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Emissions per Dollar Very Different Across Countries
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Example: The Steel Industry in Vietnam
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Our Approach

Comprehensive global data on MNEs and environment

• Affiliates from cleaner Home countries have lower emissions per dollar everywhere

Model of trade, MP and energy

• Trade & MP (as Arkolakis et al., 18): closed-form & aggregation, GE

• Multiple sectors & IO (as Caliendo & Parro, 14): energy, mining, other inputs

• Energy-intensity technology choice (as Sun, 20): affects firm emissions worldwide

Estimation

• Energy demand and supply elasticities: IV using US administrative micro data

• Technology choice elasticities: SMM to match new fact on emissions

Carbon accounting

• Consumption, Production, Extraction, Ownership

Counterfactual exercises (not today)

e.g. MP autarky; MP liberalization; carbon taxes
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What is New?

Trade & environment Grossman & Krueger 1995; Copeland & Taylor 2004; Nordhaus 2015; Shapiro &

Walker 2018; Kortum & Weisbach 2021; Farrokhi & Lashkaripour 2022

• Analyze multinational production, not just trade

• Incorporate in GE several mechanisms in the literature (e.g. technique, composition)

Multinational production Helpman 1984; Markusen & Venables 2000; Helpman, Melitz, & Yeaple 2004;

Ramondo & Rodriguez-Clare 2013; Arkolakis, Ramondo, Rodŕıguez-Clare, & Yeaple (ARRY) 2018; Sun 2020

• Allow for energy-emissions link

Carbon accounting Davis & Caldeira 2010; Peters et al. 2011; Zhang et al. 2020

• Emissions accounting by ownership

Second-best climate policy Goulder et al. 2012; Martin et al. 2014; Fowlie et al. 2016; Bohringer et al.

2016; Shapiro 2021

• Policy for multinational production
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Outline

Data and new fact

Model

Estimation

Model-based results

Conclusions
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Data on Emissions and MP: Sources

Aggregate data

• World Input Output Dataset (WIOD) and Exiobase/Eora

Emissions and energy consumption by industry-country-energy type

• Activity of Multinational Enterprises (AMNE)

Revenues by industry-origin country-host country

Firm and affiliate data

• Carbon Disclosure Project (CDP) and ORBIS

Emissions per dollar for each parent and country of production

• US Census of Manufactures and Manufacturing Energy Consumption Survey
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Affiliates from Cleaner Countries Are Cleaner Everywhere
Firm f , home country i , host country l , industry s. E Emissions. Y Revenue

log

( Efi,l,s

Yfi,l,s

)CDP

= β1 log

(
Ei

Yi

)WIOD

+ X ′f ,lγ + δl,s + εfi,l,s

Dependent variable: Log firm CO2 rate

Home log CO2 rate 0.96*** 1.07*** 0.56* 0.63** 0.63** 0.60**
(0.24) (0.22) (0.30) (0.25) (0.23) (0.29)

Host log CO2 rate 0.89*** 0.86***
(0.09) (0.09)

Firm log revenues -0.48***
(0.08)

Observations 4,833 4,833 4,833 4,833 4,833 4,833
R-squared 0.05 0.24 0.28 0.48 0.63 0.70
# host countries 42 42 42 42 42 42
# home countries 32 32 32 32 32 32
Industry FE no yes no yes - -
Host country FE no no yes yes - -
Industry x host country FE no no no no yes yes
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Model: Notation and Preliminaries

Many countries

• i home country of firms. l location of production. n destination of sales

Many sectors, input-output loop

• Six energy sectors s ∈ KE

Mining sectors: coal, natural gas, crude oil (fossil fuels) s ∈ KM

Non-mining sectors: electricity, refined oil, gas distribution

• Non-energy sectors s /∈ KE

Preferences: Cobb-Douglas across sectors (µn,s ); CES within each sector (σs )
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Model: Mining Sectors

Mining goods are produced with (sector-specific) mines

Production in each mine has decreasing returns νs = 1− ηl,`s +
∑

k∈K ηl,ks ∈ (0, 1)

q = Bl ,s `ηl,`s
∏
k∈K

q
ηl,ks

k

Trade: Armington (σs ). MP: exogenous (Mi,l,s ). Perfect competition

Emissions are generated exclusively by using fossil fuels

Qi,l,s = production from mine (l, s) belonging to i

E =
∑

s∈KM

∑
i ,l

esQi ,l ,s
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Model: Non-Mining Sectors

Production (ε, γ): energy, non-energy inputs, labor

Trade and MP: multivariate Pareto productivity (θs , ρs ), monopolistic competition (νs )

Energy-intensity technology choice (γ̃, ε̃): firms have same technology everywhere
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Model: Production Function for Non-mining Sectors

Energy vs non-energy inputs

q =

((
qE
) ε−1

ε
+
(

qNE
) ε−1

ε

) ε
ε−1

ε 6= 1
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Model: Production Function for Non-mining Sector

Energy inputs: coal, crude oil, natural gas, electricity, refined oil, gas distribution

q =


∑

k∈KE

δ
1
γ

l ,ks (qk )
γ−1
γ


γ
γ−1

ε−1
ε

+
(

qNE
) ε−1

ε


ε
ε−1

γ 6= 1 ε 6= 1
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Model: Production Function for Non-mining Sector

Non-energy inputs: labor and other inputs

q =

(qE
) ε−1

ε
+

`βl,`s
∏

k /∈KE

q
βl,ks

k

 ε−1
ε


ε
ε−1

βl ,`s +
∑

k /∈KE

βl ,ks = 1 for all s
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Model: Production Function for Non-mining Sector

A firm has productivity vector z ≡ (z1, z2, ..., zN ) and technology a ≡ (a1, a2, ..., aK E , a)

q = zl


∑

k∈KE

δ
1
γ

l ,ks (ak qk )
γ−1
γ


γ
γ−1

ε−1
ε

+

a `βl,`s
∏

k /∈KE

q
βl,ks

k

 ε−1
ε


ε
ε−1

γ 6= 1 ε 6= 1 βl ,`s +
∑

k /∈KE

βl ,ks = 1 for all s
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Model: Productivity and Costs For Non-Mining Firms

A firm from i draws productivity z from multivariate Pareto

θs > max {1, 1/ (σs − 1)} and ρs ∈ [0, 1)

Pr (Z1 ≤ z1, ...,ZN ≤ zn) = 1−

(
N∑

l=1

(
Ti ,l ,sz−θs

l

) 1
1−ρs

)1−ρs

⇒ Closed-form for aggregate expenditure, prices, profits

• ”Head-to-head” comparison (unit costs)

Ci ,n,s = min
l
τi ,ln,s

ci ,l ,s

zl

• Selection (marketing fixed costs)

Profits(Ci ,n,s)− Pn,sFn,s ≥ 0
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Model: Technology Choice for Non-Mining Firms

A firm chooses its technology a from the set
ε̃ 6= 1 ε + ε̃ < 2

(
aE
)1−ε̃

+
(

aNE
)1−ε̃

≤ 1
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Model: Technology Choice for Non-Mining Firms

A firm chooses its technology a from the set

ε̃ 6= 1 γ̃ 6= 1 ε + ε̃ < 2 γ + γ̃ < 2

∑
k∈KE

a1−γ̃
k

 1−ε̃
1−γ̃

+ a1−ε̃ ≤ 1
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Model: Technology Choice for Non-Mining Firms

A firm chooses its technology a from the set

ε̃ 6= 1 γ̃ 6= 1 ε + ε̃ < 2 γ + γ̃ < 2

∑
k∈KE

a1−γ̃
k

 1−ε̃
1−γ̃

+ a1−ε̃ ≤ 1

A firm chooses a before knowing z to maximize expected global profits

⇒ a is common across all (i , s) firms

18



Model: Optimal Technology Choice Across Energy Types

Slope of technology frontier (lhs) = Slope of iso-profit curve (rhs)

(
ai,ks

ai,1s

)1−γ̃

=

∑
l αi,l,ksYi,l,s∑
l αi,l,1sYi,l,s

, ∀k ∈ KE

• αi,l,ks ≡ revenue share of k input for (i , l , s) firms equation

• Yi,l,s ≡ output of (i , l , s) firms

•
∑

l αi,l,ks Yi,l,s ≡ expected global costs of input k for (i , l , s) firms
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Model: MP Autarky—Analytical Counterfactual

No IO loop; exogenous technologies (ai,s ); no trade in energy; CRS in mining (νs = 0)

Shutting down MP affects sectoral emissions per worker by

E ′l,s/L′l,s
El,s/Ll,s

=
El,l,s/Ll,l,s

El,s/Ll,s

If ai,s = aj,s for all i , j , turning off MP has no effect on sector-level emissions

If clean country has MP in dirty country, turning off MP increases sector-level emissions

• Clean country: emissions unchanged

• Dirty country: resources move from clean foreign to dirty domestic firms

20
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Model: Equilibrium

Xl,s = µl,sXl + ςsXl,s +
∑
i,k

αi,l,skYi,l,k Demand for s in l

Yi,l,s =
∑

n

λi,ln,sXn,s Market clearing for i , l and s /∈KM

∑
i

Yi,l,s =
∑
i,n

λi,ln,sXn,s Market clearing for l and s ∈ KM

wlLl =
∑
i,s

αi,l,`sYi,l,s Labor market clearing in l

Xi = wiLi +
∑

l,s

Πi,l,s + ∆i Final expenditure in i
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Exact Hat-Algebra: Parameters and Model-Based Variables

Parameters details

• ε = γ = 0.45 IV using US Census micro-data for energy prices, quantities

• ε̃, γ̃ SMM so that model-implied emissions match emissions in the data

• νs = 0.25 for s ∈ KM estimation using energy cost schedules (Welsby et al., 2021)

•
{
ηl,ks , ηl,`s

}
and

{
βl,ks , βl,`s

}
from IO table (WIOD)

• θ = 4.5, ρ = 0.6, νs = 0.2 for s /∈ KM from literature

Model-based variables for non-mining sectors (s /∈ KM )

• λi,ln,s ≡ expenditure share (n, s) devotes to (i , l)

⇒ Given ρ, trade and MP shares {λln,s , λi,l,s}, and τi,ln,s = τi,l,sτln,s

• αi,l,ks ≡ revenue share (i , l , s) devotes to energy-type k ∈ KE

⇒ Given ε, ε̃, MP and energy shares {λi,l,s , αl,ks}, and world-wide technology choice
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Carbon Accounting with Multinational Production
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Carbon Accounting: Allocating Emissions

El
P =

∑
hi,jn,ks

Ehi,j ln,ks Production

En
C =

∑
hi,jl,ks

Ehi,jln,ks Consumption

Ej
M =

∑
hi,ln,ks

Ehi,j ln,ks Mining

Ei
O,P =

∑
h,jln,ks

Ehi,jln,ks Ownership-Production

Eh
O,M =

∑
i,jln,ks

Ehi,jln,ks Ownership-Mining

h, i = Country of ownership for inputs, outputs; j, l = Country of production for inputs, outputs
n = Country of consumption; k, s = Industry for inputs, outputs
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Carbon Accounting, By Type and Country
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Carbon Accounting: The Role of Technology Choice
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Final Remarks

Multinational production and the environment

• Important, distinct issues from trade

What we offer so far

• Comprehensive global data on MNEs and the environment

• Flexible GE model of trade, MP, and energy to study climate change issues

• New estimates on key demand & supply energy elasticities

What’s next

• Optimal carbon taxes with MP

• Leakage through MP

• Responsible sourcing and supply-chain externalities
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Emissions per $Output Very Different Across Countries
log (Emissionsl,s/Revenuel,s ) = γl + δs + εl,s
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Affiliates from Cleaner Countries Are Cleaner Everywhere
Firm f , home country i , host country l , industry s. E Emissions. Y Revenue Back

log
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Ei,s
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Importance of Trade v. Multinational Production
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Brucal, Javorcik, and Love (JIE 2019)
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Parameters: Estimation Back

1. Energy-Type Substitution γ ≈ 0.45: Energy quantities, prices, across states within firm

• Data: US Mfg Energy Consumption Survey 2014; State Energy Database System

ln

(
Qf ,l,k

Qf ,l,1

)
= −γ ln

(
Pl,k

Pl,1

)
+ φf ,k + ξf ,l,k

2. Energy/Non-Energy Substitution ε ≈ 0.45: Energy exp, prices across states within firm

• Data: US State Energy Database System; US Census of Manufactures 2012

ln

(
αf ,l

1− αf ,l

)
= (1− ε) ln

 Pl,1

PNE
l

(
αf ,l,1

αf ,l

)− 1
1−γ

 + φf + ξf ,l

3. Decreasing returns in mining υ = 0.25: Extraction costs, quantities by energy & region

• Data: Welsby et al. (Nature 2021)

Vertex v , energy type k, region j : υk =
∂ ln pk/∂ ln Ek

∂ ln pk/∂ ln Ek + 1
⇒ ln pvj,k = ζk ln Evj,k + µj,k + ζvj,k
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Parameters: Energy Type Substitution γ

Extended to firms & states, model implies

ln

(
Qf ,l,k

Qf ,l,1

)
= −γ ln

(
Pl,k

Pl,1

)
+ φf ,k + ξf ,l,k

• Energy quantities Qf ,l,k : Manufacturing Energy Consumption Survey 2014

• Energy prices Pl,k : State Energy Database System

• Firm×energy type fixed effects φf ,k

• Electricity as reference energy type (k = 1)

Notes

• Arbitrary autocorrelation (two-way cluster) within state and firm

• Excluded observations: administrative records, imputed values, zero electricity

• Basic observation is firm×state (aggregate across establishments w/in state)

Baseline estimate γ ≈ 0.45
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Parameters: Energy Type Substitution γ

ln

(
Qf ,l,k

Qf ,l,1

)
= −γ ln

(
Pl,k

Pl,1

)
+ φf ,k + ξf ,l,k

(1) (2) (3) (4) (5) (6) (7) (8)
Price ratio term (γ) 0.409** 0.364** 0.400** 0.263** 0.401** 0.293** 0.415* 0.456**

(0.159) (0.177) (0.155) (0.105) (0.162) (0.124) (0.245) (0.184)

Plant level X
Industry FE X
Asinh X X
Exclude coal X X
Weighted X
Instrument X

N 4,600 7,000 4,600 9,000 4,400 6,000 4,600 4,600
First stage F 651
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Parameters: Energy Type Substitution γ

Model-based analysis uses γ = 0.45

Existing estimates?

• Vermetten and Plantinga (1953) cross-section of US states: γ ≈ 2.1 to 2.4

• Serletis et al. (2010) translog with US time series: γ = 0.25 to 0.60

– Cross-industry mean: 0.40

– Standard value for CGE models (EPA, MIT EPPA model)

– But time series confounding: inflation, growth, OPEC crisis, etc.
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Parameters: Energy/Non-Energy Substitution ε

Extended to firms, l = US state, our model implies

ln

(
αf ,l

1− αf ,l

)
= (1− ε) ln

(
Pl,1

PNE
l

(
αf ,l,1

αf ,l

)− 1
1−γ
)

+ φf + ξf ,l

• Census of Manufactures 2012 administrative/confidential micro-data

• αf ,l , αf ,l,1 Energy-cost shares. Establishment-level spending on electricity, fuels,

materials, value added

• Pl,1 Price of energy type 1 (electricity). State Energy Data System (US Energy

Information Agency)

• PNE
l Price of non-energy. We use wl for now

– Microdata from 2012 Current Population Survey-ASEC

– Mincer regression with state fixed effects

– wL
l are state fixed effects evaluated at reference category

• γ: from earlier estimates

Baseline estimate ε ≈ 0.45
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Parameters: Energy/Non-Energy Substitution ε

ln

(
αf ,l

1− αf ,l

)
= (1− ε) ln

(
Pl,1

PNE
l

(
αf ,l,1

αf ,l

)− 1
1−γ
)

+ φf + ξf ,l

(1) (2) (3) (4) (5) (6) (7) (8)
Price ratio term 0.513*** 0.404*** 0.510*** 0.791*** 0.506*** 0.421*** 0.529*** 0.526***

(0.006) (0.007) (0.006) (0.047) (0.006) (0.007) (0.011) (0.007)

Bootstrap S.E. (0.129) (0.160) (0.125) (0.081) (0.129) (0.096) (0.192) (0.129)

Plant level X
Industry FE X
Asinh X X
Exclude coal X X
Weighted X
Instrument X

N 12,500 22,500 12,500 12,500 12,500 12,500 12,500 7,100
First stage F 3121

Details
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Parameters: Energy/Non-Energy Substitution ε

ln

(
αf ,l

1− αf ,l

)
= (1− ε) ln

(
Pl,1

PNE
l

(
αf ,l,1

αf ,l

)− 1
1−γ
)

+ φf + ξf ,l

αf ,l on left and right-hand side: simultaneity bias if measurement error

• Solution: instrument αf ,l with lag from 2011 Annual Survey of Manufacturers

γ is a generated regressor

• Solution: bootstrap over 200 estimates of γ

Other variations:

• Firm v. establishment

• Zero values for energy share: inverse hyperbolic sine

• Coal often missing, some estimates exclude
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Parameters: Decreasing Returns in Mining (υ)

Decreasing returns υk in terms of inverse supply elasticity

υk =
∂ ln pk/∂ lnEk

∂ ln pk/∂ lnEk + 1

Regression version: Vertex v , energy type k, region j

ln pvj,k = ζk lnEvj,k + µj,k + ζvj,k

Data source: Welsby et al. (Nature 2021)

Decreasing returns (=resource cost share, rents): υ = 0.25

• Source: pooled inverse elasticity ζ = 0.342 (0.025)
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Parameters: Decreasing Returns in Mining (υ Raw Data)

ln pE
vj,k = ζk lnEvj,k + µj,k + ζvj,k

Coal: Slope = 0.32 (s.e. = 0.02)

Gas: Slope = 0.35 (s.e. = 0.05)

Oil: Slope = 0.68 (s.e. = 0.01)
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Parameters: Decreasing Returns in Mining (υ Raw Data)

Oil
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Parameters: Decreasing Returns in Mining (υ Raw Data)

Coal
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Parameters: Decreasing Returns in Mining (υ Raw Data)

Gas
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Model: Revenue Energy Cost Shares Back

αi,l,ks =
(p̃l,ks/xi,ks )1−γ∑

k′∈KE (p̃l,k′s/xi,k′s )1−γ

(∑
k′∈KE (p̃l,k′s/xi,k′s )1−γ) 1−ε

1−γ(∑
k′∈KE (p̃l,k′s/ai,k′s )1−γ) 1−ε

1−γ + 1

where xi,ks ≡ ai,ks/ai,s and p̃l,ks ≡ δ
1

1−γ
l,ks (pl,k/wl )
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Technology Choice: Illustration
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Model: Optimal Technology Choice, Illustration
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Model: Recovering Trilateral Expenditure Flows Back

Xln =
∑

i

Xi,ln Yi,l =
∑

n

Xi,ln

Xi,ln =
φi,lφln∑
l′ φi,l′φl′n

(∑
l′ φi,l′φl′n

)1−ρ∑
i′
(∑

l′ φi′,l′φl′n

)1−ρXn

φi,l ≡
(

Mi Ti,l (τi,l ci,l )−θ
)1−ρ

φln ≡ (τln)
− θ

1−ρ
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Model: Recovering Energy Cost Shares, Illustration Back

Two inputs (energy, labor), one sector. Equilibrium:

x1−ε̃
i =

∑
l αi,lYi,l∑

l (1− αi,l )Yi,l
∀i

αi,l =
1

σ̃s

(p̃l/xi )
1−ε

(p̃l/xi )
1−ε + 1

∀i , l

αl =
∑

i

αi,l
Yi,l∑
i′ Yi′,l

∀l

where xi ≡ aE
i /a

L
i and p̃l ≡ δ

1
1−ε

l (pl/wl )

System of equations to solve for {xi},
{
αi,l

}
and {p̃l} given data, ε̃, ε
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Carbon Accounting with Multinational Production Back

Ehi ,jln,ks =
el ,k

pl ,k
χhi ,jl ,ks X f

i ,ln,s

Emission rate (tons/$):
el,k

pl,k
=

eIEA
k Q IEA

l,k

Y WIOD
l,k

Leontief inverse: {χhi,jl,ks} = (I − {αhi,jl,ks})−1 where αhi,jl,ks ≡ λmodel
h,jl,k α

model
i,l,ks

Final sales: X f
i,ln,s = λmodel

i,ln,s X
f ,WIOD
n,s
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