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Abstract

We develop a perturbational technique to approximate equilibria of a wide class of discrete-time dy-
namic stochastic general equilibrium heterogeneous-agent models with complex state spaces, including
multi-dimensional distributions of endogenous variables. We show that approximating policy functions
and stochastic process that governs the distributional state to any order is equivalent to solving small
systems of linear equations that characterize values of certain directional derivatives. We analytically
derive the coefficients of these linear systems and show that they satisfy simple recursive relations
making their numerical implementation quick and efficient. Compared to existing state-of-the-art tech-
niques, our method is faster in constructing first-order approximations and extends to higher orders,
capturing the effects of risk that are ignored by many current methods. We apply our method to a broad
set of questions such as impacts of first- and second-moment shocks, welfare effect of macroeconomic
risk and stabilization policies, endogenous household portfolio formation, and transition dynamics in
heterogeneous agent general equilibrium settings.
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1 Introduction

We develop a numerical method to approximate equilibrium dynamics of a large class of discrete-time

heterogeneous agent (HA) models that feature aggregate and idiosyncratic shocks, and occasionally

binding borrowing constraints. Our method is based on approximation techniques that scale aggregate

shocks and consider Taylor expansions of equilibrium conditions with respect to that scaling parameter.

Our method can be used to quickly compute equilibrium effects of higher-moment shocks, welfare effects

of risk and macroeconomic stabilization policies, general equilibrium portfolio problems, and transition

dynamics to a new steady state in environments with rich heterogeneity.

Our approach intentionally focuses on maintaining the computational speed, flexibility, and ease-of-

use of traditional perturbational techniques commonly employed to solve and estimate representative

agent dynamic stochastic general equilibrium models, such as those implemented with the DYNARE

software package.1 We use recursive representations of equilibria and approximate equilibrium dynamics

around a non-stochastic steady state. In HA models, this steady state includes the invariant distribution

of individual state variables, which is a large- (usually, infinite-) dimensional object.

As the first step, we analytically derive expressions that fully characterize equilibrium dynamics to

an arbitrary order of approximation.2 These expressions have a simple mathematical structure and

proceed inductively. The equilibrium dynamics of a given order of approximation can be obtained by

solving a small dimensional linear system of equations. The coefficients in that system depend entirely

on objects solved using lower orders of approximation, and are related to each other via recursive

relationships. Our analytical expressions show that they depend only on the non-stochastic state-

transition kernel and policy functions that characterize the invariant distribution. Existing off-the-shelf

numerical methods to solve HA models without aggregate shocks routinely compute such objects. We

show that these objects plus the equations describing optimality and market clearing conditions can be

used to construct required coefficients quickly and efficiently.

We first describe our approach in a canonical HA economy in the spirit of Krusell and Smith (1998)

and show how to apply our method to find its first- and second-order approximations. As a by-product

of this analysis, we also show how to use our approach to characterize transition dynamics to a new

steady state, and to find equilibrium responses to second moment (volatility) shocks. We then extend

our approach to portfolio problems, i.e., general equilibrium models in which agents can invest in more

than one asset with different risk characteristics. Extending perturbational techniques to such problems

is challenging. Portfolio choices depend on the second-order properties of the model, such as risk premia

or covariances of equilibrium variables, but even the first-order equilibrium dynamics are affected by

1See Judd (1998) and Schmitt-Grohé and Uribe (2004) for an introduction to such methods.
2In the paper, we focus on the first and second orders, but it is straightforward to extend our approach to higher

orders.
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those choices.3 This breaks the convenient feature of perturbational techniques whereby the nth order

of approximation provides all information necessary to find the (n+ 1)
th

approximation order. We

show that this difficulty can be sidestepped because it is possible to simultaneously find agents’ optimal

portfolios, first-order approximation, and the second-order risk premium.

Our method builds on the perturbational techniques developed by Judd (1998) and Schmitt-Grohé

and Uribe (2004). When applied to HA models, the key bottleneck is in finding derivatives of policy

functions with respect to the state variable. When the number of state variables is small, finding this

derivative requires solving a quadratic matrix equation and choosing the stable roots. The theoretical

analogue of this object in HA environments is an infinite-dimensional Fréchet derivative that solves a

quadratic functional equation that is impossible to compute. A number of papers have tried to overcome

this problem by simplifying representation of the aggregate state. Reiter (2009), in his seminal work,

uses the histogram method to represent the invariant distribution as a finite number of mass points.

Subsequent work, e.g., Ahn et al. (2018); Childers (2018); Winberry (2018); Gornemann et al. (2021);

Bayer et al. (2022), further speeds up Reiter’s approach by pursuing additional model reduction steps.

Despite significant progress, this approach remains fairly slow and, as we explain shortly, does not

generally extend beyond the first order.

Our approach is different from this literature as we first derive exact analytical expressions for

approximation terms before implementing them numerically. The key insight of those analytical ex-

pressions is that one does not need to know the whole Fréchet derivative of policy functions. It is

sufficient to find values of those derivative in a sequence of appropriately chosen directions. This dis-

tinction is important: while the Fréchet derivative of a policy function for a certain variable is an

infinitely dimensional functional, the value of that derivative in a given direction is just a scalar. This

dramatically reduces the dimensionality of the system that one needs to solve in order build the approx-

imation. Moreover, those approximations solve linear rather than non-linear equations, do not require

finding stable roots or applying pruning algorithms that are necessary for higher order approximations

under standard perturbational methods (see, e.g., Kim et al. (2008)). These advantages allow one to

quickly find approximations even in settings with very rich heterogeneity.

Deriving analytical characterization is also important to ensure scalability of approximation tech-

niques beyond the first order. We show that applying perturbational techniques to a discretized his-

togram and its associated state transition matrix would return incorrect approximations starting from

the second order. By locally linearizing policy functions, the histogram method misses some of the terms

3Recent papers (e.g., Kaplan et al. (2018)) have emphasized the importance of multiple assets in quantitative HA
environments. These papers abstract from risk premium and the allocation of savings into different assets in those models
is determined by heterogeneity of costs of trading of those assets. Although, heterogeneous trading costs is straightforward
to incorporate into our baseline specification, the challenge really is to develop a computational technique that also allows
heterogeneity in risk characteristics to affect agents’ portfolio allocations.
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that must appear in a second- or higher-order expansion. In a calibrated Krusell-Smith economy we

show that these missing terms can be quantitatively large and significantly alter economic conclusions

drawn from numerical experiments.

Our technique is related to the approximation method developed by Boppart et al. (2018) and

Auclert et al. (2021), or ABRS. Those authors consider the sequence-space formulation of equilibria and

use impulse responses to one-time, unanticipated “MIT shocks” to recover a first-order approximation.

ABRS show that these responses are described by a linear system of equations that can be solved much

faster than approximations using perturbational techniques in the spirit of Reiter (2009). There is

a certain equivalence between our approach and that of ABRS. In particular, one can show that as

the grid size used in ABRS’s discretization goes to zero, their system of equations converges to the

analytical expressions we derive. Despite this equivalence, our technique has two advantages. Firstly,

our recursive approach improves on the computational speed of ABRS’s algorithm to compute first-

order approximations. Secondly, and more importantly, our approach naturally extends to higher orders

and thus expands the scope of analysis beyond MIT shocks.

Our paper is also related to the approximation method developed in Bhandari et al. (2021). Like

us, those authors use perturbational methods to derive analytically various orders of approximations of

equilibrium in HA economy, and then find those expressions numerically. Their approximation scaled

both aggregate and idiosyncratic shocks and it is not applicable to models in which policy functions

have kinks, for example due to the occasionally binding borrowing constraints. Our approach instead

approximates only with respect to aggregate shocks. This improves the approximation precision, since

our approach remains global with respect to idiosyncratic shocks, and allows us to incorporate such

kinks. It also makes analytical characterization of approximation terms significantly more challeng-

ing. Deriving those analytical expressions to build the approximations when policy functions are not

differentiable is one of the key contributions of this paper.

Our approach, like all perturbational methods, is local as it seeks to find equilibrium dynamics

when aggregate shocks are small and the economy is near its steady state. Our goal is to preserve key

advantages of these methods – computational speed, simplicity, and flexibility – in HA settings. There

exists a complementary strand of literature that aims to develop global methods. Such methods can be

used to find equilibria without requiring them to be nearby any specific economy but they tend to be

slower, harder to use, and often need to be tailored to the specific economic environment.4

The class of economies that we consider in this paper is discrete-time infinite horizon HA models

with distributional states. There is a parallel literature that studies continuous-time versions of these

4Krusell and Smith (1998) solve their economy using a global method that proved difficult to extend to general HA
settings. Some recent work extends global solution methods to more complex environments using machine learning
techniques. See Maliar et al. (2021), Kahou et al. (2021), Childers et al. (2022), and Han et al. (2021) for details.
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economies. See, for instance, Kaplan et al. (2018), Achdou et al. (2020), Ahn et al. (2018) in the context

of consumption-savings models; Alvarez and Lippi (2022) and Alvarez et al. (2023a) in the context of

price-setting models; and Bigio et al. (2023) for an application to public debt maturity. In related work,

Bilal (2023) and Alvarez et al. (2023b) use mean field game techniques to construct approximations

with aggregate shocks in these class of models. Their work shares with us the use of linear operators

over infinite-dimensional spaces to characterize the exact derivatives analytically.

The rest of the paper is organized as follows. Section 2 presents our baseline environment, Section 3

and 4 describes our approximation techniques in that environment, Section 5 show how these techniques

can be extended to models of transition dynamics, stochastic volatility, and portfolio problems. In

Section 6 we discuss relationship to different strands of literature in more details. Section 7 provides

numerical illustration of our techniques. Section 8 concludes.

2 Environment

In this paper we develop a novel method to obtain numerical approximations of equilibrium in wide

class of heterogeneous agent economies with aggregate and idiosyncratic shocks. To motivate our

representation of equilibrium conditions, we start with a familiar economy.

2.1 Prototypical Krusell and Smith economy

Consider the setting studied in Krusell and Smith (1998). The economy is populated by a continuum

of heterogeneous households and homogeneous firms. Each household supplies inelastically one unit of

labor that is subject to idiosyncratic efficiency shocks θi,t. Households receive wage Wt and save capital

ki,t that earns gross return Rt, that includes rental rate net of depreciation δ. Household i chooses

stochastic sequences {ci,t, ki,t}t to maximize utility function E0

∑∞
t=0 β

tU(ci,t) subject to the budget

constraint ci,t + ki,t ≤ Rtki,t−1 + Wt exp(θi,t) and the borrowing constraint ki,t ≥ 0. Initial ki,−1 and

θi,0 are given and the distribution of {ki,−1, θi,0}i over i is denoted by Ω0. Efficiency θi,t follows an

exogenous stationary stochastic process normalized so that
∫

exp(θi,t)di = 1.

Households rent capital and supply efficiency-adjusted labor to firms each period. Firms are com-

petitive and produce output using Cobb-Douglas technology with aggregate productivity exp(Θt) and

capital share of α. Wages Wt and rental rates Rt are determined by the market clearing conditions so

that supply of labor and capital by consumers is equal to the demand for those factors by firms.

The equilibrium in this economy can be represented by three set of conditions: the optimality

conditions of heterogeneous households, the optimality conditions of firms, and the market clearing

conditions. It would be helpful to keep conditions characterizing behavior of households separately

from the other conditions. Let ζi,t be the Lagrange multiplier on the borrowing constraint of household
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i in period t. We can write the optimality conditions of heterogeneous households as

RtUc(ci,t)− λi,t = 0, Uc(ci,t) + ζi,t − βEtλi,t+1 = 0 for all i, t, (1)

and

ci,t + ki,t −Rtki,t−1 −Wt exp(θi,t) = 0, ki,tζi,t = 0 for all i, t. (2)

Here, equation (1) is households’ Euler equations written in a form that will be particularly conve-

nient for numerical analysis, equation (2) has the budget constraint, and the the last equation is the

complementary slackness.

The optimality conditions of firms and market clearing conditions are

Wt − (1− α) exp (Θt)K
α
t−1 = 0, Kt −

∫
ki,tdi = 0 for all t, (3)

Rt + δ − 1− α exp (Θt)K
α−1
t−1 = 0 for all t. (4)

Given initial conditions {ki,−1, θi,0}i and Θ0, equations (1), (2), (3) and (4) fully summarize the equi-

librium dynamics of this economy.

2.2 The sequence-space representation

Motivated by this example, we now present a general representation of equilibrium conditions of a broad

class of HA economies. Let θ and Θ be vectors of idiosyncratic and aggregate shocks. Let x be the vector

of endogenous variables chosen by the agents subject to idiosyncratic shocks and X be the vector of all

other endogenous variables. We refer to x and X as idiosyncratic and aggregate endogenous variables.

Let ai,t−1 ∈ xi,t−1 and At−1 ∈ Xt−1 be vectors of individual and aggregate endogenous variables that

enter into the the time t equilibrium conditions. We will write them explicitly as

a = px, A = PX

for some selection matrices p and P. Let Yt be the stacked vector of all relevant aggregates, Yt :=

[Θt, At−1, Xt,EtXt+1]T.5

The optimality conditions of heterogeneous agents are represented as

F (ai,t−1, θi,t, xi,t,Ei,txi,t+1, Yt) = 0 for all i, t (5)

which initial conditions (ai,−1, θi,0). Let Ω0 the the (cumulative) distribution of (ai,−1, θi,0). The re-

maining equilibrium conditions, that include optimality conditions of agents not subject to idiosyncratic

shocks, market clearing conditions, budget constraints for the government, etc, are represented as

G

(∫
xidi, Yt

)
= 0 for all t (6)

5Keeping track of variables such as At−1 and EtXt+1 in Yt allows us to represent equilibria of economies with slow
adjustment of aggregates such as settings with capital adjustment costs, and various types of real and nominal rigidities.
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with some initial Θ0 and A−1.

It is easy to see how our example of the Krusell and Smith economy fits into this representation.

In that example, we have xi,t = [ki,t, ci,t, λi,t, ζi,t]
T, Xt = [Kt,Wt, Rt]

T, ai,t = ki,t, At = Kt. With

these definitions, mapping F captures optimality conditions (1) and (2), while mapping G captures

conditions (3) and (4).

We postulate that individual optimality conditions F have an argument Ei,txi,t+1 as opposed to a

seemingly more general argument Ei,tf(xi,t+1, θi,t+1, Yt+1) for some nonlinear vector-valued function

f . This choice is without loss of generality, as we can always define a new vector x′i,t := f(xi,t, θi,t, Yt)

and incorporate it into xi,t so that the optimality conditions take form (5). For instance, in the Krusell

and Smith economy, we used the variable λi,t to represent household’s Euler equation Uc(ci,t) + ζi,t =

βEi,tUc(ci,t+1)Rt+1 in this form (see equation (1)). The linearity embedded in Ei,txi,t+1 is convenient

numerically and increases the computation speed of the method that we develop.

In order to streamline our exposition, for now we assume that θi,t, Θt and ai,t are scalars; we

discuss the case when they are finite vectors in the appendix. We assume that θi,t and Θt follow AR(1)

processes

Θt = ρΘΘt−1 + Et, (7)

θi,t = ρθθi,t−1 + εi,t. (8)

Here, Et is a mean-zero random variable drawn independently across time from a distribution with

bounded support, εi,t is a mean zero random variable drawn independently across time and agents with

some probability distribution µ, coefficients ρΘ and ρθ satisfy |ρΘ|, |ρθ| < 1.

An equilibrium consists of stochastic processes {Xt (Et)}t,Et and {xi,t (Et, εti)}i,t,Et,εt that satisfy

(5) – (8) given some initial conditions Z0 = [Θ0, A−1,Ω0]. Our main focus is on characterizing the

equilibrium stochastic process {Xt}t, which is relevant for most macroeconomic applications. As a by

product, we also describe a procedure to recover the stochastic processes {xi,t}i,t. We refer to equations

(5) and (6) as the sequence-space representation of equilibrium.

2.3 The state-space representation

Significant gains in both computational speed and flexibility of our approach can be attained by using

a recursive representation of the equilibrium. The aggregate state of the system (5) and (6) consists

of Θt, At−1 and the joint distribution Ωt over {(ai,t−1, θi,t)}i. We use Ωt 〈a, θ〉 to denote the mass of

agents with θi,t ≤ θ and ai,t−1 ≤ a. Let Zt = [Θt, At−1,Ωt]
T be the aggregate state.6 We use tildes to

denote policy functions in the recursive representation. Thus, X̃ (Z) are policy functions for aggregate

6It is possible for some of the variables in Zt to be redundant. For example, in the Krusell and Smith economy
At−1 =

∫
adΩt
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variables and x̃ (a, θ, Z) are policy functions for individual variables. The recursive representation of

equilibrium conditions is given by

F
(
a, θ, x̃,Eε,E x̃, Ỹ

)
= 0 for all (a, θ, Z) , (9)

and

G

(∫
x̃dΩ, Ỹ

)
= 0 for all Z, (10)

as well as the Law of Motion (LoM) for the aggregate distribution Ω̃ (Z) defined as

Ω̃ (Z) 〈a′, θ′〉 =

∫ ∫
ι (ã(a, θ, Z) ≤ a′) ι(ρθθ + ε ≤ θ′)µ (ε) dεdΩ 〈a, θ〉 for all Z, (11)

and identities

ã = px̃, Ã = PX̃, Ỹ =
[
Θ, A, X̃,EEX̃

]T
. (12)

We use Eε,E and EE to denote conditional expectation of future policies with respect to (ε, E) and E ,

respectively, that is,

Eε,E x̃ =

∫
x̃
(
ã(a, θ, Z), ρθθ + ε, ρΘΘ + E , Ã (Z) , Ω̃ (Z)

)
dµ (ε) dPr (E) ,

EEX̃ =

∫
X̃
(
ρΘΘ + E , Ã (Z) , Ω̃ (Z)

)
dPr (E) .

This recursive system is initialized by some initial conditions Z0.

3 The perturbational approach

We approximate equilibria using a “small-noise” perturbation approach which is a popular in both rep-

resentative agent (e.g., Schmitt-Grohé and Uribe (2004) or Judd (1998)) and heterogeneous agent (e.g.,

Reiter (2009)) macroeconomic settings. Under this approach, one considers a sequence of economies

parameterized by a scalar parameter σ ≥ 0 that scales the exogenous aggregate shocks, that is,

Θt = ρΘΘt−1 + σEt. (13)

The state-space representation must hold for all σ. To obtain approximations of the desired stochastic

economy, corresponding to case σ = 1, one uses various orders of Taylor expansions of the state-space

representations (8)-(13) with respect to σ evaluated at σ = 0. The σ = 0 case corresponds to the

equilibrium of the deterministic economy, that is typically easy to find. We refer to this deterministic

economy as the zeroth-order approximation. It will be helpful to describe it formally.
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3.1 The zeroth-order economy

Let X̃ (Z;σ), x̃ (a, θ, Z;σ), Ω̃ (Z;σ) be policy functions in the perturbed economy, i.e., the economy

described by equations (8) – (13). The σ = 0 economy plays an important role in our approximations.

We use bars to denote policy functions in the zeroth-order economy, so that X(Z) stands for X̃ (Z; 0).

Let Θ(Z) = ρΘΘ and Z (Z) := [Θ(Z), A(Z),Ω(Z)]T. We use Z∗ = [0, A∗,Ω∗]
T

to denote its steady

state with Ω∗ representing the invariant distribution of the HA model without aggregate shocks. When

Z = Z∗, we drop explicit reference to the aggregate state, so that X will be understood to mean X̃(Z∗; 0)

or, equivalently, X(Z∗). The same convention will apply to all other policy functions. Let Λ(a′, θ′, a, θ)

be the transition kernel from (a, θ) to (a′, θ′) under policy function a(a, θ) and the stochastic process

(8) for θ.

Throughout this section, we maintain the following assumption.

Assumption 1. Let Zt := Z(Z(....Z︸ ︷︷ ︸
t times

(Z0))).

(a) X̃(Z;σ) is sufficiently differentiable7 at (Z, σ)=(Z∗, 0); x̃ (a, θ, Z;σ) is continuous and piecewise

sufficiently differentiable at (Z, σ)=(Z∗, 0) for all (a, θ). The points of non-differentiability (a, θ̃∨j (a, Z;σ), Z, σ)

are described by a finite number of functions {θ̃∨j (a, Z;σ)}j, where {θ̃∨j (a, Z;σ)}j are sufficiently differ-

entiable and all θ
∨
j (·) are invertable given (Z, σ) with a∨j denoting the inverse of θ

∨
j ;

(b) limt→∞ Zt(Z0) = Z∗ for all Z0 in a neighborhood of Z∗;

(c) The marginal of Ω∗ with respect to a has a finite number of mass-points {a∗n}n, i.e., Ω∗ has

density ω̊∗(a, θ) +
∑
n ξ
∗
n(θ)δ(a − a∗n), where ω̊∗(a, θ) and ξ∗n(θ) are continuous and δ is a Dirac delta

function.

Parts (a) and (b) are generalizations of differentiability and stability conditions that are required to

apply perturbational methods in representative agent settings (Blanchard and Kahn (1980), Schmitt-

Grohé and Uribe (2004)).8 Unlike that approach, which usually requires all policy functions to be

differentiable at the steady state, we permit individual policy functions to have kinks. The set of

points at which kinks occur is described by {θ̃∨j (a, Z;σ)}j . Thus, the jth kink of x̃(a, ·, Z;σ) occurs

at θ = θ̃∨j (a, Z;σ). Condition (c) permits the marginal of the invariant distribution Ω∗ to have a

finite number of mass points but requires it to have a smooth density otherwise. A direct implication of

conditions (a) and (c) is that the set of points for which x̃ is not-differentiable at (Z∗, 0) is of Ω∗-measure

zero. This also implies that the integral
∫
x̃dΩ is differentiable at (Z∗, 0).

7By “sufficiently differentiable” we mean that policy functions are differentiable at least n times when we consider nth

order of approximation. In multi-dimensional cases, all derivatives are understood to be Fréchet derivatives.
8In RA settings its possible to find conditions on the primitives under which policy functions are sufficiently differ-

entiable (see, e.g., Jin and Judd (2002), who show smoothness under the assumption that equilibrium conditions are
described by analytic functions). This is much harder to do in HA models and we simply assume these conditions directly.
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As an illustration, consider our example of the Krusell-Smith economy. In that economy, policy

function k(k, θ) is continuous, strictly increasing for θ ≥ θ
∨

(k) and equal to zero for θ ≤ θ
∨

(k), where

θ
∨

(k) is the level of θ at which the borrowing constraint starts to bind. Since the distribution of

idiosyncratic shocks µ is a density, the marginal of Ω∗ can have at most one mass point, at k = 0. Thus,

its density takes the form ω̊∗(k, θ) + ξ∗(θ)δ(k), where ξ∗ (θ) is the density of agents with productivity

θ at k = 0.

For the rest of the paper, we assume that policy function x (·, θ) has at most one kink, at some

a∨ (θ). This done merely to simplify the exposition. The extension of our formulas to accommodate

finite number of kinks is immediate.

3.2 Derivatives and generalized functions

Since our perturbational approach involves approximations of complicated objects, it will be useful to

develop notation for derivatives systematically and describe their properties. We use Fa(a, θ), Fx(a, θ),

Fxe(a, θ), FY (a, θ) be derivatives of F with respect to a, x, Eε,Ex and Y evaluated at individual state

(a, θ) and (Z, σ) = (Z∗, 0). Similarly Gx and GY denotes derivatives of G with respect to each of its

arguments, evaluated at (Z, σ) = (Z∗, 0). Their higher-order analogues are denoted by Fxx(a, θ), GxY ,

etc.

We use xa(a, θ) and xaa(a, θ) to represent derivatives of policy functions with respect to a. Since

policy functions may have kinks, these derivatives are not defined in the classical sense at those kinks.

To handle this, we treat all derivatives of individual policy functions as generalized or distributional

derivatives and represent them as generalized functions.9 Since generalized functions are infinitely

differentiable (in the distributional derivative sense), they allows us present a uniform treatment of

approximations at any order. When we want to distinguish between generalized and classical func-

tions, we use symbol˚to denote the latter. To see the relationship between the two, let x∆ (θ) =

lima↓a∨ x(a, θ) − lima↑a∨ x(a, θ) and x∆
a (θ) be defined analogously xa (·, θ). Obviously, x∆ (θ) = 0 by

continuity of x (·, θ) but x∆
a (θ) 6= 0 in the presence of kinks. The relationship between generalized and

classical derivatives is given by

xa(a, θ) = x̊a(a, θ) + δ (a− a∨ (θ))x∆ (θ)︸ ︷︷ ︸
=0

,

xaa(a, θ) = x̊aa(a, θ) + δ (a− a∨ (θ))x∆
a (θ) .

These relationships imply that integrals of xa and x̊a always agree, but integrals of xaa differ from x̊aa

9A generalized function is a linear functional over some space of functions. For instance, δ is a generalized function
defined by the operation δ[φ] =

∫
φ(x)δ(x)dx = φ(0) for some function φ. There is a large mathematical literature on

generalized functions (also referred to as distributions) and distributional derivatives, see Kanwal (1998) for an introduction
to this subject.

9



by terms involving jumps at the kinks, e.g.,∫
xaadΩ∗ =

∫
x̊aadΩ∗ +

∫
x∆
a (θ)ω∗ (a∨ (θ) , θ) dθ,

where ω∗ (a, θ) := ω̊∗(a, θ) +
∑
n ξ
∗
n(θ)δ(a − a∗n). Note that ω∗ is a generalized function as well and

notations such as
∫
xdΩ∗ and

∫
xω∗dθda are equivalent under this convention.

We use notation such as XZ , xZ (a, θ) and ΩZ to denote (the Fréchet) derivatives of zeroth-order

policy functions with respect to Z, evaluated at Z = Z∗.10 The derivative of Z takes the form ZZ =[
ΘZ , AZ ,ΩZ

]
T. Derivatives XZ are complicated linear operators. We use XZ · Ẑ to denote the value of

derivative XZ evaluated in direction Ẑ. Similar notation applies to higher orders. For example, XZZ

denotes the second-order Fréchet derivative (a bilinear map) and XZZ ·
(
Ẑ ′, Ẑ ′′

)
denotes its value in

directions Ẑ ′, Ẑ ′′.

It is useful to keep in mind the dimensionality of different objects. The dimensionality of XZ is

equal to the dimensionality of X times dimensionality of Z, and the dimensionality of XZZ is the

dimensionality of X times the square of that of Z. In HA economies Z is a large (theoretically, infinite)

dimensional object which makes computing and storing such derivatives very costly. On the other

hand, dimensionalities of XZ · Ẑ, XZZ ·
(
Ẑ ′, Ẑ ′′

)
and their higher-order generalizations are equal to

dimensionality of X, i.e., to the number of aggregate variables in the model. These are small-dimensional

objects in most HA models that are easy to compute and store. Our perturbational approach builds on

the idea that one can represent equilibrium approximations using the Fréchet derivatives of X evaluated

in an appropriate set of directions.

Derivatives of individual policy functions such as xZ · Ẑ or xZZ ·
(
Ẑ ′, Ẑ ′′

)
and cross-partials xaZ · Ẑ

will be understood to be represented by generalized functions. We show in the appendix that they

satisfy xZ (a, θ) · Ẑ = x̊Z (a, θ) · Ẑ and

xaZ (a, θ) · Ẑ = x̊aZ (a, θ) · Ẑ + δ(a− a∨(θ))x∆
Z (θ) · Ẑ,

xZZ (a, θ) ·
(
Ẑ ′, Ẑ ′′

)
= x̊ZZ (a, θ) ·

(
Ẑ ′, Ẑ ′′

)
+ δ(a− a∨(θ))x∆

a (θ)
(
a∨Z(θ) · Ẑ ′

)(
a∨Z(θ) · Ẑ ′′

)
.

Here a∨Z(θ) · Ẑ represents how the kink moves when the aggregate state is changed in direction Ẑ.

Finally, we use notation such as Xσ, Xσσ to denote derivatives policy functions such as X̃ (Z;σ) with

respect to σ, evaluated at (Z, σ) = (Z∗, 0). We refer to σσ derivatives as precautionary motives.

10The Fréchet derivative XZ is a linear operator that satisfies lim‖Ẑ‖→0

∥∥∥X (Z∗ + Ẑ
)
−X (Z∗)−XZ · Ẑ

∥∥∥ / ∥∥∥Ẑ∥∥∥ for all

Ẑ. Its value coincides with that of the directional (Gateaux) derivative, XZ · Ẑ = limα→0

(
X
(
Z∗ + αẐ

)
−X (Z∗)

)
/α.

Intuitively, XZ is just the gradient of X, i.e., the vector of partial derivatives of X with respect to each of the dimensions
of Z. We refer to XZ · Ẑ as the “value of that derivative in direction Ẑ”. This terminology is slightly different from the
one used by Luenberger (1997) and is meant to highlight the economic meaning of these objects. Luenberger (Chapter

7) would refer to XZ · Ẑ as the “Fréchet differential of X (at Z∗) with increment Ẑ”.
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3.3 Numerical solution of the zeroth-order economy

Existing off-the-shelf numerical techniques can be used to find the zeroth-order economy and we treat

the equilibrium of that economy as known for the purposes of our approximation. Moreover, many

standard algorithms already return the output that is necessary to construct many of the derivatives

that we discussed above. We illustrate how this can be done when policy functions are approximated

using a finite set of splines as basis functions.11 As we discuss below, using splines is convenient not only

for interpolating policy functions but also for evaluating their derivatives and conditional expectations.

Let NX , NY and Nx be dimensions of vectors X, Y and x (a, θ).12 Discretize the space of (a, θ) into

NΩ points, where NΩ is large enough to be practical.13 Let (a, θ)[i] be the value of the ith point on the

grid. We use arrows to denote discretized analogues of theoretical objects, for example −→x denotes the

values of function x on the grid on NΩ points. We keep track of kinks in policy functions by a set of

grid points ℵ, where i ∈ ℵ denotes the point (θ, a)[i] just below the kink while (θ, a)[i+1] is just above

the kink.

Standard algorithms return a transition probability matrix, an invariant distribution, and values

of policy functions on a grid. The transition probability matrix
−→
Λ is a sparse NΩ × NΩ matrix with

−→
Λ [i′, i] being the probability that an agent who has state (a, θ)[i] in the current period end up in

state (a, θ)[i′] in the next period. The invariant distribution
−→
dΩ∗ is the NΩ dimensional vector that

satisfies
−→
dΩ∗ =

−→
Λ
−→
dΩ∗. Finally, individual policy functions are stored as a vector of coefficients on a

set of common basis functions. Let
{
φj (·, ·)

}Nsp
j=1

be a collection of basis functions, where each φj is

differentiable and maps from (a, θ) into R and Nsp << NΩ. Individual policy functions are stored

in terms of Nsp × NΩ matrix Φ with elements Φ[j, i] = φj
(

(a, θ)[i]

)
and Nx × Nsp matrix x# so

x(a, θ) ≈
∑
j x

#
j φ

j(a, θ). Using these two objects, the Nx ×NΩ matrix of values of policy functions −→x

can be recovered by

−→x = x#Φ. (14)

Similarly, it is easy to compute derivatives of policy functions with respect to a. Let φja be the deriva-

tive of φj with respect to a and construct Nsp × NΩ matrix Φa with elements Φa[j, i] = φja((a, θ)[i]).

The computational analogues of xa is recovered as in (14), i.e., −→x a = x#Φa.14 Since splines ap-

proximate kinked functions with differentiable ones, the theoretical distinction between generalized

11In our application we use quadratic splines, though the same algorithm works with linear splines as those derivatives
are defined almost everywhere.

12Our definition of Y includes vectors X, Θ and EEX. We did that to show the general framework that encompasses
many HA environments. Of course, there is no need to include into Y those variables that do not affect equilibrium
conditions. For example, in the Krusell and Smith economy, we would set Y = [K,Θ,W,R]T and so NY = 4 in that
economy, while NX = 3 and nx = 4.

13For Krusell and Smith type applications, one generally uses 1000-5000 points per realization of the idiosyncratic
shocks. See Reiter (2009) or discussions in the handbook chapter of Algan et al. (2014) for this convention.

14In addition it is possible to compute x#
a directly by differentiating the F function with respect to a. The computational

analogue of xaa can then be recovered as x#
a Φa.
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and classical derivatives disappears and integrals such as
∫
xaadΩ∗ can be computed as a matrix

multiplication −→x aa
−→
dΩ. The same approach extends to compute conditional expectations, such as

Eε [x|a, θ] =
∫
x (a (a, θ) , ρθθ + ε) dµ (ε). Discretizing the distribution ε into ε1, ..., εK with proba-

bilities µ1, ..., µK , we construct matrix Φe with elements Φe [j, i] =
∑K
k=1 φ

j
(
a (a, θ)[i] , ρθ[i] + εk

)
µk

on the spline grid i = 1, ..., NΩ and then recover E [x|a, θ] as x#Φe. Substantial speed ups can be

obtained by pre-computing all the basis matrices and storing them efficiently as sparse matrices. Pre-

computing basis matrices allows us to reduce all necessary calculations to matrix algebra without any

further nonlinear function calls.

It is easy to recover many of the derivatives discussed in Section 3.2 directly from the zeroth-

order objects. Automatic differentiation of (9) and (10) yields various derivatives of mappings F and

G. Evaluating those derivatives using the steady-state policy functions x gives Fa(a, θ), GxY , etc.

We now turn to describing our approach of recovering the values of derivatives such as XZ · Ẑ or

XZZ ·
(
Ẑ ′, Ẑ ′′

)
that are necessary to characterize equilibrium responses to aggregate shocks to various

orders of approximations.

4 Approximation of equilibrium responses to aggregate shocks

In this section, we describe our approximation of equilibrium responses to aggregate shocks. Up until this

point, our approach closely mirrored traditional applications of perturbational techniques (e.g., Schmitt-

Grohé and Uribe (2004) or Reiter (2009)) in that we found the zeroth-order economy and some of

derivatives of policy functions. The usual next step is to differentiate the equilibrium conditions around

the deterministic steady-state to find
(
XZ , ZZ

)
from a stable solution of a quadratic matrix equation.

However, the computational cost of doing that scales with the dimension of Z and exponentially so for

higher-orders.

We proceed differently. We start from the observation that in order to construct the equilibrium

approximation, one does not need to know XZ , but its value in a certain sequences of directions,

{XZ ·Ẑt}t, where sequence of directions {Ẑt}t can be characterized analytically. Unlike
(
XZ , ZZ

)
, which

are large dimensional objects, XZ · Ẑt is a small vector. We derive the expressions for coefficients of a

linear system of equations that determines {XZ ·Ẑt}t. These formulas are easy to implement numerically

as they require simple operations with objects described in Section 3.3. This allows us to compute

the first-order approximation much faster and more efficiently relative to traditional applications of

perturbational techniques.

Our approach has several additional advantages. The notion of representing equilibrium approxima-

tions using directional derivatives extends to second- and higher-orders. In fact, we show the formulas

characterizing second-order approximations closely mirror those of the first order, and their implementa-
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tion recycles many of the same objects that were constructed to compute the first-order approximation.

Finally, we recover equilibrium approximations of any order by solving only linear equations. It

obviates the need to use additional refinements for standard perturbational techniques, such as finding

stable roots of quadratic matrix equations to characterize the first order, or to introduce “pruning” to

find the second-order approximations, see Kim et al. (2008). All this further simplifies our approach.

4.1 First-order approximations

Our starting point is that equilibrium is the stochastic process Xt(Et) that can be constructed from

policy functions as follows

Xt(Et) = X̃
(
Zt
(
Et;σ

)
;σ
)∣∣∣
σ=1

, (15)

where Zt(Et, σ) is defined recursively as Z0 = [σE0, A,Ω∗] and

Zt
(
Et;σ

)
=
[
ρΘΘt−1

(
Et−1;σ

)
+ σEt, Ã

(
Zt−1

(
Et−1;σ

)
;σ
)
, Ω̃
(
Zt−1

(
Et−1;σ

)
;σ
)]
. (16)

We can take the first order Taylor expansion with respect to σ of the right hand side of (15) to obtain

the first-order approximation. Using well-known results that precautionary motives are absent to the

first-order (see Schmitt-Grohé and Uribe (2004)), Xσ = 0, we obtain the following lemma.

Lemma 1FO. To the first-order approximation, Xt satisfies

Xt

(
Et
)

=X +

t∑
s=0

XZ,t−sEs +O
(
‖E‖2

)
,

where XZ,t := XZ · Ẑt and the sequence of directions
{
Ẑt

}
t

satisfies recursion Ẑ0 = [1, 0,0]
T

and

Ẑt := ZZ · Ẑt−1.

We now explain the economic intuition for the characterization in Lemma 1FO. The sequence of

directions
{
Ẑt

}
t

traces out the response of the aggregate state to a one-time unit shock to Θ0. Since

A−1 and Ω0 are pre-determined in period 0, the aggregate state changes by Ẑ0 = [1, 0,0]
T

. In the next

period, policy functions respond to this change in state by Ẑ1 =
[
ρΘ, AZ · Ẑ0,ΩZ · Ẑ0

]T
, which combines

both the decay ρΘ of the exogenous component of the aggregate state and endogenous policy responses.

Iterating forward, we obtain
{
Ẑt

}
t
. The sequence of values

{
XZ,t

}
t

capture the response of policy

functions to this change in state. Sequence {XZ,t}t represents what is often referred to colloquially

in the literature as an impulse response to a “MIT shock”. Analogously, xZ,t (a, θ) := xZ (a, θ) · Ẑt
captures the effect of the MIT shock in period 0 on policy function of individual who has states (a, θ)

at date t.

Lemma 1FO re-formulates in the state-space representation the insight in Boppart et al. (2018) that

one can construct first-order approximations to stochastic economies using impulse responses to MIT

13



shocks. The main take away for our purposes is that finding the first-order equilibrium approximation

is equivalent to finding values of the Fréchet derivative XZ in a sequence of directions
{
Ẑt

}
t
. In order

to characterize
{
XZ,t

}
, we start by taking a Fréchet derivative of (10) and evaluate it in direction Ẑt:

Gx

(∫
xdΩ

)
Z,t

+ GY Y Z,t = 0, (17)

where

Y Z,t =
[
ρtΘ,PXZ,t−1, XZ,t, XZ,t+1

]T
. (18)

Recall that Gx and GY are already known from the zeroth-order economy. Y Z,t consists of the first-order

equilibrium responses
{
XZ,t

}
that we want to find as well as the rate of decay for exogenous aggregate

variables.

To proceed further, we simplify
(∫
xdΩ

)
Z,t

. Using the definition of directional derivatives and

continuity of policy functions at the kinks, it is easy to show that(∫
xdΩ

)
Z,t

=

∫
xZ,tdΩ∗ +

∫
xdΩ̂t. (19)

The first-order change in the aggregation
∫
xdΩ consists of two components: the effect of the shock

on individual policy functions,
∫
xZ,tdΩ∗, and the effect of the shock on the aggregate distribution,∫

xdΩ̂t. In order to characterize these two components, we use two intermediate results. First, we show

that there is a tight relationship between responses of individual and aggregate endogenous variables

to aggregate shocks. We obtain it by applying the implicit function theorem to mapping F defined in

equation (9) and evaluating those expressions at the deterministic steady-state.

Lemma 2FO. For any t,

xZ,t (a, θ) =
∞∑
s=0

xs (a, θ)Y Z,t+s, (20)

where matrices xs (a, θ) are given by

x0 (a, θ) =− (Fx (a, θ) + Fxe (a, θ)Eε [xa|a, θ] p)
−1 FY (a, θ) , (21)

xs+1 (a, θ) =− (Fx (a, θ) + Fxe (a, θ)Eε [xa|a, θ] p)
−1 Fxe (a, θ)Eε [xs|a, θ] (22)

away from the kinks and xs (a∨(θ), θ) = 0 at the kinks.

Equation (20) shows that change in individual policy functions xZ,t is equal to the future changes in

aggregates
{
Y Z,t+s

}
s

weighted with matrices {xs}s. Matrix xs has a natural economic interpretation.

It captures how much individual change their policy functions today if they expect the aggregates to

change s periods in the future, ∂xt/∂Yt+s. The most important part of Lemma 2FO is that it provides

explicit formulas for {xs}s. The right hand side of (21) is known from Section 3.3 and so x0 can be
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constructed from the zeroth-order economy using linear algebra operations. This allows the construction

of {xs}s>0 sequentially using (22).

The second intermediate result describes the Law of Motion for Ω̂t, that helps simplifying the second

term on the right hand side of (19). It is helpful to define three operators,M, L(a), and I(a) on a space

of generalized functions. For a generalized function y,

(M · y) 〈a′, θ′〉 :=

∫
Λ(a′, θ′, a, θ)ω∗ (a, θ) y (a, θ) dadθ,(

L(a) · y
)
〈a′, θ′〉 :=

∫
Λ(a′, θ′, a, θ)aa (a, θ) y (a, θ) dadθ,

I(a) · y :=

∫
xa(θ, a)y (θ, a) dadθ.

OperatorsM and L(a) take a function y(a, θ), multiply it with ω∗ and aa, respectively, and integrate

it over Λ(a′, θ′, ·, ·) for various values of (a′, θ′). Operator I(a) integrates y weighted with xa. To explain

the economic forces captured by these operators, we start with the following lemma, which we obtain

by explicitly taking derivatives of the LoM of Ω defined in equation (11).

Lemma 3FO. For any t, d
dθ Ω̂t satisfies a recursion d

dθ Ω̂0 = 0 and

d

dθ
Ω̂t+1 = L · d

dθ
Ω̂t −M · aZ,t. (23)

Equation (23) describes how the aggregate distribution Ωt is affected by aggregate shocks. On impact

of the shock in period 0, the distribution is pre-determined and thus d
dθ Ω̂0 = 0. Individuals change

their choices in period 0. In particular, individual (a, θ) changes her savings behavior by aZ,0 (a, θ).

Operator M aggregates these individual-level changes by weighting them with the invariant density

ω∗ and returns the change in the distribution in period 1, d
dθ Ω̂1 = −M · aZ,0. Thus, M captures the

first-order effect of changes in individual policy functions on the aggregate distribution next period.

For all t > 0, the distribution Ωt is affected by two forces. One is mechanical: if the distribution Ωt−1

changed in the previous period, Ωt would also change even if individual policy functions did not change.

This mechanical effect is captured by the operator L(a). The aggregate distribution in period t + 1 is

also affected by the response of individuals in period t, and this behavioral effect is captured byM·aZ,t.

To make recursion (23) operational, note that
∫
xdΩ̂t = −I · ddθ Ω̂t using integration by parts. This

leads to the following corollary that characterizes the derivative of the aggregation equation (19).

Corollary 1FO. For any t, (∫
xdΩ

)
Z,t

=

∞∑
s=0

Jt,sY Z,s

where {Jt,s}t,s is characterized by the following linear recursive system

Jt,s =

∫
xs−tdΩ∗ + I(a) · At,s, (24)
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At,s = L(a) · At−1,s +M · as−t−1, (25)

with convention that as = pxs and at = 0 for t < 0 and A0,s = 0 for all s.

This corollary shows that derivative
(∫

xdΩ
)
Z,t

can be expressed purely in terms of
{
XZ,s

}
s

weighted with matrices {Jt,s}t,s that is described by a linear recursive system of equations (24) and (25)

with all all objects known from the zeroth-order economy. As we explain in Section 4.1.1, numerically

implementing (24) and (25) from the zeroth order solution is quick and efficient. In fact, these equations

can be simplified to

Jt,s = Jt−1,s−1 + I(a) ·
(
L(a)

)t−1

· M · as, (26)

with initial conditions J0,t =
∫

xsdΩ∗, Jt,0 = 0.

Combine Corollary 1FO and equation (17) to obtain the main result of this section:

Proposition 1FO.
{
XZ,t

}
t

is the solution to a linear system

Gx

∞∑
s=0

Jt,sY Z,s + GY Y Z,t = 0, (27)

with Y Z,t given by equation (18) and PXZ,−1 = 0.

This proposition provides analytical expressions for all the coefficients in the linear system that

determine {XZ,t}t. Stability condition in Assumption 1 imply that XZ,t → 0 as t → 0, so this linear

system can be solve by truncating at some sufficiently large T , imposing XZ,t = 0 for all t > T .

4.1.1 Numerical implementation of the first-order approximation

To solve the truncated linear system (27), we only need to construct {Jt,s}t,s since Gx and GY were

already constructed in Section 3.3. From (26), constructing {Jt,s}t,s requires the sequence {xt}t and

operators
{
I(a),L(a),M

}
.

Sequence {xt}t is recovered from the recursion (21) and (22). All terms that appear in that formula

have already been constructed in Section 3.3. Using the same basis functions as we used for the policy

functions, the sequence of functions {xt}t is stored as a set of coefficients {x#
t }Tt=1 on the course grid

of Nsp points, where each x#
t is an Nx × NY × Nsp array so that −→x t = x#

t Φ. The coefficient vectors{
x#
t

}
are given by15

x#
0Φ[:, j] =−

(
Fx[j] + Fxe [j]

(
px#

a

)
Φe[:, j]

)−1
FY [j],

x#
s+1Φ[:, j] =−

(
Fx[j] + Fxe [j]

(
px#

a

)
Φe[:, j]

)−1
Fxe [j]x

#
s+1Φe[:, j].

The numerical analogue of operators I(a), L(a), M are matrices
−→
I (a),

−→
L (a), and

−→
M with elements

−→
I (a)[:, i] = −→x a[i],

−→
L (a)[i′, i] =

−→
Λ [i′, i]−→a a[i] and

−→
M[i′, j] =

∑
i

−→
Λ [i′, i]

−→
dΩ∗[i]Φ[i, j]16 that are trivial to

15Here
−→
F x[j] represents the matrices Fx(a, θ) evaluated at the jth element of the coarse grid points used to approximate

splines. For a given x#
t , x#

t Φ[:, j] represents splines approximation evaluated at the jth element of the coarse grid points.
16Note that matrix

−→
M is constructed to operate on the vector of spline coefficients.
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construct from the objects built in Section 3.3.
−→
L (a) and

−→
M are large but sparse matrices, and so

computing {Jt,s}t,s using

Jt,s = Jt−1,s−1 +
−→
I (a)

(−→
L (a)

)t−1−→
Ma#

s

can be done very quickly, where a#
s = px#

s . Once {Jt,s}t,s are constructed, the truncated system of

equations (27) is solved for
{
XZ,t

}T
t=0

via a TNX × TNX matrix inversion.

Once
{
XZ,t

}T
t=0

are computed it is also straightforward to compute how both individual policies

and the distribution respond to shocks. Using equation (20), x#
Z,t can be computed as

∑T−t
s=0 x#

s Y Z,t+s.

Similarly, the numerical analogue of
{
d
dθ Ω̂t

}
t

is a sequence of NΩ dimensional vectors
{−−→
d
dθΩ

}
t

that is

constructed recursively by
−−→
d
dθΩ0 = 0 and

−−→
d
dθΩt =

−→
L (a)
−−→
d
dθΩt−1 −

−→
Ma#

Z,t. Finally, once x#
Z,t is known, it

is possible to construct −→a ∨Z,t[j] for all j ∈ ℵ as it depends on x∆
Z,t(θ). We provide a formula for it in

the appendix. Although
{−→a ∨Z,t} are not necessary for the first-order responses (see the discussion in

Section 3.2), they will appear in the expressions for higher-order approximations.

4.2 Second-order approximations

Our approach naturally extends to approximations beyond the first order. In this section, we show that

by differentiating twice equations (9), (10) and (11) we obtain linear systems of equations characterizing

the second-order equilibrium responses. Moreover, those systems use several of the operators that were

introduced in the first-order approximation.

Before we start, it is helpful to illustrate the general structure of second-order approximations using

a simple example. Suppose we have a compounded function f (g (ξ)), where ξ is a scalar and f and g

are smooth, scalar-valued functions with their first two derivatives denoted by fg, fgg and gξ, gξξ. The

second-order derivatives of f with respect to ξ takes the form

∂2

∂ξ2
f = fggξξ + fgggξgξ. (28)

Thus, the second order effect is equal a sum of two terms: the first-order response of f to the second-

order change of g, fggξξ, and the second-order response of f to the first-order change in g, fgggξgξ.

With this intuition in place, we proceed with the second-order analogue of Lemma 1FO. We differentiate

equation (15) twice with respect to σ and evaluate at σ = 0.

Lemma 1SO. To the second-order approximation, Xt satisfies

Xt

(
Et
)

= ...+
1

2

(
t∑

s=0

t∑
m=0

XZZ,t−s,t−mEsEm +Xσσ,t

)
+O

(
‖E‖3

)
, (29)

where ... are the first-order terms and
{
XZZ,t,s

}
t,s

and
{
Xσσ,t

}
t

defined by

XZZ,t,s := XZ · Ẑt,s +XZZ ·
(
Ẑt, Ẑs

)
for Ẑt,s = ZZ · Ẑt−1,s−1 + ZZZ ·

(
Ẑt−1, Ẑs−1

)
, (30)
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Xσσ,t := XZ · Ẑσσ,t +Xσσ for Ẑσσ,t = ZZ · Ẑσσ,t−1 +
[
0,PXσσ,Ωσσ

]T
. (31)

with Ẑ0,s = Ẑt,0 = Ẑσσ,0 = 0.

This lemma shows that the second-order equilibrium approximation involves two types of terms:

those like XZZ,t,s that capture the interaction effects on current period endogenous variables from

shocks that occurred t and s period ago (it includes nonlinear responses when t = s) and precautionary

motive terms like Xσσ,t. Inspection of equation (30) reveals that both direction Ẑt,s and XZZ,t,s has

the same mathematical structure as our example in equation (28). Equation for precautionary motive

terms (31) is much simpler: since precautionary motive is zero to the first order, all the interaction

terms (the analogue of fgggξgξ in equation (28)) disappear. Given this, we start with the description

of the precautionary terms.

4.2.1 Characterization of precautionary terms

We proceed in the same way as in Section 4.1 by differentiating equation (10). We have already

differentiated it with respect to Z in the previous section. Now we evaluate that derivative in direction

Ẑσσ,t and add to it the second derivative G with respect to σ. This allows us to express Xσσ,t using

definition (31) as

Gx

(∫
xdΩ

)
σσ,t

+ GY Y σσ,t = 0, (32)

where

Y σσ,t =
[
0,PXσσ,t−1, Xσσ,t, Xσσ,t+1 +XZZ,0,0var (E)

]T
. (33)

These equations have a similar structure as their first-order analogue, equations (17) and (18), with two

differences. First, the terms corresponding to exogenous shocks are zero, since exogenous shocks are

linear in σ (see equation (13)) and thus their second-order derivatives are zero. Second, precautionary

motives also depend on XZZ,0,0var (E). This has natural economic interpretation. Precautionary

motives depend not on realization of the shock but uncertainty about them, captured by var (E),

adjusted by the non-linearity in policy functions, captured by XZZ,0,0. The same insight carries over

to the two key intermediate results – Lemmas 2 and 3 – that were central in our characterization of the

first-order approximations.

Lemma 2aSO. For any t, k

xσσ,t (a, θ) =

∞∑
s=0

xs (a, θ)Y σσ,t+s + xσσ (a, θ) , (34)

where xσσ (a, θ) = 0 at the kinks a = a∨(θ) and solves, for all other (a, θ),

0 = Fx (a, θ) xσσ (a, θ)+Fxe (a, θ) (Eε [xZZ,0,0|a, θ] var (E) + Eε [xσσ|a, θ] + Eε [xa|a, θ] pxσσ (a, θ)) . (35)
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Equation (34) shows that the relationship between xσσ,t and Y σσ,t is almost the same as between

xZ,t and Y Z,t with an exception of an additional term xσσ which captures how agents react to risk

holding aggregates fixed. The LoM for Ω̂σσ,t is still given by equation (23) with pxZ,t replaced with

pxσσ,t , which makes it easy to describe the derivative
(∫
xdΩ

)
σσ,t

as in Corollary 1FO and find the

linear system of equations that characterizes
{
Xσσ,t

}
t
. We summarize it in the following proposition.

Proposition 1aSO.
{
Xσσ,t

}
t

is the solution to a linear system

Gx

∞∑
s=0

Jt,sY σσ,s + GY Y σσ,t + GxHσσ,t = 0, (36)

with
{
Y σσ,t

}
given by equation (33) and PXσσ,−1 = 0, where Hσσ,0 =

∫
xσσdΩ∗, Hσσ,t = Hσσ,t−1 +

I(a) ·
(
L(a)

)t−1 · M · aσσ, and aσσ = pxσσ.

The system of equations (36) is almost the same as (27) except for additional terms {Hσσ,t}t. These

terms satisfy a simplified version of equation (26), which was used to construct Jt,s for the first-order

solution. But differently from its first-order analogues, the precautionary motives do not need to die

down as t→ 0 and this system of equation can be solve by truncating it at T and imposing a terminal

condition that Xσσ,t = Xσσ,T for all t > T .17

4.2.2 Characterization of interaction terms

To find the interaction terms, we proceed in the same way as in Section 4.2.1 by using various derivatives

of G to construct XZZ,t,k. This derivative can be written as

Gx

(∫
xdΩ

)
ZZ,t,k

+GY Y ZZ,t,k + GΘΘ,t,k = 0, (37)

where

Y ZZ,t,k = [0,PXZZ,t−1,k−1, XZZ,t,k, XZZ,t+1,k+1]T, (38)

and GΘΘ,t,k combines all the interaction terms known from the first order.18 As GΘΘ,t,k is relatively

straightforward to construct from the first-order solution, we focus on the other terms. As always, the

key step is finding the derivative(∫
xdΩ

)
ZZ,t,k

=

∫
xZZ,t,kdΩ∗ +

∫
xdΩ̂t,k +

∫
xZ,kdΩ̂t +

∫
xZ,tdΩ̂k. (39)

While equality (39) might seem obvious at first sight, showing it requires some care because of the kinks

in policy functions. It can be written in this simple form because xZZ,t,k is a generalized derivative

17Note that finding
{
Xσσ,t

}
t

requires knowledge of XZZ,0,0 and xZZ,0,0 and so in practice one needs to solve for{
XZZ,t,s

}
t,s

before finding
{
Xσσ,t

}
t
.

18 In particular, for each dimension i of G the derivative GiΘΘ,t,k =
(∫
xdΩ

)T
Z,t

Gixx
(∫
xdΩ

)
Z,k

+ Y
T
Z,tG

i
Y Y Y Z,k +(∫

xdΩ
)T
Z,t

GixY Y Z,k +
(∫
xdΩ

)T
Z,k

GixY Y Z,t.
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which we characterized in Section 3.2. The two intermediary results – Lemmas 2 and 3 – are central to

characterizing this equation.

We start with Lemma 2 which shows the relationship between {xZZ,t,k}t,k and
{
XZZ,t,k

}
t,k

Lemma 2bSO. For any t, k

xZZ,t,k (a, θ) =

∞∑
s=0

xs (a, θ)Y ZZ,t+s,k+s + xt,k (a, θ) , (40)

where xt,k (a, θ) = x̊t,k (a, θ) + x∆
a (θ)a∨Z,t(θ)a

∨
Z,k(θ)δ(a− a∨(θ)) with x̊t,k solving a recursion

x̊t,k (a, θ) = (Fx (a, θ) + Fxe (a, θ)Eε [xa|a, θ] p)
−1

(Ft,k (a, θ) + Fxe (a, θ)Eε [̊xt+1,k+1|a, θ]) , (41)

and Ft,k (a, θ) combines known first-order interaction terms given explicitly in the appendix.

As with our simple example (28), the second-order change in individual policy functions xZZ,t,k

consists of two terms: the first-order response to the second-order changes in the aggregates, captured

by the infinite sum, and second-order responses to the first-order interactions of shock, captured by xt,k.

Importantly, this lemma also provides an explicit formula for {xt,k} exclusively in terms of objects from

the first-order solution. The generalized function xt,k consists of two parts: the classical derivative x̊

that has form very similar to equation (22) in Lemma 2FO and kink adjustments captured by the delta

function. We discuss in Section 4.2.3 how to construct the coefficients {xt,k} numerically and how to

appropriately handle the delta function component.

The second intermediate result describes the LoM for Ω̂t,k. In Section 4.1 we show that operators

M, L(a), and I(a) were central to describing the LoM of Ω̂t. Modifications of the same three operators

characterize Ω̂t,k. Let L(a)
Z,t be the derivatives of L(a) with respect to Z evaluated in direction Ẑt.

Mathematically, it takes the same form as L(a) except aa in the definition is replaced with aaZ,t.

Similarly, we use notations L(aa), L(a,a), etc to denote modifications of these operators where aa is

replaced with aaa and aaaa respectively. Analogous convention applies to I(a). Finally, we use notation

y′ � y′′ for two generalized functions y′, y′′ to denote their point-wise product.

Lemma 3bSO. For all t, k

d

dθ
Ω̂t+1,k+1 = L(a) · d

dθ
Ω̂t,k −M · aZZ,t,k +

d

da
ct,k − bt,k, (42)

where bt,k and ct,k satisfy

bt,k = −L(a)
Z,t ·

d

dθ
Ω̂k − L(a)

Z,k ·
d

dθ
Ω̂t,

ct,k =M · (aZ,t � aZ,k)− L(a) ·
(
d

dθ
Ω̂t � aZ,k

)
− L(a) ·

(
d

dθ
Ω̂k � aZ,t

)
.
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This lemma shows that the LoM for Ω̂t+1,k+1 consists of two types of terms: the first order response

of the LoM Ω to the second-order changes in policy functions and distribution aZZ,t,k, Ω̂t,k, and the

second-order response of Ω to the first-order changes, captured by ct,k, bt,k. Inspection of their form

reveals that just like xt,k both ct,k and bt,k depend only on first-order terms and thus can be constructed

explicitly from the solution in Section 4.1.

Lemmas 2bSO and 3bSO allow us to characterize the second order derivative of the aggregation

equations.

Corollary 1bSO. For all t, k (∫
xdΩ

)
ZZ,t,k

=

∞∑
s=0

Jt,sY ZZ,t,k + Ht,k,

where {Ht,k}t,k is characterized by the following linear recursive system

Ht,k =

∫
xt,kdΩ∗ + I(a) · Bt,k + I(aa) · Ct,k − I(a)

Z,k ·
d

dθ
Ω̂t − I(a)

Z,t ·
d

dθ
Ω̂k,

Ct+1,k+1 =M · (aZ,t � aZ,k)− L(a) ·
(
d

dθ
Ω̂t � aZ,k

)
− L(a) ·

(
d

dθ
Ω̂k � aZ,t

)
+ L(a,a) · Ct,k,

Bt+1,k+1 =M · at,k − L(a)
Z,t ·

d

dθ
Ω̂k − L(a)

Z,k ·
d

dθ
Ω̂t + L(a) · Bt,k + L(aa) · Ct,k,

where at,k = pxt,k.

Comparison of Corollaries 1bSO and 1FO reveals several insights. The second-order relationship

between the aggregating equation
∫
xdΩ and aggregate variables Y is almost the same as the first-order

one except for an additional term Ht,k. This term, that captures various first-order interaction effects,

has mathematical structure similar to that of Jt,k that we constructed in the first-order approximations.

While formulas for Ht,k are lengthier, they recycle several of the same operators that we needed to

construct the first-order solution. As we shall see in Section 4.2.3, this makes extending the first order

numerical implementation to the second order quite easy.

Equipped with Corollaries 1bSO, it is now easy to go back to equation (37) to find the system of

equations that characterizes the second order interaction terms.

Proposition 1bSO.
{
XZZ,t,k

}
t,k

is the solution to linear system of equations

Gx

∞∑
s=0

Jt,sY ZZ,s,k−t+s + GY Y ZZ,t,k + GxHt,k + GΘΘ,t,k = 0, (43)

with
{
Y ZZ,t,k

}
given by equation (38) and PXZZ,−1,k−t−1 = 0.

These systems of equations are solved analogously to (27), by imposing the terminal conditions

XZZ,s,k+s = 0 for all s + k ≥ T . There are two insights to be gleaned from this proposition. Firstly,
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our solution is automatically stable. This contrast with traditional perturbation methods that feature

unstable paths and require “pruning” to select stable paths (see, e.g., Kim et al. (2008)). By restricting

our attention to the second-order derivatives in directions necessary for the second-order expansion, we

automatically select the stable path much in the same manner as we avoid the unstable roots in the

first-order approximation. Second, Lemma 1SO can be used to find the ergodic mean of the stochastic

steady state.19 Taking expectation of equation (29) and then the limit as t → ∞ finds the long run

average level of X to be

E [X] = X +

∞∑
s=0

XZZ,s,svar(E) + lim
t→∞

Xσσ,t +O
(
‖E‖3

)
. (44)

If aggregate welfare is included in X then equation (44) can be quickly used to compute ergodic welfare

and evaluate policies that vary over the business cycle. The observation that the difference E [X]−X is

of the second order, implies that the approximation error would not improve if one were to approximate

the equilibrium dynamics around the mean of the ergodic distribution under aggregate shocks rather

than Ω∗.

4.2.3 Numerical implementation of the second-order approximation

To find the interaction terms
{
XZZ,t,k

}
t,k

, we need to construct the new objects in Proposition 1bSO:

{GΘΘ,t,k,Ht,k}. The terms GΘΘ,t,k are simply constructed from the first-order objects (see footnote 18),

while {Ht,k}t,k is given in Corollary 1bSO and requires constructing various modifications of operators

from Section 4.1 and computing of {xt,k} from Lemma 2bSO.

Numerical analogues of I(aa) and I(a)
Z,t are in parallel with

−→
I (a), i.e.,

−→
I (aa)[:, i] = −→x aa[i] and

−→
I (a)
Z,t[:, i] = −→x aZ,t[i].20 Similarly, the numerical analogues of L(aa) and L(a,a) are constructed in parallel

with
−→
L (a) :

−→
L (aa)[i′, i] =

−→
Λ [i′, i]−→a aa[i] and

−→
L (a,a)[i′, i] =

−→
Λ [i′, i]−→a a[i]−→a a[i]. Finally, construct terms

like L(a)
Z,t ·

d
dθ Ω̂k as

−→
Λ
(−→a aZ,t �−−→ddθΩk

)
where � is simply point-wise matrix multiplication. Since we

approximate policy functions with splines, no additional adjustments is necessary for kinks.

For xt,k, we construct the approximation to the classical and the generalized part separately. For

the classical component, we start by setting x̊t+1,k+1 = 0 for s + k ≥ T in equation (41) and using

backward induction to compute x̊#
t,k. To adjust for the delta function part, rewrite the expression in

Lemma 2bSO

xt.k(z, θ) = x̊t+1,k+1 +
d

da

ι (a ≥ a∨(θ))x∆(θ)a∨Z,t(θ)a
∨
Z,k(θ)︸ ︷︷ ︸

≡xδt,k(a,θ)

 .

19This stochastic steady state should not be confused with the risky steady state of Coeurdacier et al. (2011). The risky
steady state relies on a linear approximation of policy rules and, thus, captures only the limt→∞Xσσ,t term of (44).

20−→x aZ,t is constructed simply as x#
Z,tΦa.
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The function xδt,k(z, θ) is a step function (that depends on −→a ∨Z,t) that we can approximate with a spline

with coefficients xδ#t,k . We then recover −→x t,k as simply x̊#
t,kΦ + xδ,#t,k Φa. The rest of the approach is the

same as for other terms.

Once we solved for
{
XZZ,t,k

}
t,k

, we obtain XZZ,0,0 and xZZ,0,0 that are needed to find
{
Xσσ,t

}
t
.

The only term that still needs to be found in order to solve the system of equations in Proposition 1aSO

is xσσ. xσσ solves the linear system (35) and thus we find x#
σσ by evaluating (35) at each element of the

course grid used for the spline approximation.

0 =
−→
F x[j]x#

σσΦ[:, j] +
−→
F xe [j]

(
x#
ZZ,0,0Φe[:, j] + xδ,#0,0 Φea[:, j]

)
var (E)

+
−→
F xe [j]x

#
σσΦe[:, j] +

−→
F xe [j]x

#Φea[:, j]
(
px#
σσ

)
Φ[:, j].

The conditional expectations are determined using the sparse matrices Φe are precomputed from the

zeroth-order approximation. This equation is linear in x#
σσ and thus can be solved with a single linear

operation.

5 Extensions

We now discuss how our approach can be extended to three classes of problems: models with transition

dynamics from some initial distribution to its long run steady state, models with stochastic volatility,

and portfolio problems. The first class of problems emerges when one considers permanent shocks

or policy changes that induce transition to a new steady state, the second class of problems occurs

frequently in studies of asset prices, and the third one emerges whenever agents can invest in more than

one asset with different risk characteristics.

5.1 Transition dynamics

Consider an economy as in Section 3 but suppose that the initial condition is given by (0,Ω0), where

Ω0 is some distribution that does not necessarily coincides with Ω∗. The equilibrium in this economy

now features deterministic transition dynamics as state converges to its steady-state value. It is easy

to adapt techniques that we developed in Section 4.1 to compute this transition path.

Let Ω̂0 := Ω0 − Ω∗ and consider a sequence of directions {Ẑ ′t}t defined recursively by Ẑ ′0 = [0, Ω̂0]T

and Ẑ ′t = ZZ · Ẑ ′t−1. Similarly, define {X ′Z,t}t as X
′
Z,t := XZ · Ẑ ′t. This sequence characterizes transition

dynamics to the first order.

Lemma 1TD. To the first-order approximation, Xt satisfies

E0Xt =X +X
′
Z,t +O

(∥∥∥E , Ω̂0

∥∥∥2
)
.
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Finding sequence {X ′Z,t}t is simple. The LoM for the aggregate distribution must still satisfy the

recursion shown in Lemma 3FO, except that it is initialized by the difference between the initial and

the steady state distributions, d
dθ Ω̂0. The rest of the analysis goes unchanged, giving us a proposition

that characterizes {X ′Z,t}t:

Proposition 1TD. {X ′Z,t}t is the solution to

Gx

∞∑
s=0

Jt,sY
′
Z,s + GXY

′
Z,t + GxJ′t = 0, (45)

Y
′
Z,t =

[
0,PX

′
Z,t−1, X

′
Z,t, X

′
Z,t+1

]T
, and PX

′
Z,−1 = 0, where J′t = I(a) ·

(
L(a)

)t · (− d
dθ Ω̂0

)
.

The main difference between Proposition 1TD and Proposition 1FO is the last term in equation (45).

This term generalizes equation (27) to account for the fact that Ω0 may differ from Ω∗.

5.2 Stochastic volatility

Many applications that study financial markets or effects of government policies require the volatility

of exogenous aggregate variables to be time-varying. A standard way to approximate such models is to

consider third-order expansions (see, e.g., discussion in Fernández-Villaverde et al. (2011)). While it is

possible to use a third-order extension of our techniques to model stochastic volatility, in this section

we show a much simpler second-order approximation that attains the same goal.

Suppose that stochastic process for Θt is given by (7) but Et is not homoskedastic but rather follows

the process

Et =
√

1 + Υt−1EΘ,t, (46)

Υt = ρΥΥt−1 + EΥ,t, (47)

where |ρΥ| < 1 and EΘ,t and EΥ,t are mean-zero i.i.d. variables with support of EΥ,t bounded so that

Υt always remains greater than −1. The conditional volatility of aggregate innovations is stochastic

and satisfies vart−1(Et) = (1 + Υt−1)var(EΘ,t). This model collapses to that of Section 2 when Υt is a

degenerate stochastic process, Υt ≡ 0.

The state in the recursive representation now consists of a triplet (Υ,Θ,Ω). One way to approximate

this economy is to scale both shocks EΘ,t and EΥ,t with σ and approximate the equilibrium around the

deterministic point (0, 0,Ω∗). In order to capture time-varying volatility, this approach would indeed

require using third-order approximations. Instead, a much faster and simpler method is to proceed

as in Section 2 and scale only the combined shock Et with σ, just as we did in equation (13). Since

shocks EΥ,t and EΘ,t are not scaled with σ, Υt still satisfies (47) in the zeroth-order economy. Thus,

our approximations are around (Υ, 0,Ω∗) where Υ is stochastic.
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Observe that realizations of Υ have no effect on equilibrium variables in the zeroth-order economy.

Therefore, the invariant distribution Ω∗ is independent of Υ and coincides with the invariant distribution

we discussed in Section 3. Similarly, the derivatives of policy functions X̃ (Υ, Z; 0) and x̃ (z, θ,Υ, Z; 0)

with respect to Z = (Θ,Ω) are also independent of Υ and coincide with those in Section 3. Derivatives

Xσ, xσ are equal to zero for any Υ but precautionary motive terms Xσσ (Υ), xσσ (Υ) are generally

non-zero and depend on Υ. This dependence captures equilibrium response to volatility shocks. We

now show how our methods can be used to find these coefficients.

Define a sequence of directions {Ẑσσ,t(EtΥ)}t,EtΥ recursively with Ẑσσ,−1 = 0 and

Ẑσσ,t
(
EtΥ
)

=
[
0,Ωσσ(Υt−1)

]T
+ ZZ · Ẑσσ,t−1

(
Et−1

Υ

)
,

and the corresponding {Xσσ,t(EtΥ)}t,EtΥ as

Xσσ,t

(
EtΥ
)

:= Xσσ(Υt) +XZ · Ẑσσ,t
(
EtΥ
)

and

Y σσ,t
(
EtΥ
)

=
[
0,PXσσ,t−1

(
Et−1

Υ

)
, Xσσ,t

(
EtΥ
)
,E
[
Xσσ,t+1

∣∣EtΥ]+ ΥtXZZ,0,0var (E)
]T
.

These definitions naturally generalize those of {Ẑσσ,t}t and {Xσσ,t}t in Section 4.2 and lead to the

extension of Lemma 1SO to settings with stochastic volatility.

Lemma 1SV . To the second-order approximation, Xt satisfies

Xt

(
Et
)

= X +

t∑
s=0

XZ,t−sEs +
1

2

(
t∑

s=0

t∑
m=0

XZZ,t−s,t−mEsEm +Xσσ,t

(
EtΥ
))

+O
(
‖E‖3

)
, (48)

where sequences
{
XZ,t

}
t
,
{
XZZ,t,k

}
t,k

are the same as in Sections 4.1 and 4.2.

Finding {Xσσ,t(EtΥ)}t,EtΥ would be complicated if Xσσ,t(·) were an arbitrary non-linear function.

Fortunately, this is not the case. Stochastic process (46) simplifies our problem as it implies that

Xσσ,t(·) is a linear function of EtΥ that takes a particular simple form. Characterizing this linearity is as

easy as finding the first-order impulse responses in Proposition 1FO. The key step to establishing this

result is the following proposition. Let {xσσ,t(a, θ, EtΥ)}t,EtΥ be defined analogously to {Xσσ,t(EtΥ)}t,EtΥ .

We have the following relationship between these two objects:

Lemma 3SV . For any t,

xσσ,t(a, θ, EtΥ) =

∞∑
s=0

xs(a, θ)E
[
Y σσ,t+s|EtΥ

]
+ xσσ(a, θ) + xΥ

σσ(a, θ)Υt, (49)

where xs, xσσ are the same as in Lemma 2bSO and where xΥ
σσ (a, θ) = 0 at the kinks a = a∨(θ) and

solves, for all other (a, θ),

0 = Fx (a, θ) xΥ
σσ (a, θ) + Fxe (a, θ)

(
E [xZZ,0,0|a, θ] var (E) + ρΥE

[
xΥ
σσ|a, θ

]
+ E [xa|a, θ] pxΥ

σσ (a, θ)
)
.

(50)
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The key insight of this lemma is that the direct effect of volatility shocks on individual policy

functions is linear in Υt and is captured by a coefficient xΥ
σσ. Moreover, this coefficient is closely related

to the xσσ coefficient defined by (35), with the only difference being the ρΥ term which captures the

transient nature of the volatility shock: xΥ
σσ → xσσ as ρΥ → 1. A direct result of (49) is that all policy

functions are linear in volatility shocks as well. Moreover, since xΥ
σσ is known explicitly, approximation

coefficients on EtΥ can be found much in the same way as the coefficients on Et in Proposition 1FO:

Proposition 1SV . The stochastic process Xσσ,t(EtΥ) satisfies

Xσσ,t

(
EtΥ
)

= Xσσ,t +

t∑
s=0

X
Υ

σσ,t−sEΥ,s,

where {Xσσ,t}t is the same as in Section 4.2 and {XΥ

σσ,t}t satisfies

Gx

∞∑
s=0

Jt,sY
Υ

σσ,s + GXY
Υ

σσ,t + GxHΥ
σσ,k = 0, (51)

Y
Υ

σσ,t =
[
0,PX

Υ

σσ,t−1, X
Υ

σσ,t, X
Υ

σσ,t+1 + ρtΥXZZ,0,0var (E)
]T
, and X

Υ

σσ,−1 = 0 with HΥ
σσ,0 =

∫
xΥ
σσdΩ∗

and HΥ
σσ,t = ρΥHΥ

σσ,t−1 + I(a) ·
(
L(a)

)t−1 · M · aΥ
σσ

Equation (51) consists of mostly the same objects that were already created to solve equations (36)

and (27), so that {XΥ

σσ,t}t can be found very quickly. Comparing Proposition 1bSO to Proposition 1SV

with the knowledge that xΥ
σσ → xσσ as ρΥ → 1, we can easily see that X

Υ

σσ,t → Xσσ,t as ρΥ → 1 which

allows us to interpret Xσσ,t as the response to a permanent change in risk.

5.3 Portfolio problems

Portfolio choice problems–in which agents can allocate their wealth in more than one asset with different

risk characteristics–are commonplace, yet incorporating portfolio choice in HA settings presents a unique

set of challenges. Optimal portfolios depend on second-order moments, such as risk premia, and having

correct portfolios matters even for the first-order responses of equilibrium quantities. This breaks the

convenient inductive feature of many approximation methods that proceed sequentially from lower order

approximations to higher order approximations. Moreover, in the zeroth-order economy, all assets are

risk-free, and in absence of security specific trading costs, optimal portfolios are undetermined. This

violates our Assumption 1 and requires adjustments to the techniques that we developed in Section 3.

Portfolio choice problems have a specific mathematical structure that can be exploited to extend our

approach to such problems with minimal changes. To illustrate this structure, we start with a simple

two asset version of the Krusell and Smith economy before extending our representation to a general

class of portfolio problems.
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Consider the same economy as in Section 2.1 except suppose that agents can also trade a one-period

risk-free bond that is available in the zero net supply. Let Rft be the interest rate on this bond between

periods t − 1 and t, and Rxt = Rt − Rft be the excess return to capital. We use ai,t to denote the

total wealth of agent i in period t and ki,t as the holdings in capital. Bond holdings are given by

ai,t − ki,t. Assuming for concreteness that the borrowing constraint is on total assets holdings, agents’

optimization problem can be written as the choice of stochastic sequences {ci,t, ai,t, ki,t}t to maximize

their utility subject to the borrowing constraint ai,t ≥ 0 and the budget constraint

ci,t + ai,t −Wt exp(θi,t)−Rft ai,t−1 −Rxt ki,t−1 = 0. (52)

Agents’ optimality conditions are represented by stochastic sequences {ai,t, ci,t, ki,t, ζi,t, λi,t}i,t that

satisfy (52) and

Rft Uc(ci,t)− λi,t = 0, Uc(ci,t) + ζi,t − βEtλi,t+1 = 0, ai,tζi,t = 0, (53)

Et−1 [λi,tR
x
t ] = 0. (54)

Market clearing conditions for aggregate variables
{
Kt,Wt, R

f
t , R

x
t

}
t

are given by (3) and

Rft +Rxt + δ − α exp (Θt)K
α−1
t−1 − 1 = 0, Kt−1 −

∫
ki,t−1di = 0, Kt −

∫
ai,tdi, (55)

with the last equation being equivalent to imposing that the the bond market clears:
∫

(ai,t−ki,t)di = 0.

This example shows the portfolio allocations affect agents’ optimality condition via term Rxt ki,t−1,

where Rxt satisfies equation (54). Motivated by this example, consider now a general class of portfolio

problems that preserves this feature. Individual optimality conditions are given by

F (ai,t−1, xi,t,Ei,txi,t+1, Yt, R
x
t ki,t−1) = 0 for all i, t, (56)

and

Et−1 [mi,tR
x
t ] = 0 for all i, t, (57)

where mi,t is an some element of xi,t and Rxt is some element of Xt and Yt = [Θt,PXt−1, Xt,EtXt+‘1].

We can write these as mi,t = Sxi,t and Rxt = RYt for some selection matrices S and R. Aggregate

feasibility conditions are given by

G

(∫
xi,tdi, Yt

)
= 0 for all t (58)

and ∫
ki,t−1di− KYt = 0 for all t. (59)

Equations (56) and (57) preserve the features of the portfolio problems that we highlighted with the

Krusell and Smith example. Equation (59) could be folded into (58) but, as it should get clear shortly,

it is useful to keep this equation separate.
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This representation naturally nests our example of the Krusell and Smith economy, where assets

ai,t−1 serve as the individual endogenous state variable ai,t−1, and vector xi,t includes all individual

choices and appropriate Lagrange multipliers except for ki,t. In the appendix, we show how other types

of portfolio problems, such as small open economy models and models with different types of risky

technologies, map into the same representation. We treat ki,t as a scalar in the text (so that portfolio

choice is between two assets) solely for simplicity of exposition, in the appendix, we show that our

approach extends naturally to the case with ki,t is an arbitrary-sized vector.

To apply perturbational techniques to portfolio problems, it is important to choose the state-space

representation judiciously. In particular, we choose a representation in which the total wealth of an agent

is a part of her state, but the allocation of that wealth into different assets is not. Under this convention,

policy functions need to depend both on the current and previous period realization of shocks. We use

θ− and Θ− to denote previous period shocks and portfolio decision from the previous period will depend

only on those shocks, while realized return on the portfolios, agents’ consumption and savings for next

period will additionally depend on current period shocks θ and Θ. Thus, the individual state is a triple

(a, θ, θ−), or (a,θ) for short, the distribution Ω over (a,θ), and the aggregate state Z = [Θ,Θ−, A,Ω]
T

were A represents the pre-determined aggregate variables. Additional measurability restrictions need

to be imposed to ensure that a subset of policy functions do not depend on (θ,Θ) .

The recursive representation consists of policy functions x̃ (a,θ, Z), k̃ (z,θ, Z), X̃ (Z) that satisfy

F
(
a, θ, x̃,Eε,E x̃, Ỹ , R̃xk̃

)
= 0 for all (a,θ, Z) , (60)

Eε,E
[
Sx̃R̃x|θ ,Θ , A,Ω

]
= 0 for all (a, θ ,Θ−, A,Ω) , (61)

G

(∫
x̃dΩ, Ỹ

)
= 0 for all Z, (62)

R̃x (Z) = RỸ (Z) ,

∫
k̃dΩ = KỸ for all Z, (63)

TỸ (Z) and k̃ (a,θ, Z) are independent of Θ and (θ,Θ) for all Z, (64)

as well as the LoM for the distribution,

Ω̃ (Z)
〈
a′,θ′

〉
=

∫ ∫
ι (ã(a,θ, Z) ≤ z′) ι(ρθθ + ε ≤ θ′)ι

(
θ ≤ θ′−

)
µ (ε) dεdΩ 〈z,θ〉 for all Z. (65)

and identities

ã = px̃, Ã = PX̃, Ỹ =
[
Θ, A, X̃,EEX̃

]
where Eε,E x̃ and EEX̃ are as defined in section 2.3. The conditional expectation in (61) represents

expectations over current shocks, i.e.,

Eε,E [x̃|θ ,Θ , A,Ω] =

∫
x̃(a, ρθθ + ε, θ , ρΘΘ + E ,Θ , A,Ω)dµ(ε)dPr(E).
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In this representation, R is the selection matrix that picks out the policy function corresponding to

the excess return from vector Ỹ , K is a selection matrix that picks out the aggregate quantity of the

risky asset from Ỹ , and T picks out variables only measurable with respect previous period shocks. This

last component is necessary due our choice of the state space. Aggregate wealth is a pre-determined

variable but prices that clear asset markets that are necessary for the portfolio choice, e.g., Rft , are

not. These variables will have measurability restrictions that must be imposed via T. Finally, portfolio

choices k̃ are not included in vector x̃ because they are undetermined in the zeroth-order economy and

their limit as σ → 0 needs to be found separately.

The key reason for choosing this representation is that it simplifies finding optimal portfolios in

the σ → 0 limit. In our representation individual wealth and hence the invariant distribution Ω∗ are

determined in the zeroth-order economy. The limiting portfolios are found together by characterizing

the first-order dynamics, and this extra step requires only modest changes to the approach we developed

in Section 3. In contrast, other representations that include total wealth and its allocation as parts of

the individual state need to confront that the aggregate state is not pinned down in the zeroth-order

economy. Under this representation, one would need to find a way to select the appropriate point of

approximation Ω∗ out of continuum of invariant distributions, which would require additional steps.

We now develop a method to compute the first-order approximation to the equilibrium of this

economy. Our analysis closely follows Section 4.1. Directions {Ẑt}t and {XZ,t}t are defined as in that

section, except the initial direction is Ẑ0 = [1, 0, 0,0]
T

. With this adjustment, statement of Lemmas

1FO as well as equations (17) and (18) carry over without changes to portfolio settings. The other steps

of the analysis require some adjustments.

Let RZ,0 = RY Z,0 be the contemporaneous effect of the aggregate shock on risky returns and let

S(RZ,0) be a mapping defined as

S
(
RZ,0

)
:=

1

(RZ,0)2var (E)
.

Similarly, let Xσσ,0 and Y σσ,0 be defined as in Section 4.2 and let Rσσ,0 = RY σσ,0 be the risk premium

of the asset. This is the only second-order term that we need to find in order to characterize agents’

portfolio problems.21

Lemma 2PF . xZ,0 (a,θ) satisfies

xZ,0 (a,θ) =

∞∑
s=0

xs (a, θ)XZ,s + r (a, θ)RZ,0k (a, θ ) , (66)

21The observation that only a small number of second-order moments is needed to find the optimal portfolio exploits
the structure of the portfolio problems embedded in equations (60) and (61). We build on the insights of Devereux and
Sutherland (2011).
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where

k(a, θ ) = S
(
RZ,0

) [
kσσ(a, θ )Rσσ,0 +

∞∑
s=0

ks(a, θ )XZ,sRZ,0var(E)

]
(67)

and explicit expressions for r, kσσ and ks are given in the appendix. xZ,t (a,θ) is independent of θ− and

satisfies (20) and XZ,t satisfies RXZ,t = 0 for all t > 0.

This lemma describes the first-order relationship between individual and aggregate policy func-

tions. Portfolio problems introduce one additional term, rRZ,0k, to the equation that describes xZ,0;

expressions that describe xZ,t for all other t remain the same as in Lemma 2FO.

We now explain the intuition for these results. k(a, θ−) is the optimal portfolio for agent (a, θ−) in

the limit as σ → 0. The expression for this portfolio is given in equation (67) and takes a form that is

familiar from the classical portfolio theory (see, e.g., Viceira (2001)). Rσσ,0 captures assets’ expected

excess returns, Y Z,sRZ,0var(E) is the covariance between returns and the s-period ahead aggregate

variable, and S
(
RZ,0

)
is the inverse of the covariance matrix of returns that captures risk adjustments.

Thus, the optimal portfolio depends on assets’ risk-adjusted returns S
(
RZ,0

)
Rσσ,0 and their risk-

adjusted hedging characteristics {S
(
RZ,0

)
Y Z,sRZ,0var(E)}s. Coefficients kσσ and {ks}s describe how

agents weight these objectives. These coefficients depend on agents’ risk aversion as well as on how

aggregate shocks affect agents’ non-tradable labor income.

The intuition for the remaining parts of Lemma 2PF is straightforward. RZ,0k is the realized return

on the risky portfolio and r captures how this return affects individual policy functions at the time

of the shock, xZ,0. There are no analogues of this term in the expressions for other xZ,t since those

analogues would depend on the expected excess returns, which are zero to the first order (this effect is

captured by the result that RXZ,t = 0 for t > 0 stated in the lemma).

The observation that portfolio problems introduce an additional adjustment term in the initial

period policy rules carries over to another key result from Section 4.1, the recursive characterization

of the LoM for the aggregate distribution. If we extend the definitions of operators L(a), M, and I(a)

so that they integrate over (θ−, θ), and use d
dθ Ω̂t to denote d

dθ
d
dθ−

Ω̂t the the statement of Lemma 3FO

carries over with d
dθ Ω̂t replaced with d

dθ Ω̂t. As a result, we can extend Corollary 1FO by including the

additional terms in aZ,0 resulting from the portfolio choice and propagating them to future periods via

the LOM.

Corollary 1PF . For any t,(∫
xdΩ

)
Z,t

=

∞∑
s=0

Jt,sY Z,s +

[ ∞∑
s=0

(
JPFt,s Y Z,s

)
var(E)RZ,0S

(
RZ,0

)
+ JPFσσ,tRσσ,0S

(
RZ,0

)]
RZ,0

where Jt,s is the same as in Corollary 1FO, JPFσσ,0 =
∫

r(a, θ)kσσ(a, θ )dΩ∗ and JPF0,s =
∫

r(a, θ)ks(a, θ )dΩ∗
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and, for t ≥ 1,

JPFσσ,t = I(a) ·
(
L(a)

)t−1

· M · aPFσσ (68)

JPFt,s = I(a) ·
(
L(a)

)t−1

· M · aPFs (69)

with aPFσσ (a, θ, θ ) = pr(a, θ)kσσ(a, θ, θ ) and aPFs (a, θ, θ ) = pr(a, θ)ks(a, θ, θ )

The difference between Corollary 1FO and Corollary 1PF captures how the realized portfolio returns

alter the aggregated decisions of the agents. As the portfolio choice depends on the assets’ risk-adjusted

returns S
(
RZ,0

)
Rσσ,0 and their risk-adjusted hedging characteristics {S

(
RZ,0

)
Y Z,sRZ,0var(E)}s,

there are corresponding weighting matrices, e.g., JPFσσ,t and JPFt,s , which summarize their affects on(∫
xdΩ

)
Z,t

. While these portfolio returns only directly affect decisions at t = 0, they alter
(∫

xdΩ
)
Z,t

through the LoM of the distribution as described by equations (68) and (69). As they are built using

the same operators, the {JPFt,s }t,s and {JPFσσ,t}t are constructed similarly to {Jt,s}t,s and {Jσσ,t}t as we

described in Section 3.

Combining Lemma 2PF and Corollary 1PF with equations (17) and (18) yields the main result of

this section

Proposition 1PF .
{
XZ,t

}
t

and Rσσ,0 are the solution to

0 =Gx

∞∑
s=0

Jt,sY Z,s + GXY Z,t (70)

+ Gx

[ ∞∑
s=0

(
JPFt,s Y Z,s

)
var(E)RZ,0S

(
RZ,0

)
+ JPFσσ,tRσσ,0S

(
RZ,0

)]
RZ,0,

as well as

KσσRσσ,0S
(
RZ,0

)
+

∞∑
s=0

KsXZ,svar (E)RZ,0S
(
RZ,0

)
= KY , (71)

TY Z,0 = 0, RY Z,t = 0 for t ≥ 1, (72)

RZ,0 = RY Z,0, (73)

(18) and PXZ,−1 = 0 where Kσσ =
∫

kσσdΩ∗, Ks =
∫

ksdΩ∗ .

Equation (70) shows that portfolio problems add one extra term, given in the second line, to the

characterization of the first-order equilibrium dynamics. This additional term has by now familiar

structure and interpretation.

Equation (70) depends on one second-order term, Rσσ,0. Fortunately, this term can be found from

equation (71), circumventing the need to do the full second-order expansion. This both simplifies the
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first-order analysis and preserves the convenient structure of the perturbation approach that allows to

find the rest of higher order terms using the first-order solution of Proposition 1PF .

Equation (71) has a simple interpretation. Its left hand side is the demand for the risky asset, which

simply integrates individual portfolio problems (67). The right hand side of (71) is asset supply. Thus,

equation (71) determines the risk premium that clears the asset market in general equilibrium.

The system of equations (70), (71), (72) and (73) is non-linear in {XZ,t}t and Rσσ,0 due to the

nonlinear operator S(RZ,0). Despite this nonlinearity, it can be solved quite easily. Observe that for a

fixed RZ,0 equations (70), (71) and (72) form a linear system that determine {XZ,t}t and Rσσ,0. This

observation provides a natural algorithm for solving the system of equations in Proposition 1PF : guess

RZ,0 and solve the linear system (70) – (72) for {XZ,t}t and Rσσ,0; verify if the initial guess satisfies

equation (73); if necessary, adjust the guess for RZ,0 and iterate until a solution is found.

6 Comparison to literature

Our approach builds on the perturbational techniques in the spirit of Judd (1998) and Schmitt-Grohé

and Uribe (2004) originally developed to study dynamic representative agent models. The key difficulty

in extending them to HA environments lies in the fact that derivatives of policy functions with respect

to the aggregate state (captured by XZ , XZZ , etc in our notation) are intractably large objects. The

seminal paper by Reiter (2009) takes a step overcome this hurdle by discretizing the state space and the

transition probability matrix (using the so-called “histogram method”, see also Young (2010)), using

finite-dimensional histogram as the representation of Ω, and then applying standard perturbational

techniques to this finite dimensional state space. To obtain first-order approximations, this method

requires solving large quadratic matrix equations and proved to be too slow and imprecise in many

standard HA environments.22

One strand of literature, originally proposed by Boppart et al. (2018) and then significantly developed

by Auclert et al. (2021), abandons the state-space representation used in Reiter (2009) and variants and

works with the sequence-space formulation of the problem. The key observation for that approach is that

the first-order impulse responses of the stochastic economy can be fully constructed from deterministic

responses to MIT shocks, and that these response can recovered numerically fairly easily from the

sequence problem. Auclert et al. (2021) show that this can be done very fast as those impulse responses

22The key issues are both the time taken to compute and space needed to store those derivatives. This is most clear
from Reiter’s implementation of the Krusell and Smith model that is solved by discretizing the θ process and using a
histogram to store the distribution Ω. If we were to follow the standard convention of using between 1000-5000 points
per θ for the histogram, and use 10 points for the shocks, the size of the histogram NΩ ∼ 104. This means that ΩZ ∼ 108

and ΩZZ ∼ 1016 entries. Assuming that 4 bytes (float) are required to store an entry, this would mean that one needs
450 megabytes of RAM to store the first derivative and 4 terabyte of RAM to store the second-order derivative, which
is clearly outside the scope of the current computing architectures. The general argument applies to variants of Reiter
(2009) such as Bayer et al. (2022); Ahn et al. (2018); Childers (2018); Winberry (2018); Gornemann et al. (2021) in
different degrees depending on the method and the application studied.
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solve a linear system of equations which coefficients can be constructed using linear recursive equations.

Our approach combines insights from both strands of the literature but also approaches approxi-

mations differently from Reiter (2009) and the literature that followed him. This allows us to improve

on the computational speed of Auclert et al. (2021) method, and to have our approach scalable to

second- and higher-orders of approximation, which is one of the key features of classical perturbational

techniques a-la Judd (1998) and Schmitt-Grohé and Uribe (2004) but not of Reiter (2009) and papers

building on it.

The key distinction of our approach is that we start with the theoretical distribution and its LoM

and derive exact analytical expressions for approximations of various orders; numerical values of those

expressions are then computed using appropriate discretization. This contrast with papers following

the Reiter (2009) tradition that start with an approximate (i.e., already discretized) distribution and

a transition probability matrix before further approximating with respect to aggregate shocks. There

is no guarantee that this latter approach correctly would correctly recover aggregate responses beyond

the first order. In particular, we show in the appendix D that the second-order approximation of the

transition probability obtained under histogram method generically misses some of the second-order

order terms and that does not converge to the exact second-order expressions as the grid size goes

to zero. The intuition for this results is that the histogram method locally linearizes the LoM for

the aggregate distribution, which misses terms capturing second-order responses of the LoM to the

first-order changes in policy functions.23

Our description of approximations as a sequence of values of derivatives such as {XZ,t}t, {XZZ,t,s}t,s,

etc is related to the “MIT shock” strand of literature. One can show that to the first order, our approach

is equivalent to that of Auclert et al. (2021) in the sense that as the grid size of their approximations

goes to zero, the linear system of equations they use to describe approximations converges to our system

(27). Despite this equivalence, using state-space representation has advantages even to the first order,

as it allows us to derive analytically and then construct recursively coefficients xs = ∂x0/∂Xt in Lemma

2FO. In contrast, the sequence-space approach finds {∂x0/∂Xt}t using numerical differentiation of

the (truncated) infinite system of equations (5). This process is both slower and less stable numeri-

cally. State space representation also significantly simplifies and speeds up computation of first-order

transition dynamics, as in Section 5.1.

The bigger advantage of our use of the state-space representation is that it enables recursive rep-

resentations of the necessary directional derivatives at all orders. For instance, by explicitly specifying

directions that characterize the effects of persistent risk
{
Ẑσσ,t

}
, our approach can incorporate risk and

go beyond MIT shocks. This is imperative for questions such as finding first-order impulse responses

23In models set in continuous time, several authors used the exact LoM of the aggregate distribution (see, e.g., Alvarez
and Lippi (2022); Alvarez et al. (2023b), Bilal (2022)) to characterize analytically equilibrim properties.
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in models with portfolio choice, understanding effect of risk or welfare costs of aggregate shocks, and

studying trade-offs involved in designing macroeconomic stabilization policies.

7 Numerical results

In this section, we apply our algorithm to calibrated versions of the Krusell and Smith (1998) model.

First, we use the calibrated model to report diagnostics such as sped and accuracy and compare them

to alternative methods. Second, we use extensions of the Krusell and Smith model to study several

applications that illustrate the usefulness of our methods over and above what can be achieved with

existing approaches. These applications include welfare analysis of fiscal stabilization policies, aggregate

and distributional effects of fluctuations in macroeconomic uncertainty, role of household portfolios, and

transitions across steady states.

7.1 Baseline Model

Our baseline model extends the Krusell and Smith framework of Section 2 to include capital adjustment

costs. This allows the model to generate volatile returns to risky capital that is useful for some of our

applications. To enable convenient aggregation, we introduce a competitive mutual funds sector whose

shares are owned and traded by households. The household’s budget constraint is modified to

ci,t + ki,t = wte
θi,t +Rtki,t−1,

where ki,t now is the date t wealth of the household. The mutual fund gathers rental income from the

corporate sector, owns and invests in physical capital subject to a convex adjustment of the form

φ(It,Kt) =
φ

2

(
It
Kt
− δ
)2

Kt, Kt+1 = (1− δ)Kt + It.

In the appendix, we show that the equilibrium is given by the same equations (2), (1), (3) with a

modified equation for return on savings24:

Rt =
(1− α) exp (Θt)K

α
t − It −

φ
2

(
It
Kt
− δ
)2

Kt +QtKt+1

Qt−1Kt
, Qt = 1 + φ

(
It
Kt
− δ
)
. (74)

Calibration To calibrate our model, we set the period length to one quarter. The parameter α is

set to 0.36 to target the capital share of income. We use an isoelastic period utility U (c) = c1−γ

1−γ and

vary the risk aversion parameter γ between 2 and 7. For each choice of the risk aversion parameter, we

set adjustment cost parameter φ to match a 3% standard deviation of un-leveraged quarterly returns

to equity. Unless otherwise specified, the plots in this section are for risk aversion set to 5. For the

parameters governing the aggregate and idiosyncratic labor productivity in (7) and (8), we choose values

used by Auclert et al. (2021). The calibrated parameters are summarized in Table 1.

24The date t aggregate capital Kt used in production satisfies Qt−1Kt =
∫
ki,t−1 and appropriately adjust (1)
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Table 1: CALIBRATION OF THE KRUSELL-SMITH ECONOMY

Parameter Description Value

α Capital share 0.36
β Discount factor 0.983
γ Risk aversion [2, 7]
δ Depreciation rate of capital 1.77%
φ Adjustment cost of capital [32, 125]
ρε Idiosyncratic mean reversion 0.966
σε/
√

1− ρ2
ε Cross-sectional std of log earnings 0.503

ρΘ Aggregate mean reversion 0.80
σΘ Std of Aggregate TFP shocks 0.014
Nε Points in Markov chain for ε 7
Nz Grid points for the policy rule x̄i(z) 60
Iz Grid points for the distribution ω̄i 1000
T Time horizon (in quarters) for IRF 400

Simulations We use the baseline calibration to simulate policy functions using Lemma 1SO. This

involves computing the zeroth-, first- and second-order terms.

To compute the zeroth-order terms, we solve the non-stochastic steady state policy functions using

an endogenous grid method after discretizing the productivity with Nε = 7 and asset grid Nz = 60. and

we use NΩ = 1000 × 7 points to store the distribution. To compute the first- and second-order terms,

we implement the steps detailed in Section 4.1.1 and 4.2.3. In Table 2, we report total time taken to

compute those terms and break up the time by each step stage of the algorithm. The timings for the

first-order approximation are reported in the first two columns of the table and the timings for steps to

compute the second order are reported rest of the columns.25

Table 2: COMPUTATIONAL SPEED: FIRST AND SECOND ORDER

First Order Second Order

Step Time Step Time (ZZ) Time(σσ)

Additional First-Order Terms 0.70s
Lemma 2FO Terms 0.07s Lemma 2bSO Terms 0.64s 0.05s
Lemma 3FO Terms 0.13s Lemma 3bSO Terms 0.21s 0.45s
Corollary 1FO Terms 0.17s Corollary 1bSO Terms 0.07s 0.05s
Proposition 1FO Terms 0.13s Proposition 1bSO Terms 0.19s 0.28s

Total 0.5s 1.81s 0.83s

ABRS 1.51s

All told, once the steady state has been computed, our algorithm takes 0.5 seconds to solve for the

XZ,t terms with roughly equal time spent in all 4 of the main steps. As Lemma 1FO highlights, XZ,t

are all that is needed to simulate the path of aggregates and to compute ergodic moments from the

25All numbers are reported using a 20 core M1 ultra mac studio.
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first-order approximation. The other first-order terms, x̄Z,t and Ω̄Z,t, are required for the second-order

approximation and take an additional 0.7 seconds to compute.

We compare this to our own implementation of the Sequence Space Jacobian of ABRS which takes

approximately 1.5 seconds to compute the equivalent on the XZ,t. Of that time, approximately 1.35

seconds are spent on the backward and forwards iteration steps which are the equivalent of the terms

computed in Lemma 2FO and 3FO. As we detailed in Section 4.1.1, once the steady state is solved

our algorithm requires only sparse linear operations which can be done quickly and efficiently indepen-

dently of how the steady state is solved for. The methodology of ABRS generally relies on numerical

differentiation of global transition code, and is therefore limited by the efficiency of that global code.

Moreover, very careful attention has to be paid to those numeric derivatives in order to ensure that they

are accurate, (See appendix C.1 of Auclert et al. for details). These numerical issues would be amplified

with a second-order approximation as calculating second derivatives are more prone to numerical error.

By giving explicit expressions for these second derivatives in terms of derivatives of F and G we sidestep

these issues.

The addition time to compute the second-order approximation is broken out in the last two columns

of Table 2. As highlighted in Section 4.2 there are two additional types of terms in the second-order

approximation: the curvature terms, X̄ZZ,t,k, and risk correction terms X̄σσ,t. As they follow the same

mathematical structure, we break out the computational time separately for both types. The curvature

terms take 1.11 seconds to compute26 while the risk adjustment terms take 0.83 seconds. The vast

majority of the computational time for the curvature terms is spent on Lemma 2bSO and Proposition

1bSO which is a result of a large number of quadratic forms required to compute the xt,k(z, θ) and GΘ,t,k

terms. All combined, computing the second-order approximation requires an additional 2 to 3 seconds

relative to the first-order approximation.

Next, we use the terms we computed to construct simulations using alternative methods. In the left

panel of Figure 1, we plot simulations for one-time impulse at date t = 0, that is, {Et} = (1, 0, 0, . . .).

The plots shows that the first-order approximation under our method and the approximation of ABRS

overlap. This overlap is reassuring that issues related to numerical derivatives and coarseness of asset

grid are not quantitatively large. The plots also show that simualted path with first and second-order

terms is quite different from ABRS emphasizing the quantitative importance of the second-order terms.

In the case shown in Figure 1, the differences are mainly due to the Xσ,σ,t terms from equation (36).

26Here we report only the time required to compute that X̄ZZ,t,t terms. We do this for two reasons. Firstly, for
most ergodic moments only the X̄ZZ,t,t are required. Secondly, computing the addition X̄ZZ,t,t+i terms are trivially
parallelizable for each i so, with enough processors, computing all the X̄ZZ,t,k terms would not require any additional
time.
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Figure 1: The left panel is the simulated path of aggregate capital Kt

(
Et
)

and the right panel is the Nonlinear error
K̂t−K̃t
K̃t

for {Et}t = (1, 0, 0, . . .)

Accuracy Measuring the numerical errors made in the simulation of heterogeneous agents models

with aggregate shocks is known to be difficult since there are no “reference point” to compare with.

As such, we test the accuracy of ours and alternative methods by studying the response to a one-

time, one standard deviation positive shock to TFP which can be solved non-linearly and compared

to the approximations X̂t under alternative perturbation methods. We can measure the accuracy by

comparing X̂t with the non-linear counterpart. In the right panel of Figure 1, we plot the % error in

the capital stock . For comparison purposes we show errors using our approach described in Section 4.1

and the Sequence Space Jacobian approach of ABRS. As would be anticipated by the right panel of

Figure 1 all three approaches have roughly the same error to first order, with the maximal error being

on the order of 0.04% of the capital stock. At higher orders, our approach has errors which remain very

small over time.

7.2 Applications

In this section we study four applications that highlight the usefulness our method for heterogeneous

agent models.

7.2.1 Welfare from stabilization policy

Second-order approximations can be used to evaluate welfare effects of stabilization policies such as

fiscal or monetary rules that describe how taxes or interest rates vary over business cycles. Here, we

extend the baseline Krusell and Smith model to include a fiscal rule that in form of a time varying
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labor-tax

τt = τΘΘt,

which is returned lump-sum to the households. Households with labor productivity θi,t will receive

transfers Tt and (1− τt)Wt exp(θi,t) in after-tax labor income in the current period.

A redistributive planner faces a non-trivial tradeoff in transferring resources across agents and in-

surance across states with the choice of τΘ. We are interested in illustrating how to use our method

to conduct welfare analysis across different choices of τΘ. Welfare comparisons across τΘ can be mean-

ingfully answered only with a minimum of second-order expansion. The stabilization coefficient, τΘ

doesn’t affect the non-stochastic steady state and to the first-order of approximation welfare is constant

with respect to τΘ as certainty equivalence holds.

We follow steps from section 4.2 and equation (44) to approximate welfare. For a given τΘ, define

utilitarian welfare as W (Ω,Θ; τΘ) =
∫
v (θ, k,Θ,Ω; τΘ) dΩ where v is the value of an individual with

who starts with idiosyncratic states (θ, k) when the aggregate state is (Θ,Ω) under policy indexed by

τΘ. We extend x and X to include v andW, respectively, and add the Bellman equation that solves the

value function v to the mapping F and the definition of welfare W to the mapping G, our framework

computes welfare automatically. As mentioned before, it takes only a few seconds to calculate welfare

for a given τΘ.

In Figure 2 we plot ergodic welfare (computed as consumption equivalent relative to steady state) as

a function of the tax parameter τΘ. For risk aversion set to 2, we see that relative to a laissez-faire policy,

τΘ = 0, making the tax policy more countercyclical initially raises welfare with a distinct maximum

(denoted by τ∗Θ) achieved at τΘ = −3.1 which amounts to raising taxes by 3.1 percentage points for

every percentage point decrease in TFP. In fact, roughly 22% of the welfare losses from business cycles

in this model can be ameliorated by this tax policy. In Table 3, column τ∗Θ, we report the optimal

cyclicalty for other values of risk aversion. We find that higher the risk aversion, lower the cyclicality.

Because gains costs of insurance increase with risk aversion, higher values of risk aversion are associated

with lower values for tax cyclicality.

This application also serves as a valuable tool for illustrating the shortcomings associated with

employing the histogram technique. In Section 6, we emphasized the consequences of naively extending

the histogram approach, which overlook specific second-order terms. These second-order terms become

particularly crucial when calculating welfare derived from stabilization policy, which is inherently a

second-order object. In columns
Whist(τ∗Θ)

W(τ∗Θ)
and

τ∗,hist
Θ

τ∗Θ
of Table 3, the ergodic welfare and optimal

cyclicality under the histogram method are presented. It is evident that both the magnitude of welfare

corresponding to a particular τΘ and the gradient of welfare in relation to τΘ are inaccurate when

utilizing the histogram approach.
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Figure 2: Welfare for various values of τΘ when risk aversion is set to 2.

Table 3: STABILIZATION POLICY τ∗Θ

risk aversion τ∗Θ
Whist(τ∗Θ)

W(τ∗Θ)
τ∗,hist
Θ

τ∗Θ

2 -3.10 -348% 161%
3 -1.90 -230% 209%
4 -1.03 -226% 167%
5 -0.69 -217% 125%
7 -0.52 -187% 67%

Notes: Optimal τΘ as we vary the risk aversion parameter. The Whist (τ∗Θ) uses the histogram method to

compute the welfare and τ∗,hist
Θ is the optimal policy using Whist (τΘ) as the measure of welfare

7.2.2 Stochastic Volatility

We next use techniques from Section 5.2 to study aggregate and distributional consequences of changes

in macroeconomic risk. To do that, we first extend the baseline model to include equations (46)–(47)

as the new process for aggregate shocks. We use impulse responses to study the effect of uncertainty of

quantities such as aggregate capital and welfare.

Define the impulse response of aggregate X as

IRFΥ
k ({EΥ,t}) = Et

[
Xt+k

∣∣EΥ,t]− E [Xt+k|EΥ,t = 0] .

Applying Lemma 1SV and Proposition 1SV we find that

IRFΥ
k ({EΥ,t}) ≈

1

2

k−1∑
j=0

XZZ,j,jρ
k−1−j
Υ σ2

Θ +

k∑
j=0

X̄Υ
σσ,jρ

k−j
Υ

 EΥ,t. (75)

We have already discussed the computations of the terms
{
XZZ,j,j

}
. The sequence

{
X̄Υ
σσ,j

}
j

is com-

puted using the linear system (51), in which most terms are precomputed with the only computationally
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Figure 3: Impact of uncertainty shock

intensive step is obtaining function xΥ
σσ(z, θ) from equation (49). This takes an additional second of

computational time. When individual Bellman equations are a part of x, the corresponding component

of term xΥ
σσ(z, θ) captures effect on t = 0 welfare v0 (z, θ), and can be conveniently used to compute the

distributional effects of uncertainty with no additional time.

To illustrate the responses in the context of the Krusell and Smith baseline, we need to pick a

value ρΥ and the impulse {EΥ,t}. To do that, we use the CBOE Volatility Index (VIX), which shows

large fluctuations, with rapid increases of up to 4-5 times the average (for instance in 2008 and also

during the COVID pandemic) that take a couple of years to mean revert. Interpreting the VIX as

a measure of uncertainty, we study a impulse response to a one-time, large but transitory shock to

the uncertainty of the TFP process, similar to what we saw in the recent crisis. The shock increases

the standard deviation by a factor of 5 and mean reverts with a persistence of 0.75. In Figure 3, we

show the response of aggregate capital and welfare (convert the magnitudes into certainty equivalents)

following the shock. We observe that the shock leads to a decrease in capital accumulation of about

1% and a fall in aggregate welfare of about 0.5%. In addition to the impact on aggregate variables,

we investigate the effect of the shock on individual welfare. In Figure 4, we plot the welfare losses

by assets, normalized by per capita GDP. The average welfare loss amounts to approximately half a

percentage point of per-period consumption, and these losses range from 0.81% to 0.20% across the

asset distribution. The most significant welfare losses are experienced by asset-poor agents who are

closer to the borrowing constraints.
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Figure 4: Distribution of per-period certainty equivalent that households forgo to avoid the one-time uncertainty shock

7.2.3 Portfolio Choice

We now illustrate the extension of our algorithm in Section 5.3 to capture portfolio choice. Extend the

baseline Krusell and Smith model allowing agents to trade risk-free debt, b, which has a zero net supply,

in addition to claims on risky capital whose market value we denote by k. Total wealth is a = k + b.

We impose a constraint that prevents households from short-selling capital.

The key computational step here is to solve for the zeroth-order holdings of the risky capital k (θ, a)

and the first-order response of excess returns on capital to the contemporaneous TFP shock RZ,0.

Conditional on these two objects, the steps and the time to compute responses of other variables is the

similar as in Table 2. We use a nonlinear root solver to implement equations (70) – (73) to solve for a

one dimensional unknown RZ,0. The time taken to solve for RZ,0 naturally depends on the initial guess

and tolerance/tuning parameters of the root finding algorithm. Using the initial guess from the equal-

portfolio economy, it took about a minute to find the RZ,0 using default algorithm of Julia’s NLsolve

package with a tolerance of 1e−11. As a by product, we get {XZ,t} and Rσ,σ,0 from equations (70) and

(71) that got used in constructing the non linear equation. We use {XZ,t} to construct the first-order

responses and then use Rσ,σ,0 along with RZ,0 to construct the portfolio function using equation (67).

Both of these are linear systems and take negligible amount of additional time.

We now explore the predictions of the baseline Krusell and Smith model for the cross-sectional

distribution of portfolios as well as the role of portfolios in shaping aggregate responses. In the left

panel of Figure 5, we depict the distribution of household portfolios by assets normalized by per capita
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GDP. The model qualitatively aligns with the observed pattern (see Yogo and Wachter (2011) who use

data from the Survey of Consumer Finances) wherein poorer households hold more bonds and wealthier

households hold more stocks. Households closest to the borrowing constraint are most exposed to

aggregate shocks, and they optimally reduce their exposure by adjusting their portfolios towards risk-

free bonds. In the right panel of Figure 5, we plot the first-order response of aggregate capital with

optimal portfolio and compare it to the response if we force households to hold the same portfolios .
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Figure 5: The left panel shows the distribution of household portfolios by assets. The right panel shows the first-order
impulse response of aggregate capital.

7.2.4 Transitions

Our final application shows how to apply our method to compute deterministic transitions across two

steady states. We modify the aggregate TFP process to have a parameter Θ that controls the mean

and consider a one-time permanent change of 5% to Θ. In the economy with high TFP, the distribution

of savings shifts to the right to accommodate the higher demand of the capital which is now more

productive.

To apply the insights from Section 5.1, we need to compute Ω̂0=Ω∗−Ω0. We set the asset distribution

in the non-stochastic economy with high TFP to be Ω∗ and asset distribution in the non-stochastic

economy with low TFP to be Ω0. This allows us to construct the new term in Lemma 1TD, I ·Lt · ddθ Ω̂0

which takes negligible amount of time given that we have precomputed operators I and {Lt}. We

truncate T when the difference between X
(
Ω∗; Θ = 1

)
+XZ,0 and X

(
Ω∗; Θ = .95

)
is below a threshold.

In Figure 6, we plot the first-order expansions of the mean path of aggregate capital and the

distribution of capital between the two steady states. We see capital slowly approaching a higher level

and the distribution of wealth shifts rightwards.
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Figure 6: Transition path for capital and the distribution of savings after a 5% permanent increase in agg. TFP

8 Conclusion

In this paper, we propose a novel perturbation technique to approximate a wide variety of stochastic

heterogeneous-agent (HA) models. Our methods goes beyond the MIT shock approach prevalent in

existing literature by employing higher-order approximations. Utilizing Fréchet derivative techniques,

we demonstrate that all-order approximations can be represented using analytically derived coefficients

that are straightforward to implement numerically. Our approach broadens the range of research ques-

tions that can be addressed within these model classes. We showcase the practicality of our method by

applying it to examine welfare implications of stabilization policies, portfolio choice, and time-varying

uncertainty in a calibrated economy.
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A Section 4 Proofs

A.1 Derivatives of Kinks and Generalized Functions

Assumption 1(a) states that the policy rules x̃(a, θ, Z;σ) are smooth everywhere except for the locations

ã∨,j(θ, Z;σ). We let N∨ represent the number of kinks. As such the classical derivatives, e.g. x̊aa(a, θ),
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are not defined at those kinks, and for the purposes of integration, we represent them as generalized

functions. We will find it convenient to use the notation x∆,j(θ) ≡ lima↓a∨,j(θ) x(a, θ)−lima↑a∨,j(θ) x(a, θ)

to represent the size of the discontinuity at the kink. Fore conciseness, we’ll define the upper and lower

limits w.r.t. a as x+(a, θ) = limh↓0 x(a+h, θ) and x−(a, θ) = limh↑0 x(a+h, θ) respectively. Continuity

of the policy rules implies that x∆,j(θ) = x+(a∨,j(θ), θ) − x−(a∨,j(θ), θ) = 0, but the derivatives

themselves are allowed to to be discontinuous at the kinks: x∆,j
a (θ) 6= 0.

Before formally studying the distributional derivatives, it is necessary to understand how the kinks

themselves respond to the shocks. Continuity of the policy rules allows us to get the following relation-

ship the derivative of the kink, a∨,jZ,t(θ), and the size of the discontinuity of the derivative of the policy

rules at that kink, x∆,j
Z,t (θ).

Lemma 1. For all t, the derivatives of the kinks satisfy

x∆
a (θ)a∨j,Z,t(θ) = −x∆,j

Z,t (θ),

and, in particular,

a∨j,Z,t(θ) = −a∆
a (θ)−1a∆,j

Z,t (θ). (76)

Proof. Continuity implies that

x̃+(ã∨,j(θ, Z), θ, Z) = x̃−(ã∨,j(θ, Z) + h, θ, Z).

Differentiating with respect to Z in direction Ẑt at σ = 0 yields

x+
a (a∨,j(θ), θ)a∨,jZ,t(θ) + x+

Z,t(a
∨,j(θ), θ) = x−a (a∨,j(θ), θ)a∨,jZ,t(θ) + x−Z,t(a

∨,j(θ), θ),

which implies that

x∆
a (θ)a∨j,Z,t(θ) = −x∆,j

Z,t (θ).

Applying p to both sides and dividing by a∆
a (θ) yields (76).

The distributional derivates themselves are defined by how the operate as linear functionals over

a space of smooth test functions, ϕ, with compact support. We use these definitions to establish the

following relationships
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Claim 1. For all t, k distributional derivatives of x̃ satisfy

xZ,t(a, θ) = x̊Z,t(a, θ)

xa(a, θ) = x̊a(a, θ)

xaa(a, θ) = x̊aa(a, θ) +
∑
j

x∆,j
a (θ)δ(a− a∨,j(θ))

xaZ,t(a, θ) = x̊aZ,t(a, θ) +
∑
j

x∆,j
Z,t (θ)δ(a− a∨,j(θ))

xZZ,t,k(a, θ) = x̊ZZ,t,k(a, θ) +
∑
j

x∆,j
a (θ)a∨,jZ,t(θ)a

∨,j
Z,k(θ)δ(a− a∨,j(θ))

Proof. The distribution derivative xa(a, θ) is defined by27∫∫
xa(a, θ)ϕ(a, θ)dadθ = −

∫∫
x(a, θ)ϕa(a, θ)dadθ

= −
∫ N∨∑

j=0

∫ a∨,j+1‘(θ)

a∨,j(θ)

x(a, θ)ϕa(a, θ)dadθ

for any test function ϕ. On each of these intervals the functions are smooth so we can apply integration

by parts to get∫∫
xa(a, θ)ϕ(a, θ)dadθ =

∫∫
x̊a(a, θ)ϕ(a, θ)dadθ+

∫ N∨∑
j=1

x∆,j(θ)ϕ(a∨,j(θ), θ)dθ =

∫∫
x̊a(a, θ)φ(a, θ)dadθ

where the last equality used continuity. This implies xa(a, θ) = x̊a(a, θ).

Next we turn to xaa(a, θ), which is defined by∫∫
xaa(a, θ)ϕ(a, θ)dadθ = −

∫∫
xa(a, θ)ϕa(a, θ)dadθ = −

∫∫
x̊a(a, θ)ϕa(a, θ)dadθ

Splitting up the integral over a we have∫∫
xaa(a, θ)ϕ(a, θ)dadθ = −

∫ N∨∑
j=0

∫ a∨,j+1‘(θ)

a∨,j(θ)

x̊a(a, θ)ϕa(a, θ)dadθ

=

∫∫
x̊aa(a, θ)ϕ(a, θ)dadθ +

∫ N∨∑
j=1

x∆,j
a (θ)ϕ(a∨,j(θ), θ)dθ

=

∫∫ x̊aa(a, θ) +

N∨∑
j=1

x∆,j
a (θ)δ(a− a∨,j(θ))

ϕ(a, θ)dadθ

where the second equality used integration by parts.

Next we have xZ,t(a, θ) which is defined by∫
xZ,t(a, θ)ϕ(a, θ)dadθ =

(∫∫
x(a, θ, Z)ϕ(a, θ)dadθ

)
Z,t

.

27To concisely represent these integrals we use the convention that a∨,0(θ) = −∞ and a∨,N
∨+1(θ) =∞
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As ∫∫
x(a, θ, Z)ϕ(a, θ)dadθ =

∫ N∨∑
j=0

∫ a∨,j+1‘(θ,Z)

a∨,j(θ,Z)

x(a, θ, Z)ϕ(a, θ)dadθ,

when we take the derivative we get(∫∫
x(a, θ, Z)ϕ(a, θ)dadθ

)
Z,t

=

∫∫
x̊Z,t(a, θ)ϕ(a, θ)dadθ −

∫ N∨∑
j=1

x∆,j(θ)a∨Z,t(θ)ϕ(a∨,j(θ), θ)dθ

=

∫∫
xZ,t(a, θ)ϕ(a, θ)dadθ

which implies that xZ,t(a, θ) = x̊Z,t(a, θ).

The distributional derivative xaZ,t(a, θ) is defined by∫∫
xaZ,t(a, θ)ϕ(a, θ)dadθ = −

∫∫
xZ,t(a, θ)ϕa(a, θ)dadθ

for any test function ϕ. As xZ,t(a, θ) = x̊Z,t(a, θ) we have

−
∫∫

xZ,t(a, θ)ϕa(a, θ)dadθ = −
∫ N∨∑

j=0

∫ a∨,j+1‘(θ)

a∨,j(θ)

x̊Z,t(a, θ)ϕa(a, θ)dadθ

=

∫∫
x̊aZ,t(a, θ)ϕ(a, θ)dadθ +

∫ N∨∑
j=1

x∆,j
Z,t (θ)ϕ(a∨,j(θ), θ)dθ

=

∫∫ x̊aZ,t(a, θ) +

N∨∑
j=1

x∆,j
Z,t (θ)δ(a− a∨,j(θ))

ϕ(a, θ)dadθ.

We conclude xaZ,t(a, θ) = x̊aZ,t(a, θ) +
∑
j x

∆,j
Z,t (θ)δ(a − a∨,j(θ)). Finally the distributional derivative,

ẋZZ,t,k(a, θ), is defined by∫
ẋZZ,t,k(a, θ)ϕ(a, θ)dadθ =

(∫∫
x(a, θ, Z)ϕ(a, θ)dadθ

)
ZZ,t,k

As(∫∫
x(a, θ, Z)ϕ(a, θ)dadθ

)
ZZ,t,k

=

(∫∫
x̊Z,t (a, θ, Z)ϕ(a, θ)dadθ

)
Z,k

+

(∫∫
x(a, θ, Z)ϕ(a, θ)dadθ

)
Z

· Ẑt,k

=

∫ N∨∑
j=0

∫ a∨,j+1‘(θ,Z)

a∨,j(θ,Z)

x̊Z,t(a, θ, Z)ϕ(a, θ)dadθ


Z,k

+

∫∫
x̊Z(a, θ) · Ẑt,kϕ(a, θ)dadθ

=

∫∫
x̊ZZ,t,k(a, θ)ϕ(a, θ)dadθ −

∫ N∨∑
j=1

x∆,j
Z,t (θ) a∨,jZ,k(θ)ϕ

(
a∨,j(θ), θ

)
dθ

=

∫∫ x̊ZZ,t,k(a, θ) +

N∨∑
j=1

x∆,j
a (θ)a∨,jZ,t(θ)a

∨,j
Z,k(θ)δ

(
a− a∨,j(θ)

)ϕ(a, θ)dadθ

where the last time used the relationship −x∆,j
a (θ)a∨,jZ,t(θ) = x∆,j

Z,t (θ) from the above. Thus

xZZ,t,k(a, θ) = x̊ZZ,t,k(a, θ) +
∑
j

x∆,j
a (θ)a∨,jZ,t(θ)a

∨,j
Z,k(θ)δ

(
a− a∨,j(θ)

)
.
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The distributional derivatives in Claim 1 provide a succinct way to summarize how changes in the

location of the kink affect derivatives of integrals over individual policies. To keep the the analysis in

this appendix as accessible as possible we’ll derive all our main results without explicitly the generalized

derivatives of x. Instead, we will explicitly track the limits of integration and only summarize our results

at the end using these δ-functions. As the distributional and classical derivatives align to first order

we will use xZ,t and x̊Z,t interchangeably. We will only explicitly emphasize the classical derivative at

second order.

Finally, we want to highlight an important feature of these additional terms that arise from kinked

policy functions. Namely, they can always be determined from lower order derivatives. We see this in

all of the generalized second derivatives, who’s δ-function components depend only on first derivatives.

This implies that all of the δ function components in the second order derivates can be determined

before the classical second order derivatives, e.g. x̊ZZ,t,k, are found.

A.2 Proof of Lemma ??

Taking a first-order derivative of (16) and (15) around the σ = 0 steady state yields Z0,σ(E0) = Ẑ0E0
and, for t ≥ 0,

Zt+1,σ

(
Et+1

)
= ZZ · Zt,σ

(
Et−1

)
+ Ẑ0Et + Zσ (77)

Xt,σ

(
Et
)

= XZ · Zt,σ
(
Et
)

+Xσ, (78)

with Ẑ0 and ZZ being defined in the main text and Zσ :=
[
0,Ωσ

]
. Our first step is to show that Xσ

and Zσ are both 0 which we codify in the following claim

Claim 2. The first derivatives with respect to σ,
(
Xσ,Ωσ, xσ

)
, are all 0.

Proof. Differentiating the F , G, and LoM mappings with respect to σ yields the following system of

equations28

0 = Fx(a, θ)xσ(a, θ) + FX(a, θ)Xσ + Fx′(a, θ)
(
E [xa|a, θ] aσ(a, θ) + E [xσ|a, θ] + E

[
xZ · Zσ|a, θ

])
0 = Gx

∫
xσdΩ∗ + GXXσ

Ωσ〈a′, θ′〉 = −
∫∫

δ (a(a, θ)− a′) ι(ρθθ + ε ≤ θ′)aσ(a, θ)µ(ε)dεdΩ∗.

This system of equations is homogeneous of degree 1 in
(
Xσ,Ωσ, xσ

)
and, therefore, is solved by setting

all terms to zero.

28Here we have exploited the knowledge that E [xΘ(a′, θ′)E ′] = 0
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Next we show the following claim relating Zt,σ (Et) to the directions Ẑt

Claim 3. For all t

Zt,σ
(
Et
)

=

t∑
s=0

Ẑt−sEs. (79)

Proof. We proceed via induction as Z0,σ(E0) = Ẑ0E0 implies equation (79) holds for t = 0. Assuming

(79) holds for t− 1 we have

Zt,σ
(
Et
)

= ZZ ·

(
t−1∑
s=0

Ẑt−1−sEs

)
+ Ẑ0E0

=

(
t−1∑
s=0

Ẑt−sEs

)
+ Ẑ0E0

=

t∑
s=0

Ẑt−sEs,

where in the second line we used Ẑk+1 ≡ ZZ · Ẑk.

Finally, substituting for Zt,σ (Et) in (15) yields

Xt,σ

(
Et
)

= XZ ·

(
t∑

s=0

Ẑt−sEs

)
=

t∑
s=0

XZ,t−sEs

which completes the proof.

A.3 Derivations of Equations (17), (18), and (19)

Differentiating the G mapping, equation (10), in direction Ẑt = [ρtΘ, AZ,t−1, Ω̂t]
ᵀ is equivalent to differ-

entiating

G

(∫
x
(
a, θ, Z∗ + αẐt

)
d
(

Ω∗ + αΩ̂t

)
, Y (Z∗ + αẐt)

)
= 0

w.r.t. α. Doing so yields

Gx

((∫
xdΩ∗

)
Z,t

+

∫
xdΩ̂t

)
︸ ︷︷ ︸

(
∫
xdΩ)

Z,t

+GY Y Z,t = 0.

Writing out the integration explicitly, we have

(∫
xdΩ∗

)
Z,t

=

∫ N∨∑
j=0

∫ a∨,j+1(θ,Z)

a∨,j(θ,Z)

x(a, θ, Z)ω∗(a, θ)dadθ


Z,t

=

∫∫
xZdΩ∗ −

∫ N∨∑
j=1

x∆,j(θ)ω∗(a∨,j(θ), θ)dθ

=

∫∫
xZdΩ∗.
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To arrive at the second equality we exploited that the components of ω∗ are continuous and that the

mass of agents on the kink is zero. Finally, that the mass of agents on the kink is zero implies that∫∫
xZdΩ∗ is well defined.

Differentiating the of Ỹ in equation (12) in direction Ẑt = [ρtΘ, AZ,t−1, Ω̂t]
ᵀ immediately gives

Y Z,t =
[
ρtΘ,PXZ,t−1, XZ,t, XZ,t+1

]
A.4 Proof of Lemma 2FO

We begin by differentiating the F mapping, equation (9), in direction Ẑt at a point not on the kinks.

Doing so yields

Fx(a, θ)xZ(a, θ) · Ẑt + FY (a, θ)Y Z · Ẑt + Fxe(a, θ) (Eε [x|a, θ, Z])Z · Ẑt = 0

where

Eε [x|a, θ, Z] =

∫
x
(
a(a, θ, Z), ρθθ + ε, Z(Z)

)
µ(ε)dε.

Applying the derivative and exploiting continuity of x

Eε [xa|a, θ] pxZ(a, θ) · Ẑt + Eε
[
xZ · ZZ · Ẑt|a, θ

]
Replacing xZ · Ẑt = xZ,t, XZ · Ẑt = XZ,t and Ẑt+1 = ZZ · Ẑt we get the difference equation

Fx(a, θ)xZ,t(a, θ) + FY (a, θ)XZ,t + Fxe(a, θ) (Eε [xa|a, θ] pxZ,t(a, θ) + Eε [xZ,t+1|a, θ]) = 0. (80)

Our claim is that xZ,t =
∑∞
s=0 xsXZ,t+s solves this equation where xs are defined via (21) and (22). To

see this, note that

Fxe(a, θ)Eε [xZ,t+1|a, θ] =

∞∑
s=0

Fxe(a, θ)Eε [xs|a, θ]Y Z,t+1+s

= − (Fx(a, θ) + Fxe(a, θ)Eε [xa|a, θ] P)

∞∑
s=0

xs+1(a, θ)Y Z,t+1+s

= − (Fx(a, θ) + Fxe(a, θ)Eε [xa|a, θ] P)

∞∑
s=1

xs(a, θ)Y Z,t+s

where the second line comes from applying equation (22). Combined with equation (21) we have

FY (a, θ) + Fxe(a, θ)Eε [xZ,t+1|a, θ] = − (Fx(a, θ) + Fxe(a, θ)Eε [xa|a, θ] P)xZ,t(a, θ)

which guarantees (80) and completes the proof.
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A.5 Proof of Lemma 3FO

Differentiating the LoM, equation 11, in direction Ẑt is equivalent to differentiating

Ω(Z∗+αẐt)〈a′, θ′〉 =

∫ N∨∑
j=0

∫ a∨,j+1(θ,Z∗+αẐt)

a∨,j(θ,Z∗+αẐt)

∫
ι
(
ā(a, θ, Z∗ + αẐt) ≤ a′

)
ι (ρθθ + ε ≤ θ′)µ(ε)dεd

(
Ω∗ + αΩ̂t

)
〈a, θ〉

with respect to α. This yields

ΩZ · Ẑt〈a′, θ′〉 = −
∫∫

δ (a(a, θ)− a′) ι (ρθθ + ε ≤ θ′)µ(ε)dεaZ(a, θ) · ẐtdΩ∗〈a, θ〉

+

∫∫
ι (ā(a, θ) ≤ a′) ι (ρθθ + ε ≤ θ′)µ(ε)dεdΩ̂t〈a, θ〉.

+

∫ N∨∑
j=1

∫ (
ι
(
ā+(a∨,j(θ), θ) ≤ a′

)
− ι
(
ā−(a∨,j(θ), θ) ≤ a′

))
ι (ρθθ + ε ≤ θ′)µ(ε)dεdΩ∗〈a∨(θ), θ〉

Continuity of a implies that this last term is 0. Applying d
dθ′

to both sides and substituting for aZ,t

yields

d

dθ′
Ω̂t+1〈a′, θ′〉 = −

∫ Λ(a
′
,θ
′
,a,θ)︷ ︸︸ ︷

δ (a(a, θ)− a′)µ(θ
′
− ρθθ) aZ,t(a, θ)dΩ∗〈a, θ〉

+

∫
ι (ā(a, θ) ≤ a′)µ(θ

′
− ρθθ)dΩ̂t〈a, θ〉.

= − (M · aZ,t) 〈a′, θ′〉

+

∫ Λ(a
′
,θ
′
,a,θ)︷ ︸︸ ︷

δ (a(a, θ)− a′)µ(θ
′
− ρθθ) āa(a, θ)

d

dθ
Ω̂t〈a, θ〉dadθ

= − (M · aZ,t) 〈a′, θ′〉+

(
L(a) · d

dθ
Ω̂t

)
〈a′, θ′〉

Where the second equality is achieved via integration by parts. To conclude, we need to show that all

the integrals are well defined. We start with the following Claim

Claim 4. If y is a piecewise smooth with kinks at a∨,j(θ) then M · y is a generalized function with a

finite number of mass points a∗n.

Proof. We will show that (M · y) 〈a′, θ′〉 is of the form

m(a′, θ′) +
∑
n

mδ
n(θ′)δ(a− a∗n).

From our definition of M

(M · y) 〈a′, θ′〉 =

∫∫
Λ(a′, θ′, a, θ)y(a, θ)

(
ω∗(a, θ) +

∑
n

ξ∗n(θ)δ(a− a∗n)

)
dadθ

=

∫∫
Λ(a′, θ′, a, θ)y(a, θ)ω̊∗(a, θ)dadθ

+
∑
n

∫
Λ(a′, θ′, a∗n, θ)y(a∗n, θ)ξ

∗
n(θ)dθ
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For points a
′ 6= a∗n we have

ω̊∗(a′, θ′) =

∫∫
Λ(a′, θ′, a, θ)ω̊∗(a, θ)dadθ +

∑
n

∫
Λ(a′, θ′, a∗n, θ)ξ

∗
n(θ)dθ,

and since y is piecewise smooth with discontinuities that don’t align with the mass-points a∗n we conclude

that

m(a′, θ′) =

∫∫
Λ(a′, θ′, a, θ)y(a, θ)ω̊∗(a, θ)dadθ

+
∑
n

∫
Λ(a′, θ′, a∗n, θ)y(a∗n, θ)ξ

∗
n(θ)dθ

exists and is continuous for all a′ 6= a∗n. At the mass points we have∫∫
Λ(a∗n, θ

′, a, θ)ω̊∗(a, θ)dadθ +
∑
m

∫
Λ(a∗n, θ

′, a∗m, θ)ξ
∗
n(θ)dθ = ξ∗n(θ′)δ(a− a∗n)

where

ξ∗n(θ′) =

∫ ∫
θ(a,a∗n)

µ (θ′ − ρθθ) ω̊∗(a, θ)dθda+
∑
m

∫
θ(a∗m,a

∗
n)

µ(θ′ − ρθθ)ξ∗n(θ)dθ

with θ(a, a′) = {θ : a(a, θ) = a′}. As y is piecewise smooth with discontinuities that don’t align with

the mass-points a∗n

mδ,n(θ′) =

∫ ∫
θ(a,a∗n)

µ (θ′ − ρθθ) ω̊∗(a, θ)y (a, θ) dθda

+
∑
m

∫
θ(a∗m,a

∗
n)

µ(θ′ − ρθθ)ξ∗n(θ)y (a∗m, θ) dθ

is well defined.

This claim implies thatM· aZ,t is a generalized function with a finite number of mass-points at a∗n.

As Ω̂0 = 0 we conclude that
d

dθ
Ω̂1 = −M · aZ,0

is a generalized function with a finite number of mass-points at a∗n. Our next claim allows us to extend

this to all d
dθ Ω̂t via induction

Claim 5. If d
dθ Ω̂ is a generalized function with a finite number of mass-points at a∗n, then L(a) · d

dθ Ω̂ is

a generalized function with a finite number of mass-points at a∗n.

Proof. Repeat the steps of the Claim 4 replacing y with aa and

ω̊∗(a, θ) +
∑
n

ξ∗n(θ)δ(a− a∗n)

with d
dθ Ω̂.
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Induction then implies that d
dθ Ω̂t is a density with a finite number of mass points {a∗n} for the

remainder of the proof we will write

d

dθ
Ω̂t = ω̂t(a, θ) +

∑
n

ξ̂t,n(θ)δ(a− a∗n)

A.6 Proof of Corollary 1FO

We start with our first claim

Claim 6. d
dθ Ω̂t is given by

d

dθ
Ω̂t = −

∑
s=0

At,sY Z,s

where At,s is as defined in Corollary 1FO.

Proof. We proceed by induction. It’s trivially true from t = 0 as A0,s = 0 and d
dθ Ω̂0. We then proceed

by induction by substituting for aZ,t

d

dθ
Ω̂t+1 = L(a) · d

dθ
Ω̂t −

∞∑
j=0

(M · aj)Y Z,t+j

= L(a) ·

(
−
∞∑
s=0

At,sY Z,s

)
−
∞∑
s=0

(M · as−t)Y Z,s

=

∞∑
s=0

−
(
L(a) · At,s +M · as−t

)
Y Z,s

≡
∞∑
s=0

At+1,sY Z,s

where the second equality is achieved by letting s = t+ j and WLOG setting ak = 0 for k < 0.

Applying integration by parts we have29∫
xdΩ̂t = −

∫∫
xa

d

dθ
Ω̂tdadθ := −I(a) · d

dθ
Ω̂t.

From the proof of Lemma 3FO we know that d
dθ Ω̂t is a density with mass points at a finite number of

points a∗n which implies that the set of points where xa is not defined is measure zero under d
dθ Ω̂tdadθ

so I(a) · ddθ Ω̂t is well defined. Therefore∫
xdΩ̂t = −I(a) ·

(
−
∞∑
s=0

At,sY Z,s

)
=

∞∑
s=0

(
I(a) · At,s

)
Y Z,s

29Again, we can formally define this as integration over the sub intervals of a where x is smooth and then apply
integration by parts. Continuity of x at the kinks implies that those limit terms drop out.
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We conclude by substituting for xZ,t and
∫
xdΩ̂t in equation (19) to conclude that(∫

xdΩ

)
Z,t

=

∞∑
j=0

∫
xjdΩ∗Y Z,t+s +

∞∑
s=0

(
I(a) · At,s

)
Y Z,s

=

∞∑
s=0

(∫
xt−sdΩ∗ + I(a) · At,s

)
︸ ︷︷ ︸

Jt,s

Y Z,s

as desired.

A.7 Proof Of Proposition 1FO

This is a direct result of combining Corollary 1FO with equation (17).

A.8 Proof of Lemma 1SO

We proceed by taking a second-order derivatives of (16) and (15) w.r.t. σ to find Z0,σσ

(
E0
)

= 0 and 30

Zt+1,σσ

(
Et+1

)
= ZZ · Zt,σσ

(
Et
)

+ ZZZ ·
(
Zt,σ

(
Et
)
, Zt,σ

(
Et
))

+ Zσσ (81)

Xt,σσ

(
Et
)

= XZ · Zt,σσ
(
Et
)

+XZZ ·
(
Zt,σ

(
Et
)
, Zt,σ

(
Et
))

+Xσσ (82)

where ZZZ is defined in the main text and Zσσ =
[
0,Ωσσ

]T
. We begin by showing the following claim

relating Zt,σσ (Et) to the directions Ẑt,k and Ẑσσ,t.

Claim 7. For all t

Zt,σσ
(
Et
)

= Ẑσσ,t +

t∑
s=0

t∑
m=0

Ẑt−s,t−mEsEm (83)

Proof. We proceed by induction. As Ẑσσ,0 = Ẑ0,0 = 0 we conclude that equation (15) holds for t = 0

since Z0,σσ

(
E0
)

= 0. Assuming (83) holds for t− 1 we have

Zt,σσ
(
Et
)

= ZZ ·

(
Ẑσσ,t−1 +

t−1∑
s=0

t−1∑
m=0

Ẑt−1−s,t−1−mEsEm

)

+ ZZZ ·

(
t−1∑
s=0

Ẑt−1−sEs,
t−1∑
m=0

Ẑt−1−mEm

)
+ Zσσ

= ZZ · Ẑσσ,t−1 + Zσσ +

t−1∑
s=0

t−1∑
m=0

(
ZZ · Ẑt−1−s,t−1−m + ZZZ ·

(
Ẑt−1−s, Ẑt−1−m

))
EsEm

= Ẑσσ,t +

t∑
s=0

t∑
m=0

Ẑt−s,t−mEsEm

where in the second equality we used the fact that ZZZ is a bi-linear mapping and in the third equality

we use the recursive definitions of Ẑσσ,t and Ẑt,k, and Ẑ0,0 = 0.

30There are also XσZ and ZσZ terms but they are 0 following the same logic as Xσ and Zσ being 0 in the proof of
Lemma 1
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Finally we plug in for Zt,σσ (Et) and Zt,σ (Et) in equation (82) to find

Xt,σσ

(
Et
)

= XZ ·

(
Ẑσσ,t +

t∑
s=0

t∑
m=0

Ẑt−s,t−mEsEm

)
+XZZ ·

(
t∑

s=0

Ẑt−sEs,
t∑

m=0

Ẑt−mEm

)

= XZ · Ẑσσ,t +

t∑
s=0

t∑
m=0

(
XZ · Ẑt−s,t−m +XZZ ·

(
Ẑt−s, Ẑt−m

))
EsEm

= Xσσ,t +

t∑
s=0

t∑
m=0

XZZ,t−s,t−mEsEm

which completes the proof.

A.9 Proof of Lemma 2aSO

We assume knowledge of xZZ,0,0(a, θ). To find xσσ(a, θ), for any (a, θ) not on a kink, differentiate the

F mapping twice with respect to σ and add to it the derivative of F in direction Ẑσσ,t

0 = Fx(a, θ)xσσ,t(a, θ) + FY (a, θ)Xσσ,t + Fxe(a, θ) (Eε,E x̃)σσ,t

where

Eε,E x̃ =

N∨∑
j=0

∫ θ̃∨,j+1(ã(a,θ,Z),Z̃(σE,Z;σ))

θ̃∨,j(ã(a,θ,Z),Z̃(σE,Z;σ))

x̃
(
ã(a, θ, Z;σ), θ′, Z̃(σE , Z;σ)

)
µ (θ′ − ρθθ) dθ′dPr (E)

and Z̃(σE , Z;σ) =
[
σE , Ã(Z;σ), Ω̃(Z;σ)

]T
.Taking the second derivative of this object with respect to

σ and adding to it the derivative in direction Ẑt yields (after exploiting continuity of x and xσ = 0)

yields31

(Eε,E x̃)σσ,t = Eε
[̊
xZZ,0,0|a, θ

]
var(E) + Eε [xσσ,t+1|a, θ] + Eε [xa|a, θ] Pxσσ,t(a, θ)

+

N∨∑
j=1

xZ,0

(
a(a, θ), θ

∨,j
(a(a, θ))

)
θ
∨,j
Z,0(a(a, θ))µ

(
θ
∨,j
Z,0(a(a, θ))

)
using the distributional derivative from xZZ,0,0 and exploiting that θ̃∨,j is the inverse of ã∨,j we can

write this more succinctly as

(Eε,E x̃)σσ,t = Eε [xZZ,0,0|a, θ] var(E) + Eε [xσσ,t+1|a, θ] + Eε [xa|a, θ] Pxσσ,t(a, θ)

Let xσσ(a, θ) be the function that solves the following linear functional equation

0 = Fx(a, θ)xσσ(a, θ) + Fxe(a, θ) (Eε [xZZ,0,0|a, θ] var(E) + Eε [xσσ|a, θ] + Eε [xa|a, θ] xσσ(a, θ)) .

Subtracting these two equations and defining x̂σσ,t(a, θ) = xσσ,t(a, θ)− xσσ(a, θ) we see that

0 = Fx(a, θ)x̂σσ,t + FX(a, θ)Xσσ,t + Fx′(a, θ) (E [x̂σσ,t+1|a, θ] + E [xa|a, θ] Px̂σσ,t) .

31As xσ is uniformly zero, the same steps that show distributional derivatives are equal to the classical derivatives to
first order can be used to show xσσ = x̊σσ .

57



This is identical to system of equations solved by xZ,t which allows us to conclude that

x̂σσ,t(a, θ) =

∞∑
s=0

xs(a, θ)Xσσ,t+s

which implies (34).

A.10 Proof of Proposition 1aSO

The same steps as the proof of Lemma 3FO can be used to show that d
dθ Ω̂σσ,t satisfies the recursive

equation
d

dθ
Ω̂σσ,t+1 = L(a) · d

dθ
Ω̂σσ,t −M · aσσ,t.

We can then proceed to prove the following Claim

Claim 8. d
dθ Ω̂σσ,t is given by

d

dθ
Ω̂σσ,t = −

∑
s=0

At,sY σσ,s − Bσσ,t

where At,s is as defined in Corollary 1FO and Bσσ,0 = 0 and Bσσ,t+1 = L(a) · Bσσ,t +M · aσσ

Proof. We proceed by induction. It’s trivially true from t = 0 as A0,s = 0,Bσσ,0 = 0, and d
dθ Ω̂σσ,0 = 0.

We then proceed by induction

d

dθ
Ω̂σσ,t = L(a) · d

dθ
Ω̂σσ,t −

∞∑
j=0

M · ajY σσ,t+j −M · bσσ

= L(a) ·

(
−
∑
s=0

At,sY σσ,s − Bσσ,t

)
−
∞∑
s=0

M · as−tY σσ,s −M · bσσ

=

∞∑
s=0

−
(
L(a) · At,s +M · as−t

)
Y σσ,s −

(
L(a) · Bσσ,t +M · bσσ

)
≡ −

∞∑
s=0

At+1,sY σσ,s − Bσσ,t+1

where the second equality is achieved by letting s = t+ j and WLOG setting ak = 0 for k < 0.

Integration by parts then implies that∫
xdΩ̂σσ,t = −

∫
xa

d

dθ
Ω̂σσ,tdadθ =

∞∑
s=0

(
I(a) · At,s

)
Y σσ,s + I(a) · Bσσ,t

where the same arguments as in the first-order guarantee that d
dθ Ω̂σσ,t is a generalized function with

mass-points at {a∗n} and thus the operation I(a) · ddθ Ω̂σσ,t is well defined. This implies that(∫
xdΩ

)
σσ,t

=

∫
xσσ,tdΩ∗ +

∫
xdΩ̂σσ,t

=

∞∑
s=0

(∫
xs−tdΩ∗ + I(a) · At,s

)
︸ ︷︷ ︸

Jt,s

Y σσ,s +

∫
xσσdΩ∗ + I(a) · Bσσ,t︸ ︷︷ ︸

:=Hσσ,t
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the LOM for Bσσ,t in Claim 8 implies that Hσσ,t satisfies the recursion Hσσ,0 =
∫

xσσdΩ∗ and Hσσ,t+1 =

Hσσ,t + I(a) ·
(
L(a)

)t−1 · M · aσσ. Substituting for
(∫
xdΩ

)
σσ,t

in (32) completes the proof.

A.11 Derivation of Equation (39) and (37)

Differentiating the G map twice in directions Ẑt and Ẑk and adding to it the derivative in direction

Ẑt,k yields

Gx

(∫
xdΩ

)
ZZ,t,k

+GY Y ZZ,t,k + GΘΘ,t,k = 0

where

GΘΘ,t,k =Gxx ·

((∫
xdΩ

)
Z,t

,

(∫
xdΩ

)
Z,k

)
+ GxY ·

((∫
xdΩ

)
Z,t

, Y Z,k

)
+ GY x ·

(
Y Z,t,

(∫
xdΩ

)
Z,k

)
+ GY Y ·

(
Y Z,t, Y Z,k

)
Finding

(∫
xdΩ

)
ZZ,t,k

requires differentiating

∫ N∨∑
j=0

∫ a∨,j+1(θ,Z)

a∨,j(θ,Z)

xZ,t(a, θ, Z)dΩ〈a, θ〉+

∫ N∨∑
j=0

∫ a∨,j+1(θ,Z)

a∨,j(θ,Z)

x(a, θ, Z)dΩ̂t〈a, θ〉

in direction Ẑk and adding to it(∫
xdΩ

)
Z

· Ẑt,k =

∫
xZ · Ẑt,kdΩ∗ +

∫
xdΩ̂t,k.

This implies (∫
xdΩ

)
ZZ,t,k

=

∫
x̊ZZ,t,kdΩ∗ +

∫
xZ,tdΩ̂k +

∫
xZ,kdΩ̂k +

∫
xdΩ̂t,k

−
∫ N∨∑

j=1

x∆,j
Z,t (θ)a∨,jZ,k(θ)ω∗(a∨,j(θ), θ)dθ

Exploiting x∆,j
Z,t (θ)a∨,jZ,k(θ) = −x∆,j

a (θ)a∨,jZ,t(θ)a
∨,j
Z,k(θ) we can write this more concisely with the distribu-

tional derivative notation(∫
xdΩ

)
ZZ,t,k

=

∫
xZZ,t,kdΩ∗ +

∫
xZ,tdΩ̂k +

∫
xZ,kdΩ̂k +

∫
xdΩ̂t,k

A.12 Proof of Lemma (2bSO)

To determine x̊ZZ,t,k(a, θ) at points away from the kinks we start with the derivative of the F mapping

in the direction Ẑt,k and then add to it the second derivative of the F mapping in directions Ẑt and
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Ẑk. Doing so yields

0 = Fx(a, θ)̊xZZ,t,k(a, θ) + FY (a, θ)Y ZZ,t,k + Fxe(a, θ) (Eε [x|a, θ, Z])ZZ,t,k

+ Fxx(a, θ) · (xZ,t(a, θ), xZ,k(a, θ)) + FxY (a, θ) ·
(
xZ,t(a, θ), Y Z,k

)
+ Fxxe(a, θ) ·

(
xZ,t(a, θ), x

e
Z,k(a, θ)

)
+ FY x(a, θ) ·

(
Y Z,t, xZ,k(a, θ)

)
+ FY Y (a, θ) ·

(
Y Z,t, Y Z,k

)
+ FY xe(a, θ) ·

(
Y Z,t, x

e
Z,k(a, θ)

)
+ Fxex(a, θ) ·

(
xeZ,t(a, θ), xZ,k(a, θ)

)
+ FxeY (a, θ) ·

(
xeZ,t(a, θ), Y Z,k

)
+ Fxexe(a, θ) ·

(
xeZ,t(a, θ), x

e
Z,k(a, θ)

)
where xeZ,t(a, θ) := Eε [xa|a, θ]xZ,i(a, θ) + Eε [xZ,t+1|a, θ] . The term (Eε [x|a, θ, Z])ZZ,t,k is obtained by differ-
entiating

N∨∑
j=0

∫ θ
∨,j+1

(a(a,θ,Z),Z(Z))

θ
∨,j

(a(a,θ,Z),Z(Z))

x
(
a(a, θ, Z), θ′, Z(Z)

)
µ(θ′ − ρθθ)dθ′

twice in directions Ẑt and Ẑk and then adding to it the derivative of in direction Ẑt,k. This implies

(Eε [x|a, θ, Z])ZZ,t,k = Eε
[̊
xaa|a, θ

]
aZ,t(a, θ)aZ,k(a, θ) + E

[̊
xaZ,k+1

]
aZ,t(a, θ) + E

[̊
xaZ,t+1

]
aZ,k(a, θ) + Eε

[̊
xZZ,t,k|a, θ

]
+

N∨∑
j=1

((
x∆,j
a

(
θ
∨,j

(a(a, θ))
)
aZ,t(a, θ) + x∆,j

Z,t+1

(
θ
∨,j

(a(a, θ))
))

×
(
θ
∨,j
a (a(a, θ))aZ,k(a, θ) + θ

∨,j
Z,k+1(a(a, θ))

)
µ
(
θ
∨,j

(a(a, θ))− ρθθ
))

using the distributional derivatives and exploiting that θ
∨,j

is the inverse of a∨,j we can write this more

succinctly as

(Eε [x|a, θ, Z])ZZ,t,k = Eε [xaa|a, θ] aZ,t(a, θ)aZ,k(a, θ) + E [xaZ,k+1] aZ,t(a, θ) + E [xaZ,t+1] aZ,k(a, θ) + Eε [xZZ,t,k|a, θ] .

As we can write Eε [xZZ,t,k|a, θ] = Eε
[̊
xZZ,t,k|a, θ

]
+Eε

[
xZZ,t,k − x̊ZZ,t,k|a, θ

]
with xZZ,t,k being defined

in Claim 1. We can write the following recursive expression for x̊ZZ,t,k(a, θ) as

Fx(a, θ)̊xZZ,t,k(a, θ) + FY (a, θ)Y ZZ,t,k + Fxe(a, θ)Eε
[̊
xZZ,t,k|a, θ

]
+ Ft,k(a, θ)

where

Ft,k(a, θ) = Fxe(a, θ)

(
Eε [xaa|a, θ] aZ,t(a, θ)aZ,k(a, θ) + Eε [xaZ,k+1] aZ,t(a, θ)

+ Eε [xaZ,t+1] aZ,k(a, θ) + Eε
[̊
xZZ,t,k|a, θ

])
+ Fxx(a, θ) · (xZ,t(a, θ), xZ,k(a, θ)) + FxY (a, θ) ·

(
xZ,t(a, θ), Y Z,k

)
+ Fxxe(a, θ) ·

(
xZ,t(a, θ), x

e
Z,k(a, θ)

)
+ FY x(a, θ) ·

(
Y Z,t, xZ,k(a, θ)

)
+ FY Y (a, θ) ·

(
Y Z,t, Y Z,k

)
+ FY xe(a, θ) ·

(
Y Z,t, x

e
Z,k(a, θ)

)
+ Fxex(a, θ) ·

(
xeZ,t(a, θ), xZ,k(a, θ)

)
+ FxeY (a, θ) ·

(
xeZ,t(a, θ), Y Z,k

)
+ Fxexe(a, θ) ·

(
xeZ,t(a, θ), x

e
Z,k(a, θ)

)
with all of these objects easily constructed from first order terms.
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A.13 Proof of Lemma 3bSO

We start by differentiating the LOM in direction Ẑt,k. The same arguments as the first order gives

d

dθ
ΩZ · Ẑt,k = L(a) · Ω̂t,k −M ·

(
aZ · Ẑt,k

)
.

To get d
dθ Ω̂t+1,k+1 we add to it the derivative direction Ẑk of

d

dθ
ΩZ(Z) · Ẑt〈a′, θ′〉 =

∫ N∨∑
j=0

∫ a∨,j+1(θ,Z)

a∨,j(θ,Z)

Λ(a′, θ′, a, θ, Z)aa(a, θ, Z)
d

dθ
Ω̂t〈a, θ〉dadθ

−
∫ N∨∑

j=0

∫ a∨,j+1(θ,Z)

a∨,j(θ,Z)

Λ(a′, θ′, a, θ, Z)aZ,t(a, θ, Z)dΩ〈a, θ〉

where Λ(a′, θ′, a, θ, Z) ≡ δ(a(a, θ, Z)− a′)µ(θ′ − ρθθ). Doing so gives

d

dθ
Ω̂t+1,k+1〈a′, θ′〉 =

∫∫
Λ(a′, θ′, a, θ)aa(a, θ)

d

dθ
Ω̂t,k〈a, θ〉dadθ −

∫∫
Λ(a′, θ′, a, θ)̊aZZ,t,k(a, θ)dΩ∗

+

∫∫
Λ (a′, θ′, a, θ) åaZ,k(a, θ)

d

dθ
Ω̂t〈a, θ〉dadθ −

d

da′

∫∫
Λ (a′, θ′, a, θ) aa(a, θ)aZ,k(a, θ)

d

dθ
Ω̂t〈a, θ〉dadθ

−
∫∫

Λ(a′, θ′, a, θ)aZ,t(a, θ)dΩ̂k +
d

da′

∫∫
Λ (a′, θ′, a, θ) aZ,k(a, θ)aZ,t(a, θ)dΩ∗

−
∫ N∨∑

j=1

Λ
(
a′, θ′, a∨,j(θ), θ

)
a∆,j
a (θ)a∨,jZ,k(θ)︸ ︷︷ ︸
−a∆,j

Z,k(θ)

d

dθ
Ω̂t〈a∨,j(θ), θ〉dadθ

+

∫ N∨∑
j=1

Λ
(
a′, θ′, a∨,j(θ), θ

)
a∆,j
Z,t (θ)a∨,jZ,k(θ)︸ ︷︷ ︸

−a∆,j
a (θ)a∨,jZ,k(θ)a∆,j

Z,k(θ)

dΩ∗〈a∨,j(θ), θ〉.

Finally, integration by parts implies∫∫
Λ(a′, θ′, a, θ)aZ,t(a, θ)dΩ̂k = −

∫∫
Λ(a′, θ′, a, θ)̊aaZ,t(a, θ)

d

dθ
Ω̂t〈a, θ〉dadθ

+
d

da′

∫∫
Λ (a′, θ′, a, θ) aa(a, θ)aZ,t(a, θ)

d

dθ
Ω̂k〈a, θ〉dadθ

−
∫ N∨∑

j=1

Λ
(
a′, θ′, a∨,j(θ), θ

)
a∆,j
Z,t (θ)

d

dθ
Ω̂k〈a∨,j(θ), θ〉dadθ.

All combined, using distributional derivatives to absorb the derivatives of the kinks, we have

d

dθ
Ω̂t+1,k+1〈a′, θ′〉 =

∫∫
Λ(a′, θ′, a, θ)aa(a, θ)

d

dθ
Ω̂t,k〈a, θ〉dadθ −

∫∫
Λ(a′, θ′, a, θ)aZZ,t,k(a, θ)dΩ∗

+

∫∫
Λ (a′, θ′, a, θ) aaZ,k(a, θ)

d

dθ
Ω̂t〈a, θ〉dadθ −

d

da′

∫∫
Λ (a′, θ′, a, θ) aa(a, θ)aZ,k(a, θ)

d

dθ
Ω̂t〈a, θ〉dadθ

−
∫∫

Λ(a′, θ′, a, θ)aaZ,t(a, θ)
d

dθ
Ω̂t〈a, θ〉dadθ +

d

da′

∫∫
Λ (a′, θ′, a, θ) aa(a, θ)aZ,t(a, θ)

d

dθ
Ω̂k〈a, θ〉dadθ

+
d

da′

∫∫
Λ (a′, θ′, a, θ) aZ,k(a, θ)aZ,t(a, θ)dΩ∗

which can be written more concisely as (42).
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A.14 Proof of Corollary 1bSO

We start with the following claim regarding d
da and L(a)

Claim 9. Suppose that y is a generalized function with a finite number of mass points at {a∗n} then

L(a) · d
da

y = −L(aa) · y +
d

da
L(a,a) · y

where L(aa) and L(a,a) are defined as L(a) with aa replaced with aaa and aaaa respectively.

Proof. We have(
L(a) · d

da
y

)
(a
′
, θ
′
) =

∫ N∨∑
j=0

∫ a∨,j+1(θ)

a∨,j(θ)

Λ(a
′
, θ
′
, a, θ)aa(a, θ)

d

da
y(a, θ)dadθ

= −
∫

Λ(a
′
, θ
′
, a, θ)̊aaa(a, θ)y(a, θ)dadθ −

∫
Λa(a

′
, θ
′
, a, θ)aa(a, θ)y(a, θ)dadθ

−
∫ N∨∑

j=0

Λ(a
′
, θ
′
, a∨,j(θ), θ)a∆,j

a (θ)
d

da
y(a∨,j(θ), θ)dθ

= −
∫

Λ(a
′
, θ
′
, a, θ)aaa(a, θ)y(a, θ)dadθ︸ ︷︷ ︸

:=(L(aa)·y)(a′ ,θ′ )

+
d

da′

∫
Λa(a

′
, θ
′
, a, θ)aa(a, θ)aa(a, θ)y(a, θ)dadθ︸ ︷︷ ︸

:=(L(a,a)·y)(a′ ,θ′ )

where the second equality uses integration by parts and the third equality applies the relationship

between aaa and åaa. That y is a generalized function with a finite number of mass points at {a∗n}

guarantees that these integrals are well defined using the same logic as the first order.

Claim 9 allows us to prove the following claim on Ω̂t,k

Claim 10. d
dθ Ω̂ZZ,t,k is given by

d

dθ
Ω̂ZZ,t,k = −

∞∑
s=0

At,sY ZZ,s,k−t+s − Bt,k +
d

da
Ct,k

where At,s is as defined in Corollary 1FO, and Bt,k and Ct,k are defined in Corollary 1bSO.

Proof. We proceed by induction. The case when t = 0 is trivial as Ω̂0,k−t = 0 and A0,s = B0,k−t =
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C0,k−t. We then proceed by induction

d

dθ
Ω̂ZZ,t+1,k+1 = L(a) · d

dθ
Ω̂ZZ,t,k −

∞∑
j=0

ajY ZZ,t+j,k+j − bt,k +
d

da
ct,k

= L(a) ·

(
−
∞∑
s=0

At,sY ZZ,s,k−t+s − Bt,k +
d

da
Ct,k

)

−
∞∑
s=0

as−tY ZZ,s,k−t+s − bt,k +
d

da
ct,k

= −
∞∑
s=0

(
L(a) · At,s + as−t

)
Y ZZ,s,k−t+s −

(
L(a) · Bt,k + bt,k

)
+ L(a) · d

da
Ct,k +

d

da
ct,k

= −
∞∑
s=0

(
L(a) · At,s + as−t

)
Y ZZ,s,k−t+s −

(
L(a) · Bt,k + bt,k

)
− L(aa) · Ct,k +

d

da
L(a,a) · Ct,k +

d

da
ct,k

= −
∑
s=0

At+1,sY ZZ,s,k−t+s − Bt+1,k +
d

da
Ct+1,k

as desired.

Next, by applying integration by parts we have

∫
xdΩ̂t,k = −

∫
xa

(
−
∑
s=0

At,sY ZZ,s,k−t+s − Bt,k +
d

da
Ct,k

)
dadθ

=

∞∑
s=0

(I · At,s)Y ZZ,s,k−t+s + I · Bt,k −
∫ N∨∑

j=0

∫ a∨,j+1(θ)

a∨,j(θ)

xa(a, θ)
d

da
Ct,k(a, θ)dadθ

=

∞∑
s=0

(I · At,s)Y ZZ,s,k−t+s + I · Bt,k +

∫
x̊aaCt,kdadθ +

∫ N∨∑
j=1

x∆,j
a (a∨,j(θ), θ)Ct,k(a∨,j(θ), θ)dθ

=

∞∑
s=0

(I · At,s)Y ZZ,s,k−t+s + I · Bt,k +

∫
xaaCt,kdadθ︸ ︷︷ ︸
:=I(aa)·Ct,k

where once again we can use the same arguments as the first order to guarantee that both Bt,k and

Ct,k are generalized functions with a finite number of mass points at {a∗n} so all the integrals are well

defined.
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Finally, tuning to equation 39, we note that∫
xZ,kdΩ̂t =

∫ N∨∑
j=0

∫ a∨,j+1(θ)

a∨,j(θ)

xZ,k(a, θ)dΩ̂t〈a, θ〉

= −
∫∫

x̊aZ,k
d

dθ
Ω̂tdadθ −

∫ N∨∑
j=1

x∆,j
Z,k(a∨,j(θ), θ)

d

dθ
Ω̂t〈a∨,j(θ), θ〉

= −
∫∫

xaZ,k
d

dθ
Ω̂tdadθ︸ ︷︷ ︸

:=I(a)
Z,k·

d
dθ Ω̂t

and similarly for
∫
xZ,tdΩ̂k. Substituting all of these results into equation 39 yields the result of corollary

1bSO.

A.15 Proof of Proposition 1bSO

The Proposition is a direct result of Corollary 1bSO and equation 37.

B Proofs of Section 5

In this section we present the proofs for the extensions presented in Section 5. As needed we will use

distributional derivatives in place of the classical derivatives,

B.1 Proofs for Section 5.1

B.1.1 Proof of Lemma 1TD

The path of aggregates, Xt(Et; Ω0, σ), depends on the history of aggregate shocks, Et, and the initial

state Ω0. It can be constructed from the recursive representation X̃(Z;σ) and Ω̃(Z;σ) by defining

Zt(Et; Ω0, σ) = [Θt (Et;σ) ,Ωt (Et; Ω0, σ)]
T

recursively as follows: let Z0(E0; Ω0, σ) = [σEt,Ω0]T and for

t ≥ 1

Zt
(
Et; Ω0, σ

)
=
[
ρΘΘt−1

(
Et−1;σ

)
+ σEt, Ω̃

(
Zt−1

(
Et−1; Ω0, σ

)
;σ
)]
, (84)

The path of aggregates can then be defined as

Xt(Et; Ω0, σ) = X̃
(
Zt
(
Et; Ω0, σ

)
;σ
)
. (85)

Defining Zt,σ (Et) and Xt,σ (Et) as the derivatives of Zt (Et; Ω0, σ) and Xt(Et; Ω0, σ) w.r.t σ evaluated

at σ = 0 and Ω0 = Ω∗. The same steps as in the proof of Lemma (1FO) show that

Xt,σ

(
Et
)

=

t∑
s=0

XZ,t−sEs.
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Next taking the derivative of Zt (Et; Ω0, σ) and Xt(Et; Ω0, σ) w.r.t. Ω0 in the direction Ω̂0 = Ω0 − Ω∗,

we have Z0,Ω · Ω̂0 = ẐΩ,0 and for t ≥ 0

Zt+1,Ω

(
Et+1

)
· Ω̂0 = ZZ · Zt,Ω

(
Et
)
· Ω̂0 (86)

Xt,Ω

(
Et
)
· Ω̂0 = XZ · Zt,σ

(
Et
)
· Ω̂0 (87)

which implies that

Zt,Ω
(
Et
)
· Ω̂0 =

(
ZZ
)t · Z0,Ω · Ω̂0 = ẐΩ,t

and

Xt,Ω

(
Et
)
· Ω̂0 = XZ · Zt,σ

(
Et
)
· Ω̂0 = XΩ,t.

All put together we have

Xt(Et; Ω0) = Xt,σ

(
Et
)

+Xt,Ω

(
Et
)
· Ω̂0 +O

(
‖E , Ω̂0‖2

)
=

t∑
s=0

XZ,t−sEs +XΩ,t +O
(
‖E , Ω̂0‖2

)
.

Taking expectations completes the proof.

B.1.2 Proof of Proposition 1TD

The proofs of Lemma 2FO, and Lemma 3FO go through unchanged with ẐΩ,t replacing Ẑt, XΩ,t

replacing XZ,t, xΩ,t replacing xZ,t, and Ω̂Ω,t replacing Ω̂t.

Rolling forward LoM allows us to prove the follow claim

Claim 11. d
dθ Ω̂Ω,t is given by

d

dθ
Ω̂t = −

∑
s=0

At,sY Z,s − BΩ,t

where At,s is as defined in Corollary 1FO where AΩ,t satisfies AΩ,t+1 = L(a) · AΩ,t and AΩ,0 = − d
dθ Ω̂0

Proof. We proceed by induction. It’s trivially true from t = 0 as A0,s = 0 and d
dθ Ω̂Ω,0 = d

dθ Ω̂0. We then

proceed by induction

d

dθ
Ω̂t+1 = L(a) · d

dθ
Ω̂t −

∞∑
j=0

M · ajY Z,t+j

= L(a) ·

(
−
∞∑
s=0

At,sY Z,s − BΩ,t

)
−
∞∑
s=0

M · as−tY Z,s

= −
∞∑
s=0

(
L(a) · At,s +M · as−t

)
XZ,s − L(a) · BΩ,t

≡ −
∞∑
s=0

At+1,sY Z,s − BΩ,t+1

where the second equality is achieved by letting s = t+ j and WLOG setting ak = 0 for k < 0.
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Next we use integration by parts to obtain∫
xdΩ̂Ω,t = −

∫
xz

d

dθ
Ω̂Ω,tdzdθ = −I(a) ·

(
−
∞∑
s=0

At,sY Z,s − BΩ,t+1

)

=

∞∑
s=0

(
I(a) · At,s

)
Y Z,s + I(a) · AΩ,t

This allows us to directly conclude that

Gx

∞∑
s=0

Jt,sY Ω,s + GXY Ω,t + GxJΩ,t = 0

where JΩ,t = I · AΩ,t.

B.2 Proofs for Section 5.2

B.2.1 Proof of Lemma 1SV

We proceed in the same manner as the proof of Lemma 1SO. The only difference is that the derivatives

w.r.t. σ now depend on the level of risk Υt. As Υt only affects Et which is scaled by σ all other derivatives

are independent of Υt. Second-order derivatives of (16) and (15) w.r.t. σ to find Z0,σσ

(
E0
)

= 0 and 32

Zt+1,σσ

(
Et+1

)
= ZZ · Zt,σσ

(
Et
)

+ ZZZ ·
(
Zt,σ

(
Et
)
, Zt,σ

(
Et
))

+ Zσσ(Υt) (88)

Xt,σσ

(
Et
)

= XZ · Zt,σσ
(
Et
)

+XZZ ·
(
Zt,σ

(
Et
)
, Zt,σ

(
Et
))

+Xσσ(Υt) (89)

where ZZZ is defined in the main text and Zσσ =
[
0,Ωσσ(Υt)

]T
. We begin by showing the following

claim relating Zt,σσ
(
Et
)

to the directions Ẑt,k and Ẑσσ,t(EtΥ).

Claim 12. For all t

Zt,σσ
(
Et
)

= Ẑσσ,t(EtΥ) +

t∑
s=0

t∑
m=0

Ẑt−s,t−mEsEm (90)

Proof. We proceed by induction. As Ẑσσ,0 = Ẑ0,0 = 0 we conclude that equation (15) holds for t = 0

since Z0,σσ

(
E0
)

= 0. Assuming (90) holds for t− 1 we have

Zt,σσ
(
Et
)

= ZZ ·

(
Ẑσσ,t−1(Et−1

Υ ) +

t−1∑
s=0

t−1∑
m=0

Ẑt−1−s,t−1−mEsEm

)

+ ZZZ ·

(
t−1∑
s=0

Ẑt−1−sEs,
t−1∑
m=0

Ẑt−1−mEm

)
+ Zσσ(Υt−1)

= ZZ · Ẑσσ,t−1(Et−1
Υ ) + Zσσ(Υt−1) +

t−1∑
s=0

t−1∑
m=0

(
ZZ · Ẑt−1−s,t−1−m + ZZZ ·

(
Ẑt−1−s, Ẑt−1−m

))
EsEm

= Ẑσσ,t(EtΥ) +

t∑
s=0

t∑
m=0

Ẑt−s,t−mEsEm

32There are also XσZ and ZσZ terms but they are 0 following the same logic as Xσ and Zσ being 0 in the proof of
Lemma 1
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where in the second equality we used the fact that ZZZ is a bi-linear mapping and in the third equality

we use the recursive definitions of Ẑσσ,t and Ẑt,k, and Ẑ0,0 = 0.

Finally we plug in for Zt,σσ
(
Et
)

and Zt,σ
(
Et
)

in equation (89) to find

Xt,σσ

(
Et
)

= XZ ·

(
Ẑσσ,t(EtΥ) +

t∑
s=0

t∑
m=0

Ẑt−s,t−mEsEm

)
+XZZ ·

(
t∑

s=0

Ẑt−sEs,
t∑

m=0

Ẑt−mEm

)

= XZ · Ẑσσ,t(EtΥ) +

t∑
s=0

t∑
m=0

(
XZ · Ẑt−s,t−m +XZZ ·

(
Ẑt−s, Ẑt−m

))
EsEm

= Xσσ,t(EtΥ) +

t∑
s=0

t∑
m=0

XZZ,t−s,t−mEsEm

which completes the proof.

B.2.2 Proof of Lemma 3SV

To find xσσ(a, θ, EtΥ) differentiate the F mapping twice with respect to σ and add to it the derivative

of F in direction Ẑσσ,t (EtΥ)

0 = Fx(a, θ)xσσ,t(a, θ, EtΥ) + FY (a, θ)Y σσ,t(EtΥ)

+ Fxe(a, θ)
(
E [xZZ,0,0|a, θ] (1 + Υt) var(E) + E

[
xσσ,t+1|a, θ, EtΥ

]
+ E [xa|a, θ] Pxσσ,t(a, θ, EtΥ)

)
.

Let xσσ(a, θ) be the same as in the proof of Lemma 2bSO and xΥ(a, θ) be defined by

0 = Fx(a, θ)xΥ(a, θ) + Fxe(a, θ) (E [xZZ,0,0|a, θ] var(E) + ρΥE [xΥ|a, θ] + E [xa|a, θ] xΥ(a, θ)) .

If we then define x̂σσ,t(a, θ, EtΥ) = xσσ,t(a, θ, EtΥ)−xσσ(a, θ)−ΥtxΥ(a, θ) we see that x̂σσ,t(a, θ, EtΥ) solves

0 = Fx(a, θ)x̂σσ,t(a, θ, EtΥ)+FY (a, θ)Y σσ,t(EtΥ)+Fxe(a, θ)
(
E
[
x̂σσ,t+1|a, θ, EtΥ

]
+ E [xa|a, θ] Px̂σσ,t(a, θ, EtΥ)

)
.

This linear system of equations is identical to the one solved by xZ,t which allows us to conclude that

x̂σσ,t(a, θ, EtΥ) =

∞∑
s=0

xs(a, θ)E
[
Y σσ,t+s|EtΥ

]
which implies (49).

B.2.3 Proof of Proposition (1SV )

We begin by deriving the recursive LoM for Ω̂σσ,t+1

(
Et+1

Υ

)
. Differentiating the LoM twice with respect

to σ and adding to it the derivative of the LOM in direction Ẑσσ,t (EtΥ), after applying integration by

parts, yields

d

dθ
Ω̂σσ,t+1

(
Et+1

Υ

)
〈a′, θ′〉 =

∫
Λ(a′, θ′, a, θ)āa(a, θ)

d

dθ
Ω̂σσ,t

(
EtΥ
)
〈a, θ〉dθda

−
∫

Λ(a′, θ′, a, θ)aσσ,t(a, θ, EtΥ)dΩ∗
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Substituting for aσσ,taσσ,t(a, θ, EtΥ) using Lemma 3SV immediately obtains the LoM

d

dθ
Ω̂σσ,t+1

(
Et+1

Υ

)
= L(a) · d

dθ
Ω̂σσ,t

(
EtΥ
)
−M ·

( ∞∑
s=0

asE
[
Y σσ,t+s|EtΥ

]
+ aσσ + ΥtaΥ

)

≡ L(a) · d
dθ

Ω̂σσ,t
(
EtΥ
)
−
∞∑
s=0

M · asE
[
Y σσ,t+s|EtΥ

]
+M · aσσ + ΥtM · aΥ(a, θ).

We then are able to prove the following Claim about d
dθ Ω̂σσ,t+1

(
Et+1

Υ

)
Claim 13. d

dθ Ω̂σσ,t satisfies

E
[
d

dθ
Ω̂σσ,t

]
= −

∞∑
s=0

At,sE
[
Y σσ,s

]
− Bσσ,t

and for k ≥ 0

∆E
[
d

dθ
Ω̂σσ,τ+k|EτΥ

]
= −

∞∑
k=0

Ak,s∆E
[
Y σσ,τ+s|EτΥ

]
− BΥ,kEΥ,τ

where ∆E [Y |EτΥ] ≡ E [Y |EτΥ]−E
[
Y |Eτ−1

Υ

]
and BΥ,k is defined by BΥ,k+1 = L(a) ·BΥ,k +ρkΥM · aΥ with

BΥ,0 = 0.

Proof. We proceed by induction. The first equation is trivially true for t = 0 as A0,s = 0,Bσσ,0 = 0 and

d
dθ Ω̂0 = 0. We then proceed by induction (exploiting E [Υt] = 0)

E
[
d

dθ
Ω̂σσ,t+1

]
= L(a) · E

[
d

dθ
Ω̂σσ,t

]
−
∞∑
j=0

M · ajE
[
Y σσ,t+j

]
−M · aσσ

= L(a) ·

(
−
∞∑
s=0

At,sE
[
Y σσ,s

]
− Bσσ,t

)
−
∞∑
s=0

M · as−tE
[
Y σσ,s|EtΥ

]
−M · aσσ

=

∞∑
s=0

−
(
L(a) · At,s +M · as−t

)
E
[
Y σσ,s

]
−
(
L(a) · Bσσ,t +M · aσσ

)
= −

∞∑
s=0

At+1,sE
[
Y σσ,s

]
− Bσσ,t+1

as desired.

For the second equation we note that it holds for k = 0 as ∆E
[
d
dθ Ω̂σσ,τ |EτΥ

]
= 0 (since d

dθ Ω̂σσ,τ is

measurable w.r..t Eτ−1
Υ ) and A0,s = 0,BΥ,0 = 0. Taking expectations of the LOM implies

∆E
[
d

dθ
Ω̂σσ,τ+k+1|EτΥ

]
= L(a) ·∆E

[
d

dθ
Ω̂σσ,τ+k|EτΥ

]
−
∞∑
j=0

M · aj∆E
[
Y σσ,τ+k+j |EτΥ

]
− ρkΥM · aΥEΥ,τ

= L(a) ·

(
−
∞∑
s=0

Ak,s∆E
[
Y σσ,τ+s|EτΥ

]
− BΥ,kEΥ,τ

)
−
∞∑
s=0

M · as−k∆E
[
Y σσ,τ+s|EτΥ

]
− ρkΥM · aΥEΥ,τ

=

∞∑
s=0

−
(
L(a) · Ak,s +M · as−t

)
∆E

[
Y σσ,τ+s|EτΥ

]
−
(
L · BΥ,k + ρkΥM · aΥ

)
EΥ,τ

= −
∞∑
s=0

At+1,s∆E
[
Y σσ,τ+s|EτΥ

]
− BΥ,k+1EΥ,τ
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Differentiating the G mapping twice with respect to σ and adding to it the derivative in direction

Ẑσσ,t (EtΥ) yields, after applying integration by parts,

Gx

∫
xσσ

(
EtΥ
)
dΩ∗ − Gx

∫
xa

d

dθ
Ω̂σσ,t

(
EtΥ
)
dadθ + GY Y σσ,t

(
EtΥ
)

= 0. (91)

Taking expectations of both sides and substituting for E [xσσ] and E
[
d
dθ Ω̂σσ,t

]
using Lemma 3SV and

Claim 13 we have

Gx

∞∑
s=0

Jt,sE
[
Y σσ,s

]
+ GxHσσ,t + GY E

[
Y σσ,t

]
= 0

which implies that E
[
Xσσ,t

]
solves the same system of equations as the Xσσ,t terms in Proposition

1bSO.

If we instead take expectations of 69 conditional on EτΥ and subtract off the expectation conditional

on Et−1
Υ we find, for t = τ + k,

0 = Gx

 ∞∑
j=0

∫
xjdΩ∗∆E

[
Y σσ,τ+k+j |EτΥ

]
+ ρkΥ

∫
xΥdΩ∗EΥ,τ


+ Gx

( ∞∑
s=0

(I · At,s) ∆E
[
Y σσ,τ+s|EτΥ

]
+ (I · BΥ,k) EΥ,τ

)
+ GY ∆E

[
Y σσ,τ+k|EτΥ

]
or

Gx
∑
j=0

Jk,j∆E
[
Y σσ,τ+k+j |EτΥ

]
+ HΥ,kEΥ,τ + GY ∆E

[
Y σσ,τ+k|EτΥ

]
= 0

where HΥ,k = I ·BΥ,k+ρkΥ
∫

xΥdΩ∗. This implies ∆E
[
Y σσ,τ+k|EτΥ

]
= Y Υ,kEΥ,τ where Y Υ,k solves (51).

Our knowledge of E
[
Xσσ,t

]
and ∆E

[
Xσσ,τ+k|EτΥ

]
immediately implies

Xσσ,t

(
EtΥ
)

= Xσσ,t +

∞∑
s=0

XΥ,t−sEΥ,s.

B.3 Proofs for Section 5.3

For this section we will allow E to be multivariate. This implies that all the derivatives XZ,t and

xZ,t(a, θ) should be interpreted as matrices. We let ΣE represent the covariance matrix of E .

B.3.1 Proof of Lemma 2PF

We begin by differentiation equation (61) in direction Ẑt. For t ≥ 1 this implies that

SE [xZ,t|a, θ ] RY + E [Sx|a, θ ] RY Z,t = 0.

The steady state implies RY = 0 which implies that this equation can only hold if RY Z,t = 0 when

t ≥ 1. As equation (61) does not depend on Θ it places no restrictions on RY Z,t ≡ RZ,0.
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Next we differentiate equation (60) in direction Ẑt. Doing so yields

Fx(a, θ)xZ,t(a,θ) + FY (a, θ)Y Z,t + Fxe(a, θ) (Eε [xa|a,θ] pxZ,t(a,θ) + Eε [xZ,t+1|a,θ])

+Fk(a, θ)k(a, θ )TRY Z,t = 0.

For t ≥ 1 this simplifies to

Fx(a, θ)xZ,t(a,θ) + FY (a, θ)Y Z,t + Fxe(a, θ) (Eε [xa|a,θ]xZ,t(a,θ) + Eε [xZ,t+1|a,θ]) = 0

which is equivalent to (80) and is solved by

xZ,t(a,θ) =

∞∑
s=0

xs(a, θ)Y Z,t+s.

For t = 0 we have

Fx(a, θ)xZ,0(a,θ) + FY (a, θ)Y Z,0 + Fxe(a, θ) (Eε [xa|a,θ] pxZ,0(a,θ) + Eε [xZ,1|a,θ])

+Fk(a, θ)k(a, θ )TRY Z,0 = 0.

Substituting for xZ,1(a,θ) and solving for xZ,0(a,θ) implies

xZ,0(a,θ) =

∞∑
s=0

xs(a, θ)Y Z,s + r(a, θ)k(a, θ )TRZ,0,

as desired with

r(a, θ) = − (Fx(a, θ) + Fxe(a, θ)Eε [xa|a,θ] p)
−1 Fk(a, θ)

Finally, to determine k(a, θ ) we differentiate (61) twice with respect to σ to get

E [Sx|a, θ ]Rσσ,0 + E
[
RZ,0EET (SxZ,0)

T |a, θ
]

= 0.

As E is independent of θ we conclude that this is equivalent to

E [Sx|a, θ ]Rσσ,0 +

∞∑
s=0

RZ,0ΣEY
T

Z,sE [Sxs|a, θ ]
T

+ E
[
Sxk|a, θ

]
RZ,0ΣER

T

Z,0k(a, θ ) = 0,

where we have exploited our knowledge that E
[
Sxk|a, θ

]
is a real number. Defining S

(
RZ,0

)
=(

RZ,0ΣER
T

Z,0

)−1

and solving for k(a, θ ) gives

k(a, θ ) = kσσ(a, θ )S
(
RZ,0

)
Rσσ,0 + S

(
RZ,0

)
RZ,0ΣE

∞∑
s=0

(
ks(a, θ )Y Z,s

)T
where

kσσ(a, θ ) ≡ − E [Sx|a, θ ]

E [Sxk|a, θ ]
and ks(a, θ ) ≡ −E [Sxs|a, θ ]

E [Sxk|a, θ ]
.

70



B.3.2 Proof Of Corollary 1PF

The same steps as in the proof of Lemma 3FO implies that differentiating with Ẑt yields

d

dθ
Ω̂t+1 = L(a) · d

dθ
Ω̂t −M · aZ,t.

where the L and M operators are extended to include integrating over θ . For t ≥ 1 substituting for

aZ,t yields

d

dθ
Ω̂t+1 = L · d

dθ
Ω̂t −

∞∑
s=0

M · asY Z,t+s

as desired. For t = 0 we exploit that

aZ,0(a,θ) =
∞∑
s=0

as(a, θ)XZ,s + pr(a, θ)kσσ(a, θ )R
T

σσ,0S
(
RZ,0

)
RZ,0

∞∑
s=0

pr(a, θ)ks(a, θ )XZ,sΣER
T

Z,0S
(
RZ,0

)
RZ,0.

Defining aPFσσ (a,θ) ≡ pr(a, θ)kσσ(a, θ ) and aPFs (a,θ) ≡ pr(a, θ)ks(a, θ ) to get

d

dθ
Ω̂1 = L· d

dθ
Ω̂0−

∞∑
s=0

asY Z,s−
(
M · aPFσσ

)
R
T

σσ,0S
(
RZ,0

)
RZ,0−

∞∑
s=0

(
M · aPFs Y Z,s

)
ΣER

T

Z,0S
(
RZ,0

)
RZ,0

Next we show the following Claim

Claim 14. d
dθ Ω̂t is given by

d

dθ
Ω̂t = −

∑
s=0

At,sY Z,s −
((
L(a)

)t−1

· aPFσσ
)
R
T

σσ,0S
(
RZ,0

)
RZ,0

−
∞∑
s=0

((
L(a)

)t−1

· aPFs
)
Y Z,sΣER

T

Z,0S
(
RZ,0

)
RZ,0.

Proof. Time t = 1 holds trivially as d
dθ Ω̂1 and A1,s = as, For t > 1 we proceed by induction as

d

dθ
Ω̂t+1 = L(a) · d

dθ
Ω̂t −

∞∑
j=0

M · ajY Z,t+j

= L(a) ·
(
−
∑
s=0

At,sY Z,s −
((
L(a)

)t−1

· aPFσσ
)
R
T

σσ,0S
(
RZ,0

)
RZ,0

−
∞∑
s=0

((
L(a)

)t−1

· aPFs
)
Y Z,sΣER

T

Z,0S
(
RZ,0

)
RZ,0

)
−
∞∑
s=0

M · as−tY Z,s

= −
∞∑
s=0

(
L(a) · At,s +M · as−t

)
Y Z,s −

((
L(a)

)t
· aPFσσ

)
R
T

σσ,0S
(
RZ,0

)
RZ,0

−
∞∑
s=0

((
L(a)

)t−1

· aPFs
)
Y Z,sΣER

T

Z,0S
(
RZ,0

)
RZ,0

which completes the proof.
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Differentiating
∫
x̃dΩ in direction Ẑt and applying integration by parts yields(∫

xdΩ

)
Z,t

=

∫
xZ,tdΩ∗ − I(a) · d

dθ
Ω̂t.

Corollary is completed by substituting for xZ,t and d
dθ Ω̂t while noting that xZ,t takes a special form at

t = 0.

B.3.3 Proof of Proposition 1PF

Differentiating the G mapping in direction Ẑt, and applying integration by parts, gives

Gx

(∫
xdΩ

)
Z,t

+ GXY Z,t = 0.

Substituting for
(∫
xdΩ

)
Z,t

using Corollary 1PF we have

0 = Gx

∞∑
s=0

Jt,sXZ,s + GXXZ,t + GΘρ
t
Θ (92)

+ Gs

( ∞∑
s=0

(
Jwt,sXZ,s

)
ΣER

T

Z,0S
(
RZ,0

)
RZ,0 + Jwσσ,tR

T

σσ,0S
(
RZ,0

)
RZ,0

)
.

In addition to equation (92), it must also be the case that market clearing, equation (63), holds to

zeroth-order which implies ∫
kdΩ∗ = KX

substituting for k using Lemma (2PF ) yields

KσσS
(
RZ,0

)
Rσσ,0 + S

(
RZ,0

)
RZ,0ΣE

∞∑
s=0

(
KsXZ,s

)T
= KX

where Kσσ =
∫

kσσdΩ∗ and Ks =
∫

ksdΩ∗. Finally, the measurability constraint in (63) implies TY Z,0 =

0 and in Lemma (2PF ) we showed that RY Z,t = 0 for t ≥ 1 which completes the proof.

C Multivariate Extension

Here we extend our analysis to allow for a, θ, and Θ to be multidimensional. For the remainder of this

section, we will let aj represent the jth element of a and θj represent the jth element of θ. Almost all of

the results extend directly with the caveat that the derivatives with respect to a, such as xa(a, θ), should

now be viewed as matrices as opposed to vectors. In addition, the directions Ẑt should be viewed as

vectors with Ẑjt being the directions associated with the shocks Θj . Finally, to keep the analysis concise

we will use distributional derivatives for all of the second derivatives of the kinked policy functions

rather than explicitly working with the limits of the integrals.
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C.1 First-order Approximation

Lemma 1FOextends directly

Lemma 1(FO MV). To the first-order approximation, satisfies

Xt

(
Et
)

=X +

t∑
s=0

XZ,t−sEs +O
(
‖E‖2

)
.

with the only caveat being that now that Et is a vector and XZ,t is a matrix. Similarly, we are also

able to show

Lemma 2(FO MV). For any t,

Gx

(∫
xZ,tdΩ∗ +

∫
xdΩ̂t

)
+ GY Y Z,t = 0. (93)

In a similarly manner that Ẑjt represents the change in the aggregate state t periods ahead associated

with the shock Θj , Ω̂jt represents the associated change in the distribution. Finally, Lemma 2FO remains

unchanged as

Lemma 3(FO MV). For any t,

xZ,t (a, θ) =

∞∑
s=0

xs (a, θ)Y Z,t+s, (94)

where matrices xs (a, θ) are given by

x0 (a, θ) =− (Fx(a, θ) + Fxe(a, θ)E [xa|a, θ] P)
−1 FY (a, θ), (95)

xs+1 (a, θ) =− (Fx(a, θ) + Fxe(a, θ)E [xa|a, θ] P)
−1 Fxe(a, θ)E [xs|a, θ] . (96)

The first difference comes with Lemma 3FO. The operators L and M remain essentially the same

(M · y) 〈a′, θ′〉 :=

∫
Λ(a′, θ′, a, θ)y (a, θ) dΩ∗ (a, θ) ,

(
L(a) · y

)
〈a′, θ′〉 :=

∫
Λ(a′, θ′, a, θ)aa(a, θ)y (a, θ) dadθ.

with the understanding that now y is vector valued and aa is a matrix. For notational simplicity

we let d
dθ represent ∂nθ

∂θ1∂θ2···∂θnθ and d
da represent ∂na

∂a1∂a2···∂ana . For any vector valued function y we

define∇ay =
∑
j

∂
∂aj yj then we can show

Lemma 4(FO MV). For any t, d
da

d
dθ Ω̂t = ∇a · ω̂t where ω̂t satisfies a recursion

ω̂t+1 = L(a) · ω̂t −
∞∑
s=0

M · asXZ,t+s, (97)

where as =M · as and ω̂0 = 0.
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Proof. We proceed by induction. It trivially holds for t = 0 as Ω̂0 = 0. Assuming true for t we can

differentiate the LoM in direction Ẑt to get

Ω̂t+1〈a′, θ′〉 =

∫∫ na∏
i=1

ι
(
ai(a, θ) ≤ a′i

) nθ∏
k=1

ι
(

(ρθθ + ε)
k ≤ θ′k

)
µ(ε)dεdΩ̂t

−
na∑
j=1

∫∫
δ
(
aj(a, θ)− a′j

)∏
i 6=j

ι
(
ai(a, θ) ≤ a′i

) nθ∏
k=1

ι
(

(ρθθ + ε)
k ≤ θ′k

)
µ(ε)dεajZ,t(a, θ)dΩ∗.

Applying d
da

d
dθ to both sides yields

d

da

d

dθ
Ω̂t+1〈a′, θ′〉 =

∫∫ na∏
i=1

δ
(
ai(a, θ)− a′i

) nθ∏
k=1

δ
(

(ρθθ + ε)
k − θ′k

)
µ(ε)dεdΩ̂t

−
na∑
j=1

∂

∂a′j

∫∫ na∏
i=1

δ
(
ai(a, θ)− a′i

) nθ∏
k=1

δ
(

(ρθθ + ε)
k − θ′k

)
µ(ε)dεajZ,t(a, θ)dΩ̂t

=

∫
Λ(a′, θ′, a, θ)dΩ̂t −

na∑
j=1

∂

∂a′j

∫
Λ(a′, θ′, a, θ)ajZ,t(a, θ)dΩ∗

=

∫
Λ(a′, θ′, a, θ)dΩ̂t −

na∑
j=1

∂

∂a′j

∑
s

∫
Λ(a′, θ′, a, θ)ajs(a, θ)dΩ∗XZ,t+s.

where in the second line we used the equality definition

Λ(a′, θ′, a, θ) =

∫ na∏
k=1

δ
(
ak(a, θ)− a′k

) nθ∏
l=1

δ
(

(ρθθ + ε)
l − θ′l

)
µ(ε)dε =

na∏
k=1

δ
(
ak(a, θ)− a′k

)
µ (θ′ − ρθθ + ε)

If we apply ∂
∂aj to both sides we find

∂

∂aj
Λ(a′, θ′, a, θ) =

∑
i

δ′
(
ai(a, θ)− a′i

)∏
k 6=i

δ
(
ak(a, θ)− a′k

)
µ (θ′ − ρθθ + ε) aiaj (a, θ)

= −
∑
i

∂

∂a′i
δ
(
ai(a, θ)− a′i

)∏
k 6=i

δ
(
ak(a, θ)− a′k

)
µ (θ′ − ρθθ + ε) aiaj (a, θ)

= −
∑
i

∂

∂a′i
Λ(a′, θ′, a, θ)aiaj (a, θ)

Next, we have ∫
Λ(a′, θ′, a, θ)dΩ̂t =

∫∫
Λ(a′, θ′, a, θ)

d

da

d

dθ
Ω̂t(a, θ)dadθ

=
∑
j

∫∫
Λ(a′, θ′, a, θ)

∂

∂aj
ω̂jt (a, θ)dadθ

= −
∑
j

∫∫
∂

∂aj
(
Λ(a′, θ′, a, θ)

)
ω̂jt (a, θ)dadθ

=
∑
i

∂

∂a′i

∫∫ ∑
j

Λ(a′, θ′, a, θ)aiaj (a, θ)ω̂
j
t (a, θ)dadθ.

All combined this implies that

d

da

d

dθ
Ω̂t+1 = ∇aL(a) · ω̂t −∇a

∑
s

M · asXZ,t+s = ∇aω̂t+1
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which completes the proof. The same steps as in the proof of Lemma 3FO guarantee that these integrals

exist.

It should be noted that when the dimensionality of a is 1 Lemma 4(FO MV) is equivalent to Lemma

3FO as it states that d
da

d
dθ Ω̂t = d

da ω̂t and thus d
dθ Ω̂t = ω̂t which satisfies the same recursive system as

in Lemma 3FO.

For vector valued y, operator I(a) is extended to be defined by

I(a) · y =

∫
xa(a, θ)y(a, θ)dadθ.

We are then able to state the following corollary

Corollary 2(FO MV). For any t,∫
xdΩ̂t =

∞∑
s=0

(
I(a) · At,s

)
XZ,s,

where {At,s}t,s follow a recursion A0,s = 0, and At,s = L · At−1,s + as−t+1.

Proof. Following the same steps as the proof of Corollary 1FO implies

ω̂t = −
∞∑
s=0

At,sXZ,s.

We then have ∫
xdΩ̂t =

∑
j

∫
x
∂

∂aj
ω̂jtdadθ = −

∑
j

∫
xaj ω̂

j
tdadθ = −I(a) · ω̂t.

Substituting for ω̂t then completes the proof.

Finally, we have that Proposition 1FO holds identically for the multivariate case with the under-

standing that all the derivatives with respect to Z are vector valued.

Proposition 1(FO MV).
{
XZ,t

}
t

is the solution to

Gx

∞∑
s=0

Jt,sY Z,s + GXY Z,t = 0, (98)

where {Jt,s}t,s satisfies Jt,s =
∫

xs−tdΩ∗ + I(a) · At,s.

C.2 Second-order Approximation

As with the first-order approximation, many of the Lemmas extend directly with the caveat that all

derivatives with respect to a and Ẑk are vector valued. We repeat the corollaries here for conciseness
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Lemma 1(SO MV). To the second-order approximation, Xt satisfies

Xt

(
Et
)

= ...+
1

2

(
t∑

s=0

t∑
m=0

XZZ,t−s,t−m · (Es, Em) +Xσσ,t

)
+O

(
‖E‖3

)
, (99)

where ... are the first-order terms.

Lemma 2(SO MV). For any t, k

Gx

(∫
xσσ,tdΩ∗ +

∫
xdΩ̂σσ,t

)
+ GXXσσ,t = 0, (100)

Gx

(∫
xZZ,t,kdΩ∗ +

∫
xdΩ̂t,k +

∫
x̄Z,tdΩ̂k +

∫
x̄Z,kdΩ̂t

)
+ GXXZZ,t,s + GΘΘ,t,k = 0, (101)

where explicit expression for GΘΘ,t,k is as before.

Lemma 3(SO MV). For any t,

xσσ,t(a, θ) =

∞∑
s=0

xs(a, θ)Xσσ,t+s + xσσ(a, θ), (102)

xZZ,t,k(a, θ) =

∞∑
s=0

xs(a, θ)XZZ,t+s,k+s + xt,k(a, θ), (103)

where explicit expressions for xσσ and xt,k are provided in the appendix.

Next we extend the definitions of L,M and LZ,t to be of vector valued functions as follows

M · (y,w) 〈a′, θ′〉 :=

∫
Λ(a′, θ′, a, θ)y(a, θ)w(a, θ)T dadθ

L(a) · (y,w) 〈a′, θ′〉 :=

∫
Λ(a′, θ′, a, θ) (aa(a, θ)y(a, θ)) w(a, θ)T dadθ

LZ,t · y 〈a′, θ′〉 :=

∫
Λ(a′, θ′, a, θ)aaZ,t(a, θ)y (a, θ) dadθ

For a matrix valued function we define ∇a · y as the vector

(∇a · y)
j

(a, θ) =
∑
i

∂

∂ai
yi,j(a, θ),

which implies

∇2
a · y ≡ ∇a · ∇a · y =

∑
i,j

∂

∂ai
∂

∂aj
yi,j

then we have the following extension of Lemma 3bSO

Lemma 4(SO MV). For all t, there exists ω̂σσ,t and ω̂t,k such that d
da

d
dθ Ω̂σσ,t = ∇a · ω̂σσ,t and

d
da

d
dθ Ω̂t,k = ∇a · ω̂t,k where ω̂σσ,t and ω̂t,k satisfy the following recursive equations

ω̂σσ,t+1 = L · ω̂σσ,t −
∞∑
s=0

M · asY σσ,t+s −M · aσσ, (104)
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and

ω̂t+1,k+1 = L · ω̂t,k −
∞∑
s=0

M·asY ZZ,t+s,k+s −M · at,k

+∇a · M · (aZ,t, aZ,k)−∇a · L · (ω̂t, aZ,k)−∇a · (L · (ω̂k, aZ,t))T (105)

+ LZ,t · ω̂k + LZ,k · ω̂k.

with ω̂σσ,0 = ω̂0,k = ω̂t,0 = 0

Proof. We proceed by induction which holds trivially for t = 0. Differentiating the LoM twice with

respect to σ yield, adding the derivative in direction Ẑσσ,t, and then applying d
da

d
dθ to both sides yields

d

da

d

dθ
Ω̂σσ,t+1〈a′, θ′〉 =

∫
Λ(a′, θ′, a, θ)

d

da

d

dθ
Ω̂σσ,t〈a, θ〉dadθ −∇a ·

∫
Λ(a′, θ′, a, θ)aσσ,t(a, θ)dΩ∗.

Using the same steps as the proof of Lemma 4(FO MV) we have∫
Λ(a′, θ′, a, θ)∇a · ω̂σσ,t(a, θ)dadθ = ∇a ·

∫
Λ(a′, θ′, a, θ)aa(a, θ)ω̂σσ,t(a, θ)dadθ.

so substituting for ajσσ,t(a, θ) using (102) and d
da

d
dθ Ω̂σσ,t = ∇a · ω̂t then gives

d

da′
d

dθ′
Ω̂σσ,t+1 = ∇a ·

(
L · ω̂t −

∑
s

(M · as)Y Z,t+s −M · aσσ

)
.

Next we take the second derivative of the LoM in direction Ẑt and Ẑk and adding to it the derivative
of the LoM in direction Ẑt,k yields, after applying d

da
d
dθ to both sides

d

da′
d

dθ′
Ω̂t+1,k+1〈a′, θ′〉 =

∫
Λ(a′, θ′, a, θ)

d

da

d

dθ
Ω̂t,k〈a, θ〉dadθ −

∑
i

∂

∂a′i

∫
Λ(a′, θ′, a, θ)aiZZ,t,k(a, θ)dΩ∗

+
∑
i,j

∂

∂a′i
∂

∂a′j

∫
Λ(a′, θ′, a, θ)aiZ,t(a, θ)a

j
Z,k(a, θ)dΩ∗

−
∑
j

∂

∂a′j

∫
Λ(a′, θ′, a, θ)ajZ,k(a, θ)

d

da

d

dθ
Ω̂t〈a, θ〉dadθ

−
∑
j

∂

∂a′j

∫
Λ(a′, θ′, a, θ)ajZ,t(a, θ)

d

da

d

dθ
Ω̂k〈a, θ〉dadθ

Written in vectorized form this is equivalent to

d

da′
d

dθ′
Ω̂t+1,k+1〈a′, θ′〉 =

∫
Λ(a′, θ′, a, θ)∇a · ω̂t,kdadθ −∇a ·

∫
Λ(a′, θ′, a, θ)aZZ,t,k(a, θ)dΩ∗

+∇2
a ·
∫

Λ(a′, θ′, a, θ)aZ,t(a, θ)aZ,k(a, θ)T dΩ∗ −∇a ·
∫

Λ(a′, θ′, a, θ)aZ,k(a, θ)∇a · ω̂tdadθ

−∇a ·
∫

Λ(a′, θ′, a, θ)aZ,t(a, θ)∇a · ω̂kdadθ.

Next, we show the following relationship. For vector valued functions y,w, where y has compact support, we
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have ∫
Λ(a′, θ′, a, θ)w(a, θ)∇a · y(a, θ)dθda =

∑
j

∫
Λ(a′, θ′, a, θ)w(a, θ)

∂

∂aj
yj(a, θ)dadθ

= −
∑
j

∫
Λ(a′, θ′, a, θ)

∂

∂aj
w(a, θ)yj(a, θ)dadθ

−
∑
j

∫
∂

∂aj
(
Λ(a′, θ′, a, θ)

)
w(a, θ)yj(a, θ)dadθ

= −
∫

Λ(a′, θ′, a, θ)wa(a, θ)y(a, θ)dadθ

+
∑
i,j

∂

∂a′i

∫
Λ(a′, θ′, a, θ)aiaj (a, θ)w(a, θ)yj(a, θ)dadθ

= −
∫

Λ(a′, θ′, a, θ)wa(a, θ)y(a, θ)dadθ

+∇a ·
∫

Λ(a′, θ′, a, θ)aa(a, θ)y(a, θ)w(a, θ)T dadθ.

Applying this relationship implies

d

da′
d

dθ′
Ω̂t+1,k+1〈a′, θ′〉 = ∇a ·

∫
Λ(a′, θ′, a, θ)aa(a, θ)ω̂t,kdadθ −∇a ·

∫
Λ(a′, θ′, a, θ)aZZ,t,k(a, θ)dΩ∗

+∇2
a ·
∫

Λ(a′, θ′, a, θ)aZ,t(a, θ)aZ,k(a, θ)T dΩ∗ +∇a ·
∫

Λ(a′, θ′, a, θ)aZa,k(a, θ)ω̂tdadθ

−∇2
a ·
∫

Λ(a′, θ′, a, θ)aa(a, θ)ω̂taZ,k(a, θ)T dadθ +∇a ·
∫

Λ(a′, θ′, a, θ)aZa,t(a, θ)ω̂kdadθ

−∇2
a ·
(∫

Λ(a′, θ′, a, θ)aa(a, θ)ω̂kaZ,t(a, θ)
T dadθ

)T
which implies that d

da′
d
dθ′ Ω̂t+1,k+1 = ∇a · ω̂t,k where ω̂t,k satisfies (105).

Next we extend Corollary 2(FO MV) to the multidimensional case as follows. We first let define

bσσ :=M · aσσ,

bt,k :=M · at,k − LZ,t · ω̂k − LZ,k · ω̂t,

ct,k =M · (aZ,t, aZ,k)− L · (ω̂t, aZ,k)− L · (ω̂k, aZ,t)T ,

where bσσ and bt,k are both vector valued while ct,k is matrix valued. The recursive LoMs, (104) and

(105), can be written more succinctly as

ω̂σσ,t+1 = L · ω̂σσ,t −
∞∑
s=0

M · asY σσ,t+s − bσσ (106)

ω̂t+1,k+1 = L · ω̂t,k −
∞∑
s=0

M · asY ZZ,t+s,k+s − bt,k +∇a · ct,k. (107)
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In a similar manner we extend the operators

L(aa) · y(a′, θ′) =

∫
Λ(a′, θ′, a, θ)aaa(a, θ) · y(a, θ)dadθ

L(a,a) · y(a′, θ′) =

∫
Λ(a′, θ′, a, θ)aa(a, θ)y(a, θ)aa(a, θ)T dadθ

I(aa) · y(a′, θ′) =

∫
xaa(a, θ) · y(a, θ)dadθ

with xaa(a, θ) · y(a, θ) :=
∑
i,j xaiaj (a, θ)yij(a, θ) for matrix valued y.

Corollary 2(SO MV). For all t,∫
x̄dΩ̂σσ,t =

∞∑
s=0

(I · At,s)Y σσ,s + I · Bσσ,t,

where {Bσσ,t}t follows a recursion Bσσ,t+1 = bσσ + L · Bσσ,t; and∫
xdΩ̂t,k =

∞∑
s=0

(I · At,s)Y s,k−t+s + I · Bt,k + I(aa) · Ct,k,

where {Bt,k,Ct,k}t,k follow recursions

Ct+1,k+1 = ct,k + L(a,a) · Ct,k,

Bt+1,k+1 = bt,k + L · Bt,k + L(aa) · Ct,k.

Proof. Starting with ω̂σσ,0 and rolling forward equation (104) implies

ω̂σσ,t = −
∞∑
s=0

At,sY σσ,s − Bσσ,t

Using integration by parts implies∫
x̄dΩ̂σσ,t =

∫
x∇a · ω̂σσ,tdadθ = −

∫
xaω̂σσ,tdadθ = I · ω̂σσ,t.

Combining these two equations gives us our first result.

For the second half of the proof we first note the following. For any matrix valued density c with

compact support

L · ∇a · c(a′, θ′) =
∑
i,j

∫
Λ(a′, θ′, a, θ)aaj (a, θ)

∂

∂ai
cij(a, θ)dadθ

= −
∑
i,j

∫
Λ(a′, θ′, a, θ)aaiaj (a, θ)cij(a, θ)dadθ

−
∑
i,j

∫
∂

∂ai
(
Λ(a′, θ′, a, θ)

)
aaj (a, θ)cij(a, θ)dadθ

= −L(aa) · c(a′, θ′) +
∑
i,j,k

∂

∂a′k

∫
Λ(a′, θ′, a, θ)akaiaaj (a, θ)cij(a, θ)dadθ

= −L(aa) · c(a′, θ′) +∇a · L(a,a) · c(a′, θ′).
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We can then proceed by induction. For t = 0 we have

ω̂0,t−k = −
∞∑
s=0

A0,sY ZZ,s,k−t+s − B0,k−t +∇a · C0,k−t

since all terms are 0. If it holds for t then

ω̂t+1,k+1 = L(a) · ω̂t,k −
∞∑
s=0

M · asY ZZ,t+s,k+s − bt,k +∇a · ct,k

= L(a) ·

(
−
∞∑
s=0

At,sY ZZ,s,k−t+s − Bt,k +∇a · Ct,k

)
−
∞∑
s=0

M · asY ZZ,t+s,k+s

− bt,k +∇a · ct,k

= −
∞∑
s=0

(
L(a) · At,s + as−t

)
XZZ,s,k−t+s −

(
L(a) · Bt,k + bt,k

)
+ L(a) · ∇a · Ct,k +∇a · ct,k

= −
∞∑
s=0

At+1,sY ZZ,s,k−t+s −
(
L(a) · Bt,k + L(aa) · Ct,k + bt,k

)
+∇a ·

(
L(a,a) · Ct,k + ct,k

)
= −

∞∑
s=0

At+1,sY ZZ,s,k−t+s − Bt+1,k+1 +∇a · Ct+1,k+1.

Finally, we have that∫
xdΩ̂t,k =

∫
x∇a · ω̂t,kdadθ

= −
∫
xaω̂t,kdadθ

= −
∫
xa

(
−
∞∑
s=0

At,sY ZZ,s,k−t+s − Bt,k +∇a · Ct,k

)
dadθ

=

∞∑
s=0

(
I(a) · At,s

)
Y ZZ,s,k−t+s + I(a) · Bt,k +

∫
xaa · Ct,kdadθ

=

∞∑
s=0

(
I(a) · At,s

)
Y ZZ,s,k−t+s + I(a) · Bt,k + I(aa) · Ct,k

as desired.

Combining all of these insights yields the multivariate extension of the Proposition 1bSO

Proposition 1(SO).
{
XZZ,t,k

}
t,k

and
{
Xσσ,t

}
t

are the solutions to linear systems

Gx

∞∑
s=0

Jt,sY σσ,s + GxHσσ,t + GY Y σσ,t = 0, (108)

and

Gx

∞∑
s=0

Jt,sY ZZ,s,k−t+s + GxHt,k + GXY ZZ,t,k + GΘ,t,k = 0. (109)

where Hσσ,t =
∫

xσσdΩ∗ + I · Bσσ,t and Ht,k =
∫

xt,kdΩ∗ − I(a)
Z,t · ω̂k − I

(a)
Z,k · ω̂t + I · Bt,k + I(aa) · Ct,k.

80



D Comparison to Approximating the Distribution with A His-
togram

All the terms in this section will implicitly index everything by h: the space between points along each

dimension a and θ. We let a[i] be the gridpoints along the a dimension and θ[j] be the grid points along

the asset dimension. To construct the histogram approach we define projection function

Pi,j(a, θ)

be the probability of assigning point a, θ to gridpoint (a, θ)[i,j]. Following Young (2010) we project to

the closest neighbors:

Pi,j (a, θ) = Pi(a)Qj(θ)

where

Pi(a) =


a−a[i]

h a ∈ [a[i], a[i+1]]
a[i]−a
h a ∈ [a[i−1], a[i]]

0 otherwise

and similarly for Qj(θ).

We assume full knowledge of x̃(a, θ, Z) and focus purely on the approximation with respect to the

histogram. The approximation to the steady state transition density is

Λ(i′, j′, a, θ) =

∫
Pi
′,j′ (a(a, θ), ρθθ + ε) dµ(ε)

This constructs a steady state transition matrix

Λ(i′, j′, i, j) = Λ(i′, j′, a[i], θ[j])

We let ω[i,j] be the approximation to the steady state density. We assume that all of these objects are

well approximated as h→ 0 so for any smooth test function φ(a, θ)∫
φdΩ∗ = lim

h→0

∑
i,j

φ
(
a[i], θ[j]

)
ω[i,j]

and ∫
φ(a′, θ′)Λ(a′, θ′, a, θ)da′dθ′ = lim

h→0

∑
i′,j′

φ
(
a[i′], θ[j′]

)
Λ(i′, j′, a, θ).

Given x̃(a, θ, Z), the approximated LOM for the distribution is

ω̃[i′,j′](Z) =
∑
i,j

∫
Pi
′,j′
(
ã(a[i], θ[j], Z), ρθθ + ε

)
dµ(ε)ω[i,j]

Differentiating with respect to Z in direction Ẑ yields

ωZ,[i′,j′] · Ẑ =
∑
i,j

Λ (i′, j′, i, j) ω̂[i,j]

+
∑
i,j

∫
Pi
′,j′

a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)aZ

(
a[i], θ[j]

)
· Ẑω[i,j]
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or

ω̂t+1,[i′,j′] =
∑
i,j

Λ (i′, j′, i, j) ω̂t,[i,j] +
∑
i,j

∫
Pi
′,j′

a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)aZ,t

(
a[i], θ[j]

)
ω[i,j]

Which we can write succinctly as

ω̂t+1 = Λω̂t +Mh−→a Z,t

where −→a Z,t is aZ,t evaluated at the grid-points. Our first claim is

Claim 15. In the limit as h→ 0,

lim
h→0

∑
i′,j′

x
(
a[i′], θ[j′]

) (
Mh−→a Z,t

)
[i′,j′]

= I(a) · M · aZ,t.

Proof. Note that∑
i′,j′

x
(
a[i′], θ[j′]

) (
Mh−→a Z,t

)
[i′,j′]

=
∑
i′,j′

x(a[i′], θ[j′])
∑
i,j

∫
Pi
′,j′

a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)aZ,t

(
a[i], θ[j]

)
ω[i,j]

=
∑
i,j

∫ ∑
i′,j′

x(a[i′], θ[j′])Pi
′,j′

a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)aZ,t

(
a[i], θ[j]

)
ω[i,j]

This simplifies as∑
i′,j′

x(a[i′], θ[j′])Pi
′,j′

a

(
a(a[i], θ[j]), ρθθ + ε

)
= xa(a(a[i], θ[j]), ρθθ + ε) +O (h)

=
∑
i′,j′

xa(a[i′], θ[j′])Pi
′,j′
(
a(a[i], θ[j]), ρθθ + ε

)
+O (h)

and thus∑
i′,j′

x
(
a[i′], θ[j′]

) (
Mh−→a Z,t

)
[i′,j′]

=
∑
i′,j′

∑
i,j

xa(a[i′], θ[j′])Λ (i′, j′, i, j) aZ,t
(
a[i], θ[j]

)
ω[i,j]

Taking limit as h→ 0 completes the result.

Next we claim

Claim 16. In the limit as h→ 0

lim
h→0

∑
i′,j′

x
(
a[i′], θ[j′]

) (
ΛMh−→a Z,t

)
[i′,j′]

= I(a) · L(a) · M · aZ,t.

Proof. For this we’re going to use that for any smooth function φ(a)∑
i′′,i′

φ(a[i′′])Pi
′′
(a(a[i′], θ))Pi

′

a (a) =
1

h

∑
i′′

φ(a[i′′])
(
Pi
′′
(a(a[̂i+1], θ))− P

i′′(a(a[̂i], θ))
)

=
1

h

∑
i′′

φ(a[i′′])
(
Pi
′′
(a(a[̂i] + h, θ))− Pi

′′
(a(a[̂i], θ))

)
= φa(a(a, θ))aa(a, θ) +O(h)

82



1

h

∑
i′

φ(a[i′])
(
Pi
′
(a(a+ h, θ))− Pi

′
(a(a, θ))

)
= φa(a(a, θ))aa(a, θ) +O(h).

We then have that∑
i′,j′

x
(
a[i′], θ[j′]

) (
ΛMh−→a Z,t

)
[i′,j′]

=
∑

i′′,j′′,i′,j′

x(a[i′′], θ[j′′])Λ(i′′, j′′, i′, j′)
∑
i,j

∫
Pi
′,j′

a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)aZ,t

(
a[i], θ[j]

)
ω[i,j]

We can then exploit the fact that

Λ(i′′, j′′, i′, j′) =

∫
Qj
′′ (
ρθθ[j′] + ε

)
dµ(ε)Pi

′′ (
a(a[i′], θ[j′])

)
to get∑
i′,j′

x
(
a[i′], θ[j′]

) (
ΛMh−→a Z,t

)
[i′,j′]

=
∑

i′′,j′′,i′,j′

xa(a[i′′], θ[j′′])Λ(i′′, j′′, i′, j′)aa(a[i′], θ[j′])Λ(i′′, j′′, i′, j′)aZ,t
(
a[i], θ[j]

)
ω[i,j]+O(h)

which in the limit as h→ 0 gives

I(a) · L(a) · M · aZ,t

This same argument extends to show that

lim
h→0

∑
i′,j′

x
(
a[i′], θ[j′]

) (
Λ
tMh−→a Z,t

)
[i′,j′]

= I(a) ·
(
L(a)

)t
· M · aZ,t

for arbitrary t

D.1 Second Order

Taking a second derivative we have and exploiting that Pi,jaa = 0

ω̂ZZ,t+1,k+1,[i′,j′]· =
∑
i,j

Λ (i′, j′, i, j) ω̂ZZ,t,k,[i,j] +
∑
i,j

∫
Pi
′,j′

a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)aZ,t

(
a[i], θ[j]

)
ω̂Z,k,[i,j]

+
∑
i,j

∫
Pi
′,j′

a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)aZ,k

(
a[i], θ[j]

)
ω̂Z,t,[i,j]

+
∑
i,j

∫
Pi
′,j′

a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)aZZ,t,k

(
a[i], θ[j]

)
ω[i,j]

For t = k = 0 we have

ω̂ZZ,1,1,[i′,j′] =
∑
i,j

∫
Pi
′,j′

a

(
a(a[i], θ[j]), ρθθ + ε

)
dµ(ε)aZZ,0,0

(
a[i], θ[j]

)
ω[i,j]·

Thus in the limit as h→ 0 we have

lim
h→0

∑
i′,j′

x(a[i′], θ[j′])ω̂ZZ,1,1,[i′,j′] = I(a) · M · aZZ,0,0 = I(a) · B1,1 6=
∫
xdΩ̂1,1

as it is missing the I(aa) · C1,1 term.
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E Details for Section 7

E.1 Krusell and Smith with adjustment costs

Household problem Households hold shares in a mutual fund and date t holdings of i denoted by

ai,t. Let Dt and Pt be the time t dividend and the price per share of the mutual fund. The household

problem is given by

max
ci,t,ii,t,ki,t

E
∑
t

βtU (ci,t)

subject to

ci,t + Ptai,t = wte
θi,t + (Dt + Pt) ai,t−1

ai,t ≥ 0

The Euler equation of the household is given by

1 = Et
(

βUc (ci,t+1)

Uc (ci,t) + ζi,t

)(
Dt+1 + Pt+1

Pt

)
(110)

where ζi,t ≥ 0 is the Lagrange multiplier on the borrowing constraint.

Stochastic Discount Factors Define a process {mi,t} with mi,0 = 1 and
mi,t+1

mi,t
≡ βUc(ci,t+1)

Uc(ci,t)+ζi,t
. For

any positive process {oi,t} define Mt with M0 = 1 and Mt+1

Mt
=
∫
oi,t

mi,t+1

mi,t
di. Then aggregating (110)

we get that the value of the mutual fund satisfies

Pt = Et
∑
j

Mt+j

Mt
Dt+j .

Mutual Fund Problem The mutual fund owns physical capital, makes investments subject to

quadratic adjustment costs, rents out the capital to the corporate sector, and maximizes present value

of dividends. For a given {Mt}, the problem of the mutual fund is

max
Kt,Dt

E0

∑
t

MtDt

Dt = rktKt − It −
φ

2

(
It
Kt
− δ
)2

Kt

Kt+1 = (1− δ)Kt + It

Let Qt be the multiplier on the capital accumulation equation. The optimality of the mutual fund with

respect to It

Qt = 1 + φ

(
It
Kt
− δ
)
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and with respect to Kt is

Et
Mt+1

Mt


rkt+1 + φ

(
It+1

Kt+1
− δ
)
It+1

Kt+1
− φ

2

(
It+1

Kt+1
− δ
)2

+ (1− δ)Qt+1

Qt

 = 1. (111)

Its easy to check that

rkt+1 + φ
(
It+1

Kt+1
− δ
)
It+1

Kt+1
− φ

2

(
It+1

Kt+1
− δ
)2

+ (1− δ)Qt+1

Qt
=
Dt+1 +Qt+1Kt+2

QtKt+1

and thus iterating on (111) we get

QtKt+1 = Pt = Et
∑
j

Mt+j

Mt
Dt+j .

Equilibrium The equilibrium is given by

ci,t + Ptai,t = wte
θi,t +RtPt−1ai,t−1 (112a)

1 = Et
(

βUc (ci,t+1)

Uc (ci,t) + ζi,t

)(
Dt+1 + Pt+1

Pt

)
(112b)

ai,tζi,t = 0 (112c)

Wt − (1− α) exp (Θt)K
α
t = 0, (112d)

Rt =
1− α) exp (Θt)K

α
t − It −

φ
2

(
It
Kt
− δ
)2

Kt + Pt+1

Pt
, (112e)

Qt = 1 + φ

(
It

Kt−1
− δ
)
, (112f)

Pt = QtKt+1, (112g)∫
ai,tdi = 1. (112h)

Define ki,t = Pt−1ai,t and substitute for Pt to get the equations in the main text.
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