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Abstract

We study the adoption of remote work within cities and its effect on city structure and

welfare. We develop a dynamic model of a city in which workers can decide to work in the

central business district (CBD) or partly at home. Working in the CBD allows them to

interact with other commuters, which enhances their productivity through a standard pro-

duction externality, but entails commuting costs. Switching between modes of labor delivery

is costly, and workers face idiosyncratic preference shocks for remote work. We characterize

the parameter set in which the city exhibits multiple stationary equilibria. Within this set, a

coordination mechanism can lead to stationary equilibria in which most workers commute or

most of them work partially from home. In these cases, large shocks in the number of com-

muters, like the recent lockdowns and self-isolation generated by the COVID-19 pandemic,

can result in dynamic paths that make cities converge to a stationary equilibrium with large

fractions of remote workers. Using cell-phone-based mobility data for the U.S., we document

that although most cities experienced similar reductions in CBD trips during the pandemic,

trips in the largest cities have stabilized at levels that are only about 60% of pre-pandemic

levels. In contrast, smaller cities have, on average, returned to pre-pandemic levels. House

price panel data by city show consistent changes in house price CBD-distance gradients. We

estimate the model for 274 U.S. cities and show that cities that have stabilized at a large

fraction of remote work are much more likely to have parameters that result in multiple

stationary equilibria. Our results imply welfare losses in these cities that average 2.7%.
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1 Introduction

Many of us work at least partially from home these days. A phenomenon that was only marginal a

few years ago has become widespread and has challenged, in potentially profound ways, the basic

organization of work in firms and cities, and across regions and countries. Information technol-

ogy has improved to a point where workers can talk, chat, and send information in documents,

databases, audio, and video without delays and at extremely low costs. However, although infor-

mation technology clearly complements remote work, advances in information and communication

technologies (ICT) increased remote work only marginally between 1980 and 2019. In contrast,

since the COVID-19 pandemic, remote work has boomed. Suddenly, commuting has declined by

half in many of our largest cities and seems to have stabilized at those low levels.1 What generated

this abrupt and seemingly permanent increase in work from home since the pandemic? What are

its consequences for the structure of cities? Will the change be uniform across them? Importantly,

what are the welfare consequences of permanent shifts in commuting and agglomeration patterns?

In this paper, we aim to address these questions by proposing, and estimating for most U.S. cities,

a dynamic theory of city structure with a labor delivery choice. We also contrast and verify its

implications with data on individual cell phone mobility and zip code-level house prices.

At the core of our theory is the idea that the value of working at the CBD, in short “office

work”, depends on proximity to other workers. Workers’ productivity is enhanced by interactions

with others in their office, but also across businesses, and more generally with other workers at city

centers. This is an old idea from Marshall, of course. Remote work, however, offers workers and

employers the possibility to work in the same city but without interacting in person. Since workers

do not internalize many of the benefits they convey to others, this alternative possibility leads to

a novel coordination problem: Workers prefer to work in the CBD only if others do too, but prefer

to work from home otherwise. In a dynamic economy, where workers face idiosyncratic preferences

for remote work (e.g. having a baby or remodeling) and fixed costs from switching between labor

delivery modes (e.g. setting up a home office or buying a car), this mechanism can lead to multiple

stationary equilibria with different permanent shares of commuters. In these cases, abrupt changes

to the number of commuters can make a city converge to a stationary equilibrium that is very

different from the initial one. For many places, we postulate, this abrupt change was the COVID-

19 pandemic and the lockdowns and self-isolation it generated. This one-time temporary change

has led, for several U.S. cities, to a permanent change in one of the most enduring characteristics

of human organization: work at city centers.

Of course, not all cities are equal. Some cities specialize in industries where interactions between

workers lead to large spillovers and correspondingly large populations. Other cities specialize in

industries with low spillovers and are small. Commuting costs can vary dramatically depending

on transport infrastructure and geographic characteristics. Furthermore, the ability to work from

1These trends have been reported from survey data (Brynjolfsson et al., 2020; Aksoy et al., 2022; Brynjolfsson
et al., 2023), administrative data (Dalton et al., 2022), changes in job advertisements for remote positions (Hansen
et al., 2023), or changes in internet usage of firms (Matthies and Kwan, 2022).
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home varies sharply with the worker’s occupation, and occupations are, of course, not uniformly

distributed in space. We all know about the concentration of bankers in New York or programmers

in Palo Alto. All these characteristics of cities determine the extent to which the coordination

problem we identify leads to multiplicity in stationary equilibria. We characterize in detail these

conditions and, quite naturally, prove that the intensity of the coordination problems, and therefore

the likelihood of multiple stationary equilibria, increases with the strength of agglomeration forces

minus that of congestion forces and in the relative productivity of remote work to office work.

We show that, in the U.S., the particular configuration of urban characteristics that leads to

multiplicity in stationary equilibria was prevalent, before the pandemic, in many of the larger

cities. That is, we estimate parameter configurations for large cities that, in general, although not

always, put them in the “multiplicity cone”: the parameter set where cities exhibit multiplicity in

stationary equilibria.

Our finding that large cities tend to be in the multiplicity cone implies that the abrupt reduction

in commuters caused by the COVID-19 pandemic made many of them switch to a path that seems

to be converging to the low commuting stationary equilibrium. Of course, even in the stationary

equilibrium with little commuting, some people commute; their idiosyncratic preference for office

work and the fixed cost of switching make it the better choice for them. Our interpretation is that

the pandemic reduced the share of commuters below the share of commuters in the low commuting

stationary equilibrium. Hence, commuting has increased in some of these cities, but only slightly,

and has stabilized way below pre-pandemic levels. In contrast, small cities tend to have parameter

configurations outside the multiplicity cone, so their stationary equilibrium is unique. These cities

experienced the same abrupt reduction in commuters as large cities did during the pandemic,

but their dynamic evolution simply brings them back to the pre-pandemic stationary equilibrium.

Hence, they exhibit no permanent change in the number of commuters. In sum, we argue that

the pandemic has acted as an equilibrium selection device for cities where multiple stationary

equilibria existed ex-ante. In a rare – in our view – empirical occurrence, the spatially-uniform

temporary push of most workers into a remote state during the pandemic has revealed the set of

cities featuring multiple stationary equilibria.

We contrast these predictions of our model with cell-phone-based data on worker mobility from

SafeGraph, available from before the pandemic until mid-2022. We first identify CBDs in all cities

by finding the group of census tracks that receive the largest numbers of commuters pre-pandemic.2

We then track the number of trips to these CBDs over time. The results are revealing. In New

York, NY, for example, relative to pre-pandemic levels, the pandemic reduced the number of trips

to the CBD by more than 80%. After the pandemic, the number of trips increased slightly, but

it has now stabilized at about 40% of the pre-pandemic level. San Francisco, CA, shows a similar

pattern. In contrast, Madison, WI, experienced a drop in the pandemic as large as New York

but has recovered fully to pre-pandemic levels. This apparent multiplicity of stationary equilibria

2In some cases, we identify multiple CBDs when there are several areas that have more than 80% of the commuters
to the main CBD. One example is Midtown and Downtown in Manhattan.
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is present more broadly in the data. The largest U.S. cities, with employment above 1.5 million

workers, experienced a drop of 80% in trips to the CBD during the pandemic but now have

stabilized at only 60% of pre-pandemic levels. In contrast, the smallest CBSAs, with employment

below 150 thousand workers, experienced a comparable drop in CBD trips during the pandemic,

but have now gone, on average, fully back to pre-pandemic levels.

The available housing data is also consistent with the mechanism in our theory. As others

have documented, the pandemic generated a flattening of house price distance gradients in cities.

Namely, prices at the CBD declined relative to prices further away from the city. This is a natural

consequence of the expansion of work from home since the advantage of living close to work is

diminished if workers do not commute to the office or do so only a couple of days a week. What

has not been documented, but we document here using Zillow zip code-level data, is that the

flattening in the rent gradient has continued in the largest cities but has reversed and disappeared

in the smaller ones. The cities where trips to the CBD have gone back to pre-pandemic levels, like

Madison, or Durham, NC, exhibit housing price gradients that are not statistically different from

pre-pandemic ones. In contrast, the larger cities where CBD trips have stabilized at much lower

levels, like New York and San Francisco, exhibit a large and significant flattening of this gradient,

which has been exacerbated since the pandemic.

What are the welfare implications of our findings? For small cities outside the multiplicity

cone, the long-run welfare effect is zero. These cities have simply reverted to the pre-pandemic

equilibrium. The transition lasted a couple of years, but the transition costs are probably only

marginal. In contrast, for cities that have permanently switched to the work-from-home intensive

stationary equilibrium, the welfare implications depend on the welfare ranking of both stable

stationary equilibria. A direct comparison of these stationary equilibria in the 155 cities that we

estimate are inside the multiplicity cone reveals that the welfare costs are positive but relatively

modest. The costs are slightly larger than 2.5% for New York and San Francisco, less than 2%

for Phoenix, and around 3% for Los Angeles and San Jose. A stationary equilibrium with office

work is indeed better than the remote work intensive stationary equilibrium, but the benefits from

the lack of commuting compensate for most of the losses. Of course, these numbers depend on

the details of the estimation strategy of our model and the many sources of data, including the

ACS and the NLSY, that we use to implement it. We discuss the details of the estimation of our

dynamic discrete choice model in the body of the paper.

Our paper is related to several strands of the literature. First, we contribute to the emerging

literature studying the effects of remote work on urban environments. Liu and Su (2023) document

a decrease in the urban wage premium of occupations with higher levels of remote work since

the COVID-19 pandemic, consistent with a decline in the agglomeration externality for these

occupations. Davis et al. (2021) develop a model where remote work productivity increases via

adoption externalities and study the response of remote work employment to improvements in its

technology. Parkhomenko and Delventhal (2023) develop a quantitative spatial equilibrium model

with work from home and commuting that predicts the optimal frequency of remote work. They
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study the spatial redistribution of economic activity induced by an increase in the amenity value

of remote work. We propose an alternative interpretation to the large and persistent increase

in remote work that does not rely on exogenous productivity or amenity shocks. Duranton and

Handbury (2023) show that exogenous changes in which workers are allowed to work remotely in

a monocentric city model can replicate observed changes in commuting and demand for housing.

Instead, we show how the coordination of agents in a city can lead to multiple stationary equilibria,

and how temporary shocks to the number of commuters can permanently affect the structure of

cities by selecting a different stationary equilibrium.

Remote work has been linked to changes in residential and commercial housing prices within

and across cities (Mondragon and Wieland, 2022; Gupta et al., 2022; Brueckner et al., 2021; Liu

and Su, 2021; Ramani and Bloom, 2021; Althoff et al., 2021). Our finding that residential housing

rent gradients with respect to distance to the CBD are diverging between larger and smaller cities

is, to our knowledge, a new fact. We also provide an interpretation for this fact, since these housing

rent gradients map directly into structural parameters of our model.3 We show how the divergence

between larger and smaller cities is predicted by our model, given that larger cities are more likely

than smaller cities to converge to the remote-work-intensive stationary equilibrium.

Understanding the productivity of remote work relative to in-person work remains an active

area of research. Building on earlier studies (Oettinger, 2011; Cappelli and Keller, 2013), recent

work indicates that remote workers may perform better than in-person workers in some contexts

(Choudhury et al., 2022; Bloom et al., 2022; Barrero et al., 2021; Etheridge et al., 2020; Bloom

et al., 2015). However, workers employed in occupations involving a significant amount of problem-

solving tend to experience lower performance when working remotely (Emanuel et al., 2022; Künn

et al., 2020). Gibbs et al. (2023) study employee productivity before and during the COVID-19

pandemic among skilled professionals at an Indian information technology services company. They

find that employee productivity fell by 8% to 19%, and point to higher communication costs and

longer time spent on coordination activities and meetings as sources for this decline. They also

find that employees networked with fewer individuals and business units, both inside and outside

the firm.4 Other studies emphasize that the higher earnings of remote workers can be partly

explained by their selection into remote work based on unobservable characteristics (Harrington

and Emanuel, 2022; Atkin et al., 2022). Our model recognizes workers’ heterogeneous preferences

for remote work (Mas and Pallais, 2017; Lipowska et al., 2022). Our analysis of the NLSY79

provides new estimates of the remote work premium from non-experimental data that account

for unobserved persistent heterogeneity in worker performance. Our findings indicate that the

technology of remote work has been improving steadily over the past decades while remaining less

productive than in-person work on average across occupations.

Agglomeration economies are a central tenet of urban economics (Henderson, 2003; Combes

3Duranton and Puga (2019) also link housing rent gradients to the elasticity of urban costs with respect to city
size.

4See also Yang et al. (2022). They find that firm-wide remote work resulted in a less collaborative network
among workers, with fewer connections between different parts.
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et al., 2012). When cities successfully bring people together, positive spillovers abound. People

interact, learn from each other, and foster entrepreneurship, leading to greater productivity within

the city (Moretti, 2004; Gennaioli et al., 2012; Glaeser and Maré, 2001; Baum-Snow and Pavan,

2011; De La Roca and Puga, 2016).5 We contribute to the literature examining urban agglomer-

ation economies by studying how remote work alters their workings. Canonical theories of cities

predict that more central locations command higher house prices because of better accessibility

to the locus of production (Alonso, 1964; Muth, 1969). By removing the need to travel across

locations to reach the workplace, remote work deprives cities of one of their most fundamental

organizational principles. The main insight from our analysis is that cities with strong agglomer-

ation externalities, typically viewed as successful, are also the most at risk of dramatic shifts in

their structure when people choose to stay home. Similar to us, Owens et al. (2020) uses coordi-

nation problems generated by residential externalities to rationalize the existence of depopulated

and successful neighborhoods with similar underlying characteristics in Detroit.

The rest of the paper is organized as follows. Section 2 presents stylized facts on remote work

that emphasize the sudden increase in remote work since 2020, despite no large increase in the

earnings premium for remote work. Section 3 presents our dynamic monocentric model with a

choice of labor delivery mode. Section 4 quantifies the model, including our estimation of the

relative productivity of remote work and externality parameters. Section 5 presents additional

evidence on the divergence of large and smaller cities in terms of commuting patterns and hous-

ing price gradients. It also discusses how our estimated model rationalizes this divergence and

the resulting welfare implications. We relegate many of the model’s and quantification’s details,

additional robustness exercises, and counterfactuals to the Appendix.

2 Stylized Facts on Remote Work

We begin by documenting changes in the shares of workers delivering work remotely and changes

in the earnings per hour premium of remote work between 1980 and 2021. We rely on two data

sources. First, we use the decennial census waves of 1980, 1990, and 2000, and the annual American

Community Survey waves between 2005 and 2021. From this source, we obtain large repeated

cross-sectional information on the individual earnings per hour of workers who work in person or

remotely. Second, we use the National Longitudinal Survey of Youth 1979 (NLSY79), a panel

of 4,147 individuals from which we collect information on the number of hours of remote work,

hourly pay, and occupation every two years from 1998 to 2018. The repeated observations of the

same workers allow us to control for permanent unobserved heterogeneity between workers and

obtain estimates of the remote work premium that are not biased by selection on unobservable

characteristics (Harrington and Emanuel, 2022; Atkin et al., 2022). We provide details about the

construction of our samples in Appendix A.2.

5The productivity premium in larger cities has also been linked to the combination of more efficient firms and
workers selecting these areas (Combes et al., 2008; D’Costa and Overman, 2014; Gaubert, 2018).
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Remote work has become an increasingly common form of labor delivery over the past few

decades. This pattern is typically reported by looking at the share of all working hours performed

at home over time (Oettinger, 2011; Cappelli and Keller, 2013; Liu and Su, 2023). Part of this

increase is likely due to improvements in communication technologies, while another part may

be due to gradual changes in the composition of the labor force, both in terms of educational

attainment and employment by occupation and industry. Our first exercise aims to isolate the role

played by technological improvement by controlling for individual characteristics.

In Figure 1a, we report our estimates of the likelihood of being a remote worker over time,

controlling for a number of observable covariates. Using Census/ACS and NLSY data separately,

we estimate a logit model for the probability of being a remote worker. In both datasets, we

control for workers’ education, gender, age, marital status, race, experience on the job, and broad

industry and occupation fixed effects. In the Census/ACS data, we define as “remote workers”

those who report working from home when asked about their means of transportation to work.

In the NLSY data, we define as “remote workers” those who work for more than 24 hours at

home in a week (the equivalent of three days per week). We then predict the shares of remote

workers, varying the year and setting the values of all covariates to their mean value over the

sample. Both samples report a gradual increase in the share of remote workers over time. The

share increases from less than 1 percent in 1980 to 2.6 percent in 2019. In 2020, this share jumps

to 12.0 percent and reaches 15.0 percent in 2021.6 The estimated share from the NLSY features a

similar gradual increase from 1.4 percent in 1998 to 3.7 percent in 2018. These estimates can be

interpreted as the probability of being a remote worker for a worker with typical and time-invariant

characteristics. That is, the gradual increase from 1980 to 2019 is not explained by changes in the

composition of employment by occupation or industry over time, nor is it explained by the changes

in worker individual characteristics such as educational attainment. Rather, they likely stem from

the increased attractiveness of remote work.

In Figure 1b, we estimate the hourly wage premium of remote work relative to in-person work

over time. In the Census/ACS data, we regress log hourly wages on year-specific indicators of

remote work, the same controls as the ones used in the logit model described above, allowing in

addition for year-specific effects for occupation, industry, education, region, and demographics. In

the NLSY data, we complement the specification by adding individual fixed effects. Both exercises

indicate a steady increase in the premium for remote work. In 1980, remote work implied a

discount of 44.5 percent in hourly rates compared to in-person work, according to the Census/ACS

estimates. In 2021, workers with similar observable characteristics who were working remotely

earned 4.1 percent higher earnings. According to estimates from the NLSY sample, the discount

for remote work went from 18.5 percent in 2000 to only 4.9 percent in 2018. The lower values for

the remote work premium in the NLSY are consistent with remote workers having characteristics

6Note that the value of 15.0 percent for the predicted share of remote workers does not represent the actual
average share of remote workers in 2021. This predicted value is obtained by setting the value of all controls to their
mean over the entire 1980-2021 period and does not represent the employment composition in 2021. In Table A1
in Appendix A.2, we report that the actual share of remote workers measured in the ACS in 2021 is 19.2 percent.
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Figure 1: Prevalence and Earnings Premium of Remote Work

(a) Predicted Share of Remote Work
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(b) Hourly Wage Premium of Remote Work
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Panel (a) reports the predicted share of remote workers from a logit model with year fixed effects and controlling for
workers’ education, gender, age, marital status, race, experience on the job, and broad industry and occupation fixed
effects. The estimates report the varying years, setting the values of all other covariates to their mean value over the
sample. Panel (b) reports the coefficients of yearly remote work indicators from the regression of log hourly wages,
including the same controls as in Panel (a) plus year-specific effects for occupation, industry, education, region, and
demographics. In the Census/ACS data, “remote workers” are defined as those reporting working from home when
asked about their means of transportation to work. In the NLSY data, “remote workers” are defined as those who
work for more than 24 hours at home per week. Each point represents an estimate for a year. The shaded areas
represent the 95 confidence interval around the estimates.

that make them likely to obtain higher earnings, beyond the ones observed in the Census/ACS.

Remarkably, the remote work premium did not increase dramatically in 2020 and 2021. This is

consistent with the large increase in remote work being driven by other mechanisms rather than

by a large productivity increase of remote work. The model and evidence below describe such a

mechanism.

3 Model

3.1 Overview

We model a linear city with an exogenous population of size L. Each city location houses one

resident. Time is discrete. A worker starts period t in a labor delivery mode ℓ ∈ {c,m} (commuting

or remote) that has been determined the previous period, and is thus fixed within the period.

The worker chooses a residence location, housing, and consumption, supplying labor according

to mode ℓ. Workers then see their idiosyncratic shocks εt = {εc,t, εm,t} for each choice, make a

labor delivery mode decision for next period, and enjoy the associated idiosyncratic benefit. These

benefits are drawn from a Gumbel distribution with location parameter γ̃ (the Euler constant) and

7



scale parameter s, G (ε) = exp
{
−eε/s−γ̃

}
. The current period ends, and in the next one the new

composition of labor delivery modes is again pre-determined.

Locations in the city are ordered in a line and indexed by d ∈ [0,+∞). Production occurs in

the central business district (CBD), at d = 0. Land is owned by absentee landlords. A worker

living in location d pays a rent r (d) per unit of housing. Land has an alternative use that yields

an exogenous return equal to ra and landowners can enhance it to supply the units of housing

demanded by the household.

In what follows, we describe a simple production environment and then formalize the problem

of a worker. The within-period part determines indirect flow utilities and the city rent function.

The dynamic part determines the transition shares across labor delivery modes, and hence the

aggregate evolution of the city. We conclude with a characterization of the equilibrium of a city.

3.2 Production

There are two goods in the economy: final consumption and housing. Final consumption is a

homogeneous good produced in the CBD by profit-maximizing firms under constant returns to

scale: one efficiency unit of labor produces one unit of good, at a constant marginal cost of w̄. The

number of efficiency units of a worker, and hence her total wage wℓ, both depend on the chosen

labor delivery mode ℓ. In particular, define

L̃c ≡ Lµ
cL

1−µ (1)

as the measure of the economic activity that takes place in the city center, a function of the current

number of commuters Lc, the total city size L, and the fraction of days per week a remote worker

spends at home, µ. Then, we postulate

wℓ ≡

{
wc ≡ w̄ · AL̃δ

c if ℓ = c,

wm ≡ w̄ · zµ(AL̃δ
c)

1−µ if ℓ = m.
(2)

In particular, the efficiency units offered by a commuting worker depend on the in-office produc-

tivity A > 0, and on how many workers are on average in the CBD, L̃c, with an elasticity δ > 0.

The efficiency units of a remote worker are a combination of the efficiency of remote work z > 0,

and the efficiency of commuting work, weighted by the fraction of time in each mode. Free entry

in production implies p̄ = w̄ = 1, after a normalization.

Absentee landlords invest their effort to produce housing on their unit-size plot and receive

r(d) per unit of housing. Land has an alternative use that yields ra.

3.3 Problem of the Worker

A worker starts period t in state ℓ ∈ {c,m}, solves a within-period problem delivering a flow utility

uℓ, observes idiosyncratic shocks associated with the next period’s labor delivery mode options,
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and makes a new choice ℓ′.

3.3.1 Within-Period Problem

We write the within-period problem of a worker in state ℓ as

uℓ(Lc) = max
Qℓ,Hℓ,d

log T µℓ

(
B(L̃c)

τ(L̃c)dγ

)1−µℓ

Qα
ℓH

1−α
ℓ , (3)

s.t. µℓ ≡

{
0 if ℓ = c

µ ∈ (0, 1] if ℓ = m
, (4)

wℓ = p̄Qℓ + r(d)Hℓ. (5)

The worker chooses consumption of a homogeneous good, Qℓ, housing Hℓ, and housing location d.

µℓ is the fraction of days per week spent at home in mode ℓ. Amenity and disutility terms include

T > 0, a benefit of working from home; B(L̃c), a benefit of visiting the CBD, increasing in L̃c;

τ(L̃c), the general level of congestion in commuting, also increasing in L̃c, and commuting costs

dγ, where γ > 0 captures the elasticity of commuting costs to distance. The exponent α ∈ (0, 1)

is the weight of consumption in utility. Workers obtain a wage wℓ described in 2, and spend it on

consumption, with unit price p̄, and housing with unit price r(d).

Our formulation captures the key trade-offs between commuting and remote work. On the

amenity side, remote work allows an individual to enjoy the flexibility of working from home and

to pay lower commuting and congestion costs, at the price of lower enjoyment of the social and

consumption opportunities in the CBD, all for a fraction µ of the time. On the wage side, remote

work trades off the positive externalities arising from in-office interactions with the efficiency of

communication technology z, again for a fraction µ of the time. The scale of economic activity in

the CBD, as measured by L̃c, shapes the balance of these tradeoffs: when more agents visit the

city center, individual productive efficiency is higher, the CBD is more lively, but congestion is

heavier.

3.3.2 Dynamic Problem

The solution to the within-period problem described above delivers the within-period utility flow.

The worker then observes two new idiosyncratic shocks for the next period’s labor delivery mode,

εℓ′,t, and chooses ℓ′ accounting for the evolution of the state of the economy. In particular, the

dynamic decision of a worker who starts the period in state ℓ is

Uℓ

(
{εc,t, εm,t} ;Lc,t, ω

t
)
= uℓ (Lc,t) + max

ℓ′∈{c,m}

{
βVℓ′

(
Lc,t+1;ω

t+1
)
− Fℓℓ′,t + εℓ′,t

}
, (6)
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where ωt ≡ {ωk}+∞
k=t and ωt ≡ {At, zt, Fℓℓ′,t, Tt, Bt(·), τt(·)} is a known exogenous sequence of

(possibly) time-varying technology, fixed costs, and amenities, and

Vℓ
(
Lc,t;ω

t
)
=

∫
εm

∫
εc

Uℓ

(
{εc, εm} ;Lc,t, ω

t
)
dG (εc) dG (εm) (7)

is the expected utility of a worker starting in state ℓ if Lc,t workers are commuting. In these

expressions, Fℓℓ′,t is the cost of transitioning from mode ℓ to mode ℓ′ at time t. Although the

theory can accommodate any non-negative values, we will set Fℓℓ = 0 for ℓ ∈ {c,m}. The term εℓ
is the idiosyncratic shock received by the worker in mode ℓ.

3.4 Equilibrium

We start by defining a within-period equilibrium condition that has to hold at each time, given

the current distribution of commuters and remote workers. We then define a dynamic equilibrium,

which describes the evolution of the economy when the within-period equilibrium holds at each

time, and forward-looking workers make commuting and remote work choices based on—and con-

sistent with—the aggregate evolution of the economy. Finally, we define a stationary equilibrium

as a dynamic equilibrium where all endogenous variables are constant.

3.4.1 Within-Period Equilibrium

Definition 3.1 Given Lc and ω, a within-period equilibrium is a rent function r(d), d ∈ [0, L] and

an allocation {Qc, Qm, Hc, Hm} such that i) individuals solve (3)-(5), ii) firms maximize profits and

free entry drives profits to zero and iii) the housing market clears.

We construct a within-period equilibrium by first solving for consumption and housing demand

conditional on a distance, and then letting the agent pick the distance that delivers the highest

(indirect) utility. From the Cobb-Douglas structure, we have

Qℓ = αwℓ, (8)

Hℓ(d) =
(1− α)wℓ

r(d)
, (9)

which implies an indirect utility of

uℓ = log ᾱT µℓ

(
B(L̃c)

τ(L̃c)dγ

)1−µℓ

wℓ

r(d)1−α
, (10)

with ᾱ ≡ αα(1− α)1−α, for ℓ ∈ {c,m}. Taking the first-order conditions for the optimal distance

in this equation,
r′ℓ(d)d

rℓ(d)
= −γ(1− µℓ)

(1− α)
=⇒ rℓ(d) = kℓd

− γ(1−µℓ)

(1−α) , (11)
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where r′ℓ (d) is the slope of the rent function in the segment relevant to workers with delivery mode

ℓ, and kℓ is a constant of integration. At the optimal residence, the savings on rents of a marginally

farther location exactly compensate for the increased disutility in travel time. Since remote workers

suffer less for a given travel time increase (by eq. (4), µm ≡ µ ∈ (0, 1] > µc = 0), their willingness

to pay for proximity to the CBD is lower. Hence, commuters live in [0, Lc], remote workers live in

[Lc, L], and the equilibrium rent function has a steeper (constant) elasticity for commuters than

for remote workers.

In our formulation, these conditions translate into a constant elasticity rent, with constants

of integration kc and km. These constants of integration are characterized by two no-arbitrage

conditions. First, the rent per unit of housing in the last residence location has to coincide with

the alternative land use ra, so that rm(L) = ra. Second, land owners must be indifferent between

renting to commuters and remote workers at d = Lc, so that rc(Lc) = rm(Lc). Using these two

conditions, the equilibrium rent function is

r (d) =

{
(L/d)γ/(1−α) (Lc/L)

µγ/(1−α) ra if d < Lc

(L/d)(1−µ)γ/(1−α) ra if d ≥ Lc

. (12)

An implication of this result is that the average elasticity of rent to distance is given by:

∂r(d)

∂d

d

r(d)
= − γ

1− α
[(1− µ)L+ µLc] . (13)

Hence, the rent gradient reflects the strength of distance frictions, as measured by γ, and the

average value of being close to the CBD, as proxied by the commuting population Lc.

A within-period equilibrium is then described by this rent function, and the allocation implied

by equations (8)-(9). The indirect utility function (10) becomes,

uℓ =


log
[
rα−1
a ᾱ

(
B(L̃c)

τ(L̃c)

)
wc/L̃

γ
c

]
if ℓ = c

log

[
rα−1
a ᾱT µ

(
B(L̃c)

τ(L̃c)

)1−µ

wm/L
γ(1−µ)

]
if ℓ = m

. (14)

These indirect utilities of each labor delivery mode are an element of the dynamic problem of a

worker, to which we now turn.

3.4.2 Dynamic Equilibrium

A worker starts the period in state ℓ and enjoys the utility flow uℓ. The worker then observes

two new idiosyncratic shocks εℓ′,t and decides the new state for the next period ℓ′, accounting for

the exogenous evolution ωt and the aggregate measure of commuting workers Lc,t+1. With some

11



manipulation,7 we can rewrite equation (7) as

Vℓ
(
Lc,t;ω

t
)
= uℓ (Lc,t;ωt) + βVℓ

(
Lc,t+1;ω

t+1
)
− Fℓℓ,t + Ω(ε̄ℓ,t) , (15)

where ε̄ℓ,t ≡ {ε̄ℓc,t, ε̄ℓm,t}, the term

ε̄ℓℓ′,t (Lc,t+1) ≡ β
[
Vℓ′
(
Lc,t+1;ω

t+1
)
− Vℓ

(
Lc,t+1;ω

t+1
)]

− (Fℓℓ′,t − Fℓℓ,t) , (16)

is the average value of switching from ℓ to ℓ′, and Ω
(
ε̄ℓt
)
is the value of the option of being able

to move out of ℓ if circumstances require, or the “option value” of ℓ. Under our distributional

assumptions, the option value takes the form

Ω (ε̄ℓ,t) = −s lnλℓℓ,t, (17)

where the share of workers in state ℓ transitioning to ℓ′ is given by

λℓℓ′,t =
exp (ε̄ℓℓ′,t (Lc,t+1) /s)

exp (ε̄ℓc,t (Lc,t+1) /s) + exp (ε̄ℓm,t (Lc,t+1) /s)
, (18)

and the evolution of the measure of commuting workers is governed by the law of motion

Lc,t+1 = Lc,tλcc,t + (L− Lc,t) (1− λmm,t) . (19)

Definition 3.2 Given a known exogenous sequence of parameters {ωt}+∞
t=0 and an initial condition

0 ≤ L̄c,0 ≤ L, a dynamic equilibrium is a pair of value functions Vℓ, ℓ ∈ {c,m} and a matrix of

transition probabilities λℓℓ
′

t , ℓ, ℓ′ ∈ {c,m} such that eq. (15)-(18) hold, and the state of the economy

evolves according to (19) with Lc,0 = L̄c,0.

We are ready to define a dynamic equilibrium, as well as a stationary equilibrium.

Definition 3.3 Given a time-invariant sequence of exogenous parameters ω ≡ {ω̄}+∞
t=0 , a station-

ary equilibrium is a dynamic equilibrium where all endogenous variables are constant over time.

Throughout the text, we focus on multiplicity of stationary equilibria. In principle, the model

might feature multiple equilibria, something we have not fully explored theoretically. In our

numerical exercises, we have not found indications of the presence of such multiplicity.

3.4.3 Characterization of the Equilibrium

To discuss the existence and other properties of the stationary equilibria, we specify the shape

of B(·) and τ(·), and ensure that the model does not deliver corner solutions. In the rest of the

paper, we maintain the following two assumptions.

7All calculations are reported in Appendix B.1.
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Assumption 1 B(·) and τ(·) are isoelastic functions:

B(L̃c) ≡ B̄L̃ξ
c and τ(L̃c) = τ̄ L̃θ

c , with B̄, τ̄ , ξ, θ > 0.

Assumption 2 The dispersion in the idiosyncratic shocks is large enough:

s > µ2(ξ + δ − θ − γ/µ).

Assumption 1 allows a characterization of the equilibria in terms of comparisons among (con-

stant) elasticity values. Assumption 2 guarantees that as an economy approaches a purely remote

equilibrium, the average value of switching from commuting to remote goes to −∞.

Proposition 3.1 There always exists at least one stationary equilibrium.

Proof. See Appendix B.2.

The proof makes a formal case that the average benefit of switching to commuting approaches +∞
when almost everybody is working remotely, which causes the number of commuters to stay above

zero. Conversely, when almost all employees commute, the number of remote workers tends to

stay above zero. Since the law of motion for Lc is continuous, there must be at least one number of

current commuters for which the number of commuters in the following period remains constant.

Having established existence, we now investigate the properties of the set of equilibria in this

economy. Proposition 3.2 establishes that if agglomeration forces are weak enough, there is a

unique stationary equilibrium.

Proposition 3.2 Assume δ + ξ < θ + γ/µ. Then there is a unique stationary equilibrium. The

stationary equilibrium value of the commuting population Lc,ss monotonically increases with A and

B̄, and monotonically falls with Z, T and τ̄ .

Proof. See Appendix B.3.

A unique stationary equilibrium requires that having more commuters increases the individual

incentive to become a remote worker. We can break down this individual incentive into two parts:

the current benefit of actually working remotely instead of commuting, and the option value of

becoming a remote worker. If the measure of commuters increases, the option value of becoming a

remote worker always grows - a dynamic congestion force. Under the assumptions of Proposition

3.2, static congestion forces also increase the net benefit um − uc when the number of commuters

grows, and this is sufficient for uniqueness. The left panel of Figure 2 depicts a typical phase

diagram for this case. The blue line indicates how the measure of commuters changes from one

period t (horizontal axis) to the next t+1 (vertical axis). The city’s unique stationary equilibrium

occurs at the crossing with the dashed 45◦ line. A city below the stationary equilibrium value

will experience an increase in the number of commuters over time. However, congestion forces will

eventually slow this growth as the number of commuters rises.
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Figure 2: Phase Diagram for a Unique Stationary Equilibrium

(a) Unique Stationary Equilibrium

𝑳𝑳𝒄𝒄,𝒕𝒕
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(b) Increasing Remote Work Productivity

𝑳𝑳𝒄𝒄,𝒕𝒕

𝑳𝑳𝒄𝒄,𝒕𝒕+𝟏𝟏

The left panel of this figure shows a typical phase diagram for a city with a unique stationary equilibrium. The
right panel shows how the phase diagram shifts in response to increases in remote work productivity, from the light
blue line to the black line. In both panels, the dashed gray line is the 45-degree line.

Increases in office productivity A and amenity benefits B̄ reduce the static gains of remote work,

lessening the share of commuters making the transition. These changes would move the blue line

up and to the left, increasing the number of steady-state commuters. Conversely, improvements in

the efficiency of remote work Z or its amenity benefit, T , or higher commuting frictions τ̄ increase

the motivation to move to remote work, pushing the line down and to the right, and reducing the

equilibrium number of commuters. Panel (b) of Figure 2 shows the consequences of a progressive

improvement in remote work productivity.

The discussion above suggests that multiplicity can arise when an increase in the number of

commuters strengthens the incentive to switch to commuting. These conditions occur when static

agglomeration forces overcome dynamic congestion forces. The left panel of Figure 3 illustrates a

typical phase diagram for this scenario with three stationary equilibria, E1, E2, and E3. If a city

is located between E1 and E2, the number of commuters tends to increase towards E1. However,

if a city is situated between E2 and E3, the number of commuters will decrease until it reaches the

stationary equilibrium E3. Thus, E2 is an unstable stationary equilibrium, and any perturbation

away from it will cause the city to depart from that equilibrium.

Perhaps surprisingly, strong agglomeration forces alone are not sufficient for multiplicity. The

right panel of Figure 3 shows that the phase diagram shifts down and to the right, from lighter

to darker colors, as remote work efficiency improves. If remote work is not efficient, having fewer

commuters does not increase the incentive to work from home enough to induce more workers to

work remotely. Conversely, if remote work is highly efficient, the “high commuting” equilibrium

14



Figure 3: Phase Diagram for Multiple Stationary Equilibria

(a) Multiple Stationary Equilibria

𝑳𝑳𝒄𝒄,𝒕𝒕
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𝑬𝑬𝟏𝟏

𝑬𝑬𝟑𝟑

𝑬𝑬𝟐𝟐

(b) Increasing Remote Work Productivity

𝑳𝑳𝒄𝒄,𝒕𝒕

𝑳𝑳𝒄𝒄,𝒕𝒕+𝟏𝟏

The left panel of this figure shows a typical phase diagram for a city with multiple stationary equilibria. The right
panel shows how the phase diagram shifts in response to increases in remote work productivity, from the light blue
line to the black line. In both panels, the dashed gray line is the 45-degree line.

vanishes as the incentive to switch to remote work is consistently strong. Proposition 3.3 makes this

intuition formal and characterizes the complete set of circumstances in which we obtain multiplicity

of stationary equilibria.

Proposition 3.3 Suppose Fcc = Fmm = 0. Then, there exist a finite threshold ηmin > θ + γ/µ,

and a set Z ⊂ R++, such that:

i) for δ + ξ > ηmin, Z is a non-empty interval (Zmin, Zmax) and there are multiple stationary

equilibria if z/A ∈ Z; further, Zmin and Zmax grow with L and B̄, and fall with T and τ̄ ;

ii) there is a unique stationary equilibrium in all other cases.

Proof. See Appendix B.4.

Figure 4 provides a visual representation of this Proposition. The figure displays the combinations

of (δ + ξ, z/A) for which a city exhibits multiple stationary equilibria, holding the remaining

parameters constant. When δ + ξ < θ + γ/µ, no values of z/A can generate multiple stationary

equilibria. This is essentially a re-statement of Proposition 3.2.8 If agglomeration forces are high

8Proposition 3.3 imposes Fcc = Fmm = 0, a slightly more restrictive assumption. Without it, Z need not be an
interval for low values of δ + ξ. Instead, there are two thresholds, ηmin and ηmax ≥ ηmin; Z is generally the union
of disjoint intervals, and it is exactly one interval only when δ + ξ > ηmax. We believe it is reasonable to assume
no fixed costs to remain in the same labor delivery mode. Therefore, we focus on this case in the main text.
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Figure 4: Cone of Multiplicity
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This figure represents the combinations of z/A and δ+ξ for which, given the remaining parameters, the city displays
multiple stationary equilibria. Changes in the remaining parameters move the cone. The dashed gray line indicates
the minimum value of agglomeration externalities that generate multiple stationary equilibria.

enough (δ + ξ > ηmin > θ + γ/µ), there is a range of z/A where the city exhibits multiplicity. As

in the right panel of Figure 3, the efficiency of remote work can neither be too low nor too high.

An implication of Proposition 3.3 is that for some values of z/A, increasing agglomeration

forces will change the structure of the city from a single to multiple stationary equilibria. This

fact is easily seen in Figure 5. In the left panel, we consider a movement from point P1, outside

the cone of multiplicity, towards P2, inside the cone. We know this movement can be generically

constructed because Z is non-empty for at least some values of δ+ξ. This comparison corresponds

to the movement from the phase diagram F1 to F2 in the right panel. An increase in the strength

of agglomeration forces exacerbates the role of coordination mechanisms and can create multiple

stationary equilibria.

These results can speak to the organization of production in cities both in the long and short

run. In the long run, secular trends alter the position of a city with respect to its cone. For

example, the trends in remote work discussed in Section 2 suggest that a city with a high enough

δ+ξ may traverse its cone from a single equilibrium to a region of multiplicity, and suddenly lose the

high-commuting equilibrium in favor of the low-commuting one. From a shorter-run perspective,

lockdown policies during the recent COVID-19 pandemic can be seen as a negative exogenous

shock to the number of commuters. Our theory envisions heterogeneous adjustments across cities,
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Figure 5: Implication of Higher Agglomeration Forces

(a) Cone of Multiplicity
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(b) Phase Diagram
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This figure describes a comparison between low and high values of δ. The left panel shows that for some values of
z/A, it is possible to move from a unique (P1) to multiple (P2) stationary equilibria. The right panel displays how
the phase diagram changes from F1 to F2 in association with this move. The dashed gray line in the right panel
shows the 45-degree line.

depending on whether they find themselves inside or outside the cone when the shock occurs. In

the next section, we turn to a theoretical analysis of these shocks. After quantifying our model for

different cities in Section 4, we relate the current evidence to these results in Section 5.

3.5 Heterogeneous Responses to Lockdown Shocks

Both individual and policy-level responses to the COVID-19 pandemic have led, during March 2020,

to large shifts in labor delivery mode towards remote work (Brynjolfsson et al., 2020; Aksoy et al.,

2022; Barrero et al., 2021). Our model provides a natural framework to analyze the subsequent

adjustment toward the resulting stationary equilibrium for different types of cities. In particular, in

Figure 6, we compare a city with a single stationary equilibrium (left panel) to a city with multiple

stationary equilibria, initially in the high-commuting stationary equilibrium (right panel).

We can induce a city lockdown by setting Fcc and Fmc to arbitrarily high values for a specific

number of periods. From the stationary equilibrium E1, this shock initially reduces the measure

of commuters Lc,t to almost zero. Subsequently, as the restrictions are lifted and public confidence

returns (that is, Fcc and Fmc go back to their original values), individuals re-optimize their labor

delivery mode. The set of incentives workers face, however, is now different between the two city

structures.

In cities with a unique equilibrium (e.g., where ξ + δ < θ + γ/µ), the aggregate number of
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Figure 6: Heterogeneous Responses to Lockdown Shocks

(a) Unique Stationary Equilibrium
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(b) Multiple Stationary Equilibria
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This figure shows the adjustment towards the stationary equilibrium in the case of unique vs. multiple stationary
equilibria. In both panels, the orange line depicts the adjustment towards a stationary equilibrium following an
initial shock that brings the number of commuters Lc,t to zero. The dashed gray line in the right panel shows the
45-degree line. When the stationary equilibrium is unique (left panel), the city returns to the initial stationary
equilibrium. With multiple stationary equilibria, the city converges to the low-commuting one.

commuters Lc,t has limited influence on the net individual benefit of working in the office. In this

environment, technology is the primary determinant of wage differentials, and the amenity value of

being downtown is largely independent of the central business district’s overall vibrancy. Because

externalities have little impact on individual choices, the city’s fundamentals ultimately restore the

initial equilibrium, as depicted by the path of the orange line in Panel (a). Even if the willingness

to pay for proximity to the CBD initially falls, the rent gradient in eq. (13), which is tied to the

measure of the commuting population, returns to its initial value.

In contrast, the economy’s fundamentals are not the sole determinant of the final aggregate

state of cities with multiple stationary equilibria. In this case, the current number of commuters

powerfully shapes the incentives to return to the office. A lockdown pushing the city into low

commuting levels significantly alters the individual productivity differential in favor of remote

work. While travel congestion may decrease, the allure of the downtown area also diminishes, and

the amenity value of working in the central business district vanishes. As illustrated by the orange

line in Panel (b) of Figure 6, the city finally settles into a low commuting stationary equilibrium.

Since the number of commuters is permanently lower, the rent gradient in eq. (13) is also flatter

and closer to zero.9 Equipped with these results, we turn to quantify our model for hundreds of

9It is in principle possible for these models to exhibit multiplicity of equilibria, not only of stationary equilibria.
For example, it could be the case that, although the city starts from low commuting levels, individual expectations
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CBSAs, assemble a set of reduced-form pieces of evidence, and relate them to predictions of the

quantified cities.

4 Quantification

When cities can potentially feature multiple equilibria, quantifying the model requires either taking

a stand on which equilibrium the data is a realization of, or relying on relationships that hold in

any equilibrium. For this reason, we rely entirely on data that was produced before 2019, a period

during which every city was arguably in the high commuting equilibrium. More importantly, we

only use predictions of the model that do not depend on which equilibrium—stationary or not—is

being realized.

We quantify our model by estimating parameters that are specific to each Core-based Statistical

Area (CBSA) in the United States when possible. We proceed in four steps. First, we estimate

the dispersion of idiosyncratic preferences, which is inversely related to the elasticity of transitions

into remote work with respect to earnings and the fixed cost of transitioning between delivery

modes. Second, we construct estimates of the agglomeration externality in production. Third, we

estimate the parameters of the remote work technology. Fourth, we estimate the transportation

cost elasticity from city-specific measures of housing rent distance gradients.

4.1 Estimation of the Transition Elasticity and Transition Costs

We start with the identification of the variance of idiosyncratic preference shocks for labor delivery

modes, the fixed costs, and a time trend for the amenity value of remote work. As in Proposition

3.3, we assume Fcc = Fmm = 0. We further assume that Fcm = Fmc = F , reducing the quan-

tification of fixed transition costs to the identification of F . Following the work of Artuç et al.

(2010) on the estimation of discrete choice models, and of Arcidiacono and Miller (2011) in the

structural labor literature on conditional choice probabilities (CCPs), we exploit the log-linear

relationship between observed transition probabilities across labor delivery modes and workers’

payoffs, including transition costs, income, and continuation values. Through a linear regression,

the elasticity of transitions between labor delivery modes is identified from the responsiveness of

transitions to income changes, while fixed transition costs are identified from the overall level of

transitions.10 We use the following result, which provides an expression of forward-looking relative

transition probabilities as a function of the within-period flows of utility, transition costs F , and

transition elasticity s only.

of a return to high commuting put the system on a self-fulfilling path that converges to a high commuting stationary
equilibrium. We have searched for these cases extensively in our simulations and have found no instances where
this is the case. See Appendix B.6 for details.

10See Traiberman (2019) for an application to occupational and sectoral transitions.
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Lemma 4.1 Suppose Fcc = Fmm = 0 and Fcm = Fmc = F . Then

yℓℓ′,t ≡ ln
λℓℓ′,tλ

β
ℓ′ℓ′,t+1

λℓℓ,tλ
β
ℓℓ′,t+1

=
β

s
(uℓ′,t+1 − uℓ,t+1)−

(1− β)F

s
. (20)

Proof. See Appendix B.5.

This approach considers one-period deviations from an otherwise common sequence of labor

delivery modes to difference out continuation values. We can write the difference in the utility

flows from (14) as

um,t+1 − uc,t+1 = ln
wm,t+1

wc,t+1

+ µ lnTt+1 − µ lnB(L̃c,t+1) + µ ln τ(L̃c,t+1) + γµ lnLc,t+1. (21)

In order to obtain a specification that can be estimated in a linear regression, we maintain As-

sumption 1 about the parametric specification of the city-center amenity B(L̃c) and congestion

τ(L̃c), and assume that the remote work amenity takes the form of a log-linear function of time.

That is, we let Tt = exp{α0 + α1t}. Our estimating equation can then be written as:

yℓℓ′,t = η0 · ln
wℓ′,t+1

wℓ,t+1

+ η1 + dℓℓ′ · (η2 + η3 · (t+ 1) + η4 · lnLc,t+1 + η5 · lnLt+1) + εℓℓ′,t, (22)

where dℓℓ′ = 1 is a discrete variable taking the value 1 if the transition is from commuting to

remote, i.e. if ℓℓ′ = cm and takes the value −1 if the transition is from remote to commuting, i.e.

dℓℓ′ = −1 if ℓℓ′ = mc.

With this specification, the estimated coefficients can be recovered according to

s =
β

η0
, (23)

F = − β

1− β

η1
η0
, (24)

α0 − ln
B̄

τ̄
=

η2
η0µ

, (25)

α1 =
η3
η0µ

, (26)

ξ − θ =
1

µ(1− µ)

η5
η0
, (27)

γ =
1

η0

(
η4
µ

+
η5

1− µ

)
. (28)

In principle, we should compute yℓℓ′,t for each city. However, the NLSY sample does not contain

enough observations of these transitions to obtain them accurately for each city. This is especially

true if we define remote work as spending three days per week or more at home, a choice that
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was rare before the COVID-19 pandemic.11 For this reason, we impose additional assumptions

to implement the estimation of (22). In our main specification, we partition cities based on four

U.S. regions, the most precise geographic units recorded in the NLSY public-use data.12 We define

transition shares for each of these four regions and for two groups of educational attainment (with

or without a college degree). That is, for each year we construct the empirical equivalent of yrℓℓ′,t
in (22) for eight region-education groups, indexed by r. We define a remote worker as someone

who spends at least 1 day per week at home to maximize the number of observed transitions.13

The construction of yrℓℓ′,t for each group r is based on the fraction of individuals λrℓℓ′,t who make

a transition to or from remote work between two consecutive periods of time. To compute these

shares for each group r, we first control for the role of covariates other than education and region

in driving the transition shares of each group that are not directly captured by our model. These

include differences in the industrial and occupational composition across groups that could drive

differences in transition shares. Specifically, we estimate a probit model for the share of remote

workers, controlling for year-group r, t indicators, the role of age and experience, and occupation

and industry fixed effects. We use as measures of λrℓℓ′,t the predicted transition shares from our

probit model for each group r, setting all other covariates to their mean value. We then assemble

the yearly transition shares into the relative shares yrℓℓ′,t, setting β to 0.96 on an annual basis,

corresponding to a discount rate of about 4 percent.

To construct wages wr
c,t and w

r
m,t, we follow a similar approach by removing the contribution of

industrial and occupational determinants of the wage levels. We regress individual log hourly wages

on age, tenure and their square, year-group r, t indicators, and person, industry, and occupation

fixed-effects. We use the residuals from these regressions to obtain a measure of wages for each

year-group r, t after controlling for individual variation. The wage for a region is then the average

residual wage for all the observations in a region-time. Finally, we construct measures of total

employment Lr
t and of the number of commuters Lr

c,t in each year-group r, t from the ACS.

Table 1 reports the results of the estimation of (22) and the implied structural parameters.14

In the first column, we report the estimates from the specification in (22), with both the number

of commuters Lr
c,t+1 and the total employment Lr

t+1 as covariates. In practice, however, these two

variables are almost collinear, and the coefficients on these two covariates are poorly identified.

For this reason, we report in the second column the estimates by including only the number of

11Out of the 4,847 individuals observed between 2000 and 2018 in our sample, only 386 ever reported working
remotely for 3 days per week, while 650 and 1,074 worked remotely two days or more per week, and one day or
more per week, in at least one of the survey years, respectively.

12The four regions are Northeast, North-Central, South, and West.
13In Appendix A.3.2, we conduct an alternative exercise assuming that cities can be partitioned into subsets that

offer similar remote work conditions and define remote work as spending at least two days per week at home. We
then combine the decisions of individuals in cities in a given subset and form transition shares at that level. We
obtain similar parameter estimates.

14The total number of possible observations is the product of the number of groups r (8) with the number of
distinct years (9 for every two years between 2000 and 2016), times two for each direction of transition (to remote,
or to commute), i.e. 144 observations. In practice, however, there are only 48 observations with non-missing values
of yrℓℓ′,t.
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commuters Lr
c,t+1 as a covariate. The coefficients on the log hourly wage difference and on the

constant term are very similar, and they provide estimates of the elasticity of transitions to wages

s, and of the fixed transition cost that are statistically significant at the 1 percent level.

We obtain an estimate of s equal to 0.46. We are not aware of existing estimates of this

parameter. As indicated by the coefficient in the first row of regression (1) in Table 1, this

value of s corresponds to an elasticity of transitions into remote work of 1.98. This elasticity

can be interpreted in two slightly different ways. First, if we return to (95) and (21), it means

that an increase of 1 percent in the wage of remote workers relative to the wage of commuters

can induce an “acceleration” of transitions to remote work by 1.98 percent. That is, transitions

into remote work would increase in period t to benefit from these higher wages—the numerator

in the definition of yℓℓ′,t—relative to transitions that would have occurred in period t + 1—the

denominator. Alternatively, one can easily show from (18) that the elasticity of the probability of

transition to remote work λcm,t (relative to the probability of not transitioning λcc,t) with respect to

the relative value of remote work, Vm,t+1−Vc,t+1, is also β/s. That is, if the wage of remote workers

relative to the wage of commuters were to increase permanently by 1 percent, then transitions into

remote work would increase by 1.98 percent in period t.

Our estimate for the transition cost F is 2.7. Given the specification of the utility of consump-

tion in log terms, we can interpret the cost F as being equivalent to giving up 100(1−exp(−F )) =
93 percent of earnings in year t in order to transition into remote work. This large number is

reminiscent of the very large transition costs estimated in structural labor models.15 These large

estimates for the cost F reflect that despite the existence of wage differentials between labor deliv-

ery modes, the mobility of workers remains quite low.16 Of course, if transitioning between modes

also implies changing homes in order to live at the appropriate distance to the CBD, large fixed

costs are natural.

All other coefficients are imprecisely estimated, and we have no further guidance on the values

for ξ, θ, α1 and the combination α0 − ln(B̄/τ̄). Hence, we set them all to zero for the rest of our

analysis, except for τ̄ . The parameter τ̄ will be calibrated for each city to match the initial value

of Lc/L, as described in section 4.5. In Section 4.4, we recover estimates γj of the elasticity of

transportation costs with distance for each city j.

4.2 Agglomeration Externalities

We estimate the agglomeration externality δj for each Core-based statistical area (CBSA) j. The

interpretation of δj is the percentage increase in labor value added for a one-percent increase in

the number of commuters to the CBD in city j. In order to construct city-specific estimates,

15Artuç et al. (2010) estimate switching costs between occupations that are equal to at least four times annual
wages. In their study of location decisions, Kennan and Walker (2011) estimate moving costs amounting to $312
thousand 2010 dollars on average.

16We plan to re-visit this estimation procedure with the restricted-use version of the NLSY data that is geocoded
at the county level. With more detailed location data, we would be able to obtain more observations.
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Table 1: Estimates of the Gravity Equation for Mode Transitions and Structural Parameters

(1) (2) (1) (2)
Covariate yrℓℓ′,t yrℓℓ′,t Parameter Estimates Estimates

ln
wr

ℓ′,t+1

wr
ℓ,t+1

1.976*** 1.984*** s 0.466*** 0.464***

(0.439) (0.457) (0.103) (0.107)
dℓℓ′ 0.103 0.442 F 2.735*** 2.719***

(1.926) (1.512) (0.802) (0.811)

dℓℓ′(t+ 1) -0.096 -.071 α0 − ln B̄
τ̄

0.209 0.445
(0.061) (0.050) (3.898) (1.526)

dℓℓ′L
r
c,t+1 -8.600 0.014 α1 -0.195 -0.072

(20.02) (0.105) (0.134) (0.054)
dℓℓ′L

r
t+1 8.631 ξ − θ 0.745

(20.09) (1.522)
cons -0.459*** -0.459*** γ 0.115

(0.096) (0.095) (0.310)

N 48 48
R2 0.24 0.24

Robust standard errors in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01. Structural parameters estimated with
the Delta method.

we rely on industry-specific estimates of agglomeration externalities obtained by Rossi-Hansberg

et al. (2021). They specify a production function featuring labor productivity that is influenced

by external effects stemming from the local composition of labor. They recover the endogenous

levels of local productivity that rationalize observed data on wages, employment, and input-output

linkages as an equilibrium. Given their measures of productivity, they estimate the degree of local

externalities for four industry groups and two broad occupational categories.17

We construct our measure of city-specific agglomeration externalities by computing the average

of the four industry-specific externality parameters weighted by each city’s employment shares in

the four industries. We compute these industry shares using the County Business Patterns in

2019.18 Specifically, we compute the city-specific averages of the externality parameters τL in

Table 1 of Rossi-Hansberg et al. (2021). The summary statistics of our estimates of agglomeration

externalities are reported in Table 2. The average value of the agglomeration externality across 639

17These groups of industries are based on the NAICS 1997 industry classification. They are Health and education
(HE), Professional and other services (PS), Manufacturing (M), Accommodation, trade, and transportation (ATT).
The two occupational categories are Cognitive Non-Routine (CNR) and non Cognitive Non-Routine (non-CNR).
They define CNR occupations as all occupations with SOC-2 classifications 11 to 29 and non-CNR occupations as
all other occupations.

18We use the crosswalk provided by Rossi-Hansberg et al. (2021) to map the four groups of industries defined
by NAICS 1997 into the industries used by the County Business Patterns. See Appendix Table A.16 page 80 of
Rossi-Hansberg et al. (2019).
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CBSAs is 0.089, which is close to estimates obtained in different contexts by other studies.19 The

estimates for all cities are depicted in Figure A4 in Appendix A.8, which shows a strong negative

correlation between the cities’ agglomeration externalities and the extent to which foot traffic in

their CBD has recovered from pre-pandemic levels.

4.3 Remote Work and In-Office Technology

We also estimate in-office and remote productivities Aj,t and zj,t for each CBSA j. We modify the

exercise presented in Section 2 by estimating the remote work premium by occupation. Using data

from the NLSY, we estimate the remote work premium for every incremental hour spent working

from home. Specifically, we denote by hremotei,t the number of hours worked at home, and predict

ĥ = 24 hours per week, equivalent to three days per week of remote work.20

We estimate a national trend and an intercept for each of the 22 occupation groups, denoted

by o.21 Specifically, we estimate

lnwi,t = (ψ0
o(i) + ψ1t)hremotei,t +Xi,tβo(i) + ϵi,t, (29)

where lnwi,t represents the log of the hourly wage for individual i at time t, ψ0
o(i) and ψ

1 represent

the intercept for occupation group o and the national trend, respectively, and Xi,t is a vector of

individual-level control variables, including age, age squared, tenure at the job, tenure squared,

industry, marital status, race, education-year, number of children, metro area-year, and individual

fixed effects. We focus on full-time US-born workers in metropolitan areas, observed between 2000

and 2018.

Finally, we estimate the remote work premium in city j using

ψj,t =
∑
o

sh2018o,j (ψ0
o + ψ1t)ĥ, (30)

where sh2018o,j is the share of workers in city j working in occupation o in 2018. Figure 7 displays

the estimates (ψ̂0
o(i) + ψ̂1t)ĥ for t = 2018 for each of the 22 occupation groups obtained from (29),

and the estimates ψj,2018 of the remote work premium by CBSA obtained from (30). Both are

plotted against the share of teleworkable employment estimated by Dingel and Neiman (2020).22

From equations (29) and (30), we can interpret (ψ0
o(i)+ψ

1t)ĥ as an estimate of ln(wm,t/wc,t) for

each occupation, and ψj,t as an estimate of ln(wm,t/wc,t) for each CBSA. We use the specification

of wages in (2), to map our estimates of the remote work premium into the remote work technology

parameter, z:

zj,t = exp(ψ̂j,t/µ)wcj,t, (31)

19Duranton and Puga (2019) estimate an overall agglomeration externality of 0.08 in the United States, once
adding the static and dynamic effects of city size on individual productivity.

20In Appendix A.5, we estimate the remote work premium from the ACS.
21We describe these occupation groups in Appendix A.4.
22In Appendix A.5, we report the estimates for each occupation group and CBSA.
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Figure 7: Estimates of the Remote Work Premium

(a) By Occupation Group
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Panel (a) reports estimates for each of the 22 occupation groups obtained from (29), against the share of teleworkable
employment from Table 1 in Dingel and Neiman (2020). Panel (b) reports the estimates of the remote work premium
by CBSA obtained from (30) plotted against the share of teleworkable employment at the CBSA level. We compute
the CBSA-level shares of teleworkable employment as the weighted average of the occupation-specific measures from
Table 1 in Dingel and Neiman (2020). The weights are given by the CBSA share of employment of each occupation
from the Census sample. The coefficient β and the associated robust standard error from the regression of the
remote premium on the share of teleworkable employment are reported at the top right of each figure.

where wcj,t is the average hourly wage of commuters in each CBSA j. We then recover the in-office

productivity using

Aj,t = L̃
−δj
cj,twcj,t, (32)

given the city-level estimates of δj obtained in 4.2.

4.4 Transportation Costs Elasticity

We estimate the transportation costs elasticity γj for each CBSA j. We use the relationship that

relates γj to the slope ϵj,t of the housing rent schedule with respect to distance to the CBD. From

(13), the average elasticity of rent to distance to the CBD in period t is exactly related to the slope

of the housing rent schedule according to

ϵj,t = − γj
1− α

(
1− µ+ µ

Lcj,t

Lj,t

)
. (33)

In order to estimate ϵj,t, we use data on housing rents at the block group level from the ACS

corresponding to average values between 2015 and 2019. For each CBSA, we estimate a regression

at the block group level of the log of the median housing rental price pij in each block group i on

the log of the distance, distij, between the centroid of block group i and the centroid of the closest
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CBD of CBSA j.23 We then estimate

ln pij = ϵj ln(distij) + βjXij + αj + eij, (34)

where the controls Xij contain block-level measures of the percentages of Hispanic, Black, and

Asian population, dwelling characteristics such as the percentage of dwellings by type of structure,

by the number of bedrooms, and by construction decade, as well as other geographic controls

defined at the tract level and obtained from Lee and Lin (2017).24

4.5 Calibration of Remaining Parameters

We calibrate τ̄j for each city to match its observed value of Ljc/Lj. As shown in Appendix B.2, a

stationary equilibrium value can be expressed in terms of λcc. Hence, we assume that the city is in a

stationary equilibrium in 2019, infer the value of λjcc that is consistent with Ljc/Lj, and then solve

for the value of τ̄ that makes such λcc a stationary equilibrium. We set the share of consumption

expenditures on tradable goods to α = 0.76, following Davis and Ortalo-Magné (2011). The share

of days per week spent at home for remote workers is set to µ = 3/5. As discussed in Section

4.1, our estimation does not separately identify the amenity externality ξ from the congestion

externality θ. In addition, our estimates of the difference are not statistically different from zero at

the 95 percent level. Therefore, without more guidance on their value, we set them each to zero.

5 Evidence

Stay-at-home policies had a dramatic, measurable, impact on the level and evolution of commuting

across the country and the value of proximity to the CBD. We provide evidence of this impact using

individual cell phone mobility data and estimates of the distance gradient housing price gradient

to the CBD. We then relate this evidence to model-based implications of a large and abrupt shock

to the measure of commuters.

5.1 Descriptive Evidence: Individual Mobility

To analyze individual mobility, we use anonymized data from SafeGraph, a data provider that

tracks foot traffic to businesses relying on mobile phone GPS locations from third-party applica-

tions. We use the Neighborhood Patterns dataset, which aggregates the amount of foot traffic

at the census block group level, to study the monthly evolution of trips to the CBD.25 We first

23We provide details on how we identify each CBSA’s CBDs in Appendix A.6.
24Geographic controls include the log of land area in square kilometers, number of housing units, the average age of

housing units, average terrain slope, the maximum average temperature in July, the minimum average temperature
in January, annual precipitations, log of distance to the closest river, to the closest lake, and to the closest shore.

25Chapple et al. (2023) also use SafeGraph data to document patterns of downtown foot traffic in 62 North-
American Cities. They combine SafeGraph data with another private data source to obtain estimates until 2023.
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Table 2: Estimates of City-Specific Parameters

Agglomeration Remote Work Rel. Remote Work Transport Cost
Externality Productivity Productivity Elasticity

δj zj zj/Aj γj

Mean 0.089 18.4 2.58 0.033
10th perc. 0.081 14.9 2.18 0.003
50th perc. 0.089 17.7 2.45 0.016
90th perc. 0.099 22.6 3.21 0.056
Nb of CBSAs 639 639 639 274

Mean if emp. ≥ 1 million 0.102 25.39 4.17 0.014
Mean if emp. ≤ 100,000 0.089 17.44 2.48 0.048

The last two rows report the mean values of the parameters for i) the group of CBSAs with employment above
1 million (consisting of 19 CBSAs), ii) the group of CBSAs with employment below 100 thousand (consisting of
486 CBSAs). Employment is measured as the number of employed workers between 25 and 64 years old, not self-
employed, listed as residents of the CBSA in the 2019 ACS. We are able to estimate the transport cost elasticity for
a smaller number of CBSAs, given the data limitations on housing rents at the block group level in smaller CBSAs.

make use of the SafeGraph data to define the location of CBDs in each CBSA. The Neighborhood

Patterns dataset provides information on the number of monthly visits recorded in each census

block group. In particular, these visits are broken down by their most likely purpose, based on

their observed characteristics.26 We identify the center point of the CBDs as the center of a disc

with a radius of 2 kilometers that receives the largest amount of work-related foot traffic. We then

include all the block groups within this 2-kilometer disk into the CBD. We also allow cities to have

several CBDs. We provide the details of our procedure in Appendix A.6.

The Neighborhood Patterns dataset also records the number of visits to each destination block

group by block group of origin, allowing to compute bilateral flows of foot traffic at the monthly

level.27 On average, SafeGraph tracks around 30 million devices each month between January

2020 and July 2022.28 However, the number of mobile phones recorded in a city and the set of

block groups of origin in which they are located vary across months. Some of the variation in

the raw counts of foot traffic is therefore due to changes in the size of the sample and in the set

of origin block groups included in the dataset. We control for these variations by analyzing the

change in foot traffic flows at the origin block group level. We compute the share of monthly foot

Their results confirm that, while downtown visits have recovered to pre-pandemic levels in some smaller cities, in
most larger cities they have stabilized between 40 and 60 percent of their pre-pandemic levels, with little change
between July 2022 and April 2023.

26Workplace visits are defined as those recorded Monday through Friday between 7:30 am and 5:30 pm and that
dwelled for at least six hours.

27The block group of origin is imputed by assigning to each mobile phone the block group in which the phone is
recorded at night as the block group of residence.

28In the largest cities (New York, Los Angeles, Chicago), between 400,000 and 800,000 devices are recorded each
month.
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Figure 8: Change in Visits to the CBD for Selected Cities

(a) New York, NY
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(b) San Francisco, CA
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(c) Madison, WI
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Estimates of monthly indicators in a separate regression for each CBSA of visits to the CBD at the block group-
month level. The outcome variable is the number of visits to the CBD from the specified block group, divided by
the number of residing devices in that block group, as defined in (39), scaled by the value of this ratio in January
2020. The shaded areas represent the contour delimited by the consecutive 95 percent confidence intervals of each
monthly indicator. Standard errors are clustered at the census tract of origin.

traffic originating from each block group that is directed to the CBD. We normalize the share of

visits to the CBD from each origin block group by its value in January 2020. We then regress the

normalized origin block group-level shares of visits to the CBD on month indicators.29

Figure 8 shows the volume of monthly trips to the CBD over the course of the pandemic,

relative to its value in January 2020, for New York, NY, San Francisco, CA, and Madison, WI. For

all three cities, the first months of the pandemic saw a drastic drop in trips to around 20 percent

of their initial value. The recovery, however, has been quite different. While Madison, a relatively

smaller city, essentially went back to its pre-pandemic levels by the end of our sample period, CBD

trips for larger cities like New York and San Francisco have stabilized at around 40 percent of their

pre-pandemic levels, a dramatic drop.

This behavior is, in fact, systematic. Figure 9 shows the monthly trips to the CBD relative

to January 2020 for cities grouped by size. Our measure of size is total non-farm employment in

the CBSA in 2019, published by the Bureau of Economic Analysis.30 The green line reports the

estimates of the trips to the CBD for the largest CBSAs with employment of more than 1.5 million,

while the blue line collects the smallest CBSAs in our sample, with employment below 150,000.31

29Chapple et al. (2023) measure foot traffic by counting visits to downtown businesses, scaled by the sampling
rate of the state. Instead, we count visits from any block group to downtown block groups, scaled by the sampling
rate of each origin block group. That is, we control for changes in sampling rates across neighborhoods of each city,
which we view as more robust than using the state-level sampling rate.

30This measure has the advantage of being available for all CBSAs, allowing us to describe patterns of recovery
for the largest set of CBSAs—847 in total. In Appendix A.10, we reproduce the key graphs from Section 5 using as
size the measure of employment used in the quantification, computed from Census microdata, and consistent with
our measure of commuting. We confirm that the patterns described below hold for the subset of CBSAs for which
we can measure employment in the Census.

31The smallest CBSA with employment above 1.5 million is Austin, TX, while the largest CBSA with employment
below 150,000 is Rochester, MN.
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Figure 9: Visits to the CBD Relative to January 2020
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The figure reports the estimates of the average volume of visits to the CBD from block groups located in i) CBSAs
with total employment above 1.5 million (25 largest CBSAs), ii) CBSAs with total employment below 150,000
(663 smallest CBSAs) expressed as a share of their values in January 2020. The shaded areas represent the contour
delimited by the consecutive 95 percent confidence intervals of each monthly indicator. Standard errors are clustered
by month and census region.

We normalize to 1 the number of trips in January 2020. Both groups experienced a sharp decline

to less than 30 percent of pre-pandemic trips up to April 2020, but their paths are remarkably

different afterward: while the group of small CBSAs returned to their pre-pandemic levels of visits

to the CBD around early 2021, large CBSAs stabilized at around 60 percent of their initial level.

Figure 10 considers the relation of trips with city size in more detail. In the left panel, we show

the extent to which these trips declined in April 2020 compared to January 2020, plotted against

the city’s total employment. Trips to the CBD declined by about 75 percent of the pre-pandemic

level on average, with only little variation in the experiences of different cities. Importantly, this

initial drop does not appear related to city size. In contrast, city size is systematically related to

the return-to-office for the latest available data. While trips to the CBD rise to some extent for

all cities, the right panel of Figure 10 shows that in July 2022, larger cities are substantially more

likely to have trip levels way below their pre-pandemic levels.

5.2 Descriptive Evidence: Distance Gradients in House Prices

The previous section showed that the evolution of flows to the CBD has been heterogeneous across

cities. Of course, changes in remote work patterns imply changes in demand for housing within

cities. As workers spend less time on-site, a short commute becomes less important, leading to

lower demand for housing next to centers of economic activity, and, everything else equal, a lower
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Figure 10: Response of Trips to the CBD

(a) April 2020 Relative to January 2020
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(b) July 2022 Relative to January 2020
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Panel (a) reports the change in the average level of visits to each CBSA’s CBD between January 2020 and April
2020, against employment (BEA). Panel (b) reports the change in visits to the CBD in July 2022 relative to
January 2020. Each marker represents a CBSA. The solid line represents a fitted kernel-weighted local polynomial
smoothing, with the shaded area corresponding to the 95 percent confidence interval around the fitted value.

premium for proximity to the CBD.

Changes in urban land gradients may be driven by a large number of factors varying at the

CBSA level. Some of these include constraints on local housing development (Gyourko et al., 2008;

Saiz, 2010; Lutz and Sand, 2022), the fraction of local jobs which can be done remotely (Dingel

and Neiman, 2020), or the connectivity between urban and suburban parts of the CBSA.32 For this

reason, we estimate the CBSA-specific price and rent gradients in our bid-rent regression. Rather

than using ACS housing rent block group level data as in Section 4.4, we turn to monthly housing

price zip code level data from Zillow.33 This higher frequency data is available for fewer CBSAs

than the ACS data, but allows us to follow the monthly changes in housing prices for many cities

since 2019.

Indexing CBSAs by j, zip codes by i, and months by t, we estimate the monthly slope of

the bid-rent function using an empirical specification similar to (35) but with monthly variation.

Namely,

ln pij,t = δj,t ln(distij) + βXij + αj,t + eij,t, (35)

32See Bailey et al. (2018) for measures of social connections using Facebook data.
33The monthly housing price dataset is the Zillow Home Value Index (ZHVI). Zillow also publishes the Zillow

Observed Rent Index (ZORI), a monthly housing rent data that would be a closer analog to the ACS rent data.
However, the ZORI is reported for fewer zip codes, making the estimation of the gradient imprecise for many
CBSAs.
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Figure 11: Change in Housing Values Gradients for Selected Cities

(a) New York, NY
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(b) San Francisco, CA
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(c) Madison, WI
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Estimates of monthly coefficients for log distance between zip codes and the CBD, relative to their value in January
2020. In a separate regression for each CBSA, we regress log housing values at the zip code level, on log distance
by month, and geographic controls. The shaded areas represent the 95 percent confidence intervals of each monthly
indicator, computed from robust standard errors. Data on housing values from Zillow’s ZHVI index.

where units of observation are zip code-months. We refer to pij,t as the price in zip code i of CBSA

j in month t, and distij is the distance in kilometers between the centroid zij of zip code i and the

CBD of CBSA j. We include CBSA-month fixed effects, αj,t, and zip code level control variables,

Xij. The zip code controls contain the log of median household income, the share of households in

the top national income quintile, the median age, and the share of Black residents, all measured

in 2019, and geographic controls.34

Consistent with the evidence presented in Figure 8, we find that the willingness to pay for

proximity to the CBD is permanently lower in New York and San Francisco, while it returns to

its initial values in Madison. Figure 11 plots the time evolution of −(δjt − δjt0), the drop in the

distance coefficient at time t relative to the baseline of January 2020: a decrease in the reported

coefficients constitutes a flattening of the price gradient. For all cities, gradients fell through the

first part of 2021. The drop has continued for New York and San Francisco, while the direction

has reversed for Madison.

Figure 12 shows the average distance elasticity of house prices relative to January 2020 for the

same group of city sizes as in Figure 9. In particular, the vertical axis reports −(δjt − δjt0), the

drop in the distance coefficient at time t relative to the baseline of January 2020: a decrease in

the reported coefficients constitutes a flattening of the price gradient. Quite naturally, prices move

more slowly than trips over time. All cities experience a flattening of the housing price gradients

of around 0.01 by January 2021. This decline stops and reverses for small cities, which return

to around their pre-pandemic level; the drop in the gradient of larger cities, instead, persists and

appears to stabilize around 0.05 by the end of 2022.

Figure 13 illustrates the cross-sectional variation as a function of size in the drop of housing

34The geographic controls are the tract-level controls in footnote 24, averaged by zip code, using tract population
as weights.
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Figure 12: Distance Gradient of Housing Prices Relative to January 2020
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This figure reports the difference between the average housing price gradients in January 2020 and each following
month, using the same employment thresholds as in Figure 9. In this figure, 25 cities have employment above 1.5
million and 102 have employment below 150,000. A negative value for the difference in housing price gradients
implies a lower premium for housing located close to the CBD. The value of the average housing price gradient in
each group is reported next to the marker of the associated group every six months. The shaded areas represent
the contour delimited by the consecutive 95 percent confidence intervals of each monthly indicator.

price gradients at two different points during the pandemic. As above, the vertical axis represents

the drop in the distance coefficient at time t relative to the baseline of January 2020. During the

first year of the pandemic (January 2020 to January 2021, left panel), the distance elasticity of

housing prices flattened by about 0.01 on average. This drop is sizeable relative to the average

price gradient in January, equal to -0.044. The heterogeneity is moderate and again unrelated to

city size. Consistently with evidence on CBD trips, however, the flattening in the price gradient

becomes negatively associated with city size as the pandemic progresses and then recedes (right

panel).

Taken together, the results in the last two subsections show that cities have experienced a

heterogeneous response to the COVID-19 pandemic commuting shock. Appendix A.8 shows that

this heterogeneity is also related to the strength of the agglomeration forces δ, the elasticity of

transportation cost to distance γ, and the net strength of agglomeration forces δ − γ/µ. In the

next section, we relate this evidence to the predicted response of our model calibrated to 274 U.S.

CBSAs.
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Figure 13: Response of House Price Gradients
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(b) December 2022 Relative to January 2020
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This figure reports the difference between the housing price gradients in January 2020 and December 2022, against
employment (BEA). Each marker represents a CBSA. The gradients are estimated using zip code level data from
Zillow for 159 CBSAs. A negative value for the difference implies a lower premium for housing located close to
the CBD. The solid line represents a fitted kernel-weighted local polynomial smoothing, with the shaded area
corresponding to the 95 percent confidence interval around the fitted value.

5.3 Permanent Responses to Transitory Shocks

The analysis in Subsection 3.5 indicates that a city in the cone of multiplicity could permanently

switch to a path that converges towards the low-commuting stationary equilibrium when subject

to a large enough shock to the number of commuters. In this new stationary equilibrium, trips to

the CBD are permanently lower, and the rent and value gradients are permanently flatter.

In our data, the response heterogeneity as a function of city size of Figures 10 and 13 appears to

have stabilized early on (see Figures 9 and 12). To interpret this evidence, we turn to a quantified

version of our model. We use city-specific parameters retrieved in Section 4 to calculate the values

of z/A, δ − γ/µ, and the corresponding set Z defined in Proposition 3.3. We construct these

values for 274 CBSAs with valid information on remote work premiums and elasticities.35 For

each city, we create an indicator variable 1cone = 1 if z/A ∈ Z, and zero otherwise, meaning the

city is inside its cone of multiplicity. We find that 155 cities were in their respective cone before

the pandemic. These cities could be pushed into a low commuting equilibrium by a large enough,

albeit temporary, shock to the number of commuters. Our theory appears to have explanatory

power. We estimate a city-level probit of 1cone on the July 2022 measure of CBD trips, relative

to January 2020. This regression returns a negative and significant coefficient: cities with a lower

level of trips post-pandemic were indeed much more likely to be in their cone before the pandemic.

Figure 14 reports this estimated share of cities that are inside the cone as a function of the trip

35The model assumes positive δ and γ, and requires a remote work wage discount for a valid calibration.
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Figure 14: Share of Cities in the Cone of Multiplicity vs. CBD Trips Shortfall
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The blue line in this figure plots the predicted share of cities in their cone of multiplicity from a probit regression
of the indicator variable 1cone on the volume of trips in July 2022, relative to their value in January 2020, with
the shaded area representing the 95 percent confidence interval. The figure also reports the coefficient and robust
standard error of the independent variable in the probit regression. One blue dot is the average value of 1cone in
each of 20 quantiles of the trip shares.

shortfall, while the blue dots report the fraction of cities in the cone in each of 20 bins of the

independent variable.

The propensity of being inside the cone grows with total city size. A probit regression of 1cone

on the log employment of a city shows a positive and significant coefficient. Figure 15 shows this

estimated share as a function of log employment, with a 95% robust confidence interval. The blue

dots report the fraction of cities in the cone in each of the 20 bins of employment size. Larger

cities, which in the data are more likely to display a permanent shift, are also more likely to be

in the cone of multiplicity that our theory proposes. We find analogous relationships between the

share of cities that are predicted to be in the cone and δ, γ, and the net strength of agglomeration

externalities, δ − γ/µ. We report these findings in Appendix A.8.

Taken together, this evidence suggests that the observed, and by now stable, heterogeneous

responses to the pandemic and related stay-at-home policies could be due to the coordination

problem we have highlighted in our theory. Since this coordination happens, at least partly,

outside firm boundaries, shifts in the equilibrium may be permanent in nature and firms might not

have the tools to address it. Of course, city governments could implement policies that put the

city back on its path to the commuting equilibrium (like taxing home work), but we do not know

what would be the value of such policies and how effective they would be in actually achieving

their goal. These considerations motivate an investigation of the welfare consequences of these

shifts.
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Figure 15: Share of Cities in the Cone of Multiplicity vs. Size
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The blue line in this figure plots the predicted share of cities in their cone of multiplicity from a probit regression of
the indicator variable 1cone on the log total employment of a city, with the shaded area representing the 95 percent
confidence interval. The figure also reports the coefficient and robust standard error of the independent variable in
the probit regression. One blue dot is the average value of 1cone in each of 20 quantiles of employment levels.

5.4 Welfare

The model gives us an expression to compute the average stationary equilibrium welfare in a city

as a function of the measure of commuters. Evaluating equation (15) in a stationary equilibrium

and rearranging the terms, average welfare W can be computed as

W = (Lss
c ) =

(
Lss
c

L

)
V ss
c (Lss

c ) +

(
1− Lss

c

L

)
V ss
m (Lss

c ) , (36)

with V ss
ℓ (Lss

c ) =
uℓ (L

ss
c ) + Ω(ε̄ℓ(Lss

c ))

1− β
. (37)

In a city with multiple stationary equilibria, this welfare varies across stationary equilibrium.

For the 155 cities inside the cone, we can then compute Ŵ ≡ 100 ×
(
W(Lss

c,low)/W(Lss
c,high)− 1

)
as the percentage change between the welfare in the low-commuting versus the high-commuting

stationary equilibrium. All cities in the cone would lose from being permanently pushed to the low-

commuting stationary equilibrium.36 Table 3 shows some moments of the distribution of welfare

36Although we do not have a proof, the intuitive reason why all cities in the multiplicity cone would rather be in
the commuting-intensive stationary equilibrium is that the only active elasticity in our quantification is a positive
agglomeration externality. This implies that, in all equilibria, there is too little commuting compared to the efficient
benchmark.
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losses.37

Table 3: Percentage Welfare Difference Between the High and Low-Commuting
Equilibrium

Min p10 p25 p50 p75 p90 Max Mean N

Welfare Loss (−Ŵ) 1.7 2.1 2.3 2.6 2.7 2.9 3.2 2.5 155

The median potential loss from such a switch to the low-commuting stationary equilibrium is

2.6%, with a range from 1.7% to 3.2%. The loss stems from a drop in average wages, which is

only partially compensated by a reduction in commuting costs and changes in the option values.

A city switching equilibrium has lower wages both for commuters and remote workers since each

individual interacts with a smaller average number of agents, L̃c. Fewer interactions lead to

diminished production externalities. Specifically, the change in average wages is given by

ŵ ≡ 100×


(

Lss
c,low

L

)
wc,low +

(
1− Lss

c,low

L

)
wm,low(

Lss
c,high

L

)
wc,high +

(
1− Lss

c,high

L

)
wm,high

− 1

 . (38)

The residual component of the welfare impact, that accounts for changes in commuting costs and

option values can be constructed as χ ≡ Ŵ − ŵ. Figure 16, right panel, plots ŵ and χ against

the net strength of agglomeration externalities, δ − γ/µ, for all cities estimated to be in the cone.

The fall in average wages is quite severe, between 15% and 25%. This large magnitude is to be

expected, however, because agglomeration externalities tend to be significant precisely for cities

more likely to be in the multiplicity region. Net welfare losses are then muted by the combined

effect of changes in the average commuting disutility and option values. Overall, the net strength

of the agglomeration externality (Figure 16, left panel) is a strong predictor of the final welfare

loss: a regression of the estimated loss on δ − γ/µ delivers an R2 of 0.85.

In Figure A5 in the Appendix, we also compare welfare losses to the observed drop in trips to

the CBD. The largest drops in CBD trips are concentrated around welfare losses of 2.5 to 3%. In

particular, we find that the welfare loss of the average resident in cities with trips to the CBD of

60% or less of the pre-pandemic level is 2.7%.

6 Conclusion

We have proposed a theory of remote work and city structure. At its core, our theory features a

coordination problem: workers prefer to commute if others do as well, and prefer to work from

home otherwise. This mechanism can lead to multiplicity in stationary equilibria if agglomeration

forces are sufficiently larger than congestion forces and remote-work technology is decent relative

37Table A6 in the Appendix shows actual welfare changes for the largest U.S. cities in our calibration sample.
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Figure 16: Welfare Ratio Ŵ and its Decomposition
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(b) Sources of Welfare Changes
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The left panel shows a scatterplot between Ŵ and the net strength of agglomeration externalities, δ−γ/µ. The right
panel shows the percentage difference in wages across equilibria, ŵ, and the residual commuting and option value
gains χ, plotted against the net strength of agglomeration externalities, δ − γ/µ. The marker size is proportional
to total city employment. These scatterplots can only be computed for the set of cities in the cone of multiplicity.

to in-office technology. In the resulting dynamic discrete choice model, large exogenous changes

in the number of commuters, a state variable of the model, can put the city on an equilibrium

path that makes it converge to an alternative stationary equilibrium. We have argued that the

COVID-19 pandemic constituted such an exogenous shock and that, as a result, many large cities

have switched from a stationary equilibrium where most workers commuted to one in which there

is a large share of agents working from home. Small cities, in contrast, tend not to exhibit this

multiplicity and therefore have converged back to the pre-pandemic stationary equilibrium. We find

consistent evidence from our estimated model for 274 U.S. cities, from cell-phone-based individual

mobility data, and from house price distance gradients. An arguably uniform shock to the labor

delivery mode across cities has revealed which cities were exposed to this coordination problem –

and thus, presented multiple stationary equilibria – before the pandemic, a rather unique empirical

event.

The model can be used to estimate the welfare losses associated with the switch to remote work

for all cities that exhibit this type of multiplicity in stationary equilibria. We find that welfare in

the commuting-intensive equilibrium is between 1.7% and 3.2% larger than in the remote-work-

intensive equilibrium. A significant, but not overwhelming, cost. This modest cost is, however,

the result of a large drop in wages compensated by substantial utility gains from option values and

commuting costs.

Although our analysis can fit the available data quite well, it inevitably abstracts from a number

of important forces and issues. First, our model studies cities in isolation but not as a system of
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cities with migration, trade, and investment links. This is potentially relevant since the spatial

equilibrium condition across cities will determine local welfare effects and population flows. The

welfare implications we estimate for some of the large U.S. cities might then be partially translated

into smaller populations. Similarly, some of the small cities with unique stationary equilibria might

grow and gain industries that transform them in ways that could put them in the multiplicity set.

Of course, remote workers could also commute across cities, another issue we abstract from but has

received some recent attention in the media. Second, although we model remote work as “partial

remote work,” where agents work from home only a fraction µ of days, we have kept this fraction

constant rather than the agent’s choice. Of course, agents in different cities, or in different parts

of a city, or with different occupations or skills, might choose different shares. Understanding the

importance of these choices and the resulting heterogeneity across individuals could be important

but complicates the analysis significantly. Third, some of the spillovers between workers could be

internalized by firms and cities, which might then proactively affect workers’ delivery mode choice.

Understanding the extent to which active policy can determine the dynamic path and stationary

equilibrium that a city converges to, is an interesting topic for future research.

The repercussions of remote work are intriguing and potentially transforming for the organiza-

tion of work in cities, firms, and labor markets. Our paper hopes to contribute to what will surely

be an active area of research in the future, as the organization of work changes to accommodate

the booming phenomenon of remote work.
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A Appendix

A.1 Data Sources

Cross-sectional Data on Remote Work. Our first source of data to measure the prevalence

of remote work in the U.S. economy and the earnings of remote workers are the decennial census

between 1980 and 2000 and the American Community Survey thereafter. These surveys include a

question asked of those ages 16 and over who were employed and at work in the previous week on

the method of transportation usually used to get to work. We define as remote workers those who

reported “work from home” on this question.1 We measure the hourly earnings rate of workers

by dividing the total pre-tax wage and salary income by the number of hours worked during the

year.2 This definition of remote work allows us to obtain a consistent measure of remote work and

its compensation from 1980 to 2021 through repeated cross-sectional samples. On average, every

year, about 5 million workers are listed as remote workers. However, the decennial census and the

ACS do not contain information on the number of hours worked at home.

Longitudinal Data on Remote Work. Our second source of data is the National Longitudinal

Survey of Youth - 1979 Cohort (NLSY79), a nationally representative sample of 12,686 young men

and women born between the years 1957 through 1964 in the United States. We focus on data

reported from 1998 onward, a period through which the reporting of hours worked is consistent.

Every two years, the survey reports the number of hours worked at home in a week. This allows

us to observe variation in remote work on the intensive margin. We obtain workers’ hourly rates

directly from the survey. Thanks to the longitudinal design of the survey, we can observe workers’

transitions into and out of remote work over time.

Foot Traffic Data. We use data from a private provider, SafeGraph, which produces foot

traffic information at the business place level by collecting anonymized phone GPS tracking from

third-party applications. Specifically, we use the Neighborhood Patterns dataset, which contains

information on foot traffic to census block groups every month. This dataset has several key

advantages. First, it captures foot traffic at a fine geographical level.3 This allows us to specifically

focus on mobility to cities’ CBDs. Second, it provides a count of individual visits by category of

trip, including visits that are likely to be for work. We use this feature to define CBDs. Third,

the visits to any block groups are disaggregated by block group of origin. This allows us to control

1In the decennial census, the question on means of transportation to work was asked in the “long form” ques-
tionnaire, which was administered to approximately 1 out of every 6 housing units in the United States..

2The income variable is “incwage”. It includes wages, salaries, commissions, cash bonuses, tips, and other money
income received from an employer. Payments-in-kind or reimbursements for business expenses are not included.
The number of hours worked in the year is computed by multiplying the reported number of hours worked in a
typical week by the number of weeks worked in the year.

3There are 220,684 census block groups in the United States.
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for unobserved permanent characteristics of origin block groups by studying mobility to the CBD

from each block group separately.

Housing Prices and Rents. We rely on house prices and rents aggregated at the zip code level

by Zillow.4 Our measure of house prices is the Zillow House Value Index (ZHVI), which controls

for common house characteristics and adjusts for seasonality. We measure rents with the Zillow

Observed Rental Index (ZORI), an index of house rents obtained by averaging asking rents after

controlling for house quality indicators. Both series include prices and rents of single- and multi-

family units. These datasets have the advantage of being reported monthly before and during

the COVID-19 pandemic, allowing us to track the changes in housing prices and rent gradients

in about 200 CBSAs. While the monthly Zillow data is well suited for within-city comparison

across time, the relatively low number of observed zip codes in smaller CBSAs makes it is less

amenable to comparisons across cities. To obtain more precise estimates of housing rent gradients

for a larger number of CBSAs, we turn to data from the ACS at the census block group level.5 We

use the median rent paid in a block group during the 2015-2019 period. This, along with other

block group-level controls defined below, allows us to estimate housing rent gradients before the

COVID-19 pandemic more precisely and for almost 300 CBSAs.

Local Housing Market Characteristics. We collect zip code level variables to control for

variation in housing market characteristics. From the Census Bureau, we obtain the median

household income, the share of households in the top national income quintile, the median age, and

the proportion of Black residents. There is significant variation in housing market characteristics

at the CBSA level. We complement these measures with local geographic features collected by Lee

and Lin (2018). We aggregate these census tract-level indicators at the zip code level.

A.2 Definitions of Data Samples

A.2.1 Census/ACS Sample

We combine the decennial census waves in 1980, 1990, and 2000 with the yearly waves of the Amer-

ican Community Survey between 2005 and 2021. We start from observations from all individuals

recorded in each wave, weighted by their personal sampling weight. We only include workers who

are employed, of age between 25 and 64, who do not work in agriculture or in the military, and who

are not self-employed.6 We restrict our sample to individuals who have not moved to a different

4The datasets are publicly available from https://www.zillow.com/research/data/.
5The data can be obtained from IPUMS’ National Historical Geographic Information System (NHGIS) portal

Manson et al. (2022).
6Specifically, we exclude workers in 1-digit industries 1 and 14 from the 1990 Census industry classification

(“Agriculture, Forestry, and Fisheries” and “Active Duty Military/NA/NC”, respectively), workers in 1-digit occu-
pations 4 and 7 from the 1990 Census occupation classification (“Agriculture, Forestry, and Fishing Occupations”
and “Military Occupations/NA”, respectively), and workers whose reported “class” or worker is self-employed
(variable classwkr equal to 1).
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metropolitan area since the previous year in order to allocate the labor delivery, and earnings of

the individual to the appropriate labor market. To limit measurement error in earnings, we further

restrict our sample to only include full-time workers, employed for the full year. We only include

individuals born in the United States. Finally, we only include individuals who reside in one of

the Core-based Statistical areas in the United States.

We define the main variables of interest as follows. An individual is categorized as a remote

worker if they answer “work from home” to the question “What is your means of transportation to

work?”.7 Our main measure of earnings is log hourly wage. We compute it by dividing yearly wage

income by the estimated number of hours worked in the year. To obtain the total number of hours

worked per year, we multiply the usual number of hours worked per week by the total number

of weeks worked in the year.8 For individuals located in small CBSAs (Micropolitan Statistical

Areas), the CBSA is sometimes missing in IPUMS. We use a crosswalk from the PUMA (smallest

geographical areas recorded in IPUMS) to CBSAs, by the intermediary of a crosswalk from PUMA

to counties, and from counties to CBSAs.

Our final sample contains 17,025,788 observations, each corresponding to an individual in a

given year. There are 649 distinct CBSAs covered by the sample. We report the number of

observations, the share of remote workers, and the median hourly pay of commuters and remote

workers per year in Table A1.

A.2.2 NLSY Sample

Our NLSY sample is constructed from the public use NLSY79 dataset.9 We only include individuals

from the main sample.10 Besides this restriction, we include all individuals.

We define the main variables of interest as follows. When estimating the remote work premium,

we use a continuous measure of remote work based on the number of hours worked at home per

week. When a discrete definition is necessary, for example, when determining transitions into and

from remote work, we use 24 hours of work at home per week as the threshold. Our main measure

of earnings is hourly rates of pay, reported directly in the data. The geographical location is coded

by the region of the United States. The four regions are Northeast, North-Central, South, and

West.

Our final sample comprises, on average, 30,548 observations per year, representing observations

from 5,656 individuals. We report the number of observations, average number of hours worked

at home, and median hourly pay of commuters and remote workers per year in Table A2.

7This is coded as tranwork = 80 in IPUMS.
8The yearly income variable is incwage. The number of weeks is coded into bins by the variables wkswork*, and

the usual number of hours is recorded in uhrswork.
9Note that there also exists the NLSY97, which follows individuals born between 1980 and 1984. Unfortunately,

for the purposes of our analysis, the number of hours worked from home is not reported in this panel.
10That is, we exclude individuals from the additional samples that disproportionately sample military individuals

and economically disadvantaged non-black, non-Hispanic individuals.
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Table A1: Summary Statistics for the Census/ACS Sample

Share of Median Hourly Median Hourly
Number of Remote Pay of Commuting Pay of Remote

Year Observations Workers (pct) Workers (2021 $/hr) Workers (2021 $/hr)

1980 1,217,059 0.42 28.9 18.3
1990 2,197,452 0.64 25.7 21.4
2000 2,420,168 1.24 25.5 30.3
2005 554,602 1.38 25.3 33.8
2006 580,803 1.54 24.7 34.0
2007 585,986 1.68 25.0 33.5
2008 631,734 1.85 25.3 34.0
2009 604,571 2.02 24.7 32.9
2010 596,246 2.17 24.8 32.2
2011 585,420 2.28 24.4 32.9
2012 682,920 2.33 23.6 33.1
2013 699,979 2.47 23.6 33.6
2014 703,349 2.62 23.6 34.2
2015 717,042 2.79 23.6 33.8
2016 724,641 3.10 24.3 34.7
2017 743,963 3.32 24.9 35.8
2018 754,886 3.45 24.4 35.5
2019 764,868 3.95 25.0 35.3
2020 586,182 16.30 24.9 37.4
2021 719,188 19.22 24.9 38.8

Data from the Census/ACS. Hourly pay is adjusted for the Consumer Price Index and defined as the total annual
earnings divided by the total number of hours worked in the year.

A.2.3 SafeGraph Sample

We measure visits to CBSAs’ CBDs with the Neighborhood Patterns dataset, which contains

monthly data between January 2019 and July 2022. Every month, the data is reported in a table

that lists the number of phone devices that stopped for a visit inside a census block group by block

group of origin. A visit is defined as the recording of the same device inside a polygon identified as

a “place of interest” (i.e., a place of business) for more than a minute. SafeGraph also reports for

each block group and each month the number of devices with a primary nighttime location inside

the specified block group. We refer to this number as the number of residing devices in a block

group.

Visits are categorized based on the behavior associated with the visit. Our main category of

interest is the one associated with visits featuring a “work” behavior. “Work” visits are those

recorded Monday through Friday between 7:30 am and 5:30 pm and that dwelled for at least six

hours. Ideally, we would use “work” visits for all our analysis of visits to the CBD. However,
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Table A2: Summary Statistics for the NLSY Sample

Average Median Hourly Median Hourly
Number of Number of Hours Pay of Commuting Pay of Remote

Year Observations Worked at Home Workers (2021 $/hr) Workers (2021 $/hr)

1998 30,555 2.09 19.9 28.2
2000 30,555 2.13 20.6 30.3
2002 30,541 1.34 21.2 28.3
2004 30,548 1.64 21.5 27.0
2006 30,545 1.62 21.4 28.7
2008 30,548 2.06 21.2 29.1
2010 30,549 2.14 21.2 29.4
2012 30,540 2.60 21.2 30.3
2014 30,548 2.97 21.2 31.2
2016 30,549 3.47 21.7 32.1
2018 30,546 3.51 21.6 31.9

Data from the NLSY79. Hourly pay is adjusted for the Consumer Price Index and is reported for the main job
during the specified two-year period.

this category only accounts for a small share of the total number of visits, leading the number of

recorded “work” visits to be more volatile over time and less precisely measured.

For this reason, we use two different measures of visits in our analysis. First, we use the number

of “work” visits from all block groups. We use the average number of monthly “work” visits in

2019 to define the location of the CBD. Second, we use the number of visits of any category by

block group of origin. This is our preferred measure to study the variation over time of foot traffic

patterns to the CBD.

Once the CBDs of each CBSA are defined according to the procedure defined in Section A.6,

we define mobility to the CBD at the origin block group of level. For each block group i, month

t, in a CBSA j, we compute the number of visits Nii′,t originating from block group i that have as

destination a block group that is inside a CBD of CBSA j, divided by the number N res
i,t of sampled

devices residing in block group i at t:

shCBD
i,t =

∑
i′∈CBDj

Nii′,t

N res
i,t

, (39)

noting that we allow CBSAs to have multiple CBDs.

We exclude block groups with fewer than 300 residing devices in a month. Our sample contains

data on 896 CBSAs, with 203,075 distinct census block groups. The median CBSA in the sample

has 59 distinct block groups with available foot traffic data to the CBD.
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A.2.4 ACS Housing Rents Sample

We assemble a dataset of housing rents and local market characteristics at the block group level

from the 2015-2019 ACS. The main outcome variable in our sample of block group-level rents is

the median rent paid in the block group.

Our controls include the percentage of dwellings by type of structure, number of bedrooms,

and construction decade, all based on the 2015-2019 ACS data. Additionally, we include controls

for block-group characteristics such as the percentage of Hispanic, Black, and Asian populations.

We also include controls from Lee and Lin (2017) that are defined at the census tract level.11

These include the average slope, the maximum temperature in July, the minimum temperature in

January, annual precipitations, the distance to the closest port, the distance to the closest river,

the distance to the closest lake, the distance to the closest shore, and the surface area of the block

group.

Finally, we compute the distance of each block group to the closest CBD of the CBSA, using

the latitude and longitude of the centroid of the block group.

A.3 Estimation of the Transition Elasticity and Transition Costs

A.3.1 Predicting Transition Shares

We estimate a probit model to control for individual characteristics in transition probabilities ℓℓ′:

Yiℓℓ′,t = Φ
(
δ
r(i)
t +Xi,tβ

)
,

where Yiℓℓ′,t is an indicator of individual i transitioning from ℓ to ℓ′, r(i) is individual i’s education-

region group (among the eight possible groups), Xi,t contains individual i’s age, age squared, tenure

at the job, tenure squared, occupation, industry. We define λ̂rℓℓ′,t = Φ
(
δ̂rt + X̄i,tβ̂

)
the predicted

transition shares evaluated at mean values ofX The dependent variable in the estimation regression

is then defined as

yrℓℓ′,t ≡ ln
λ̂rℓℓ′,t(λ̂

r
ℓ′ℓ′,t+1)

β

λ̂rℓℓ,t(λ̂
r
ℓℓ′,t+1)

β
.

We estimate the log hourly rates for each education group-region-year after controlling for

individual characteristics

lnwi,t = Xi,tβ + ζi + ωi,t,

where Xi,t contains individual i’s age, age squared, tenure at job, tenure squared, occupation,

industry, and region. We define lnwr
ℓ′,t+1 as the average value of ω̂i,t+1 for individuals in education-

region r. With 4 regions, 2 education groups, 9 periods (every two years from 2002 to 2018), 2

transition types, we obtain a maximum of 4× 2× 9× 2 = 144 observations.

11We assign the same value of these geographic controls to all block groups inside the same tract.
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A.3.2 Transitions by City Size

In this section, we conduct an alternative estimation of (22), with transition shares defined by

subsets of CBSAs with similar population rather than by groups of region-educational attainment.

While the region-education groups used in our main specification allow for differences in tran-

sition patterns across broad geographical areas, they pool observations from many different cities

in the same region. These cities may offer different conditions to remote workers. Pooling observa-

tions from CBSAs with similar population recognizes that larger cities may offer different remote

work conditions than smaller cities—at the expense of pooling observations from different regions.

In order to partition cities into subsets with similar population, we first obtain information on

the CBSA and county of each individual from the restricted-use NLSY Geocode dataset.12 When

the CBSA information is missing, we infer it from the county FIPS code, if available. For each

CBSA j, j = 1, . . . , J , we compute the average population popj over the 2000-2018 period. Given

a number of subsets K, we order CBSAs by increasing average population, such that the CBSAs

indexed by j and j+1 satisfy popj ≤ popj+1 for any j = 1, . . . , J−1. We then define the threshold

indices (τk)k=0,...,K , such that τ0 = 0, τK = J , and for k = 1, . . . , K − 1, τk is defined recursively as

the smallest index such that all CBSAs indexed between τk−1 and τk account for at least 1/K of

the total average population across all CBSAs,

τk = min
τ=τk−1,...,J

τ∑
j=τk−1

popj ≥
1

K

J∑
j

popj, k = 1, . . . , K − 1.

For each k = 1, . . . , K, we refer to the subset {j|τk−1 < j ≤ τk} of CBSAs as subset k. We then

define transition shares by counting the number of transitions into and out of remote work of

individuals located in CBSAs that are part of the same subset k. By construction, subset k = 1

contains many small CBSAs, while subset K contains few large ones.

In Table A3, we describe the results from estimating (22) with K = 5 subsets of cities, defining

remote work as spending either d = 1 or d = 2 days per week at home. We compare the OLS

estimator with the Poisson Pseudo Maximum Likelihood (PPML) estimator. Given the limited

number of remote workers observed per subset k and year t, the transition shares λkℓℓ′,t are some-

times computed based on a small number of observations. We define a minimum threshold n̄remote

of remote workers, such that observations ykℓℓ′,t are included in the estimation only if more than

n̄remote remote workers are observed in subset k, year t. In the case where we define remote work

as d = 1 day per week at home, we set n̄remote = 20, leaving 62 observations; with d = 2, we set

n̄remote = 10, leaving 66 observations.

The estimates of s and F from the OLS and PPML estimator, with d = 1, are reported in

Columns (1) and (2). The estimates of s are remarkably similar, and not significantly different

from our main estimate of 0.46. The estimates of F are also close to our main estimate of 2.7.

12A description of the NLSY Geocode data is available at https://www.bls.gov/nls/request-restricted-data/nlsy-
geocode-data.htm.

50



Table A3: Estimates of the Gravity Equation Based on City Size

(1) (2) (3) (4)
Remote = 1 day Remote = 2 days

OLS PPML OLS PPML

ln
wr

ℓ′,t+1

wr
ℓ,t+1

1.439*** 1.384*** 1.071** 0.886*

(0.380) (0.389) (0.482) (0.460)
dℓℓ′ 1.100 1.105* 0.513 0.080

(0.686) (0.661) (0.933) (0.764)
dℓℓ′(t+ 1) -0.051 -0.060 0.133 0.027

(0.046) (0.046) (0.077) (0.046)
dℓℓ′L

r
c,t+1 -0.152 -5.603 8.880 11.60

(14.81) (14.71) (17.19) (14.73)
dℓℓ′L

r
t+1 0.103 5.546 -8.899 -11.60

(14.78) (14.69) (17.16) (14.71)
cons -0.339*** -0.231*** -0.406*** -0.272***

(0.065) (0.060) (0.065) (0.060)

Implied parameters
s 0.640*** 0.666*** 0.860** 1.041*

(0.169) (0.187) (0.387) (0.540)
F 2.773*** 1.962** 4.458** 3.610*

(0.910) (0.780) (2.020) (2.158)

N 62 62 66 66
R2 0.14 0.20

Robust standard errors in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01. Structural parameters estimated with
the Delta method.

The estimates obtained from defining remote work as d = 2 days or more per week are reported in

Columns (3) and (4). The OLS and PPML yield slightly higher estimates of both s and F , although

our main values of s and F are contained in the 95% confidence intervals of these estimates.

A.4 Occupations

We define 22 groups of occupations based on the occupation classification used in the 2000 decennial

census, denoted OCC in IPUMS. From the 2000 decennial census until the latest ACS, the 2000

Census classification is available. For the decennial census waves in 1980 and 1990, the 1990 Census

classification is available. We use a crosswalk between the 1990 and 2000 Census classifications to

obtain a consistent definition of our occupation groups.
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Table A4: Summary Statistics for Occupation Groups

2019 Share 2019 Share
of Total That is

Code Occupation Employment Remote

43 Executive, Administrative, and Managerial Occupation 0.116 0.056
95 Management Related Occupations 0.062 0.065
124 Mathematical and Computer Scientists 0.019 0.087
156 Architecture and Engineering 0.009 0.021
196 Life, Physical, and Social Services 0.016 0.055
206 Community and Social Services 0.034 0.027
215 Legal 0.022 0.033
255 Education, Training, and Library 0.101 0.029
296 Art, Design, Entertainment, Sports and Media 0.022 0.071
354 Healthcare Practitioners and Technical 0.099 0.019
365 Healthcare Support 0.088 0.049
395 Protective Service 0.011 0.014
416 Food Preparation and Serving Related 0.058 0.011
425 Building and Grounds Cleaning and Maintenance 0.022 0.016
465 Personal Care and Service 0.033 0.043
496 Sales and Related 0.083 0.043
593 Office and Administrative Support 0.159 0.034
613 Farming, Forestry, and Fishing 0.000 0.000
694 Construction and Extraction 0.003 0.038
762 Installation, Repair, and Maintenance 0.002 0.035
896 Production 0.032 0.015
983 Transportation and Material Moving 0.000 0.000
999 Experienced Unemployed not Classified by Occupation 0.000 0.000

Occupation groups based on the occupation classification used in the 2000 decennial census, denoted OCC in IPUMS.

The NLSY uses the 2000 Census occupation classification from 2002 onward. Prior to 2002, the

NLSY uses the 1970 Census occupation classification. We use a crosswalk from the 1970 Census

to the 1990 Census classifications, then from the 1990 Census to the 2000 Census classifications to

obtain a consistent definition.

We report descriptive statistics about these occupation groups in Table A5.

A.5 Remote Work Premium

In addition to our preferred estimation of the remote work premium based on individual longi-

tudinal data in the NLSY, we also estimate here the remote work premium based on data from

the American Community Survey. Hence, rather than defining remote work based on the num-

ber of hours worked at home, we define remote work as a binary variable. Specifically, we define
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dremotei,t as an indicator that equals one if an individual reports “work at home” as their means of

transportation to work, and then predict d̂ = 1 to represent remote work.

We then estimate the national trend and an intercept for each of the 22 occupation groups,

denoted by o. Specifically, we estimate the following equation:

lnwi,t = (ψ0
o(i) + ψ1t)dremotei,t +Xi,tβo(i) + ϵi,t,

where lnwi,t is the log of the hourly wage for individual i at time t, ψ0
o(i) and ψ1 represent the

intercept and the national trend for occupation group o, respectively, and Xi,t is a vector of

individual-level control variables, including age, age squared, tenure at the job, tenure squared,

industry, marital status, race, education-year, number of children, metro area-year. We focus on

full-time US-born workers in metropolitan areas observed between 2000 and 2018.

Finally, we estimate the remote work premium in city j as follows:

ψj,t =
∑
o

sh2018o,j (ψ0
o + ψ1t)d̂,

where sh2018o,j is the share of workers in city j working in occupation o in 2018.

A.6 Defining Central Business Districts

For each CBSA j, chosen radius r, we define the geographic coordinates of the kth CBD of j as

z
(1)
cbd,j(r) = argmax

z

∑
i∈cbsaj

1{dist(zi, z) ≤ r}Ncommute,i,2019

land areai
, (40)

where i is a block group, zi its coordinates (latitude and longitude), dist(·, ·) the geodesic distance,
Ncommute,i,2019 the total number of work-related visits recorded in block group i during the year

2019 from SafeGraph.

For k ≥ 2, we impose that the center of the kth CBD is not inside previous CBDs. We retain

the kth CBD if it attracts at least 80% as many commuters as the main CBD and if it does not

overlap with CBDs 1 to k− 1. We define the distance of each zip code to the CBD as the distance

to the nearest CBD.

A.7 Change in Visits to the CBD for Selected Cities

In Figure A3, we report the time series of visits to the CBD of six selected cities. The estimates

are the coefficients for monthly indicators in a regression at the block group-month level. The

outcome variable is the number of visits to the CBD of the CBSA from the specified block group,

divided by the number of residing devices in that block group, as defined in (39), scaled by the

value of this ratio in January 2020. That is, our outcome variable is yi,t = shCBD
i,t /shCBD

i,t0
, where

i is a block group, t is a month, and t0 is set to January 2020. We then estimate the following
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Table A5: Remote Work Premium for Occupation Groups

(1) (2)
NLSY ACS

Remote -0.233∗∗∗ -0.174∗∗∗

Remote × Year 0.011∗∗∗ 0.006∗∗∗

Executive, Administrative, and Managerial × Remote 0.000 0.000
Management Related Occupations × Remote 0.029 0.129∗∗∗

Mathematical and Computer Scientists × Remote 0.089∗∗ 0.181∗∗∗

Architecture and Engineering × Remote 0.048 0.216∗∗∗

Life, Physical, and Social Services × Remote 0.176∗ 0.138∗∗∗

Community and Social Services × Remote 0.032 -0.337∗∗∗

Legal × Remote 0.001 0.035∗∗∗

Education, Training, and Library × Remote 0.056 0.025∗∗∗

Art, Design, Entertainment, Sports and Media × Remote -0.086∗ -0.006∗∗

Healthcare Practitioners and Technical × Remote -0.002 0.203∗∗∗

Healthcare Support × Remote -0.208∗∗ -0.283∗∗∗

Protective Service × Remote 0.002 0.027∗∗∗

Food Preparation and Serving Related × Remote -0.123∗ 0.031∗∗∗

Building and Grounds Cleaning and Maintenance × Remote -0.147∗∗ -0.092∗∗∗

Personal Care and Service × Remote -0.134∗∗ -0.047∗∗∗

Sales and Related × Remote 0.012∗∗ 0.310∗∗∗

Office and Administrative Support × Remote -0.135∗∗ 0.150∗∗∗

Farming, Forestry, and Fishing × Remote -0.336 0.205∗∗∗

Construction and Extraction × Remote 0.129∗∗ 0.075∗∗∗

Installation, Repair, and Maintenance × Remote 0.034 0.038∗∗∗

Production × Remote -0.052∗ 0.032∗∗∗

Transportation and Material Moving × Remote -0.231∗ 0.047∗∗∗

Indiv. Controls Yes Yes
Year FE Yes Yes
Occ. & Ind. FE Yes Yes
Indiv. FE Yes No
Observations 34,784 87,160,166

Occupation groups based on the occupation classification used in the 2000 decennial census, denoted OCC in IPUMS.

regression for each CBSA:

yi,t =
S∑

s=s0

βs1{t = s}+ ϵi,t,

where s0 = 1 for October 2019, and S = 34 for July 2022. We restrict the sample to block groups

that are located less than 50 kilometers away from the CBD, and cluster standard errors at the

census tract level, which contains 3.4 block groups on average.
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Figure A1: Central Business Districts of Selected Large Cities

New York, NY San Francisco, CA Seattle, WA

Chicago, IL Houston, TX Los Angeles, CA

Figure A3 reports the estimates of βs for the CBSAs of Los Angeles, CA, Chicago, IL, Boston,

MA, San Diego, CA, Durham, NC, and Burlington, VT, along with the 95 percent confidence

interval around each estimate. All six CBSAs experience a sudden drop in visits to the CBD in

March-April 2020, corresponding to the period of nation-wide stay-at-home orders at the onset of

the COVID-19 pandemic. The share of visits to the CBD drops to about 20 percent of their value

just three months earlier. The patterns in the following months are similar for the three cities

in the top panel. After some ebbs and flows likely explained by the various waves of COVID-19

infections, visits to the CBD in these CBSAs stabilize at, or below, 50 percent of January 2020

levels. In the three cities in the lower panel, however, the patterns of visits to the CBD is starkly

different: after a small temporary upset in the winter of 2021, visits to the CBD continue to

increase and return to pre-pandemic levels, or close to, by the end of the sample period.

A.8 Evidence on RemoteWork, Agglomeration Externalities and Trans-

portation Elasticities

The left side of Figure A4 reports the relationship between the change in visits to the CBD and

our estimates of agglomeration externalities δ, transportation elasticities γ, and the net strength

of agglomeration forces δ − γ/µ. Each bubble represents a city of population proportional to the

bubble area. The right side of Figure A4 reports the share of cities that are predicted to be in their

cone of multiplicity as a function of the same parameters. Blue dots indicate the fraction of cities

in the cone in the calibrated model for 20 quantiles of the variable indicated on the horizontal axis.
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Figure A3: Change in Visits to the CBD for Selected Cities
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Boston, MA
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San Diego, CA
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Durham, NC
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Burlington, VT
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Estimates of monthly indicators in a separate regression for each CBSA of visits to the CBD at the block group-
month level. The outcome variable is the number of visits to the CBD from the specified block group, divided by
the number of residing devices in that block group, as defined in (39), scaled by the value of this ratio in January
2020. The shaded areas represent the contour delimited by the consecutive 95 percent confidence intervals of each
monthly indicator. Standard errors are clustered at the census tract of origin.

The left side of the figure shows that cities that experienced larger declines in visits to the

CBD are those that have a stronger agglomeration externality δ, and a weaker transportation cost

elasticity γ, and therefore also those with a higher net strength of agglomeration δ − γ/µ. These

relationships are quite strong, as indicated by the magnitude and significance of the population-

weighted linear fit in the figures and values of R2 between 0.11 and 0.22.

The right side of the figure shows that the relationship between the drop in visits to the CBD

and the key agglomeration parameters is rooted in the workings of the model. The figures show

that calibrated cities that tend to have higher agglomeration externalities δ, lower transportation

elasticities γ, and higher net strength of agglomeration forces δ − γ/µ, are the ones that are the

most likely to be inside the cone of multiplicity. Therefore, our model predicts that these are the

cities that are the most likely to remain in a low-commuting equilibrium after a temporary shock

such as a lockdown. Panel (d) in this figure excludes some large outliers focusing on γ < 0.1.

Panel (f) is estimated using net strength values larger than zero since multiplicity cannot occur

otherwise. These choices are made for the visibility of the graphs, and the estimates return

unchanged messages without these restrictions.
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Figure A4: Visits to CBD and Share of Cities in the Cone vs. City Parameters

(a) Agglomeration Externality δ
Trips to CBD, mid 2022 rel. to Jan 2020

Atlanta

BostonChicago

Dallas

Detroit

Los Angeles

Miami

Minneapolis

New YorkPhiladelphia

Phoenix

San Francisco

Seattle
Tampa

Washington

β=-1783.478(127.098)

R2=0.432

-6
0

-4
0

-2
0

0
20

P
er

ce
nt

 C
ha

ng
e 

in
 T

rip
s 

to
 C

B
D

.07 .08 .09 .1 .11 .12
Agglomeration δ

(b) Agglomeration Externality δ
Share of Cities in the Cone

0
.2

.4
.6

.8
1

Sh
ar

e 
of

 C
iti

es
 in

 th
e 

C
on

e

.07 .08 .09 .1 .11 .12
Agglomeration δ

β:110.57(16.11)

(c) Transportation Elasticity γ
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(e) Net Strength δ − γ/µ
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Figure A5: Correlates of Welfare Change Ŵ
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A.9 Change in Trips to CBD and Welfare Change from Switching to

Remote Equilibrium for Largest Cities

In Table A6, we report the values of our estimates for the change in visits to the CBD and the

welfare of the low-commuting stationary equilibrium relative to the high-commuting steady-state

equilibrium. Our sample is the largest 45 U.S. cities for which we can compute the relevant

parameters and the commuting trips to the CBD.

In the table, Column 2 reports the employment from the 2019 Census that we use in our

calibrations, as described in Appendix A.10. Column 3 reports the change in visits to the CBD

for each city from January 2020 to July 2022, as described in Appendix A.7.13 Column 4 reports

the welfare ratio W(Lss
c,low)/W(Lss

c,high), defined in Section 5.4. These values are only computed

for the CBSAs that are in their cone of multiplicity according to our estimation. We indicate by

“U” the CBSAs that are outside their code, for which there exists no low-commuting stationary

equilibrium.

Figure A5 shows correlates of Ŵ , the welfare in the low-commuting relative to the high-

commuting stationary equilibrium. These scatterplots can only be computed for the set of cities

in the cone of multiplicity. The left panel shows a scatterplot between Ŵ and the net strength

of agglomeration externalities, δ − γ/µ. The right panel shows a scatterplot between Ŵ and the

share of trips to the CBD in July 2022, relative to January 2020. The marker size is proportional

to total city employment.

13These values are a simple transformation of those plotted on the y axis of Panel (b) of Figure 10 (the complement
to 100).
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Table A6: Change in Trips to CBD and Welfare Loss in Remote Equilibrium for a Group of 45
Cities

2019 Census Trips to CBD Welfare Change
CBSA Employment Jul’22 / Jan’20 W(Lss

c,low)/W(Lss
c,high)

New York-Northern New Jersey-Long Island, NY-NJ-PA 6,983,328 0.408 0.973
Los Angeles-Long Beach-Santa Ana, CA 4,748,281 0.454 0.970
Chicago-Joliet-Naperville, IL-IN-WI 3,598,768 0.492 0.972
Dallas-Fort Worth-Arlington, TX 2,792,439 0.591 0.975
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 2,270,070 0.404 0.976
Washington-Arlington-Alexandria, DC-VA-MD-WV 2,211,377 0.449 0.973
San Francisco-Oakland-Fremont, CA 1,914,574 0.439 0.974
Atlanta-Sandy Springs-Marietta, GA 1,827,559 0.640 0.976
Seattle-Tacoma-Bellevue, WA 1,606,160 0.591 0.980
Phoenix-Mesa-Glendale, AZ 1,582,530 0.596 0.983
Minneapolis-St. Paul-Bloomington, MN-WI 1,520,268 0.595 0.971
Detroit-Warren-Livonia, MI 1,516,211 0.652 0.973
Riverside-San Bernardino-Ontario, CA 1,468,173 0.595 0.974
Miami-Fort Lauderdale-Pompano Beach, FL 1,232,340 0.746 U
Tampa-St. Petersburg-Clearwater, FL 1,095,802 0.557 0.973
Austin-Round Rock-San Marcos, TX 906,522 0.623 0.978
Portland-Vancouver-Hillsboro, OR-WA 888,928 0.490 U
Charlotte-Gastonia-Rock Hill, NC-SC 885,802 0.785 0.974
Cincinnati-Middletown, OH-KY-IN 845,880 0.678 0.971
San Jose-Sunnyvale-Santa Clara, CA 826,205 0.440 0.970
Columbus, OH 822,897 0.568 0.971
Sacramento–Arden-Arcade–Roseville, CA 811,475 0.524 0.973
Las Vegas-Paradise, NV 807,521 0.465 0.969
Pittsburgh, PA 794,500 0.592 U
Nashville-Davidson–Murfreesboro–Franklin, TN Are 735,658 0.608 0.974
Kansas City, MO-KS 701,694 0.733 0.978
Indianapolis-Carmel, IN 662,938 0.646 0.972
Virginia Beach-Norfolk-Newport News, VA-NC 662,276 0.552 0.973
Boston-Cambridge-Quincy, MA-NH 630,693 0.485 0.971
Milwaukee-Waukesha-West Allis, WI 599,389 0.551 0.974
Raleigh-Cary, NC 558,030 0.719 0.973
Richmond, VA 534,987 0.619 0.973
Oklahoma City, OK 466,449 0.817 0.972
Hartford-West Hartford-East Hartford, CT 451,318 0.621 0.973
Providence-New Bedford-Fall River, RI-MA 446,892 0.699 0.973
Buffalo-Niagara Falls, NY 412,839 0.588 0.974
Grand Rapids-Wyoming, MI 412,449 0.547 0.974
Omaha-Council Bluffs, NE-IA 389,758 0.839 0.973
Rochester, NY 385,287 0.574 0.974
Albany-Schenectady-Troy, NY 354,110 0.725 0.977
New Orleans-Metairie-Kenner, LA 341,194 0.447 0.972
Bridgeport-Stamford-Norwalk, CT 331,525 0.840 0.973
Little Rock-North Little Rock-Conway, AR 313,624 0.789 0.974
New Haven-Milford, CT 310,423 0.733 0.975
Tucson, AZ 301,333 0.488 0.973

The letter “U” in Column 4 indicates that the CBSA is outside the multiplicity cone according to our estimates.
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A.10 Descriptive Evidence Using Census Employment

A.10.1 Individual Mobility

In Section 5, we characterize CBSAs by their total non-farm employment in 2019, published by

the BEA. While this variable provides a measure of city size for all CBSAs, it is distinct from the

measure of city size that we use in the quantification of the model in several ways. First, it is

based on counting the number of jobs in the CBSAs, rather than on the number of workers, as

is the case in our Census data. Since some workers hold more than one job, the BEA measure is

typically larger than our Census measure. Second, because the Census data is based on individual

records, we can count the number of commuters and calibrate our model to workers who are more

likely to face the trade-off between remote work and commuting that our theory speaks to. For

example, the Census allows us to focus on workers between 25 and 64 years of age and to exclude

self-employed workers. As a result, our Census-based measure of CBSA employment is 56 percent

lower than the BEA measure on average. The correlation between the log of the two employment

measures is 0.89.

Using the Census individual data to measure commuting decisions, we can compute total

employment for 598 out of the 847 CBSAs represented in Figure 9. In Figure A6 and A7, we

reproduce the analogous figures to Figures 9 and 10 with this smaller sample of CBSAs. In Figure

A6, we use lower thresholds of employment (1 million for “large” CBSAs, 100,000 for “small”

CBSAs) to reflect the fact that our measure of employment from the Census is lower than the BEA

measure on average. These thresholds of Census employment reproduce the partition of CBSAs

in Figure 9, with the first group containing the top 3 percent of CBSAs in terms of employment,

the second containing the bottom 75 percent of CBSAs.

The patterns of trips to CBD over time are very similar to those described in Section 5.1.

Namely, CBSAs of all sizes experience a large decline of trips to CBD of 70 to 80 percent during

the stay-at-home policies in 2020, with larger CBSAs only recovering to 60 percent of their pre-

pandemic values, while smaller CBSAs return at least to 90 percent on average. Figure A7 confirm

that the relationship between the size of the drop in trips to CBD and CBSA employment became

stronger by July 2022 than in April 2020.

A.10.2 Distance Gradients in House Prices

Figure A8 shows that the divergence in the average distance elasticity of house prices relative to

January 2020 between smaller and larger cities is visible also when we measure size with Census

employment.

Panel (a) of Figure A9 confirms that the flattening of the housing price gradients occurs in

similar magnitude for cities of all sizes in January 2021. Panel (b) confirms that even in the sample

of cities ordered by Census employment, the drop in the gradient is more strongly related to city

size by December 2022.
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Figure A6: Visits to the CBD Relative to January 2020, Census Employment
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The figure reports the estimates of the average volume of visits to the CBD from block groups located in i) CBSAs
with total Census employment above 1 million (19 largest CBSAs), ii) CBSAs with total employment below 100,000
(450 smallest CBSAs) expressed as a share of their values in January 2020.

Figure A7: Response of Trips to the CBD, Census Employment

(a) April 2020 Relative to January 2020
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(b) July 2022 Relative to January 2020
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Panel (a) reports the change in the average level of visits to each CBSA’s CBD between January 2020 and April
2020, against our measure of employment from the Census. Panel (b) reports the change in visits to the CBD in July
2022 relative to January 2020. Each marker represents a CBSA. The solid line represents a fitted kernel-weighted
local polynomial smoothing, with the shaded area corresponding to the 95 percent confidence interval around the
fitted value.
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Figure A8: Distance Gradient of Housing Prices Relative to January 2020, Census Employment
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This figure reports the difference between the average housing price gradients in January 2020 and each following
month, using the same Census employment thresholds as in Figure A6. A negative value for the difference in housing
price gradients implies a lower premium for housing located close to the CBD. The value of the average housing
price gradient in each group is reported next to the marker of the associated group every six months. In total, 19
CBSAs have employment above 1 million and 68 have employment below 100,000. The shaded areas represent the
contour delimited by the consecutive 95 percent confidence intervals of each monthly indicator.

Figure A9: Response of House Price Gradients, Census Employment

(a) January 2021 Relative to January 2020
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(b) December 2022 Relative to January 2020
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This figure reports the difference between the housing price gradients in January 2020 and December 2022, against
our measure of employment from the Census. Each marker represents a CBSA. The gradients are estimated using
zip code level data from Zillow for 127 CBSAs. A negative value for the difference implies a lower premium for
housing located close to the CBD. The solid line represents a fitted kernel-weighted local polynomial smoothing,
with the shaded area corresponding to the 95 percent confidence interval around the fitted value.
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B Theory

B.1 Rewriting the average value of a worker

By adding and subtracting the continuation value in the current labor delivery mode, the equation

for Uℓ can be rewritten as

Uℓ

(
{εc,t, εm,t} ;Lc,t, ω

t
)

= uℓ (Lc,t;At, Tt, zt) + max
ℓ′

{
βVℓ′

(
Lc,t+1;ω

t+1
)
− Fℓℓ′,t + εℓ′,t

}
= uℓ (Lc,t;At, Tt, zt) + βVℓ

(
Lc,t+1;ω

t+1
)
− Fℓℓ,t +

max
ℓ′

{
β
[
Vℓ′
(
Lc,t+1;ω

t+1
)
− Vℓ

(
Lc,t+1;ω

t+1
)]

− (Fℓℓ′,t − Fℓℓ,t) + εℓ′,t
}

= uℓ (Lc,t;At, Tt, zt) + βVℓ
(
Lc,t+1;ω

t+1
)
− Fℓℓ,t +max

ℓ′

{
ε̄ℓℓ

′

t + εℓ′,t

}
(41)

where

ε̄ℓℓ
′

t (Lc,t+1) ≡ β
[
Vℓ′
(
Lc,t+1;ω

t+1
)
− Vℓ

(
Lc,t+1;ω

t+1
)]

− (Fℓℓ′,t − Fℓℓ,t) (42)

is the average value of switching from ℓ to ℓ′. Taking the expectation of Uℓ with respect to εt,

Vℓ (Lc,t; zt) = uℓ (Lc,t;At, Tt, zt) + βVℓ
(
Lc,t+1;ω

t+1
)
− Fℓℓ,t + Et max

ℓ′

{
ε̄ℓℓ

′

t + εℓ′,t

}
≡

≡ uℓ (Lc,t;At, Tt, zt) + βVℓ
(
Lc,t+1;ω

t+1
)
− Fℓℓ,t + Ω

(
ε̄ℓt
)

(43)

where ε̄ℓt ≡
{
ε̄ℓct , ε̄

ℓm
t

}
. Ω

(
ε̄ℓt
)
is the value of the option of being able to move out of ℓ if circum-

stances require, or the “option value” of ℓ.

Under our distributional assumption for εt we can write the share of workers in ℓ state transi-

tioning to ℓ′ as

λℓℓ
′

t =
exp

(
ε̄ℓℓ

′
t (Lc,t+1) /s

)
exp

(
ε̄ℓct (Lc,t+1) /s

)
+ exp

(
ε̄ℓmt (Lc,t+1) /s

) (44)

We can use this expression to obtain the average expected switching values. In fact,

λℓℓ
′

t

λℓℓt
= exp

(
ε̄ℓℓ

′

t /s− ε̄ℓℓt /s
)
=⇒ s ln

λℓℓ
′

t

λℓℓt
= ε̄ℓℓ

′

t − ε̄ℓℓt =⇒ ε̄ℓℓ
′

t = s ln
λℓℓ

′
t

λℓℓt
(45)

To obtain the option value of being in ℓ, recall that

Ω
(
ε̄ℓt
)
= s log

[
exp

(
ε̄ℓct /s

)
+ exp

(
ε̄ℓmt /s

)]
(46)

Since log λℓℓt = ε̄ℓℓt /s− log
[
exp

(
ε̄ℓct /s

)
+ exp

(
ε̄ℓmt /s

)]
= − log

[
exp

(
ε̄ℓct /s

)
+ exp

(
ε̄ℓmt /s

)]
, we have

that

Ω
(
ε̄ℓt
)
= −s lnλℓℓt (47)
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B.2 Existence of a stationary equilibrium

To prove that a stationary equilibrium always exists, we proceed in steps. First, Lemma B.1 shows

that the characterization of a stationary equilibrium can be reduced to the zeros of one equation

in one unknown, the share of commuters who remain commuters next period, λcc. Lemma B.2

establishes a useful property of one component in such equation. Finally, Proposition B.1 shows

that this equation always has at least one solution.

In a stationary equilibrium, the system is characterized by 11 unknowns, uc,um,Lc,Vc,Vm,λ
cc,λmm,

ε̄cc,ε̄cm,ε̄mc,ε̄mm, and 11 equations: the flow utility values,

uc = log rα−1
a ᾱ

B(L̃c)

τ(L̃c)

wc

L̃γ
c

(48)

um = log rα−1
a ᾱT µ

(
B(L̃c)

τ(L̃c)

)1−µ
wm

Lγ(1−µ)
(49)

the law of motion for Lc,

Lc = Lcλ
cc + (L− Lc) (1− λmm) (50)

the average value functions by mode,

Vc = uc + βVc − s lnλcc − Fcc (51)

Vm = um + βVm − s lnλmm − Fmm (52)

the transition probabilities,

λcc =
exp (ε̄cc/s)

exp (ε̄cc/s) + exp (ε̄cm/s)
(53)

λmm =
exp (ε̄mm/s)

exp (ε̄mc/s) + exp (ε̄mm/s)
(54)

and the expected values from switching

ε̄cc = 0 (55)

ε̄mm = 0 (56)

ε̄cm = β (Vm − Vc)− (Fcm − Fcc) (57)

ε̄mc = β (Vc − Vm)− (Fmc − Fmm) (58)

The following lemma shows that we can always reduce this system of equations to one equation

in one unknown.
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Lemma B.1 The characterization of the stationary equilibrium (48)-(58) can be reduced to one

equation in one unknown,

f (λcc) ≡ 1

1 + exp (ε̄cm (λcc) /s)
− λcc = 0 (59)

where

ε̄cm (λcc) ≡ β

1− β
[ef (λ

cc) + eo (λ
cc)− (Fmm − Fcc)]− Fcm + Fcc (60)

is the value of switching from c to m; the function

eo (λ
cc) ≡ s lnλcc

1− ϕλcc

1− λcc
(61)

is the difference in the option values of staying in m versus staying in c; and the function

ef (λ
cc) ≡ um (Lc (λ

cc))− uc (Lc (λ
cc)) (62)

is the difference in the flow value of utilities, with

Lc (λ
cc) =

(1− ϕ)λcc

(1− λcc) (1− ϕλcc) + (1− ϕ)λcc
L ≡ σ (λcc)L (63)

ϕ ≡
[
1− exp

(
Fcc + Fmm − Fcm − Fmc

s

)]
≤ 1 (64)

Proof. Rearrange the value of switching from c to m (eq. (57)) as β (Vc − Vm) = −ε̄cm−Fcm+Fcc.

Substitute this expression into eq. (58) for ε̄mc to obtain

ε̄mc = β (Vc − Vm)− Fmc + Fmm (65)

= −ε̄cm − Fcm + Fcc − Fmc + Fmm (66)

Rearranging the average value functions (51)-(52), one can write

Vc = (uc − s lnλcc − Fcc) / (1− β)

Vm = (um − s lnλmm − Fmm) / (1− β)

and use these expressions into (57) to obtain

ε̄cm = β (Vm − Vc)− Fcm + Fcc =
β

1− β
[um − s lnλmm − Fmm − (uc − s lnλcc − Fcc)]− Fcm + Fcc =

=
β

1− β
[um − uc + s lnλcc/λmm − Fmm + Fcc]− Fcm + Fcc (67)

We want to express the right-hand side of this expression only as a function of λcc.
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To do that, note that eq. (53) and (55) together imply

λcc =
1

1 + exp (ε̄cm/s)
=⇒ exp (−ε̄cm/s) = λcc/ (1− λcc) (68)

Use (56) and (66) into eq. (54) for λmm,

λmm =
1

exp ((−ε̄cm − Fcm + Fcc − Fmc + Fmm) /s) + 1
(69)

We can then use eq. (68) in (69) to obtain,

λmm =
1

exp (−ε̄cm/s) exp ((−Fcm + Fcc − Fmc + Fmm) /s) + 1
=

=
1

λcc/ (1− λcc) exp ((−Fcm + Fcc − Fmc + Fmm) /s) + 1
=

=
(1− λcc)

λcc exp ((−Fcm + Fcc − Fmc + Fmm) /s) + (1− λcc)
=

=
(1− λcc)

1− λcc [1− exp ((−Fcm + Fcc − Fmc + Fmm) /s)]
=⇒

λmm =
1− λcc

1− ϕλcc
(70)

with ϕ ≡
[
1− exp

(
Fcc + Fmm − Fcm − Fmc

s

)]
≤ 1 (71)

Use (70) to write the stationary equilibrium value of Lc (from eq. (50)) as

Lc = Lcλ
cc + (L− Lc) (1− λmm)

Lc − Lcλ
cc + Lc (1− λmm) = L (1− λmm)

Lc

(
1− λcc +

(1− ϕ)λcc

1− ϕλcc

)
= L

(1− ϕ)λcc

1− ϕλcc

Lc ((1− λcc) (1− ϕλcc) + (1− ϕ)λcc) = L (1− ϕ)λcc

Lc =
(1− ϕ)λcc

(1− λcc) (1− ϕλcc) + (1− ϕ)λcc
L ≡ σ (λcc)L (72)

Making use of (70) and (72), we can then rewrite (67) as

ε̄cm =
β

1− β
[um (Lc (λ

cc))− uc (Lc (λ
cc)) + s lnλcc/λmm − Fmm + Fcc]− Fcm + Fcc

=
β

1− β

[
um (Lc (λ

cc))− uc (Lc (λ
cc)) + s lnλcc

1− ϕλcc

1− λcc
− Fmm + Fcc

]
− Fcm + Fcc (73)
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Lemma B.2 The function eo (λ) in eq. (61) increases from -∞ to +∞ as λ ∈ (0, 1).

Proof. The derivative of eo (λ) = s ln
(
λ1−ϕλ

1−λ

)
with respect to λ is

s

[
1

λ
− ϕ

1− ϕλ
+

1

1− λ

]
= s

[
1

λ
+

−ϕ (1− λ) + (1− ϕλ)

(1− ϕλ) (1− λ)

]
= s

[
1

λ
+

1− ϕ

(1− ϕλ) (1− λ)

]
=

= s

[
(1− ϕλ) (1− λ) + (1− ϕ)λ

(1− ϕλ) (1− λ)λ

]
= s

1− 2ϕλ+ ϕλ2

(1− ϕλ) (1− λ)λ
(74)

This function is always positive because the numerator is a convex parabola in λ, and the minimum

is reached at λ = 2ϕ/ (2ϕ) = 1, where the numerator is equal to 1 − 2ϕ + ϕ = 1 − ϕ > 0. Note

that limλ→0 λ
1−ϕλ
1−λ

= 0, and limλ→1 λ
1−ϕλ
1−λ

= +∞, so that the function limλ→0 eo (λ) = −∞ and

limλ→1 eo (λ) = +∞.

Recall that eo(λ
cc) is the option value of a remote worker minus the option value of a commuting

worker. Lemma B.2 says that: 1) as the equilibrium number of commuters grows, the relative

option value of being a remote worker grows; 2) as we approach a purely remote equilibrium

(λcc → 0), switching from c to m implies a loss in option values that approaches +∞; as we

approach a purely commuting equilibrium (λcc → 1), switching from c to m implies a gain in the

option values that approaches +∞.

Proposition B.1 There exists at least one stationary equilibrium Lc,ss.

Proof. Consider the equation f (λ) = 0 characterizing the stationary equilibria from (59). f (λ)

is continuous over λ ∈ (0, 1). We aim at showing that limλ→0 f (λ) > 0 and limλ→1 f (λ) < 0,

so that f (λ) = 0 (and there exists at least one stationary equilibrium) for some λ ∈ (0, 1) by the

intermediate value theorem.

Consider the behavior of

ε̄cm (λcc) ≡ β

1− β
[ef (λ

cc) + eo (λ
cc)− (Fmm − Fcc)]− Fcm + Fcc

from (60). The difference in the option values eo(λ
cc) behaves as limλ−→0 eo (λ

cc) = −∞ and

limλ−→1 eo (λ
cc) = +∞ from Lemma B.2.

Using the functional forms in Assumption 1 in the indirect utility functions (48) and (49), we

can write

ef (λ
cc) ≡ um (λcc)− uc (λ

cc) = µ

(
log T − log

B̄

τ̄
− (δ + ξ − θ − γ) logL+ log

Z

A

)
− µ2(δ + ξ − θ − γ/µ) log σ(λcc) (75)

As λ → 1, this difference approaches a finite number. When λ → 0, this difference approaches

−∞ if δ + ξ < θ + γ/µ, and +∞ if δ + ξ > θ + γ/µ,
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These observations imply that limλcc−→1 ε̄
cm (λcc) = +∞. Moreover, Assumption 2 guarantees

that limλcc→0 ε̄
cm (λcc) = −∞. It follows that limλ−→0 f (λ) = 1 and limλ−→1 f (λ) = −1. Hence,

eq. (59) always has at least one solution.

B.3 Sufficient conditions for a unique stationary equilibrium

In this subsection, we show sufficient conditions for the stationary equilibrium to be unique and

how this stationary equilibrium changes with some of the model’s parameters. The proof of this

result in Proposition B.2 is based on establishing conditions for the monotonicity of f (λ) in eq.

(59). Lemma B.3 below preliminarily establishes the monotonicity of Lc in the share of commuters

that remain commuters, λcc.

Lemma B.3 The function σ (λ) in eq. (63) is monotonically increasing from 0 to 1 when λ ∈
[0, 1].

Proof. Computing the derivative,

σ′ (λ) =
(1− ϕ) [(1− λ) (1− ϕλ) + (1− ϕ)λ]− (1− ϕ)λ [(1− ϕ)− (1− ϕλ)− ϕ (1− λ)]

[(1− λ) (1− ϕλ) + (1− ϕ)λ]2
=

= (1− ϕ)
(1− λ) (1− ϕλ) + (1− ϕ)λ− λ (1− ϕ) + λ (1− ϕλ) + ϕλ (1− λ)

[(1− λ) (1− ϕλ) + (1− ϕ)λ]2
=

=
(1− ϕ) (1− λ2ϕ)

[(1− λ) (1− ϕλ) + (1− ϕ)λ]2
(76)

which is always positive.

Proposition B.2 Assume δ + ξ < θ + γ/µ. Then there is a unique stationary equilibrium value

of the commuting population Lc,ss. This stationary equilibrium value monotonically increases with

A and B̄, and monotonically falls with Z, T and τ̄ .

Proof. Recall eq. (75), stating that

ef (λ
cc) ≡ um (λcc)− uc (λ

cc) = µ

(
log T − log

B̄

τ̄
− (δ + ξ − θ − γ) logL+ log

Z

A

)
− µ2(δ + ξ − θ − γ/µ) log σ(λcc) (77)

When δ + ξ < θ + γ/µ, this difference is increasing in λcc from Lemma B.3 and it follows that

ε̄cm (λcc) in eq. (60) is monotonically increasing in λcc, mapping the interval (0, 1) into (−∞,+∞).

Hence, the function f (λcc) in (59) is monotonically decreasing in λcc and maps the interval (0, 1)

into itself. Equation (59) has then a unique solution for λcc, which maps into a unique value for

Lc = σ (λcc)L.

Note also that A, Z, T , B̄ and τ̄ only affect the value of ε̄cm (λcc) in (60) through um − uc;

in particular, ε̄cm
(
λcc;A, B̄, Z, T, τ

)
grows with Z, T , and τ̄ while falling with A and B̄ for any
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given λcc. Hence, f (λcc) in (59) shifts uniformly down with Z, T , τ̄ and up with A and B̄ in its

domain λcc ∈ (0, 1). This implies that the solution to (59) and Lc = σ (λcc)L also moves in the

same direction with these parameters.

B.4 Necessary and sufficient conditions for multiple stationary equi-

libria

In Proposition B.1 we have shown that there is always at least one stationary equilibrium because

f (λ) starts positive, ends negative, and is continuous. In Proposition B.3, we show that for any

level of (sufficiently strong) agglomeration forces, there is a range of values z/A where the economy

exhibits multiple stationary equilibria. Proposition B.3 makes use of the following four lemmas.

Lemma B.4 characterizes necessary and sufficient conditions for multiplicity in terms of the function

f(λ) in eq. (59): multiple stationary equilibria exist if f ′(λ) > 0 at a stationary equilibrium, which

can be restated into a condition on ∂ε̄cm (λ) /∂λ, the slope of the expected value of switching from

c to m with respect to λ. Lemma B.5 considers such slope and it shows that, at a candidate λ̂,

one can always make ∂ε̄cm (λ) /∂λ arbitrarily negative by choosing an externality term δ above a

threshold δ∗. This fact is useful because the slope of ε̄cm can be used to control the slope of f(λ).

Lemma B.6 characterizes some properties of this threshold δ∗. Lemma B.7 shows that for any level

of δ, we can always find a ratio of the exogenous remote work to in-office productivity, z/A, that

makes an arbitrary λ̂ a stationary equilibrium. Proposition B.3 uses these lemmas to show that

for a high enough δ, we can always find a z/A that makes some λ̂ a stationary equilibrium where

f ′(λ̂) > 0.

Lemma B.4 Consider an economy Ω. The economy has multiple stationary equilibria if and only

if there exist one λ̂ such that

f(λ̂) = 0 (78)

∂f(λ)

∂λ

∣∣∣∣
λ=λ̂

> 0 (79)

Moreover, if such λ̂ exists, then it holds true that:

∂ε̄cm (λ)

∂λ

∣∣∣∣
λ=λ̂

< − s

λ̂
(
1− λ̂

) (80)

Proof. From Lemma B.1, a stationary equilibrium is characterized by f(λ̂) = 0. Suppose

∂f(λ)

∂λ

∣∣∣∣
λ=λ̂

> 0 (81)

Since f(λ) always starts at +1 and ends at −1, f (λ) will cross zero at least two more times, one
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to the left and one to the right of λ̂. In other words, the equation f(λ) has more than one solution,

that is, the economy exhibits multiple stationary equilibria.

Note that, using the definition of f in eq. (59),

∂f (λ)

∂λ
= − exp (ε̄cm (λ) /s)

(1 + exp (ε̄cm (λ) /s))2
1

s

∂ε̄cm (λ)

∂λ
− 1 > 0

∂ε̄cm (λ)

∂λ
< −s(1 + exp (ε̄cm (λ) /s))2

exp (ε̄cm (λ) /s)
(82)

Additionally, using the same definition, at a stationary equilibrium it holds true that

f
(
λ̂
)
≡ 1

1 + exp
(
ε̄cm

(
λ̂
)
/s
) − λ̂ = 0 =⇒ (83)

1 + exp
(
ε̄cm

(
λ̂
)
/s
)

= 1/λ̂ (84)

exp
(
ε̄cm

(
λ̂
)
/s
)

=
(
1− λ̂

)
/λ̂ (85)

Hence, using equations (84) and (85) in eq. (82), we have

∂ε̄cm (λ)

∂λ

∣∣∣∣
λ=λ̂

< − s

λ̂
(
1− λ̂

) (86)

Lemma B.5 ∀λ̂ ∈ (0, 1) , K > 0, ∃ δ∗
(
λ̂, K

)
> 0 :

∂ε̄cm (λ, δ)

∂λ

∣∣∣∣
λ=λ̂

< −K ⇐⇒ δ + ξ > δ∗
(
λ̂, K

)
Proof. Consider the expression for ε̄cm (λ) from (60):

ε̄cm (λ) ≡ β

1− β
[ef (λ) + eo (λ)− (Fmm − Fcc)]− Fcm + Fcc

The first derivative of this function with respect to λ is

∂ε̄cm (λ)

∂λ
=

β

1− β

[
e′f (λ) + e′o (λ)

]
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We know that e′o (λ) > 0. From eq. (75), we can easily compute e′f so that our condition becomes

∂ε̄cm (λ)

∂λ

∣∣∣∣
λ=λ̂

< −K ⇐⇒ e′f (λ)
∣∣
λ=λ̂

< − e′o (λ)|λ=λ̂ −
1− β

β
K ⇐⇒

δ + ξ >
1

µ2

[
σ(λ)

σ′(λ)

(
e′o (λ) +

1− β

β
K

)]
λ=λ̂

+
γ

µ
+ θ ≡ δ∗

(
λ̂, K

)
(87)

Lemma B.6 Define

δ̂(λ) ≡ 1

µ2

[
σ(λ)

σ′(λ)

(
e′o (λ) +

1− β

β

s

λ(1− λ)

)]
+
γ

µ
+ θ (88)

as the threshold function δ∗(λ,K) for K = s
λ(1−λ)

in eq. (87). Then, δ̂(λ) reaches a minimum

value of ηmin > γ/µ+ θ. If ϕ ∈ (0, 1), then δ̂(λ) is convex in λ.

Proof. The function δ̂(λ) is defined for λ̂ ∈ (0, 1), is continuous, and differentiable. Since the

term in the square brackets is always positive, the function is also always positive. To further

characterize δ̂(λ), we study its limiting properties. To compute limδ̂→0 δ̂(λ̂), we substitute the

expressions for σ(λ), e′o(λ) and σ
′(λ) from equations (72), (74), and (76) and obtain

lim
λ̂→0

δ̂(λ̂) =
s

µ2β
+
γ

µ
+ θ ≡ δ̂0 > 0

Further, limδ̂→1 δ̂(λ̂) = +∞ since, from (72) and (76), limλ̂→1 σ
(
λ̂
)
= 1 and limλ̂→1 σ

′
(
λ̂
)
= 1;

and from Lemma B.2, limλ̂→1 e
′
o

(
λ̂
)
= +∞.

The first derivative of δ̂(λ), after some algebra, is given by:

δ̂′(λ) = − s

µ2

4ϕ(1− 2ϕλ+ ϕλ2)

(1− ϕλ2)(1− ϕλ)

+
s

µ2

(1− 2ϕλ+ ϕλ2)2(1− 3ϕ2λ2 − 3ϕλ2 + 4ϕ2λ3 + ϕ)

(1− ϕλ2)2(1− ϕλ)2(1− λ)2

+
s

µ2

1− β

β

1 + 2ϕ(2λ− 2λ2 − 1)− ϕ2λ2(2− 4λ+ λ2)

(1− ϕλ2)2(1− λ)2
(89)

Moreover,

lim
λ̂→0

δ̂′(λ) < 0 ⇐⇒ ϕ >
1

2 + β
(90)

Hence, the function starts sloping down if ϕ is large enough. Assume that δ̂(λ) is convex, which
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we will prove right below. In this case, the (unique) minimum is achieved for a ηmin : γ/µ + θ <

ηmin < δ̂0. If the function starts sloping up, then ηmin ≡ δ̂0.

It remains to be proven that δ̂(λ) is convex. To this end, it is thus sufficient to prove the

convexity of the simplified function δ̂(λ)simple, which takes out the constant term γ
µ
+ θ and the

positive multiplicative term s
µ2 :

δ̂(λ)simple =
λ (1− 2ϕλ+ ϕλ2)

1− ϕλ2

[
1− 2ϕλ+ ϕλ2

(1− ϕλ)(1− λ)λ
+

1− β

β

1

λ(1− λ)

]
=

(1− 2ϕλ+ ϕλ2)

(1− ϕλ2)(1− λ)

[
1− 2ϕλ+ ϕλ2

(1− ϕλ)
+

1− β

β

]
=

(1− 2ϕλ+ ϕλ2)2

(1− ϕλ2)(1− λ)(1− ϕλ)︸ ︷︷ ︸
first term Ξ1

+
1− β

β

(1− 2ϕλ+ ϕλ2)

(1− ϕλ2)(1− λ)︸ ︷︷ ︸
second term Ξ2

.

We argue that each of the terms Ξ1 and Ξ2 is convex, which will prove the convexity of their

sum.

The second derivative of Ξ1 is:

d2Ξ1

dλ2
=

2

(1− λ)3
+ ϕ2

(
2

(1− ϕλ)3
− 8x(ϕλ2 + 3)

(1− ϕλ2)3

)
We prove by contradiction that d2Ξ1

dλ2 cannot be negative. Recall that the range of values for

ϕ, λ is ϕ ∈ (0, 1), λ ∈ (0, 1). The first term of the expression 2
(1−λ)3

, is always positive. If d2Ξ1

dλ2

is negative at any value of λ, then the term
(

2
(1−ϕλ)3

− 8x(ϕλ2+3)
(1−ϕλ2)3

)
must be negative. If this is so,

then:

d2Ξ1

dλ2
=

2

(1− λ)3
+ ϕ2

(
2

(1− ϕλ)3
− 8x(ϕλ2 + 3)

(1− ϕλ2)3

)
≥ 2

(1− λ)3
+

(
2

(1− ϕλ)3
− 8x(ϕλ2 + 3)

(1− ϕλ2)3

)
≥ 2

(1− λ)3
+

(
2

(1− λ)3
− 8x(ϕλ2 + 3)

(1− ϕλ2)3

)
≥ 2

(1− λ)3
+

(
2

(1− λ)3
− 8x(λ2 + 3)

(1− λ2)3

)
=

4

(1 + λ)3

≥ 0

The fourth line follows because d
da

= −8x(ϕλ2+3)
(1−ϕλ2)3

= −16λ3(5+ϕλ2)
(−1+ϕλ2)4

≤ 0, so the term is most
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negative at ϕ = 1. We have shown that d2Ξ1

dλ2 is weakly positive. Thus, Ξ1 is convex.

We now move on to the second term term. The second derivative of Ξ2 is:

d2Ξ2

dλ2
=

2(1− ϕλ2)3 − 4ϕ2λ(ϕλ2 + 3)(1− λ)3

(1− λ)3(1− ϕλ2)3

The denominator is obviously positive for ϕ ∈ (0, 1), λ ∈ (0, 1). We want to prove that the

numerator is positive. Let us observe so the numerator, which we denote as N2(λ):

N2(λ) = 2(1− ϕλ2)3 − 4ϕ2λ(ϕλ2 + 3)(1− λ)3

By inspection, N2(λ) is decreasing in ϕ for ϕ ∈ (0, 1). As such we only need to prove that

N2(λ) is positive for ϕ = 1 to show that N2(λ) is always positive.

N2(λ) = 2(1− ϕλ2)3 − 4ϕ2λ(ϕλ2 + 3)(1− λ)3

≥ 2(1− λ2)3 − 4λ(λ2 + 3)(1− λ)3

= 2(1− λ)6

≥ 0 for λ ∈ (0, 1)

We have shown that both the numerator and denominator of the second derivative of Ξ2 are

positive. As such, Ξ2 is convex.

We have shown that Ξ1 and Ξ2 are convex, their sum δ̂(λ)simple is also convex, which in turn

implies that our original function δ̂(λ) is convex.

Lemma B.7 For each λ̂ and δ, there exists a ratio z/A such that f
(
λ̂; δ, z/A

)
= 0. This ratio is

described by the function

ρ(λ̂) = exp

{
1

µ

[
1− β

β
(Fcm − Fcc) + Fmm − Fcc

]}
× B̄

τ̄T

× σ(λ̂)µ(ξ+δ−θ)−γ

(1− ϕλ̂)s/µ
×

(
1− λ̂

λ̂

)s/(βµ)

× Lξ+δ−θ−γ (91)

Proof. Using the definition of ε̄cm
(
λ̂
)
from eq. (60) in the condition for a stationary equilibrium

from (59),
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λ̂ =
1

1 + exp
(
ε̄cm

(
λ̂
)
/s
) =⇒ s ln

1− λ̂

λ̂
= ε̄cm

(
λ̂
)

s ln
1− λ̂

λ̂
=

β

1− β

[
ef

(
λ̂
)
+ eo

(
λ̂
)
− (Fmm − Fcc)

]
− Fcm + Fcc

Using ef ≡ um − uc and the result in eq. (75), after some manipulation, we obtain

Z

A
= exp

{
1

µ

[
1− β

β
(Fcm − Fcc) + Fmm − Fcc

]}
× B̄

τ̄T

× σ(λ̂)µ(ξ+δ−θ)−γ

(1− ϕλ̂)s/µ
×

(
1− λ̂

λ̂

)s/(βµ)

× Lξ+δ−θ−γ ≡ ρ(λ̂) (92)

Lc is a function of λ̂ and is bounded between 0 and L. One can verify using eq. (61) that the

sum in the curly bracket −eo
(
λ̂
)
+ 1−β

β
s ln 1−λ̂

λ̂
goes to +∞ for λ̂ → 0 and to −∞ for λ̂ → 1.

Hence, the image of ẑ spans (0,+∞) as λ̂ varies in (0, 1).

Proposition B.3 Assume Fcc = Fmm = 0. Then, there exist a finite threshold ηmin > θ + γ/µ,

and a set Z ⊂ R++, such that:

i) for δ + ξ > ηmin, Z is a non-empty interval (Zmin, Zmax) and there are multiple stationary

equilibria if z/A ∈ Z; further, Zmin and Zmax grow with L and B̄ and fall with T and τ̄ .

ii) there is a unique stationary equilibrium in all other cases.

Proof. From Lemma B.4, we know that equations (78) and (80) characterize an economy with

multiple stationary equilibria. We seek necessary and sufficient conditions for those equations to

hold.

Consider the equation δ̂(λ̂) in Lemma B.6. From Lemmas B.4 and B.5, f ′(λ̂) > 0 if and only if

we pick a δ̄ : δ̄+ξ ≥ δ̂(λ̂). Note that δ̂(λ̂) is defined for λ̂ ∈ (0, 1), is continuous, and differentiable.

Also, from Lemma B.6, it is convex in λ̂ and it reaches a global minimum value of δ̂min. An

example of this function is plotted in Panel (a) of Figure A10.

Our proof proceeds with a taxonomic discussion of the implications of different values of δ̄.

This discussion can be organized around features of the set

Λ(δ̄) ≡ {λ̂ : δ̂
(
λ̂
)
≤ δ̄ + ξ} (93)

Note that by construction, for each λ̂ ∈ Λ(δ̄), eq. (80) is satisfied if f(λ̂, δ̄, z/A) = 0.
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Figure A10: Identifying the Range of Parameters for Multiple Stationary Equilibria

δ

λ


(a) The function δ̂(λ̂)

λ


(b) The function ρ(λ̂)

Consider part i) of the proposition, and fix a δ̄ : δ̄ + ξ > δ̂min > γ/µ + θ. Then, the set Λ(δ̄)

is non-empty; moreover, since δ̂ is convex from Lemma B.6, the set Λ(δ̄) is an interval of the form

Λ(δ̄) = (λmin(δ̄), λmax(δ̄)). Consider then the set

Z(δ̄) = {z/A : z/A = ρ
(
λ̂
)
for some λ̂ ∈ Λ(δ̄)} (94)

The set Z is the image of the set Λ in z/A (see Panel (b) of Figure A10) By construction, for any

z/A in this set, there is some λ̂ for which λ̂, z/A is a stationary equilibrium, that is, eq. (78) holds.

Since at the same λ̂ eq. (80) also holds, the economy exhibits multiple stationary equilibria. Note

also that since ρ(λ) is continuous and Λ is an interval, Z(δ̄) is also an interval and can be written

as

Z(δ̄) =
(
Zmin(δ̄), Zmax(δ̄)

)
Zmin(δ̄) = minλ∈Λ(δ̄) ρ(λ)

Zmax(δ̄) = maxλ∈Λ(δ̄) ρ(λ)

To show how Zmin(δ̄), Zmax(δ̄) vary with L, we consider the expression for ρ(λ) in eq. (92). If

λ− is the minimizer when the total city size is L, then λ− is also the minimizer when the total

city size is kL, for k > 0; additionally, ρ(λ, kL) = kδ̄+ξ−γ−θρ(λ, L). Since δ̄ + ξ − γ − θ > 0 is

satisfied whenever Z is non-empty, then Zmin grows with L. A similar argument shows that Zmax

also grows with L. A similar argument can be made to show that these boundaries grow with B̄

and fall with τ̄ and T .

To prove part ii), note that if δ̄ + ξ > δ̂min but z/A ̸∈ Z(δ̄), then by construction none of the

λ̂ ∈ Λ(δ̄) are a stationary equilibrium where (80) holds; however, since a stationary equilibrium

always exists, the equilibrium must be unique. Similarly, if δ̄ + ξ < δ̂min, then the set Λ(δ̄) in eq.

(93) is empty; hence, there is no λ̂ for which eq. (78) holds at a candidate stationary equilibrium.
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Again, since a stationary equilibrium always exists, it must be unique.

Proposition 3.3 then follows from the fact that Lc is monotone increasing in λcc by Lemma B.3.

B.5 Relative Transition Shares

Lemma B.8 Suppose Fcc = Fmm = 0 and that Fcm = Fmc = F . Then

yℓℓ′,t ≡ ln
λℓℓ′,tλ

β
ℓ′ℓ′,t+1

λℓℓ,tλ
β
ℓℓ′,t+1

=
β

s
(uℓ′,t+1 − uℓ,t+1)−

(1− β)F

s
. (95)

Proof.

Combining (16) and (18), the share of workers in state ℓ transitioning to ℓ′ is given by

λℓℓ′,t =
exp (βVℓ′,t+1 − Fℓℓ′,t)

1/s

exp (βVc,t+1 − Fℓc,t)
1/s + exp (βVm,t+1 − Fℓm,t)

1/s
, (96)

where we denote Vℓ,t+1 = Vℓ (Lc,t+1;ω
t+1). We first obtain an expression of λℓℓ′,t as a function of

Vℓ,t, Vℓ′,t+1 and transition costs only by re-writing (15) with time indices only,

Vℓ,t = uℓ,t + βVℓ,t+1 − Fℓℓ,t + Ωℓ,t, (97)

and re-writing (17) after replacing the transition share by its expression in (96):

Ωℓ,t = −s ln

(
exp (βVℓ,t+1 − Fℓℓ,t)

1/s

exp (βVc,t+1 − Fℓc,t)
1/s + exp (βVm,t+1 − Fℓm,t)

1/s

)
. (98)

Substituting for Ωℓ,t in (97), we get the following expression for the value of labor delivery mode

ℓ:

Vℓ,t = uℓ,t + s ln
(
exp (βVc,t+1 − Fℓc,t)

1/s + exp (βVm,t+1 − Fℓm,t)
1/s
)
, (99)

or equivalently,

exp (βVc,t+1 − Fℓc,t)
1/s + exp (βVm,t+1 − Fℓm,t)

1/s = exp (Vℓ,t − uℓ,t)
1/s . (100)

Recognizing the left hand side as the denominator in (96), we obtain the following expressions for

the share of workers in state ℓ transitioning to ℓ′ at t, in state ℓ transitioning to ℓ at t, in state ℓ′

transitioning to ℓ′ at t+ 1 and in state ℓ transitioning to ℓ′ at t+ 1, respectively, as:

λℓℓ′,t = exp (βVℓ′,t+1 − Fℓℓ′,t + uℓ,t − Vℓ,t)
1/s . (101)

λℓℓ,t = exp (βVℓ,t+1 − Fℓℓ,t + uℓ,t − Vℓ,t)
1/s , (102)
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λℓ′ℓ′,t+1 = exp (βVℓ′,t+2 − Fℓ′ℓ′,t+1 + uℓ′,t+1 − Vℓ′,t+1)
1/s , (103)

λℓℓ′,t+1 = exp (βVℓ′,t+2 − Fℓℓ′,t+1 + uℓ,t+1 − Vℓ,t+1)
1/s . (104)

We get the following expression for the ratio of the discounted probabilities:

λℓℓ′,t (λℓ′ℓ′,t+1)
β

λℓℓ,t (λℓℓ′,t+1)
β

= exp (β (uℓ′,t+1 − uℓ,t+1) + Fℓℓ,t − Fℓℓ′,t + β (Fℓℓ′,t+1 − Fℓ′ℓ′,t+1))
1/s . (105)

Using the assumption imposed in Proposition 3.3 that Fℓℓ,t = 0 for all t and ℓ ∈ {m, c}, and that

Flm = Fml = F , the logarithm of this ratio can be written as

ln
λℓℓ′,t (λℓ′ℓ′,t+1)

β

λℓℓ,t (λℓℓ′,t+1)
β

=
β

s
(uℓ′,t+1 − uℓ,t+1)−

1− β

s
F. (106)

B.6 Testing for multiple equilibria

It is in principle possible for models like ours to exhibit multiple equilibria, not only multiple

stationary equilibria. For example, a city could start in an initial condition with low commuting,

but individual expectations of a return to high commuting might put the system on a self-fulfilling

path. In this subsection, we describe how we test – and find no evidence of – this possibility.

In particular, let us examine first a case where, starting from an initial condition that we expect

to converge toward the high-commuting equilibrium, the system might actually converge toward

the low commuting one. For cities with multiple stationary equilibria, we have always found 2

stable and one unstable stationary equilibrium. We therefore start by setting an initial condition

for Lc,0 above the unstable equilibrium. The top panels of Figure A11 set Lc,0/L = 0.15 for the

metro area of New York, which is above the unstable stationary equilibrium (dashed red line).

In Panel (a), we set as initial guesses for the time path of the value functions Vc and Vm
their respective value in the high-commuting stationary equilibrium. We require, as a convergence

criterion, both that the sup-norm relative distance between successive guesses of the value functions

is less than a given threshold and that the terminal value of these value functions is within the same

relative tolerance from the high-commuting stationary equilibrium value. We set this threshold to

10−6. The panel shows successive time paths of Lc/L at the indicated iteration number. In this

exercise, our value function iteration algorithm converges to a solution in a little more than 4,000

iterations.

Starting from the same Lc,0/L = 0.15, Panel (b) sets as initial guesses for the time path of the

value functions Vc and Vm their respective value in the low-commuting stationary equilibrium. We

impose the same convergence criterion, requiring this time that the terminal value of the value

functions converge to the low-commuting stationary equilibrium. In this case, our value function

iteration algorithm does not converge within 40,000 iterations. Panel (b) shows that along the
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iteration process, the guesses attempt to reach the low commuting equilibrium, but they move

progressively away from it.

The bottom panels of Figure A11 report analogous exercises where we instead start from an

initial condition below the unstable equilibrium, namely Lc,0/L = 0.10. In Panel (c), we again

attempt to converge toward the high-commuting equilibrium, with no success. In Panel (d), we

successfully converge towards the low-commuting equilibrium in about 3,600 iterations.

In unreported results, we have also experimented with other initial conditions farther away from

either side of the unstable equilibrium, and other cities of varying sizes (like San Francisco, CA,

Kansas City, MO-KS, Milwaukee, WI, Salt Lake City, UT, and Providence, RI), always reaching

the same conclusion.
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Figure A11: Tests for multiple equilibria

(a) Lc,0/L = 0.15, shooting toward
high-commuting equilibrium
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(b) Lc,0/L = 0.15, shooting toward
low-commuting equilibrium

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

0 200 400 600 800 1000 1200 1400 1600 1800
t

0.2

0.4

0.6

0.8

1.0

Lc/L

(c) Lc,0/L = 0.10, shooting toward
high-commuting equilibrium
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(d) Lc,0/L = 0.10, shooting toward
low-commuting equilibrium
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