25%
 - Short-term: \downarrow non-employment, \downarrow probability of promotion
 - By four years after birth, employment and the probability of a promotion recover
 - Med/long term: occupational trajectories \downarrow

- Unplanned pregnancy associated with large earnings impacts
- Impact of unplanned birth is around 25%
 - Short-term: \downarrow non-employment, \downarrow probability of promotion
 - By four years after birth, employment and the probability of a promotion recover
 - Med/long term: occupational trajectories \downarrow
- Planned births (re-weighted) have about half the earnings impact of unplanned births and similar employment and promotion impacts

- Unplanned pregnancy associated with large earnings impacts
- Impact of unplanned birth is around 25%
 - Short-term: \downarrow non-employment, \downarrow probability of promotion
 - By four years after birth, employment and the probability of a promotion recover
 - Med/long term: occupational trajectories \downarrow
- Planned births (re-weighted) have about half the earnings impact of unplanned births and similar employment and promotion impacts
- Impacts are larger for women enrolled in education, younger women

- Unplanned pregnancy associated with large earnings impacts
- Impact of unplanned birth is around 25%
 - Short-term: \downarrow non-employment, \downarrow probability of promotion
 - By four years after birth, employment and the probability of a promotion recover
 - Med/long term: occupational trajectories \downarrow
- Planned births (re-weighted) have about half the earnings impact of unplanned births and similar employment and promotion impacts
- Impacts are larger for women enrolled in education, younger women
- Timing important, delay mitigates impact of children on careers