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Abstract

Many behavioral responses to climate change are carbon-intensive, raising concerns
that adaptation may cause additional warming. We label this phenomenon the Cli-
mate Adaptation Feedback (CAF). The CAF’s sign and magnitude depend on how
emissions increases from cooling balance against declines from heating across space
and time. We develop a framework for quantifying the CAF that combines high-
resolution projections of adaptation-induced energy consumption and source-specific
CO2 intensities. We find energy-based adaptation will decrease cumulative CO2 emis-
sions, lowering global mean surface temperature in 2099 by 0.12◦C relative to baseline
projections and avoiding 1.8 trillion USD ($2019) in global damages. Energy-based
adaptation lowers business-as-usual emissions for 85% of countries, reducing the mit-
igation required to meet their unilateral Nationally Determined Contributions under
the UNFCCC by 11% on average. More broadly, the CAF breaks the conventional
separation between climate mitigation and adaptation, with wide-ranging implications
for climate policy and research.
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1 Introduction

Human adaptation will be increasingly critical for moderating harms and exploiting oppor-
tunities under climate change (1). Recent studies highlight that climate adaptation requires
significant changes in energy use; increased energy consumption has been shown to reduce
excess mortality and protect well-being in homes, workplaces, and schools under extreme
temperatures (2; 3; 4; 5; 6; 7; 8; 9; 10). Energy use is carbon-intensive: cooling demand
alone comprised 10% of recent global electricity consumption and is expected to rise substan-
tially during the 21st century (11). This raises the question of whether adaptation to climate
change may itself induce additional warming, a phenomenon we call the Climate Adaptation
Feedback (CAF). The CAF is the anthropogenic analogue to geophysical climate feedback
mechanisms (e.g., declines in oceanic CO2 uptake or albedo) that can amplify global climate
change (12). It captures how behavioral responses to climate change may be maladaptive
by ultimately increasing future global mean surface temperatures (GMST) (13; 14; 10).

This paper develops a framework for quantifying the CAF driven by adaptive energy
consumption. We calculate the CAF over the course of the 21st century by combining high-
resolution, subnational projections of energy consumption responses to anthropogenic climate
change with country- and energy-specific CO2 emissions intensities. Our calculation accounts
for energy consumption implications of all behaviors and investments that individuals and
firms undertake in response to temperature change across all non-transport sectors includ-
ing residential, commercial, industrial, and agricultural sectors (8), covering nearly 80% of
current global CO2 emissions (15). It is built from state-of-the-art, globally-comprehensive,
empirical estimates that incorporates heterogeneous effects of a changing climate on energy
consumption across fuels, time, and space (2; 3; 16; 17; 18; 19; 8; 9), dramatically expanding
the scope and increasing the accuracy of prior efforts to capture individual components of
the CAF (20; 21).

The possibility that adaptation-induced energy consumption could influence the trajec-
tory of future temperatures breaks the conventional separation between mitigation (actions
that reduce emissions) and adaptation (protective efforts), with important implications for
both climate policy and research. For example, global climate models estimate climate re-
sponses to exogenous radiative forcing, but omit behavioral responses. This will lead to
inaccurate local temperature projections if the CAF is non-zero. Any error in projections
then affects associated climate damage estimates, influencing key policy metrics like the so-
cial cost of carbon (22; 23). Additionally, the possibility of a positive CAF raises concerns
that adaptation could exacerbate climate change inequities, since the indoor temperature
control that is more accessible at higher incomes (4; 19) may accelerate climate change dam-
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ages borne by lower-income regions (24; 25; 26; 27). While integrated assessment models
have taken steps to account for geophysical feedbacks and nonlinearities in the climate sys-
tem (28) as well as adaptive behavioral margins (29; 30; 31; 32; 20; 33), current models do
not, to the best of our knowledge, account for how local changes in final energy consumption
for adaptation directly alter global temperatures under a non-zero CAF.

2 The Climate Adaptation Feedback

Current research and media attention have predominantly focused on the risks posed by
behavioral feedbacks that would lead to a positive CAF, such as increased demand for air
conditioning raising emissions from the electricity sector (4; 11; 20; 21). While this specific
channel will undoubtedly play an important role, Figure 1 illustrates that both the sign
and magnitude of the CAF stemming from all forms of energy-based adaptation to climate
change are unclear. While climate change will lead to warming of daily temperatures in
all locations (Figure 1a-b), the resulting response in energy consumption will be highly
heterogeneous. A higher frequency of realized hot days will increase demand for cooling
in locations that are already warm (Figure 1d), but warming will simultaneously lower
demand for heating in locations that currently experience a large number of cold days (Figure
1c). This heterogeneity interacts with variation in the CO2 intensities of electricity and
other sources of energy, leading to substantial differences in the response of emissions from
adaptation to temperature change across countries.

For example, Canada and Sweden will both likely experience declines in heating demand
under climate change. However, Canada’s electricity sector emits 15 times more CO2 per GJ
than does Sweden’s, while its other fuels sector emits 2 times more. These differences lead
to differential emissions responses to changing daily temperatures (Figure 1e). Similarly,
energy-based adaptation in India and Brazil will lead to increased demand for cooling, but
the dominance of coal in India implies much larger increases in emissions than in Brazil, where
hydropower is the primary source of electricity (Figure 1f). Thus, the change in future global
CO2 emissions due to energy-based adaptation, and by extension the sign and magnitude
of the CAF, are a priori unknown. A positive CAF implies behavioral adaptations increase
global CO2 emissions on net (Figure 1g), raising projected rates of warming (Figure 1h).
However, if future declines in emissions due to reduced heating demand dominate any future
increase driven by cooling, the CAF will be negative.

We develop a framework to sign and quantify the net effects of the forces illustrated
in Figure 1. Specifically, we define the CAF in any given year as the difference in global
mean surface temperature (GMST) between a baseline value (e.g., projected warming un-
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der the Representative Concentration Pathway 8.5 (RCP8.5) emissions trajectory) and one
accounting for future energy-based adaptation (e.g., projected warming under RCP8.5 plus
the net change in emissions from adaptation) (see Supplementary Materials Section 6.1 and
Equation (1)). We implement this framework by leveraging newly-available high-resolution
projections of future energy changes in response to local temperature realizations from ref.
(8). These causal “dose-response” functions represent the change in the use of final energy
sources – electricity and all other fuels – in response to variations in daily temperature,
pooling energy consumption across residential, commercial, industrial, and agricultural end-
uses (excluding transportation). Any adaptive actions taken by individuals, firms, or public
agencies across a broad spectrum of sectors, such as the use of air conditioning or space
heating, are included in these estimates. The estimated dose-response functions vary across
space and time, accounting for the fact that average incomes and baseline climates shape the
sensitivity of energy use to temperature changes, for example through changing the adop-
tion and efficiency of energy-intensive technologies. To account for uncertainty, we report
estimates from multiple socioeconomic and emissions scenarios, while accounting for both
statistical and climatological uncertainty (see Supplementary Materials Section 6.1).

We combine these projections with country-level CO2 emissions intensity factors for each
final energy source constructed using data from the International Energy Agency’s Emis-
sions Intensities Report (see Supplementary Materials Section 6.2). These granular data are
critical for translating adaptive energy use into a global CAF, as the CO2 intensity of energy
use varies substantially across fuels and locations, as shown in Figures 2a-b. When combined
with projections of energy consumption from ref. (8), these factors allow us to predict future
changes in global CO2 attributable to energy-based adaptation (see Equation (2)). As our
forecasts for future energy consumption take an underlying emissions (RCP) and socioeco-
nomic (Shared Socioeconomic Pathway; SSP) scenario as given, we fix emissions factors in
our projection at historical 2010-18 levels. While this assumption is restrictive, it avoids
the inconsistency that would result from changing emissions factors while maintaining an
SSP-RCP that fixes baseline emissions. We discuss the potential implications of this choice
in Section 4.

To obtain the CAF, we calculate the annual cumulative change in global CO2 emissions
due to energy-based adaptation for horizons from 2020 to 2099 (Figure 2c and Equation
(6)). We then translate these cumulative emissions into a change in global temperatures
(∆GMST) using an empirically-derived relationship that leverages simulated warming from
an ensemble of Global Climate Models for the two emissions pathways we consider (Figure
2d; see Supplementary Materials Section 6.3 and Equation (6)).
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3 Results

We find that the CAF is negative at all horizons and decreasing monotonically over time.
Figure 3a plots point estimates (solid green line) and 90% confidence intervals (shaded green
area) for the annual CAF over the 2020-2099 horizon under our baseline SSP2-RCP8.5
scenario. In 2099, the CAF is -0.12◦C; changes in energy consumption driven by adaptation
lead to a 0.12◦C lower GMST relative to baseline. This projected reduction in warming
in 2099 alone is equivalent to six years of recent warming at the observed 0.018◦C/yr rate
between 1981-2019 (34) and is 25 times larger than that implied by a back-of-the-envelope
calculation in ref. (8). Under the SSP2-RCP8.5 scenario, our estimated CAF implies that
adaptive energy consumption is predicted to lower the change in GMST in 2099 from 4.27◦C
to 4.15◦C, relative to the pre-industrial climate. Using the Data-driven Spatial Climate
Impact Model (DSCIM) built by the Climate Impact Lab, we estimate that the decrease
in warming due to the CAF lowers the present value of cumulative damages from climate
change between 2020 and 2099 by $1.8 trillion (2019 USD) (see Supplementary Materials
Section 6.1). Accounting for both climatological and statistical uncertainty in 2099 yields a
90% confidence interval for the CAF of -0.35 to 0.073◦C.

A limitation of our benchmark approach is that it implicitly assumes the effects of adap-
tive emissions on the GMST pathway do not themselves affect future adaptation. Paths for
future changes in energy consumption are fixed in the sense that the demand responses gen-
erated by temperature trajectories under each SSP-RCP are determined before we calculate
the CAF at a given horizon. We relax this assumption in Supplementary Materials Section
6.4 to construct a dynamic version of the CAF, which allows for historical adaptation to
affect our projections for adaptive energy use from that point forward. Allowing for such
dynamic linkages leads to a negligible difference, as shown by the dashed green line in Figure
3a; the two CAFs are indistinguishable given the degree of statistical uncertainty. Our point
estimates imply that accounting for dynamic adaptation effects decreases the magnitude of
the CAF in 2099 by 0.8%.

Figure 3b displays how several factors contribute to the sign and magnitude of the bench-
mark CAF (first bar). First, adaptation-induced changes in electricity consumption, which
are largely driven by increased demand for cooling under rising temperatures (35; 8; 4), lead
to a positive value of 0.06◦C (second bar). This electricity effect has been the focus of prior
discussions of energy-based adaptation (21). However, a negative CAF emerges when we
add changes in demand for other fuels, whose value of -0.18◦C (third bar) more than offsets
the positive component from electricity, due to substantial projected declines in demand for
heating under climate change. These findings highlight the importance of accounting for
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all forms of energy demand that will change in response to climate change. Second, het-
erogeneity in CO2 emissions intensity also plays an important role. Using a constant global
CO2 emissions intensity – a simple average across countries and fuels (fourth bar) – results
in a CAF that’s 37% smaller in magnitude than our benchmark estimate which allows CO2

emissions intensities vary across countries and fuels.
Our estimates of the CAF are largely invariant across socioeconomic scenarios, but de-

pend heavily on the magnitude of baseline greenhouse gas emissions. Figure 3c shows point
estimates for the 2099 CAF under alternative SSP-RCP scenarios, demonstrating that the
CAF under RCP8.5 is roughly double that under RCP4.5, due to greater baseline warm-
ing leading to larger energy savings from fewer cold days. Although SSP scenarios change
total population and levels of income across countries, which can shape the total energy
response to daily temperatures (8), we find that within an RCP, global CAF values differ
little across SSP scenarios. However, there is substantial heterogeneity in the magnitude of
adaptation-induced CO2 emission changes across countries. Figure 4a shows both a map and
histogram of country-level cumulative adaptation-induced CO2 emissions changes by 2099
under SSP2-RCP8.5 (this is denoted as E2099 in Equation (3)). While 85% of countries experi-
ence CO2 emissions reductions, of those countries, the 5th and 95th percentiles of cumulative
adaptation-induced emission changes by 2099 are -0.016 and -7.38 GtCO2, respectively. For
the remaining 15% of countries that experience increases in emissions, magnitudes are small,
with the 5th and 95th percentile range estimated at 0.0024 to 0.50 GtCO2.

One interpretation of reduced CO2 emissions from energy-based adaptation is the ac-
crual of “free” abatement. Unlike typical CO2 abatement which results from climate mit-
igation policies designed to directly curtail emissions, this abatement emerges solely as a
consequence of behavioral adjustments unprompted by mitigation policies. However, the
resulting emissions reductions from these adaptations have global benefits identical to those
induced by environmental policy and can influence international negotiations and country-
level mitigation benchmarks. The magnitude of this “free” abatement can be considered
both in historical and future contexts. Figure 4b shows that for countries projected to expe-
rience adaptation-induced CO2 declines, the magnitude of cumulative abatement by 2099 is
strongly correlated with historical emissions. This correlation has implications for debates
over abatement responsibilities based on historical emissions; we project that today’s highest
emitters will receive substantially more “free” CO2 abatement during the 21st century.

By lowering projections of future CO2 emissions, adaptation-induced abatement will al-
ter the stringency of existing mitigation policies. To illustrate this, we divide our estimates
for each country’s cumulative adaptation-induced abatement in 2050 by estimates for the
cumulative required abatement for that country to meet its Nationally Determined Con-
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tribution (NDC) under the Paris Agreement of the United Nations Framework Convention
on Climate Change (UNFCCC) (36; 37; 38). When this ratio takes a value of one, the
entirety of a country’s obligations under its NDC will be met without any mitigation pol-
icy; the projected gap between a country’ baseline emissions and its NDC is met entirely
by our estimate of adaptation-induced abatement. Figure 4c shows a histogram of these
values, displaying the share of mitigation stipulated under each country’s NDC that is re-
alized through adaptation-induced abatement for each of the 61 countries with long-term
commitments catalogued by ref. (38). Similar to the the full sample, 82% of the countries
in this subsample are projected to experience adaptation-induced abatement. For these 50
countries, adaptation-induced abatement will on average reduce gaps between baseline emis-
sions and their NDCs by 11% in 2050. Several countries are projected to undergo emissions
reductions from adaptation that are larger than the mitigation commitments implied by
their NDCs, as shown by share values that exceed 1. This highlights that accounting for the
CAF has important implications for forming mitigation policy, as emissions are projected to
decline substantially in many countries even in the absence of climate policy.

4 Discussion

We develop a framework for quantifying the feedback between energy-based adaptation and
anthropogenic climate change, a phenomenon we label the Climate Adaptation Feedback.
Our methodology combines high-resolution projections of future energy consumption re-
sponses to climate change with country- and energy-specific CO2 intensities to quantify cu-
mulative emissions changes due to adaptation. Under several benchmark pathways for future
emissions and socioeconomic development, we consistently find a negative CAF. Our central
estimate implies that adaptive energy use attenuates warming by 0.12◦C in 2099, roughly
equivalent to six years of warming at recent rates. This moderation of GMST change between
2020 and 2099 avoids 1.8 trillion in present value terms (in 2019 USD). When accounting
for statistical and climatological uncertainty, our results suggest it is unlikely that the CAF
is positive, limiting concerns that energy-based adaptation will exacerbate future warming.

Our analysis has several limitations. First, we define the CAF relative to a fixed SSP for
socioeconomic conditions and fixed RCP for baseline global emissions. The advantage of this
approach is that SSPs and RCPs are widely used in climate projections and do not already
account for emissions arising from energy-based adaptation (39). As discussed above and
in Section 6.4, this abstracts from a full characterization of the dynamic interplay between
changing adaptive energy demand and climate change. A further disadvantage is that the
use of a fixed SSP-RCP baseline prohibits us from examining the CAF in tandem with
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potential decarbonization scenarios. Any decarbonization assumptions we might employ to
alter current CO2 intensities of energy consumption into the future would be inconsistent
with modeling assumptions built into these exogenous scenarios; a fully coupled approach
in which behavioral adaptations are built directly into climate and socioeconomic modeling
would be required to comprehensively assess the implications of decarbonization for the CAF.
However, as long as CO2 intensities associated with other fuels do not decline dramatically
relative to those for electricity, our estimate should serve as an upper bound on the magnitude
of the CAF. For example, if the electricity sector continues to decarbonize faster than other
fuels (40), there will be fewer additional emissions from increased electricity consumption
to offset the decreased emissions from other fuels, implying a more negative CAF than the
value we have uncovered here.

Second, relying on a fixed SSP-RCP baseline further omits other general equilibrium
channels associated with energy-based climate adaptation. For example, recent integrated
assessment models of climate change illustrate the importance of price effects from energy-
based adaptation in altering the social cost of carbon (17; 20; 33). While some state-of-
the-art, multi-region macroeconomic models do incorporate some heterogeneity in demand
for energy across space (41; 20; 42), these models do not yet capture how adaptation may
directly alter how energy enters final consumption worldwide. Incorporating both behav-
ioral responses to climate change through energy use and allowing for these changes to affect
prices, expectations, and investment will be essential moving forward in establishing a uni-
fied modeling framework whereby socioeconomic conditions and emissions pathways interact
dynamically.

Third, our analysis is limited in its coverage of energy-based adaptations. We omit pos-
sible feedbacks arising from transportation-based adaptation due to a paucity of empirical
estimates for how transportation-related GHG emissions respond to a warming climate. Ad-
ditionally, our calculation includes all direct energy consumption responses to daily variations
in temperature, but omits any indirect effects on energy demand that may arise under climate
change. For example, declining agricultural yields due to climate change may induce more
fertilizer use, which could alter GHG emissions from the agriculture sector even if it uses the
same level of direct energy inputs(43; 44). Such indirect channels of energy-based adaptation
have, to our knowledge, not been systematically quantified globally. When these adaptive
behaviors are better characterized in the scientific literature, they too may be incorporated
into the CAF using the framework developed here.

Even within the non-transportation energy sector, we face two primary data limitations.
First, our measure of CO2 emissions intensity corresponds to a country’s average emissions
intensity, whereas a more appropriate measure would be the CO2 intensities of marginal
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energy sources that will experience increasing (or decreasing) demand due to variation in
local temperatures. Unfortunately, the data for calculating marginal CO2 intensities for
every country is not readily available, nor is it clear whether the average CO2 intensities we
use systematically under- or overstate true marginal intensities. Second, the absence of non-
CO2 GHG emissions intensities prevent us from directly quantifying corresponding changes
in non-CO2 emissions due to adaptation. While our empirical estimate of the relationship
between GMST changes and global cumulative CO2 emissions implicitly includes non-CO2

GHG emissions (see Figure 2d and Supplementary Materials Section 6.3), our analysis does
not capture any geographical heterogeneity in the covariance of these emissions and CO2.
For example, because phase-out rates of hydrofluorocarbons (HFCs) vary by country under
the Kigali Amendments to the Montreal Protocol, some countries may see decreased CO2

from air conditioning coincide with declines in HFC emissions larger than those captured
in our estimated global temperature response relationship. Lastly, by definition, the CAF
only quantifies the GMST consequences due to GHG emissions caused by energy-based
adaptation. In practice, fossil energy consumption for heating and cooling leads to additional
local ambient air pollution from power plants and the direct combustion of fossil fuels (e.g.,
natural gas furnaces). In the case of electricity generation, those local ambient air pollutants
(e.g., PM2.5, SO2, and NOx) have been shown to have large effects on human health outcomes
(45; 46; 47). Therefore, the declines in energy consumption due to adaptation that we study
here may lead to additional local environmental benefits not considered in this analysis.

Our finding that energy-based adaptation may lower global CO2 emissions necessitates
a reevaluation of existing mitigation commitments. Projections of “business-as-usual” CO2

emissions that fail to account for declining energy use on net due to adaptive behaviors (that
occur even regardless of policy changes) may lead to a false measure of policy stringency.
As we show by comparing cumulative adaptation-induced CO2 abatement with mitigation
commitments under existing NDCs, energy-based adaptation alone may account for a sub-
stantial share of NDC abatement for many countries. For a more accurate measure of climate
policy stringency, measures of business-as-usual or baseline emissions must incorporate GHG
emissions changes due to adaptive behaviors.

More broadly, a negative CAF breaks the conventional dichotomy between climate mit-
igation and adaptation commonly employed in policy and research. Advocates and policy
makers have long argued that mitigation and adaptation should be considered separately, in
part to isolate the objectives within each domain. With a non-zero CAF, those objectives
are inherently linked; mitigation goals must take into account the consequences of adaptive
behavior, and climate adaptation must be viewed as an additional channel for mitigation.
Our results further emphasize the importance of interdisciplinary research quantifying the
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future effects of climate change. With both Earth System Models and Integrated Assess-
ment Models increasing in complexity, coupling projections of the climate system with the
dynamic responses of human behavior is critical in order to appropriately inform each class
of models. Our finding suggests that adjusting existing models to allow for this interaction
will play an important role in forming more accurate projections and prescriptions of the
human response to anthropogenic climate change going forward.
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Figure 1: The ambiguous effects of energy-based adaptation on global CO2 emissions and
global mean surface temperature. The Climate Adaptation Feedback (CAF) is the net effect of
adaptation-induced energy use on global mean surface temperatures (GMST); its sign is theoretically am-
biguous. Climate change generates a rightward shift across heterogeneous baseline climate distributions for
(a) colder and (b) warmer locations. This leads to (a) declines in energy consumption in cold locations and
(b) increases in energy consumption in hot locations. Country-specific emissions intensities of electricity
and other fuels result in different impacts of changing energy consumption on CO2 emissions in (e) cold
locations and (f) hot locations. (h) Increases in emissions from elevated cooling demand on hot days balance
against decreases in emissions from declining heating demand on cold days, making the net effect on global
CO2 emissions ambiguous. (h) When increased emissions from cooling outweigh decreased emissions from
heating, a positive CAF increases GMST compared to a baseline rate of warming; when the opposite is true
and emissions reductions from decreased heating demand outweigh decreased emissions from cooling, the
CAF is negative. Only with no energy-based adaptation is there no feedback on GMST.
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Figure 3: The Climate Adaptation Feedback. (a) Solid green line and shaded green area show
point estimates and 90% confidence intervals for the Climate Adaptation Feedback (in ◦C), for 2020-2099
under SSP2-RCP8.5 using our benchmark approach. The dashed green line shows the dynamic CAF, which
accounts for how additional climate change from adaptation feeds back into future adaptation, as detailed in
Supplementary Materials Section 6.4. (b) Components of the benchmark CAF in 2099 under SSP2-RCP8.5.
The first bar is the full CAF (consistent with panel (a) for 2099). The second bar shows the CAF component
derived from electricity consumption alone. The third bar shows the CAF component derived from only
other fuels consumption. The fourth bar shows the CAF component derived using a globally constant CO2
emissions intensity, ignoring heterogeneity both across space and across fuel times in emissions intensity of
energy-based adaptation. (c) The last set of bar graphs show point estimates for the CAF in 2099 under
different SSP-RCP combinations.
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The map and histogram display country-level cumulative adaptation-induced CO2 emissions in 2099 mea-
sured in GtCO2 (E2099 in Equation (3)). (b) The plot shows a country-level scatter plot of natural log
cumulative adaptation-induced CO2 emissions reductions by 2099 (y-axis) against natural log of present-day
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(solid line) with 90% confidence interval (shaded area) and point estimate and p-value of the linear coefficient.
It also shows a local polynomial fit (dashed line) using an Epanechnikov kernel with a rule-of-thumb band-
width (48). (c) Histogram shows the distribution of the country-level ratio of cumulative adaptation-induced
CO2 emissions reductions by 2050 to cumulative CO2 emissions reduction commitments under Nationally
Determined Contributions (NDC) taken from (38). A value of 0.5 implies that 50% of NDC commitments
are projected to be met by energy-based adaptation alone. All panels show results for SSP2-RCP8.5.
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6 Methods

6.1 Constructing the Climate Adaptation Feedback

Our paper develops and implements a methodology to quantify the extent to which
changes in future energy use driven by adaptation to anthropogenic climate change (ACC)
will alter greenhouse gas (GHG) emissions and in turn affect climate change. We call the dif-
ference between global mean surface temperature (GMST) with versus without adaptation-
induced energy consumption at time horizon τ the “Climate Adaptation Feedback”, or CAFτ .
CAFτ depends on the baseline scenario of emissions and socioeconomic conditions, defined for
our purposes as a combination of a Representative Concentration Pathway (RCP) of global
anthropogenic GHG emissions (49; 50; 51; 52; 53) and a Shared Socioeconomic Pathway
(SSP) of projected national populations, incomes, and other socioeconomic characteristics
(54; 55; 56). The following calculations fix our baseline SSP2-RCP8.5 scenario to avoid no-
tational clutter, but we repeat the processes below for each SSP-RCP we consider (results
for all scenarios are displayed in Figure 3).

Consider two projections of future warming, one that accounts for adaptive changes in
energy use and one that does not. Denote projected GMST in period t as TAt when adaptive
energy use is accounted for, and as TNt when it is not. Normalize time periods such that
t = 0 is the year 2020 and let ∆ denote the time difference operator between period t = 0
and t = τ . With this notation, we define the CAF at horizon τ as:

CAFτ
def= ∆TAτ −∆TNτ . (1)

Equation (1) is the difference in GMST change at horizon τ due to adaptive changes in
energy use around the world. When the CAF is positive, adaptation exacerbates warming
globally. When the CAF is negative, adaptation dampens warming.

To construct CAFτ , we first calculate the change in global CO2 emissions due to adaptation-
induced energy use in each period through horizon τ . At the local scale, emissions from
adaptive energy use depend on how ACC changes local temperature distributions as well as
how different temperature realizations affect energy demand (see Figure 1). Because local
temperature changes, energy use responses, and the CO2 intensity of energy consumption
vary substantially across space, we conduct this step at the country level before aggregating
globally to compute the global CAF. Specifically, for each year t and country i, the CO2
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emissions generated by energy-based adaptation are:

Ei,t =
∑
h

F h
i ∆Jhi,t =

∑
h

F h
i

∑
p∈i

[
Jh(TN

p,t,Xp,t)− Jh(TN
p,0,Xp,t)

]
︸ ︷︷ ︸

Change in energy use due to
adaptation to temperature change

, (2)

where h indicates final consumption of either electricity or an aggregate of consumption
across all other fuels, including natural gas, oil shale and oil sands, biofuels, and others, as
detailed in ref. (8), the source of our energy use projections. In this expression, p indicates
one of ∼25,000 global subnational regions with approximately internally-homogeneous his-
torical temperatures, which are defined by (8). Each F h

i is the CO2 emissions factor for a
given energy type h ∈ {electricity, other fuels} for country i, measured in units of in tCO2

per gigajoule of fuel consumed. Construction of F h
i is detailed in Section 6.2 below. We fix

F h
i to the observed 2010-2018 averages for each country-fuel pair to avoid projecting future

changes in CO2 intensities while reflecting current differences in countries’ energy mixes.
The underbraced object in Equation (2) represents the impact of climate change on

adaptation-induced total energy use in region p. It is defined as the difference in total
energy use (in gigajoules, GJ) between a future climate affected by ACC and a future with
stable temperatures representative of the current (t = 0) climate. This projected change
in energy consumption depends critically on the “dose-response” functions Jh(·), which are
constructed by ref. (8) using historical energy consumption data and standard climate
econometric tools. These functions relate energy consumption in each fuel category h to
daily temperature, capturing the energy consumption that results from all behaviors and
investments that individuals and firms undertake in response to local temperature variation
across all sectors besides transportation.

As detailed in ref. (8), these dose-response functions depend primarily on the realization
of future daily temperatures within a given impact region, denoted by the vector TN

p,t, under
a given RCP scenario. The dose-response functions also include higher-orders terms of daily
grid cell-level temperature realization along with a set of covariates summarized by Xp,t,
which include projections of GDP per capita and population specific to a SSP scenario and
long-run averages of cooling and heating degree days under each temperature trajectory.
These covariates allow for the response of energy consumption to daily temperature real-
izations to vary based on how the economic resources and climatology of a given location
change in the future. Critically, this implies that our CAF calculations account for increasing
energy intensity of adaptation in developing economies, where projected income growth is
likely to lead to substantial increases in cooling and heating technology adoption (4; 8; 9).

Two sources of uncertainty enter into Equation (2). The first is climate model uncer-
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tainty: for a given emissions scenario, there is uncertainty over future local temperature
realizations TN

p,t. We account for this uncertainty by utilizing all 33 Global Climate Model
(GCM) projections included in the Surrogate Model Mixture Ensemble (SMME) employed
by ref. (8) and built from the Coupled Model Intercomparison Project Phase 5 (CMIP5)
(57) climate models. The second is statistical uncertainty in the empirical estimates of the
energy-temperature dose-response functions Jh(·); this uncertainty is captured by ref. (8)
through application of the statistical Delta Method, creating a Gaussian distribution of pre-
dicted impacts for each of the 33 climate model projections. To combine both sources of
uncertainties, we follow (8) in constructing the mixture distribution of these 33 Gaussian
distributions using Newton’s method.

Summing the results from Equation (2) over time and across space, we write the cumu-
lative change in global CO2 emissions between years 0 and τ caused by adaptation-induced
energy use as:

Eτ =
τ∑
t=0

∑
i

Ei,t (3)

To convert cumulative emissions from adaptation, Eτ , to changes in future GMST, we es-
timate a relationship between projected future emissions and warming in the absence of
adaptation using the forecasts generated by the 33 GCM projections described above. Sec-
tion 6.3 discusses this relationship in detail, how it relates with the transient climate response
to cumulative carbon emissions (TCRE) in the climate science literature, and shows that
it is well-approximated by a linear coefficient. We denote this linear relationship between
emissions and GMST with the slope coefficient β. This implies that the GMST change be-
tween years 0 and τ due to adaptation is: ∆TAτ = ∆TNτ + βEτ . Rewriting this expression in
terms of the climate adaptation feedback definition in Equation (1) gives us:

CAFτ = βEτ . (4)

For each SSP-RCP combination, we obtain a point estimate for CAFτ from Equation
(4), as well as a 90% confidence interval that account for both climate uncertainty across
GCMs and statistical uncertainty in the energy response functions, as discussed above.

Valuation To convert our estimates of the CAF into dollar value of avoided damages, we
use the Climate Impact Lab’s Data-driven Spatial Climate Impact Model (DSCIM). This
model includes climate change damages to mortality, coastal storms and sea level rise, labor,
energy, and agriculture. Mortality risk is monetized using the U.S. EPA VSL with a value of
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life years lost adjustment and an income elasticity of one, following ref. (27). Comprehensive
documentation for the version of the DSCIM used by the U.S. Environmental Protection
Agency as an input into its estimate of the social cost of greenhouse gases can be found
here: https://impactlab.org/wp-content/uploads/2020/10/CIL_DSCIM_User_Manual_
092022-EPA.pdf. DSCIM assigns a monetary value to the damages from global warming in
every year along a baseline socioeconomic and climatic trajectory. Avoided damages due to
the negative CAF are calculated as the difference between predicted damages in the baseline
scenario and in the scenario inclusive of the CAF, for each year between 2020 and 2099.
When discounting damages, the DSCIM model generates a stochastic discount factor (SDF)
for all future periods based on the Ramsey rule calculated along the exogenous consumption
pathway for a given socioeconomic scenario, and after incorporating consumption losses from
baseline warming. Specifically, we use a coefficient of relative risk aversion equal to η = 2,
and we discount future values using Ramsey discounting with η = 2 and a pure rate of time
preference of ρ = 0.0001. We convert the avoided consumption losses due to the CAF into
a present value in 2019 equivalents using this SDF.

6.2 Data

Projections of adaptation-induced energy use We obtain point estimates and 90%
confidence intervals for projections of adaptation-induced energy use (i.e., the underbraced
terms in Equation (2)) at the country-year-fuel level for two emissions scenarios and four
socioeconomic scenarios directly from ref. (8).

Temperature projections We obtain projection-specific annual series of GMST between
2020 and 2099 under the RCP4.5 and RCP8.5 pathways directly from ref. (8). The SMME
employed by (8) generates 33 projections of annual GMST under each RCP scenario. These
global averages correspond directly with the impact-region specific daily temperature real-
izations that drive future ∆Jhi,ts under each model run in (8).

Socioeconomic projections We obtain five-year country-level GDP per capita and pop-
ulation projections for the 2020-2099 period under each SSP scenario from the International
Institute for Applied Systems Analysis (IIASA) model (54; 55; 56) and from the Organisation
for Economic Co-operation and Development (OECD) Env-Growth model. For projections
under each SSP scenario, we take the average between these two model outputs.

Emissions intensities To convert adaptation-induced final energy consumption of energy
source h ∈ {electricity, other fuels} to CO2 emissions, we need energy source-specific CO2
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emissions intensities that account for heterogeneity in the mix of primary fuels (e.g, coal,
natural gas, and renewables) in each country. For example, electricity in Poland is mostly
generated using coal, while in Costa Rica it comes almost exclusively from renewables, each
with very different resulting CO2 emissions intensities.

For each country i and year t, let r ∈ Hh
i,t index the primary fuels used to generate final

consumption of energy source h. The final energy source CO2 emissions intensity, F h
i , is the

weighted average of primary fuel CO2 emissions intensities, fhi,r,t, across primary fuels r used
to produce final energy source h where each weight, ωhi,r,t, is the total amount of energy fuel
r contributes to final consumption of h in year t. To account for year-to-year fluctuations in
primary energy use, we take this average over 2010-2018 values. Country-level final energy
source CO2 emissions intensities are calculated as:

F h
i =

∑2018
t=2010

∑
r∈Hh fhi,r,t ω

h
i,r,t∑2018

t=2010
∑
r∈Hh ωhi,r,t

. (5)

We obtain primary fuel CO2 emissions intensities fhi,r,t from the International Energy Agency
(IEA) Emissions Intensities Report for each form of final use (58). We assign weights, ωhi,r,t,
based on consumption data from the IEA World Energy Balances (WEB) (59). The WEB
catalogues country-level primary fuel consumption at the sector level which we aggregate to
form our final energy use sectors. Electricity is one such sector (i.e. code ELOUTPUT).
For other fuels, we follow (8) for consistency and pool together the industrial, residential,
commercial and public services, agricultural, fishing, and other sectors not elsewhere specified
(i.e., codes TOTIND, RESIDENT, COMMPUB, AGRICUL, FISHING, and ONONSPEC
respectively).

To construct the globally constant emissions-weighted average CO2 intensity across final
energy sources and countries used in Figure 3b, we compute:

F =
∑n
i=1E

2019
i

∑
h F

h
i∑n

i=1E
2019
i

where the weights E2019
i are set equal to 2019 GHG emissions measured in CO2-equivalents

from ref. (60).

Baseline country-level emissions and Nationally Determined Contributions We
obtain country-level baseline CO2 emissions pathways and Nationally Determined Contri-
butions (NDCs) from ref. (61). The repository is https://zenodo.org/record/6383612#
.Y4wnZC-B27c and the version we use is dated February 14, 2022. Ref. (61) provide two
sets of NDCs for most countries: a more stringent “conditional” NDC path (in the sense
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that the pathway is conditioned on action by other countries) and a “unconditional” NDC
path, both available only under SSP1 and SSP5. We use the more stringent conditional
NDCs along with baseline CO2 emissions projections under the SSP5 scenario to construct
the ratio of cumulative adaptation-induced CO2 emissions reduction over cumulative CO2

emissions reduction under NDCs by 2050 in Figure 4c.

6.3 Estimating the GMST-cumulative CO2 relationship

A key challenge to quantifying the CAF is that available emissions intensity data only apply
to CO2 emissions, while energy-based adaptation is likely to feed back into climate change
via other greenhouse gases as well. Specifically, the IEA data detailed in Section 6.2 does
not contain emissions intensities for non-CO2 greenhouse gas emissions from final consump-
tion outside of the electricity and heat and power sectors. To address this data limitation,
we construct an empirical relationship between GMST and cumulative CO2 emissions that
includes any changes in non-CO2 emissions which covary with CO2 emissions. Such a re-
lationship is similar to, but not the same as, the transient climate response to cumulative
emissions of CO2 (TCRE), which is the direct (causal) effect of cumulative CO2 emissions
on GMST change and has been documented in the climate science literature and shown
to be well-approximated by a linear relationship (62; 63; 64; 12). However, our empirical
relationship additionally includes the effects of non-CO2 greenhouse gases on GMST, to the
extent that these gases correlate with CO2 emissions in historical data.

To illustrate this approach, suppose the change in GMST over time horizon τ , ∆T τ ,
responds to cumulative CO2 emissions, ECO2

τ and cumulative emissions of another GHG,
Eotherτ , in the following manner:

∆T τ = ρECO2
τ + αEotherτ

In this expression, ρ is the TCRE – the direct effect of changing CO2 emissions on GMST
holding cumulative emissions of all other GHGs constant. However, due to IEA data limita-
tions, we cannot estimated projected changes in Eotherτ due to adaptative energy use. Instead,
we can estimate the same regression omitting the effects of other GHG emissions:

∆T τ = βECO2
τ + errorτ

Since future emissions of CO2 and other GHGs are likely to be positively correlated, β can
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be expressed as:

β = ρ+ α
cov

(
ECO2
τ , Eotherτ

)
var(ECO2

τ ) > ρ

The coefficient β is therefore our object of interest; it is the projected GMST change from an
observed increase in cumulative carbon emissions. This coefficient combines the direct effect
of a unit increase in cumulative CO2 emissions and the indirect effect that accounts for the
covariance between CO2 and the other GHG emissions that are inputs into the SMME used
to forecast future temperature pathways. When that covariance is positively correlated, one
would expect β to exceed the TCRE, or ρ.

In practice, to estimate β, we use variation in GMST and cumulative CO2 emissions (in
the absence of adaptation) across RCP4.5 and RCP8.5 and the 33 GCM predictions drawn
from the SMME based on CMIP5. Letting s index the 66 RCP-GCM combinations, we
estimate:

∆TNτ,s = βENτ,s + errorτ,s (6)

using the temperature and emissions time series generated by the ensemble of models in
CMIP5. Our estimate of β is 2.2e − 3 C◦ × GTC−1 (p < 0.01). To examine whether our
linearity assumption is valid, Figure 2d shows a scatter plot between ∆TNτ,s and ENτ,s along
with a flexible relationship estimated using a local polynomial function with an Epanechnikov
kernel and a rule-of-thumb bandwidth (48) that reveals any data-driven nonlinearities. We
do not detect any nonlinearities. As a point of comparison, our estimate for β is 1.4 times
the median estimate for the TCRE (or ρ) detected in the literature, although well within
confidence intervals for the TCRE (64). This is consistent with cumulative emissions of CO2

and other GHGs being positively correlated.

6.4 A Dynamic Climate Adaptation Feedback

As discussed in Section 3, our baseline estimate for the CAF takes projected changes in
emissions from adaptation as given by the calculations in ref. (8). That is, we assume that
the additional climate change due to the CAF does not itself lead to additional adaptive
energy demand. In doing so, the estimated CAF in Section 6.1 implicitly assumes adaptive
changes in emissions have no concurrent effects on the GMST pathway that determines future
adaptation. This is a strong assumption if emissions changes due to adaptation have large
immediate effects on the GMST path each year after they enter the atmosphere. In this
section, we develop a dynamic version of the CAF and show that, in practice, the result is
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nearly identical to the approximated value we center in our analysis in Section 6.1.
Specifically, we account for the dynamics of energy-based adaptation by updating the

original projections of Ei,t from Equation (2) at each time horizon to account for the how
historical adaptive emissions through time t− 1 will have affected the GMST pathway that
year. This is implemented by iteratively updating the temperature pathway at each horizon
relative to a given RCP baseline to account for temperature change due to the CAF, and
then using this distance from the baseline to adjust projected adaptive energy use from that
point forward. Starting in 2021 (the second projection year from the (8) data we use), we
adjust the baseline projected temperature pathway each year to account for the cumulative
effects of emissions from adaptation. We then update each country-year-fuel emissions tuple
in that year to account for the adjusted GMST pathway. We repeat this procedure out to
2099 and recalculate the cumulative emissions changes to form an estimate of the CAF that
accounts for concurrent dynamics between adaptation use and GMST change.

Specifically, we begin with the set of 66 projected time series of emissions changes com-
puted under our baseline SSP2-RCP8.5 scenario from Equation (2). These forecasts are
country-level changes in emissions for each climate model m:

Eh
i,t,m = F h

i

∑
p∈i

[
Jh(TN

p,m,t,Xp,t)− Jh(TN
p,m,0,Xp,t)

]
(7)

in year t for fuel h in country i under climate model m. We use these country-level sets of
projected horizon-t emissions changes to estimate, for each country-fuel-year combination,
the following reduced form response function:

Eh
i,t,m = αhi,t∆GMSTt,m + γhi,t∆GMST 2

t,m + εhi,t,m (8)

Equation (8) captures the additional emissions due to adaptation for each i, t, and h, as
a quadratic function of changes in GMST. We estimate Equation (8) separately for each
(i, t, h) tuple under the SSP2-RCP8.5 combination to form a time series of estimated α̂hi,t

and γ̂hi,t coefficients for each country-fuel combination. From these estimates we construct
time-country-fuel impulse response functions (IRFs): each IRF (for an i, t, h pair) gives the
estimated additional change in emissions from energy-based adaptation induced by marginal
changes in projected GMST derived from fuel h and country i at the time horizon t. This
object is the derivative of Equation (8) with respect to ∆GMST :

Θ̂h
i,t

def=
∂Êh

i,t

∂∆GMSTt
= α̂hi,t + 2γ̂hi,t∆GMSTt (9)

22



These impulse responses give, by fuel-horizon-country, the local effects on concurrent emis-
sions from adaptive energy use due to additional warming. We use this to project how prior
temperature changes from adaptation will affect contemporary adaptive energy use relative
to the baseline pathway. Starting in 2021, we update the values of emissions from energy-
based adaptation using a first-order Taylor expansion around their baseline levels. For each
country-fuel-year, we define a new series of emissions by:

Ẽh
i,t = Ēh

i,t︸︷︷︸
baseline emissions

+
 Θ̂h

i,t︸︷︷︸
response functions

× β̂ ∆̃Et−1︸ ︷︷ ︸
horizon τ − 1 CAF


︸ ︷︷ ︸

dynamic effect

(10)

where ∆̃E is the cumulative emissions change due to energy-based adaptation between 2021
and year t− 1 accounting for the dynamic effects of adaptation:

∆̃Et−1 =
t−1∑

s=2021

∑
i

∑
h

Ẽh
i,s, (11)

and β̂ is our mapping between emissions and temperature as described in Equation (6) in
Section 6.3. Starting in 2021, we calculate the cumulative change in emissions due to adap-
tation while accounting for how adaptive emissions in turn affect future use for adaptation
through the GMST channel. The first term in Equation (10) captures baseline emissions
from adaptation as calculated in Equation 2 and used in the main text. The second term
accounts for how the effects of past emissions from adaptation on the pathway of GMST in
turn affect emissions in that year.

We iterate over the process in equation (10) over all country-fuel pairs at each horizon
through 2099, updating the series for cumulative emissions and temperature each period.
The iterative procedure ensures the baseline temperature path (under RCP8.5) is adjusted
to reflect the cumulative level of adaptive emissions changes each year. We then recalculate
the CAF with concurrent dynamics using the updated energy changes due to adaptation
through year 2099. We track the dynamic CAF each year as follows:

CAF dyn
τ

def= β̂
∑
i

∑
h

τ∑
t

Ẽh
i,t. (12)

The dashed line in Figure 3a displays the time series of our baseline CAFτ without dynamic
emissions-temperature linkages and the dynamic version CAF dyn

τ incorporating concurrent
emissions-GMST linkages over the 2021-2099 period under the baseline SSP2-RCP8.5 sce-
nario.
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The concurrent emissions-GMST linkages channel decreases cumulative emissions and
temperature changes (in magnitude) attributable to adaptation. This occurs because of the
negative nature of the CAF: lower emissions from declines in heating use outweigh additional
emissions from increased cooling at each horizon. This in turn lowers cumulative emissions
relative to baseline each year and with it our forecast for ∆GMST . These lower temperature
levels in turn result in smaller future changes in emissions from adaptation through the IRFs,
as declines in temperature lead to smaller declines in consumption of other fuels and smaller
increases in emissions from electricity. This is indicated by an increasing gap between CAFτ
and CAF dyn

τ over time; the larger the cumulative negative effect from the CAF, the lower the
updated temperature series is relative to baseline. This further decreases emissions changes
from adaptation (in magnitude) each year, further lowering the temperature. However,
empirically, we find that this gap between CAFτ and CAF dyn

τ is small in magnitude. By
2099, CAF2099 is -0.1206 while CAF dyn

2099 is -0.1196. Given the minor consequence played by
such dynamic emissions-GMST linkages, in our main text we emphasize CAFτ over CAF dyn

τ .
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