
Estimating Nonlinear Heterogeneous Agents Models

with Neural Networks∗

Hanno Kase Leonardo Melosi

University of Warwick

FRB Chicago & CEPR

Matthias Rottner

Deutsche Bundesbank

July 10, 2023

Abstract

We leverage the recent advancements in machine learning to develop a solution and es-

timation method based on neural networks for complex economic models. We apply our

method to a nonlinear Heterogeneous Agent New Keynesian (HANK) model with a zero

lower bound constraint for the nominal interest rate. To begin with, we demonstrate

with simulated data that our method is much more efficient than existing global solution

methods and that the estimation converges to the true parameter values. We then esti-

mate the model with US aggregate data and evaluate the information content it provides

about households’ idiosyncratic risk. Our empirical application also sheds light on the

efficacy of our method in simultaneously handling a large number of state variables and

parameters, nonlinear dynamics, heterogeneity, and aggregate uncertainty.

Keywords: Machine learning, neural networks, Bayesian estimation, global solution, het-

erogeneous agents, nonlinearities, aggregate uncertainty, HANK model, zero lower bound.

JEL classification: C11, C45, D31, E32, E52

∗Emails: kase.hanno@gmail.com, leonardo.melosi@warwick.ac.uk, matthias.rottner@bundesbank.de. We
thank Borağan Aruoba, Jesús Fernández-Villaverde, David Levine, Galo Nuño, and Frank Schorfheide for
their very helpful suggestions. We thank our discussants Kieran Larkin and Danila Smirnov and seminar
participants at the Banque de France, Deutsche Bundesbank, Bank of Finland, the Schumpeter-BSE-Seminar
in Berlin, CEBRA 2022 Annual Meeting, Conference on advanced analytics by the ECB, BoE and DAFM
at King’s College London, the European University Institute, Conference on Non-traditional Data, Machine
Learning and Natural Language Processing in Macroeconomics at Sveriges Riksbank, the Ghent University
Workshop on Empirical Macroeconomics, the 29th Symposium of the SNDE, SEM Annual Conference 2022,
EEA Conference 2022, Midwest Macro Meeting 2022, T2M 2023 Conference, CEF 2023 Conference and 4th
EUI Alumni Conference in Economics. A previous version was titled “Solving and Estimating Macroeconomic
Models of the Future”. The views in this paper are solely those of the authors and should not be interpreted
as reflecting the views of the Deutsche Bundesbank, the Eurosystem, the Federal Reserve Bank of Chicago,
or any other person associated with the Federal Reserve System.

1 Introduction

Modern economic models are often hard to solve, forcing economists to study tractable ap-

proximations of these models and limiting their empirical analysis. However, this tractability

often comes at the cost of losing potentially interesting features of the models, such as im-

portant nonlinearities, agent heterogeneity, and stochastic volatility. We propose a machine

learning-based approach to solve and estimate models without resorting to approximations

or simplifications that necessarily distort their properties and predictions. Subsequently, we

apply our method to estimate a quantitative Heterogeneous Agent New Keynesian (HANK)

model in its nonlinear specification using US aggregate data from 1984:Q1 to 2019:Q4.

Our method exploits the many advantages of neural networks. Given their capability to

handle a large number of inputs, neural networks are well-suited to learn the solution map-

ping of models with many state variables and nonlinear dynamics. An important property of

neural networks is scalability, implying that extra inputs (e.g., state variables) can be added

at low computational costs. This enables neural networks to obtain a global approximation

of macroeconomic models featuring hundreds or thousands of state variables. Consequently,

neural networks can tackle the well-known curse-of-dimensionality phenomenon that conven-

tional global solution methods face. Although augmenting the complexity of the problem

comes with lower costs, it is still very time-consuming to solve even once such elaborate

models with neural networks. This issue is particularly challenging when estimating models

with likelihood methods, rendering a conventional estimation approach infeasible.

We overcome this crucial problem by exploiting the fact that neural networks minimize the

issue of curse-of-dimensionality that inevitably arises when handling problems with a massive

number of inputs. But, more is needed to achieve our goal of estimating high-dimensional

economic models. A critical step we propose in this paper is to use the model’s parameter

vector as direct input in the neural network. In other words, we treat the parameters as

pseudo-state variables, thereby exploiting the scalability of neural networks. We then train

this extended neural network with the parameters as inputs across the entire parameter space.

This step proves crucial as it yields the model’s solution mapping (i.e., the mapping from the

parameter space to the model’s equilibrium law of motion), rather than just a single point in

this solution mapping, which is associated with the model solution for a single point in the

parameter space. The computational gains are enormous compared to repeatedly evaluating

the model’s solution. The reason behind this result is twofold: the scalability of neural

networks and the remarkable efficiency of modern machine learning software and hardware.

Another computational hurdle is that the likelihood function of nonlinear models needs

to be evaluated using a Monte Carlo filter (e.g., the particle filter), which is computationally

more demanding than linear filters (e.g., the Kalman filter). This issue limits the number

of parameter combinations we can assess, considerably restricting the scope of estimation.

To circumvent this problem, we train an additional neural network that provides a direct

mapping from the model parameters to the value of the likelihood function – via the particle

filter.

2

This approach is known as a surrogate model, which we apply to approximate the outcome

of the particle filter. For this strategy, we calculate the likelihood values with the particle

filter for different parameter combinations over the parameter space. At the evaluated com-

binations, we obtain the mapping from the parameter values to the likelihood value. We

then use these mappings to train the neural network. Notably, the neural network training

requires only thousands of likelihood evaluations as inputs. Thus, this strategy significantly

reduces the computation time compared to conventional estimation, which typically requires

considerably more draws. We term this approach as neural network particle filter. Once this

neural network is trained, the likelihood of complex models can be calculated within a few

milliseconds.

We provide three proofs of concept to validate our approach before estimating a HANK

model in its nonlinear specification with US data. First, we demonstrate that our extended

neural network with the parameters as pseudo-state variables captures the dynamics of a stan-

dard linearized NK model, for which the true solution can be derived analytically. Second, we

focus on a more complex model with meaningful nonlinearity and compare the results of our

estimation framework to a conventional estimation for nonlinear models. The conventional

approach requires resolving the model at each parameter draw with classical global solution

methods and then employing the particle filter. As the conventional approach severely re-

stricts the potential scope of the estimation, we use a tractable RANK model that features

an aggregate nonlinearity (zero lower bound). We establish that estimation results are very

similar for both approaches. Moreover, we use a HANK model that features hundreds of

state variables and 13 parameters as pseudo-states. Using simulated data, we demonstrate

that our method recovers the true data-generating process of the parameters using simulated

data.

We then turn our attention to an application with actual data. Specifically, we solve

and estimate a nonlinear HANK model using US time-series data from 1984:Q1 to 2019:Q4.

The model features idiosyncratic and aggregate shocks, as well as individual and aggregate

nonlinearities in the form of individual borrowing limits for the agents and a ZLB for the

monetary authority, respectively. Our estimation includes the standard deviation of the

idiosyncratic shock as our method does not restrict the parameter set.

Standard aggregate data allow us to identify the degree of idiosyncratic risk. The reason

is that the level of idiosyncratic risk impacts the interest rate level and affects the frequency

of encountering the ZLB. If idiosyncratic risk were absent, the frequency of hitting the ZLB

would be severely diminished. Furthermore, we find that the zero lower bound amplifies the

impact of shocks, underscoring the importance of nonlinearities in the model. As an external

validation, the model evaluated at the posterior mode gives a wealth Gini coefficient of 0.80,

aligning with the average value observed in the US during the estimation period.

The estimation also highlights another advantage of our method: speed. The described

neural network-based estimation of a nonlinear HANK model can be completed in less than

two days using a modern desktop computer, which underlines the method’s potential.1

1We use an AMD Ryzen 5 5600X 6-Core processor (CPU) and Nvidia GeForce RTX 3090 (GPU) for the

3

Literature The paper is connected to the literature that develops global solution methods

using neural networks to solve complex dynamic macroeconomic models such as Fernández-

Villaverde et al. (2020), Ebrahimi Kahou et al. (2021), Maliar et al. (2021), Valaitis and

Villa (2021), Azinovic et al. (2022), among others. Our approach differs as we allow for the

estimation of models with hundreds or thousands of state variables. Consequently, we can not

only solve but also estimate nonlinear, heterogeneous agent models with likelihood methods.

Likelihood estimation adds an additional important layer of complication in that it re-

quires solving the model at hundreds of thousands of different points in the parameter space.

As a result, only extremely fast and efficient solution methods are compatible with likelihood

analysis. Fernández-Villaverde et al. (2023) estimate the critical parameter of a model with

a financial sector and heterogeneous households with neural networks using the time-series

of GDP growth. We can expand the scale of the estimation exercise and estimate several

parameters using three observable variables because (i) we combine the scalability of neural

networks with the intuition of treating the model parameters as pseudo-state variables when

solving the model and (ii) we use neural networks to facilitate the evaluation of the likelihood

via the filter - which we call neural network particle filter. Furthermore, unlike that paper,

we estimate a HANK model. To our knowledge, we are the first to estimate a HANK model

in its nonlinear specification.

The first papers that pioneered the analysis of HANK models resort to MIT shocks and

disregard aggregate uncertainty in order to facilitate the task of solving these models (e.g.,

Oh and Reis, 2012; McKay et al., 2016; Challe et al., 2017; Kaplan et al., 2018; Bayer

et al., 2019; Bilbiie, 2020; Ottonello and Winberry, 2020; Acharya and Dogra, 2020). More

recently, scholars have studied the role of aggregate uncertainty in HANK models by using

linear perturbation methods (Reiter, 2009; Winberry, 2021; Ahn et al., 2018; Boppart et al.,

2018 and Auclert et al., 2021). There are only very few papers that pioneered the solving of

HANK models with macroeconomic uncertainty and non-negative constraints. Maliar and

Maliar (2020), Gorodnichenko et al. (2021), Fernández-Villaverde et al. (2021) and Han et al.

(2021) rely on neural networks, while Schaab (2020) studies a nonlinear HANK model based

on a solution method unrelated to machine learning.2 Unlike these papers, we show that

computational gains from using neural networks are so significant because they make the

likelihood estimation of these models feasible. To achieve this result, we take advantage of

the scalability of neural networks and the neural network particle filter.

We lay down an estimation method that can be applied to quantitative nonlinear HANK

models with idiosyncratic and aggregate risk. Other papers have estimated HANK models

by approximating aggregate risk to first order or on the assumption of perfect foresight

regarding aggregate shocks (Bayer et al., 2020; Lee, 2020; Auclert et al., 2021). A strength of

our approach is that it does not impose any restrictions on the set of parameters that can be

estimated because our method allows us to jointly solve for the individual and aggregate law

neural network-based Bayesian estimation.
2Lin and Peruffo (2022) capture aggregate uncertainty with a two-state Markov process in a HANK model.

4

of motions.3 As a consequence, we can additionally estimate the parameters that affect the

(stochastic) steady state of the economy, including parameters affecting the heterogeneous

agents’ problem (e.g., agents’ idiosyncratic volatility or borrowing limit). Furthermore, our

approach can fully capture interesting interactions between the ZLB, stochastic volatility,

aggregate risk, stationary distribution, and other aggregate nonlinearities.

Outline The paper is organized as follows. In Section 2, we develop the neural network-

based estimation method. Section 3 provides proofs of concept of our method. In Section 4,

we solve and estimate a quantitative nonlinear HANK model with our developed approach

using US data as well as simulated data. Section 5 concludes the paper.

2 An Estimation Framework Based on Neural Networks

This paper develops an estimation framework that utilizes neural networks to estimate

macroeconomic models in its fully nonlinear specification. Neural networks, which are at

the core of our method, are the fundamental building block of deep learning, which belongs

to the family of machine learning methods.4 Neural networks are well suited to solve complex

nonlinear macroeconomic models because they can handle many inputs and are an efficient

method for quickly learning about complicated mathematical functions or mappings. How-

ever, a decisive challenge for the estimation of complex models is that it requires the repeated

solving of the model for different parameter combinations. Even though neural networks can

solve elaborated models such as the nonlinear HANK model, it is computationally infeasible

to solve them sufficiently often with neural networks or other global solution methods.

We overcome this decisive problem for the estimation by exploiting the circumstance that

neural networks can handle many inputs without encountering the curse-of-dimensionality. In

particular, we include the model’s parameters as pseudo-state variables in the neural network.

We then solve only once for this extended neural network that includes the parameters as

pseudo-state variables. This extended neural network allows us to directly evaluate the

solution of the model for different parameter combinations. Even though the inclusion of

parameters as pseudo-state variables increases the computation time, it is incomparable to

repeatedly solving the model without pseudo-state variables.

An additional challenge for the estimation is related to the computations of the likelihood,

which evaluates the model’s fit with the data. In particular, the nonlinear model solution

precludes the Kalman filter’s usage. Instead, we employ a particle filter to obtain the likeli-

hood. However, the execution of the particle filter is computationally much more costly than

3The estimation methods proposed by those papers solve for the stationary distribution in the first step.
In the second step, a perturbation technique approximates the aggregate dynamics around the stationary
distribution. The estimation centers then on this second step, which precludes the estimation of any parameter
affecting the stationary distribution.

4Appendix A briefly summarizes neural networks and their critical properties for our approach. Goodfellow
et al. (2016) provides an overview of deep learning. Fernández-Villaverde et al. (2020) and Maliar et al. (2021),
among others, discuss machine learning in the context of macroeconomic modeling.

5

the Kalman filter. This limits the number of parameter combinations we can consider and

severely restricts the estimation’s scope.

We overcome this limitation by relying on a surrogate model, which approximates the

outcome of interest in a computationally cheap way.5 Specifically, we train a new additional

neural network as a surrogate model to approximate the results of the particle filter. For

this strategy, we first calculate the likelihoods for different parameter combinations from

the solved parameter space with a particle filter. We then use these calculated likelihoods as

inputs to train an additional neural network. The neural network training requires only thou-

sands of likelihood evaluations, which reduces the computation significantly compared to a

conventional estimation. We denote this approach as the neural network-based particle filter.

Once equipped with the neural network-based particle filter, it takes us a few milliseconds to

evaluate a single draw.

It is instructive to compare our estimation procedure to a conventional approach. In a

conventional estimation, the model is first solved with numerical methods for a specific pa-

rameter combination. In the second step, a filter evaluates the likelihood of the solved model.

Based on the likelihood value, a new parameter combination is considered. A conventional es-

timation requires the repetition of the solving and filtering steps hundreds of thousand times.

However, both steps are computationally costly, which renders this approach infeasible for

large and complex models. In contrast, our developed approach first solves the model over

the entire parameter space. Then it provides a mapping from the parameters to the likeli-

hood in a quick and efficient manner. Once these neural networks are obtained, executing

the estimation is straightforward and very fast. Therefore, the developed neural networks

approach creates this new possibility of estimating complex nonlinear models.

2.1 Extended Nonlinear Model Representation

We are interested in solving and estimating dynamic stochastic general equilibrium models

in their nonlinear specification. A finite vector of state variables St describes the economy in

each period. The economy is subject to exogenous shocks νt that affect the response of the

state variables. The model features S state variables and U structural shocks. The last part

is the model’s structural parameters Θ. These objects describe the dynamics of the model

and can be expressed as a transition equation:

St = f (St−1, νt|Θ), (1)

where f is a nonlinear function. This function f is generally unknown and needs to be solved

with numerical methods.

It is helpful to distinguish between state and control variables for expressing the solution

to this type of model. Control variables ψt characterize the optimal policy choices by the

agents. The model features O control variables. The decisive step in solving these models

5In physics and engineering, the use of surrogate models is well-established. An application to estimated
finance models is Chen et al. (2021).

6

is to determine the mapping from the state variables to the control variables, which is given

from the policy functions ψ (·):

ψt = ψ(St|Θ), (2)

where the policy functions are nonlinear and depend on the state variables. Once the control

variables are determined, the dynamics of the state variables can be analytically calculated.6

For this reason, the focus in our description is on the policy functions ψ(St|Θ̄).

The policy functions ψ(St, Θ̃|Θ̄) are derived as the solution to a function space F :

F (ψ(St|Θ)) = 0, (3)

where the function space is derived in line with Euler equation methods.

Key Trick: Incorporating Parameters as pseudo-state Variables The challenge

for estimation is that we need to solve the policy function again and again for different

parameter values. However, this is very costly and can render the estimation of challenging

models infeasible. The crucial key is that we want to solve the policy function only once but

at the same time, to account for the entire set of parameters we want to estimate. The set

of parameters can be divided into two subsets:

Θ = {Θ̃, Θ̄}, (4)

where Θ̃ is the set of parameters to be estimated and Θ̄ is the set of parameters to be

calibrated. We treat the parameters to be estimated as pseudo-state variables of the economy.

The extended policy function with the pseudo-state variables can be written as:

ψt = ψ
(
St, Θ̃|Θ̄

)
, (5)

where now the values for the parameters Θ̃ are treated as pseudo-state variables.7 The

following subsection explains how we approximate the extended policy function using neural

networks in a deep learning approach.

Incorporating Heterogeneity The approach can also capture models that feature het-

erogeneous agents (e.g., on the household or firm side) as well as multiple countries, counties,

sectors, or banks. Heterogeneity often assumes the existence of a continuum of agents, which

implies that the distribution of individual states and shocks is infinite:∫
SitdΩ and

∫
νitdΩ, (6)

where the superscript i stands for individual agents.

6We can separate between endogenous and exogenous state variables. The dynamics of the exogenous state
variables do not depend on the control variables.

7Examples of computational papers that use pseudo-state variables in combination with machine learning
techniques are Norets (2012), Duarte (2018) and Scheidegger and Bilionis (2019).

7

To map such a scenario in our framework with finite states, the critical assumption is

that we approximate the continuum of households with a large but finite number of agents

L as in Maliar et al. (2021).8 This allows to capture the continuous distribution with a large

but finite number of states.9 This approach is very appealing for a neural network-based

procedure as neural networks can overcome the curse-of-dimensionality. The distribution can

be summarized as follows:{
Sit
}L
i=1

and
{
νit
}L
i=1

. (7)

The state variables and shock can be written as follows:

St =
{{

Sit
}L
i=1

,SAt
}

and νt =
{{
νit
}L
i=1

, νAt

}
, (8)

where the superscript A is concerned with aggregate state variables and shocks. In case of

heterogeneity with a finite number of agents, e.g., countries, counties, sectors, or banks, this

directly defines the state variables without an approximation.

Similarly, we adjust the policy functions:

ψi
t = ψI(Sit, St|Θ̄) and ψA

t = ψA(St|Θ̄), (9)

where we assumed that agents only differ in their state variables and structural shocks so

that the same policy function ψI can be used for all agents if conditioned on the individual

variables additionally.

We can now rewrite the transition equation and policy functions as follows:

St =
{{

Sit
}L
i=1

,SAt
}
= f

({{
Sit−1

}L
i=1

, SAt−1

}
,
{{
νit
}L
i=1

, νAt

}
, Θ̃|Θ̄

)
(10)

ψt =
{{
ψi
t

}L
i=1

, ψA
t

}
=
{{
ψI(Sit, St|Θ̄)

}L
i=1

, ψA(St, Θ̃|Θ̄)
}

(11)

The number of individual and aggregate state variables are Si and SA
t , respectively, so the

total number of state variables is S = Si × L + SA. The number of exogenous shocks and

policy functions is similarly defined as U = U i ×L+UA and O = Oi ×L+OA, respectively.

2.2 Extended Neural Network-Based Solution Method

We use neural networks to solve the extended policy functions. In particular, we develop a

neural network solution algorithm incorporating the parameters to be estimated as pseudo-

state variables. The difference is remarkable. Our approach’s obtained extended neural net-

work provides the numerical solution for all macroeconomic models covered by the parameter

space. Usually, a procedure without the pseudo-state variables gives just the solution for one

single combination of parameters. In other words, our approach solves an infinite amount of

8Agents assume in their maximization problem that their weight is zero.
9The approach is related to Le Grand and Ragot (2021), where heterogeneity is captured as a truncated

history of idiosyncratic shocks. Their method requires that past realizations depend on an arbitrary but
finite number of states, which requires the idiosyncratic shock to be discretized. Our approach refrains from
discretizing; consequently, each agent has a different history.

8

models instead of one single model.

While the additional state variables would create a problem for the classical global so-

lution method due to the curse-of-dimensionality, our approach relies on the scalability of

the neural network in handling many inputs. Therefore, the additional burden of including

the parameters as pseudo-state variables is not comparable to resolving the model for each

parameterization. We briefly summarize neural networks and their fundamental properties

that are so handy for our approach in Appendix A.

Extended Neural Networks and Policy Functions We use neural networks to ap-

proximate the individual and aggregate policy functions, ψI and ψA.10 In particular, we

set up two neural networks, ψI
NN and ψA

NN , that approximate the individual and aggregate

policy, respectively. We train the neural networks to map the inputs, which consist of S

state variables and P parameters to be estimated, into several output variables O (policy

functions). This then provides the numerical solution for all macroeconomic models covered

by the parameter space. The mapping from the state variables and parameters to the control

variables with neural networks as function approximators is:11

ψi
t = ψI

NN

(
Sit, St, Θ̃|Θ̄

)
, (12)

ψA
t = ψA

NN

(
St, Θ̃|Θ̄

)
. (13)

The entire vector of control variables is given as:

ψt =
{{
ψi
t

}L
i=1

, ψA
t

}
=

{{
ψI
NN

(
Sit,St, Θ̃|Θ̄

)}L

i=1
, ψA

NN

(
St, Θ̃|Θ̄

)}
. (14)

For simplicity, we define ψNN

(
St, Θ̃|Θ̄

)
≡
{{

ψI
NN

(
Sit,St, Θ̃|Θ̄

)}L

i=1
, ψA

NN

(
St, Θ̃|Θ̄

)}
.

This formulation highlights that our approach solves simultaneously for the individual law of

motion and the aggregate law of motion.12

Loss Function and Training of Neural Networks The next step is to train the extended

neural network to approximate the policy functions. The neural networks ψI
NN and ψA

NN are

trained to minimize a defined loss function. In particular, we minimize the residual error of

a set of equations, where the equations are chosen in line with the Euler equation method. It

should be noted that in a setup with heterogeneity, the entire set of equilibrium conditions

contains individual and aggregate intertemporal optimality conditions, transition equations,

equilibrium conditions, etc. The number of equations that are minimized in line with the

Euler equation method corresponds to the number of policy functions O = Oi × L + OA.

10The description nests the scenario of a representative agent economy, which then only includes the aggre-
gate state variables SA and aggregate policy functions ψA.

11The number of neural networks can be adjusted according to the model’s needs. In the outlined case with
individual and aggregate policy functions, it is convenient to choose two neural networks.

12This differs to the aggregation approach of Krusell and Smith (1998), as discussed in detail in Maliar and
Maliar (2020).

9

However, the neural network allows overfitting so that additional constraints can be added.

The loss function is the sum of the square of the equations from the Euler equation method.13

Furthermore, the neural networks ψNN are trained on a batch with size B. This can be

thought of as having B economies operating in parallel that are used to train the neural

network. Consequently, we use deep learning techniques to minimize B × (Oi × L + OA)

equations in each iteration.14 The neural network is then trained for tens of thousands of

iterations using a stochastic gradient descent method, which minimizes the loss function. At

each iteration step, we perform several internal optimization steps to increase the precision

of our results.

Stochastic Solution Domain and Expectations The grid points for the state variables

and parameter values in each iteration are drawn randomly from the state and the parameter

space. In particular, the neural network is trained on a stochastic solution domain, from

which the values of the state variables are drawn. We are interested in training the algorithm

only on the relevant n-dimensional domain of the state space. We ensure this via a simulation

step in our solution algorithm that approximates the ergodic distribution of the model. After

training the neural network with the given draw of state variables over batch B in the current

iteration, we simulate each economy (batch) for T sim periods forward. The endpoint of the

simulation gives the solution domain that we use in the next iteration for the optimization

of the neural network. In that regard, we draw random points from a S = Si × L + SA-

dimensional domain, which covers the ergodic distribution.

The expectations are evaluated with a Monte Carlo approach, which relies on the anti-

thetic variate to increase the precision.15 The approach handles hundreds of shocks and is

well suited to evaluate expectations in a stochastic setup with randomly drawn shocks.

Parameter Space We train the neural network for the entire parameter space that we

consider. We restrict each parameter that is estimated to lie inside some bounds:

Θ̃ =
{[

Θ̃1, Θ̃1
]
,
[
Θ̃2, Θ̃2

]
, . . . ,

[
Θ̃P , Θ̃P

]}
, (15)

where Θ̃i and Θ̃i is the lower bound and upper bound for each parameter that is estimated.

Due to the bounded space, we can draw from a tighter distribution and increase the preci-

13The weight on the different equations can vary, this enables that aggregate conditions have a higher weight
than the equations related to agent i to give an example.

14The loss function is the mean of the square of the K equations residuals from the Euler
equation method. The loss is averaged over batch size B. The loss function is then: ΦL =
1
B

∑B 1
K

∑K
k=1 αk(Et

[
ΓK
k (st+1,b, ψt+1,b, st,b, ψt,b, νt+1,b)

]
)2, where αk determines the weight of each equation.

15We randomly draw M sets of next period shocks, that is {νmt+1}Mm=1, to approximate expectations. We
use the antithetic variate method to increase the efficiency of Monte Carlo integration and reduce the number
of necessary draws. The antithetic variates technique creates to a given path {ν1, ν2, ν3, . . . , νM/2} also its
antithetic path {−ν1,−ν2,−ν3, . . . ,−νM/2}.

10

Figure 1: Extended neural network presentation that captures the mapping from state vari-
ables as well as model parameters to the policy function. The left plot varies the
state variable and displays the policy functions for selected parameters. The right
plot fixed the state variables at S = 0 and varies the model parameter. The two
plots are directly connected as they are created with the same neural network.
The points in the left plot at S = 0.00 correspond to the policy variable on the
right axis for the chosen parameter.

sion.16 For each iteration, we draw randomly from the parameter space.17 Therefore, each

economy (batch) has a different parameter combination, which is used to train the extended

neural network. After the maximizing step, we redraw the parameter space and then simulate

each economy (batch) forward. This also ensures that we train each economy in its relevant

stochastic solution domain for the drawn parameter combination. To sum up, we train the

neural network over the entire parameter space as we consider a different set of economies in

each training step. At the same time, we ensure via simulation that we are solving for the

policy function in its relevant stochastic solution domain.

While the extended neural network contains now a solution for the entire parameter space,

it is important to validate that the model is solved with a sufficient precision at a given

parameter combination. It is well known that economic models may only have a solution

for some parameter combinations. Compared to linear models, where the Blanchard-Kahn

conditions establish locally the existence and uniqueness of the solution, the issue is more

complicated with nonlinear models. As this is a general problem for global solution methods,

it also directly affects our method. We can use different measures such as the residual error

to evaluate the validity of the solution. This helps to evaluate if a solution exist in this area.

In particular, we train a neural network that provides a mapping from the parameter space to

the residual error. If the residual error is sufficiently small, we keep the solution. Appendix

B contains more details on our procedure to validate the solution and disregard parts of the

parameter space in an efficient way. We also discuss this issue in more detail in our second

16The bounds are conceptually not necessary, and the parameters could be drawn from a random distribu-
tion.

17We draw from a Sobol sequence as it has good distributions in the unit hypercube. We could also draw
from other distributions, such as a truncated multivariate normal or a distribution motivated by the priors,
and potentially combine it with the Latin hypercube sampling.

11

proof of concept.

Graphical Characterization of the Extended Neural Network A graphical charac-

terization of the extended neural network and its connection to the policy functions can be

seen in Figure 1. The left panel shows the mapping from state variables to policy functions

for different parameter values. The mapping from state variables to policy variables depends

on the chosen model parameter. Notably, the three mappings are created with the same

neural network as the neural network is conditioned on state variables and parameters simul-

taneously. The right panel further illustrates the idea of treating the model parameters as

pseudo-state variables. Fixing the state variable(s), the impact of the parameter on the policy

function can be directly seen. Notably, the two plots are created with the same extended

neural network. The points in the left plot at S = 0 correspond to the policy variable on the

right axis for the chosen parameter.

Extended Neural Networks and Steady State Values While we use our neural net-

works to approximate individual and aggregate policy functions, such an approach can also

be useful to obtain a mapping from the parameter values to (selected) deterministic steady

state values ψSS . This mapping is, for instance, useful when the steady state can only be

found with a numerical solver or in the context of heterogeneous agents, as it can help to de-

termine the deterministic steady state value of the interest rate that clears the asset market.

We are using this additional step when solving for our HANK economy in Section 4. The

input for this neural network are only the parameters (without the states), as we focus on

the deterministic steady state.18 Therefore, we do not need to keep to track of the states.

The mapping from parameters to the steady state values with neural networks as function

approximator can be written as:

ψSS = ψSS
NN

(
Θ̃|Θ̄

)
, (16)

We need to adapt our approach slightly to incorporate this neural network in our solution

and estimation procedure. Specifically, we train the neural network for the steady state values

in a first step that precedes solving the (final) individual and aggregate policy functions

in a second step. For this first step, we specify a separate loss function, in line with the

description of this section, and train the neural network for the steady state values.19 In

case of a heterogeneous agents setup, we solve for the Bewey-Huggett-Aiyagari version of our

model. We are then using this neural network for the deterministic steady state in the second

step, in which we solve for the individual and aggregate policy functions.

18The deterministic steady state features constant aggregate variables. While there are no aggregate shocks,
agents still face idiosyncratic risk.

19Note that it can sometimes require to also train the individual policy functions (in the absence of aggregate
risk) to find the deterministic steady state values, as for the applied HANK model in Section 4.

12

2.2.1 Advantages of the Extended Neural Network Approach

The neural network approximates the policy functions for an entire bounded parameter space.

Consequently, we need to solve the neural network only once to evaluate hundreds of thousand

different - infinitely many, to be precise - parameter combinations! While we could also adapt

more traditional solution methods to incorporate parameters as pseudo-state variables, the

curse-of-dimensionality prevents this already for slightly complex models. By contrast, a

solution approach based on neural networks is much more scalable. It can incorporate many

inputs while being less affected by the curse-of-dimensionality.

Consequently, neural networks allow for overcoming several key computational issues

in estimating nonlinear models. First, we include each additional parameter as a pseudo-

state variable, increasing the input amount. Classical methods would be very limited in the

number of extra parameters, whereas this key trick only slightly increases the complexity

of the neural network solution method. Second, a model with heterogenous agents consists

of hundreds of shocks. Approximating the expectation function for just a few shocks is

very cumbersome with Gauss-Hermiture quadrature or a finite state Markov chain, which

are usually used for conventional global methods. Exploiting the stochastic setup of our

model, we use a Monte Carlo approach for integration that can feature hundreds of shocks.

Another advantage is that we solve for the entire equilibrium without distinguishing between

variables that affect idiosyncratic and aggregate dynamics. Therefore, our approach does

not restrict the parameters selected for the estimation, and we can consider parameters that

affect the stochastic steady state. Finally, elevated models are often hard to solve, so tractable

approximations are studied and used for empirical analysis. Our method is very general and

covers a large class of macroeconomic models. Consequently, researchers can employ more

complex nonlinear models for their empirical analysis.

2.3 Likelihood, Particle Filter and Neural Networks

The next step is to compute the likelihood, which evaluates the model’s fit with the data.

The nonlinear model solution requires to use a nonlinear filter such as the particle filter.

However, the execution of the particle filter is computationally much more costly than the

Kalman filter, which can be used in linear setups. This limits the number of parameter

combinations that the estimation procedure can evaluate in due time.

To overcome this issue, we train a neural network that provides a direct mapping from

the parameter combination to the likelihood value obtained by the particle filter. This is

a so-called surrogate model, which provides the outcome of interest in a computationally

cheap way. Instead of repeatedly applying the particle filter for each draw, we use this

neural network to approximate the results of the particle filter. Specifically, we calculate the

likelihoods with the particle filter for different parameter combinations over the parameter

space and then use these points as input the neural network training. The advantage is that

we need to run the particle filter much less often in this setup while we can simultaneously

evaluate the likelihood over the entire parameter space. We denote this as a neural network-

13

based particle filter.

Measurement Equation The measurement equation that connects the state variables

with the observables Yt can be written as:

Yt = g(St|Θ̃) + ut, (17)

where g is a function and ut is a measurement error.

Likelihood Evaluation and Particle Filter We use a particle filter to extract the hidden

states and shocks due to the nonlinearity of the solution.20 The particle filter gives us then

the likelihood of the model:

L
(
Y1:T |Θ̃

)
. (18)

While the particle filter could be directly used within our approach, it can be very time-

consuming for sufficient complex models. This is a problem as the filtering step is usually

repeated hundreds of thousands of times, rendering estimation infeasible.

Neural Network as Surrogate Model for the Likelihood we propose a new neural

network-based particle filter method to overcome this bottleneck. The particle filter deter-

mines the likelihood for the parameters Θ̃ conditional on the data, which can be written

as:

L
(
Y1:T |Θ̃

)
= ΩPF

(
Y1:T |Θ̃

)
, (19)

where L is the likelihood and the function ΩPF is unknown.21 A standard estimation proce-

dure calculates the likelihood value at each drawn point. This implies that ΩPF
(
Y1:T |Θ̃

)
is

evaluated every single time for a given new draw of a parameter. Our strategy differs funda-

mentally and uses the advantages of neural networks as a very flexible function approximator.

We train a neural network ΩPF
NN that gives us directly the output of the particle filter:

L
(
Y1:T |Θ̃

)
= ΩPF

NN

(
Y1:T |Θ̃

)
(20)

where L is the likelihood of the model and ΩPF
NN is the neural network associated with the

particle filter. This neural network provides the likelihood in a very efficient manner.

Training of the Neural network-based Particle Filter To train this separate neural

network, we create a set of parameter values and corresponding likelihoods obtained using

the particle filter. To avoid overfitting the neural network, we split the calculated points

20The particle filter (e.g., Herbst and Schorfheide, 2015) has been used to filter highly nonlinear models
with, for instance, occasionally binding constraints (Gust et al., 2017; Atkinson et al., 2020) or (endogenous)
multiple equilibria (Aruoba et al., 2018; Rottner, 2021). However, the particle filter has not been applied in
the context of large HANK models so far.

21Importantly, the extended neural network is used during the particle filter to calculate the likelihood.

14

0.0100 0.0125 0.0150 0.0175 0.0200 0.0225 0.0250 0.0275 0.0300
Parameter

1500

1450

1400

1350

1300

1250

1200

1150

1100

Lo
g

Li
ke

lih
oo

d

Particle Filter Trained Neural Network

Neural Network
Particle Filter
True

Figure 2: Neural network-based particle filter method that captures the mapping from the
parameter to the log-likelihood. The orange dots represent the data sample, where
the log-likelihood value has been calculated with the particle filter. The blue line
is the neural network, which was trained with the likelihood evaluations from the
particle filter. The red dashed line indicates the true value.

in a training and testing sample.22 After we have trained ΩPF
NN

(
Y1:T |Θ̃

)
, the likelihood of

the model can be evaluated at a specific draw for negligible costs. This neural network is a

surrogate model because it directly maps the parameters as inputs to the associated likelihood

value.

Graphical Characterization An example of the neural network-based particle filter

method can be seen in Figure 2. The orange dots represent the data sample, where the

log-likelihood value has been calculated with the particle filter. We use these points to train

a neural network that directly maps the parameter values into a log-likelihood value.

Remarks on the Neural Network-Based Particle Filter This approach differs by

one substantial margin from the standard approach of using filters. The standard approach

evaluates the likelihood with the filter without using information from the likelihood of points

close to it. While we evaluate the likelihood at only several thousand points, we use the neural

network to learn the connection between these points. Conceptually, this idea could be seen

as a nonlinear interpolation of the likelihood values with neural networks. This allows us

to evaluate the likelihood at points we did not initially assess. Once the neural network

is trained, we can quickly evaluate the likelihood of millions of parameter combinations.

Another important advantage of this method is that the neural network removes some noise

associated with the particle filter, as Figure 2 highlights. While other approximators than

neural networks could also be used as a surrogate model, we choose neural networks as they

22Overfitting is not an issue for the policy functions neural networks as we always draw new random points.

15

are flexible and can approximate nonlinearities.

2.4 Estimation

We can now proceed to the final estimation step. Equipped with the particle filter trained

neural network, we can evaluate each likelihood over the entire parameter space in less than 1

ms. This opens up the possibility of conducting maximum likelihood estimation or Bayesian

estimation with millions of draws.

Maximum Likelihood Estimation Maximum likelihood estimation maximizes the like-

lihood of the model:

Θ̃ML = argmax
Θ̃

L
(
Y1:T |Θ̃

)
(21)

We restrict the parameter space to be inside the boundaries of our extended neural network.

This is not a constraining assumption, as we could extend the lower and upper bounds of the

neural network. In practice, it should be ensured that the extended neural network covers a

large enough area so that the mode lies very likely inside its bounds.

Bayesian Estimation The particle filter similarly allows us to estimate the model with

Bayesian methods. Bayesian inference uses the posterior distribution p
(
Θ̃|Y1:T

)
, which

combines the likelihood with a prior distribution:

p
(
Θ̃|Y1:T

)
∝ L

(
Y1:T |Θ̃

)
× p(Θ̃). (22)

where p(Θ̃) is the prior distribution. We are using truncated densities for the priors to ensure

that the draws of the parameters are inside the boundaries of our solved neural network.

We can then construct the posterior distribution with a Random Walk Metropolis Hast-

ings algorithm. We draw from the proposal density and can then use our precomputed

particle filter neural network to evaluate the posterior directly.

Sequential Estimation Approach The accuracy of estimation can be improved by mak-

ing the estimation approach sequential. The last part is an optional feature that can be used

to improve the accuracy of the estimation. We initially draw the parameter values from the

unit hypercube. This is a very agnostic approach that is very suitable if we have no additional

information. However, the posterior provides this additional information that we can exploit

to increase precision. The posterior guides us which area we should solve with high precision.

Therefore, we can use a sequential approach. While we initially draw from the unit hypercube

to create the extended neural network and the neural network-based particle filter, we can

draw in a second step from the posterior to refine our solution in the most important areas.

To better solve the tails, we can adjust the sampling to have a better coverage of the tails.

As this sequential estimation approach only affects the model solution, the statistical

properties are not affected from this approach and we can use this new posterior. The

16

difference is that the result is now more precise as we have solved the model with a higher

precision.

Other Estimation Approaches Other methods such as the method of moments, gen-

eralized method of moments, or impulse response matching could be also embedded in this

framework. Instead of creating the particle filter neural network, the appropriate alternative

network would be trained with selected simulated moments or the impulse response functions.

2.5 Algorithm

The neural network-based estimation approach consists of three key steps: i) Train the ex-

tended neural network to get the policy functions over the parameter space, ii Train the

particle filter neural network to get the likelihood over the parameter space, iii) Run max-

imum likelihood estimation or a Metropolis-Hastings algorithm. A detailed description of

the algorithm to estimate macroeconomic models with Bayesian methods is in the Appendix

C. Our accompanied codes rely on PyTorch as the machine learning framework and Adam

(Kingma and Ba, 2014) as the stochastic optimizer.

3 Proofs of Concept

We provide two proofs of concept to establish the validity of our estimation approach. Specifi-

cally, we compare our neural network-based method to i) the true solution of a small linearized

NK model that can be solved analytically and ii) the estimation of a RANK model with a

zero lower bound based on conventional methods for nonlinear models. The third proof of

concept, which uses the HANK model, is discussed in the next section.

3.1 Comparison to an Analytically Derived True Solution

We begin with solving a version of the linearized 3 equation New Keynesian model. This

choice is because this monetary workhorse model has an analytical solution. We can then

compare the outcome of the extended neural network with the true solution. We demonstrate

that the extended neural network provides a precise solution for the considered parameter

space.

The model is a small off-the-shelf NK model with a TFP shock that can be written in a

linearized form as follows:

X̂t = EtX̂t+1 − σ−1
(
ϕΠΠ̂t + ϕY X̂t − EtΠ̂t+1 − R̂F

t

)
, (23)

Π̂t = κX̂t + βEtΠ̂t+1, (24)

R̂F
t = ρAR̂

F
t−1 + σ(ρA − 1)ωσAϵ

A
t , (25)

where the output gap is defined as X̂t = (Xt − X)/X, inflation as Π̂t = Πt − Π. The

structural parameters are described in Table 1. Furthermore, the distribution of the shock is

17

Parameters LB UB Parameters LB UB

β Discount factor 0.95 0.99 θΠ MP inflation response 1.25 2.5
σ Relative risk aversion 1 3 θY MP output response 0.0 0.5
η Inverse Frisch elasticity 1 4 ρA Persistence TFP shock 0.8 0.95
φ Price duration 0.5 0.9 σA Std. dev. TFP shock 0.02 0.1

Table 1: The panel shows the parameters of the three equation NK model. We solve the
neural network for the parameter space spanned by the lower bound (LB) and
upper bound (UB) of all parameters.

ϵAt ∼ N(0, 1) and we define ω = (1+ η)/(η+σ) as well as κ = (1−ϕ)(1−ϕβ)(σ+ η)/ϕ. The

system of equations can be either solved numerically or analytically.

The analytical solution, which can be derived with the method of undetermined coeffi-

cients, is given as:

X̂t =
1− βρA

(σ(1− ρA) + θY)(1− βρA) + κ(θΠ − ρA)
R̂F

t (26)

Π̂t =
κ

(σ(1− ρA) + θY)(1− βρA) + κ(θΠ − ρA)
R̂F

t (27)

The analytical solution points out the idea of extended neural network, in which the solution

is simultaneously conditioned on the parameters and state variables. The analytical solution

of the output gap and inflation depends on the state variable R̂F
t . At the same time, the

output and inflation level also depends on the parameters.

Extended Neural Network To obtain a numerical solution, we use our neural network

approach. A neural network is trained to find the policy functions of inflation and output gap.

Importantly, the policy functions are simultaneously conditioned on the state variable and

the parameters. We minimize the residual error in the equations (23) and (24), while the law

of motion of the exogenous state variable is described in equation (25). Table 1 describes the

upper and lower bounds of the parameters, for which we solve the extended neural network.

While each parameter is varied for demonstration purposes, the method allows also to fix a

subset of parameters. Appendix F shows how this model can be mapped in the general form

that is outlined in Section 2.

We use 100,000 iterations to train the extended neural network.23 After each iteration,

the economy is simulated for 20 periods to get a new draw for the state variable. While we

initially (for the first 5,000 iterations) redraw the parameters after 20 iterations, we change

this to a new draw after each iteration afterward. The batch size is set to 500, which can

loosely be thought of as having 500 different parallel economies in each iteration to train the

neural network.24

23The neural network contains five hidden layers with 128 neurons each. The activation function for the
hidden layers is Sigmoid Linear Unit (SiLU). The learning rate of the deep learning algorithm is lowered after
50000, 60000, 70000, 80000, and 90000 iterations.

24Our algorithm follows the general setup that we have derived in Section 2.2. The simple setting would
allow to fine-tune the method. For instance, we could directly sample from our state space as the only state is
an exogenous shock. We also do not need Monte Carlo integration due to the linear setup. The expectations

18

Figure 3: Figure shows the convergence of the neural network over the 100,000 iterations.
The line displays the mean weighted residual error. The mean is taken across the
batches and the weights of the Euler equation and NKPC are equalized. Both
axis use a base-10 logarithmic scale.

The convergence of the neural network is shown in Figure 3. The graph shows the mean

weighted residual error. The mean is taken across the batches, and the weights of the Euler

equation and NKPC are equalized. The residual error drops from an initial level of around

10−4 to 10−8 on average, which is a decrease of 99.99%. This chart points out that the neural

network successfully minimizes the residual error over the entire set of parameters.

Results Figure 4 shows the policy function of the output gap for variations of the param-

eters. The policy function is evaluated at the one standard deviation of the ergodic distribu-

tion, and the unvaried parameters are fixed in the middle of their bounds. The advantage of

the simple model is that the neural network solution can be compared to the true solution.

The comparison demonstrates that our extended neural network can capture the true solu-

tion as the lines almost perfectly coincide. The shown connection is also highly nonlinear,

emphasizing the potential of neural networks to capture nonlinearities.25 The variation in

the standard deviation of the shock is a noteworthy case. First, both lines are horizontal.

The reason is that the model is linearized so that the standard deviation of the shock has

no impact on the mapping from Rf
t to Π̂t and X̂t. Second, there is a slight uptick in the

neural network for low values of the standard deviations. The reason is that we evaluate the

neural network at rather large deviations from the steady state. The stochastic state space

rarely visits this region, so the precision is slightly lower. As the solution is too far off from

would also be pinned down if we just assume that the next period shock is zero.
25While the model is linearized, variations in the structural parameters can be nonlinear.

19

Figure 4: Comparison between the neural network-based and true analytical solutions. The
plot shows how variations in the structural parameter affect the policy function
for the output gap X̂t. The policy function is evaluated at the one standard
deviation of the ergodic distribution, and the unvaried parameters are fixed at
their mean. 20

the typical region, this is not a problem. However, increasing the number of iterations or

oversampling large shocks can help to remedy this problem. While we have focused only on

the output gap, Figure 14 in the Appendix demonstrates the same takeaways for inflation.

The neural network-based solution coincides almost perfectly with the true solution. This

concludes the first proof of concept.

3.2 Comparison to a Conventional Estimation of Nonlinear Models

We now evaluate if our estimation strategy can recover the true data-generating process of

a nonlinear model. In particular, we employ a Bayesian estimation with our neural network

for a nonlinear RANK model augmented with a ZLB. Additionally, we compare the results

to a conventional estimation approach of nonlinear macroeconomic models. The conven-

tional method relies on solving the model with global methods and evaluating the likelihood

with a particle filter for every single draw of the Metropolis-Hastings algorithm (Herbst and

Schorfheide, 2015). However, the conventional approach restricts the model size because of

the curse-of-dimensionality and the costs to run the particle filter sufficiently often. There-

fore, we focus on a small-scale version of the RANK model with a ZLB.26 In fact, we can

later extend it to our nonlinear HANK model that we are after. Another advantage is that

this model does not feature an actual solution if the ZLB binds too often, as shown, e.g., in

Bianchi et al. (2021). This provides a great testing ground for assessing the solution’s validity

at a specific parameter combination.

3.2.1 Model

The model is a small RANK model with a zero lower bound.

Households The economy consists of a representative household. The household chooses

consumption Ct, labor Nt and assets Bt to maximize their utility:

E0

∑∞

t=0
βt exp(ζDt)

[(
Ct

1− σ

)1−σ

− χ

(
1

1 + η

)
(Ht)

1+η

]
,

where ζt is an aggregate preference shock, which follows an AR(1) process ζt = ρζζt−1 + ϵζt .

Ct is aggregate consumption. The budget constraint in real terms can be written as:

Ct +Bt =WtHt +
Rt−1

Πt
Bt−1 − Tt +Divt, (28)

where Divt is the real dividend, Wt is real wage, Ht is labor, Rt is the gross nominal interest

rate, Πt is the gross inflation rate and T i
t is real lump sum taxes. The first-order conditions

are as follows:

1 = βRtEt

[(
ζt+1

ζt

)(
Ct

Ct+1

)σ 1

Πt+1

]
, (29)

26Even though there are impressive examples that estimate nonlinear RANK models (e.g., Gust et al., 2017;
Atkinson et al., 2020), the scope of the models is unavoidably still quite limited.

21

χ(H i
t)

η = (Ct)
−σsitWt. (30)

Firms The firm sector consists of a continuum of final goods producers and intermediate

goods firms. The final goods retailers buy the intermediate goods and transform them into

a homogeneous final good using a CES production technology:

Yt =

(∫ 1

0
(Y j

t)
ϵ−1
ϵ df

) ϵ
ϵ−1

, (31)

where Y j
t is the output of intermediate goods firm j. The equilibrium price of the final good

and the demand for the intermediate goods of firm j can be expressed as:

Pt =

(∫ 1

0
(P j

t)
1−ϵ)

) 1
1−ϵ

, Y j
t =

(
P j
t

Pt

)−ϵ

Yt. (32)

Intermediate goods producers are monopolistically competitive. The firm j uses labor N j
t as

input to produce output Y j
t with the following production technology:

Y j
t = ZN j

t , (33)

where Z is the total factor productivity. Labor is hired in competitive markets so that the

wage is given as follows

Wt = ZtMCt. (34)

The firm j sets the price of its goods to maximize its profit subject to the demand curve for

intermediate goods and Rotemberg adjustment costs for changing prices:

max
P j
t

P j
t

(
P j
t

Pt

)−ϵ
Yt
Pt

−MCt

(
P j
t

Pt

)−ϵ

− φ

2

(
P j
t

ΠP j
t−1

− 1

)2

Yt, (35)

where Π is the inflation target of the central bank. Imposing a symmetric equilibrium and

discounting future profits with the real interest rate, the New Keynesian Phillips curve can

be written as:[
φR

(
Πt

Π
− 1

)
Πt

Π

]
= (1− ϵ) + ϵMCt + βφREt

Πt+1

Rt

[(
Πt+1

Π
− 1

)
Πt+1

Π

Yt+1

Yt

]
, (36)

where Πt = Pt/Pt−1. The Rotemberg adjustment costs are given back as a lump sum. The

real dividends of the firm sector are Divt = Yt −WtYt.

Policy makers The central bank sets the nominal interest Rt using a Taylor rule that

responds to inflation and output deviations from their targets Π and Y . The rule is persistent

as the interest rate response is smoothed with the previous period’s interest rate. The zero

22

lower bound restricts the nominal interest rate. The rule is given as follows:

Rt = max

[
1, R

(
Πt

Π

)θΠ
(
Yt
Y

)θY
]
. (37)

The fiscal authority follows a passive policy rule, where it uses lump-sum tax taxes Tt to

keep their debts D on a constant path:

D =
Rt−1

Πt
Dt − Tt. (38)

3.2.2 Calibration and Data-Generating-Process

The calibrated model is used as a data-generating process. This provides a controlled environ-

ment for our experiment if the neural network can recover the true value of the parameters.

The upper panel of Table 2 summarizes the calibration of the model. We set the discount

factor β to 0.9975, which implies an annualized real interest rate of 1%. The persistence of

the shock is set to 0.7, while the standard deviation of the shock is set to 0.02. This ensures

that the model occasionally encounters the ZLB. The remaining parameters are standard.

3.2.3 Estimation

We now estimate the nonlinear model in a Bayesian setup by employing our developed ap-

proach, which relies on the extended neural network and the neural network-based particle

filter. We compare the results to an estimation with a conventional approach.

Estimated Parameters and Priors The estimation includes five structural parameters:

The response of the monetary authority to inflation θΠ and to output θY , the Rotemberg

pricing parameter φ as a measure of price stickiness as well as the persistence ρζ and standard

deviation σζ of the preference shocks. The prior distributions are truncated normal densi-

ties.27 The prior mean corresponds to the true value, while the standard deviation σ is very

loose to avoid that the results being driven by the prior. The truncation ensures that the

drawn parameters lie inside the bounds that have been imposed while solving the extended

neural network.28 The lower panel of Table 2 summarizes the priors.

Measurement Equation We base the analysis on the quartlery output growth rate, an-

nualized quarterly inflation rate and nominal interest rate. The sample is generated with the

27The probability density function of the truncated normal is f(x;µ, σ, a, b,) = 1
σ

ϕ((x−µ)/σ)
Φ((b−µ)/σ)−Φ((a−µ)/σ)

. If
the bounds are not symmetric, the parameter µ does not correspond to the mean of the truncated normal.
For simplicity, we refer to µ as the mean independent of the bounds.

28Even though a truncated prior density is helpful, it is not necessary. The extended neural network can be
solved over a distribution without bounds and can, to some extent, extrapolate.

23

Calibration for the data-generating process

Parameters Value Parameters Value

β Discount factor 0.9975 θΠ MP inflation response 2
σ Relative risk aversion 1 θY MP output response 0.25
η Inverse Frisch elasticity 1 4 log(Π) Inflation target (annualized) 2
ϵ Price elasticity demand 11 Y Output target 1
χ Disutility labor 0.91 ρζ Persistence preference shock 0.7
φ Rotemberg pricing 1000 100σζ Std. dev. preference shock 2

Estimation

Par. Prior Neural Network Conventional Approach

Type Mean Std
Lower Upper Posterior Posterior
Bound Bound Median 5% 95% Median 5% 95%

θΠ Trc.N 2.0 0.1 1.5 2.5 2.11 1.92 2.24 2.06 1.93 2.20
θY Trc.N 0.25 0.05 0.05 0.5 0.248 0.236 0.259 0.248 0.237 0.260
φ Trc.N 1000 50 700 1300 985 925 1048 970 909 1033
ρζ Trc.N 0.7 0.05 0.5 0.9 0.691 0.672 0.709 0.688 0.670 0.707
σζ Trc.N 0.02 2.5e− 3 0.01 0.025 0.020 0.019 0.021 0.020 0.019 0.021

Table 2: The upper panel shows the calibration for the nonlinear RANK model with the
ZLB, which is used as data-generating process. The lower panel shows the prior and
compares the posterior for the neural network-based estimation with a conventional
approach. The prior type indicates the prior density function, where Trc.N stands
for a truncated normal distribution.

calibrated model and covers a span of 1000 periods. The measurement equation is given as:Output Growth

Inflation

Interest Rate

 =


100

(
Yt

Yt−1
− 1
)

400 (Πt − 1)

400 (Rt − 1)

+ ut, (39)

where the measurement error follows a Gaussian distribution ut ∼ N (0,Σu). We include a

measurement error to avoid a degeneracy of the particle filter and to include more data series

than shocks. As in Gust et al. (2017), the variance of the measurement error for each time

series is a fraction mE of its own variance. We set mE = 0.1. To be consistent, we combine

our simulated data series with a measurement error.

Neural Networks Based Estimation Approach The neural network-based estimation

approach consists of three steps: i) Train the extended neural network to get the policy

functions over the parameter space and assess the residual error, ii) Train the neural network-

based particle filter to get a direct mapping for the likelihood, iii) Run the Metropolis-Hastings

algorithm.

The computationally most challenging step is the first one, where we solve for the policy

functions. The neural network minimizes the residual error in the Euler equation and the

NKPC. The neural network provides the policy functions for labor and consumption and is

24

conditioned on the parameters to be estimated and the state variables. Appendix F shows

how this model can be expressed in the general form that is outlined in Section 2.

We use 100,000 iterations to train the extended neural network.29 After each iteration, the

economy is simulated for 20 periods. The batch size is set to 500. As an additional element,

we train a surrogate model that evaluates the residual error over the entire parameter space.

This additional neural network, which helps to evaluate the existence of an equilibrium, is

also described in detail in Appendix B. We generate 15,000 likelihoods with the particle filter

to train the neural network-based particle filter. The surrogate models for the validation and

particle filter are computationally easier, so we choose less complex neural networks. We now

quickly obtain the posterior with a Random Walk Metropolis-Hastings algorithm, which uses

50,000 draws after a burn-in.

We compare the results to a conventional nonlinear estimation approach that does not

use machine learning techniques to solve the model and calculate the posterior. The global

solution method is based on time iteration with piecewise linear policy functions as in Richter

et al. (2014) and the particle filter follows Herbst and Schorfheide (2015). Appendix D.2

provides more details on the conventional estimation procedure. The conventional approach

also uses the nonlinear model as the data-generating-process.30 However, this approach is

much slower as we need to resolve the model and run the particle filter for each draw. These

limitations rationalize our restriction to a relatively low amount of only 50,000 draws in the

Metropolis-Hastings algorithm.

3.2.4 Results

The estimation results are summarized in Table 2. First, the neural network approach per-

forms very well in recovering the true data-generating process. The posterior median is close

to the true value and is always contained inside the 90% confidence interval. The largest

relative deviation from the true value is for the response of inflation, where the posterior me-

dian is 2.11 relative to the true value of 2.0. However, the true value is contained in the 90%

confidence interval. Furthermore, the posterior median results for the conventional method

are very similar. In addition to this, the ranges of the 90% confidence interval are also close.

Figure 5 compares the posterior of the neural network method to the conventional ap-

proach. Starting from the posterior median, each estimated parameter is varied, and its

impact on the posterior is shown. This shows that the posterior median is well-identified.

While the posterior median of inflation is slightly away from the true value, this is related to

the relatively flat posterior. A longer time series or a lower measurement error would help to

identify this parameter more precisely. Both methods provide a similar shape of the posterior.

This shows that solving the neural network and training a surrogate model for the particle

29The neural network contains five hidden layers with 128 neurons each. The activation function for the
hidden layers is parametric Rectified Linear Unit (PReLU).

30We use the same sequence of structural shocks and measurement error shocks to generate the data. For
the neural network, we feed the shocks in the model at the true parameters solved with neural networks. For
the conventional method, we feed the shocks in the model at the true parameters solved with standard global
methods.

25

Figure 5: Posterior comparison between the neural network method (solid blue) and the
conventional approach (dashed orange). Each estimated parameter is varied, and
its impact on the posterior is shown. The other parameters are fixed at the
posterior median. The cutoff value indicates the range for which a sufficient
precise solution cannot be found due to deflationary spirals.

filter allows us to estimate such models. Nevertheless, Figure 5 also shows that the right tail

differs for the parameters θY , σζ and ρζ to some extent. This is related to the impact of the

zero lower bound on the solution. If the persistence is high or the standard deviation is large,

the economy encounters the ZLB very often. This creates a strong deflationary pressure and

bias. However, there is a slight difference between the neural network solution method and

a conventional global method regarding the deflationary bias. The neural network suggests

26

a slightly lower deflationary bias. Consequently, the solution is closer to the data-generating

process, which explains the higher likelihood value at the right tail for the neural network

method.

Furthermore, the deflationary pressure can also result in the non-existence of equilibria,

as shown in Bianchi et al. (2021). While this results in a collapse of the algorithm for

a conventional global solution method, we do not necessarily observe the same with the

extended neural network in the relevant parameter space. Instead, we observe that the

residual error is sufficiently larger in this area. In other words, the loss function, which is

minimized in the training, is larger in some areas of the parameter space. The reason is that a

collapse of the algorithm leads to a breakdown of the economy and, ultimately, to a substantial

residual error. In contrast, a wedge in the Euler equation can break the deflationary spiral

resulting from the risk that the ZLB constraint will become binding. This is precisely the

mechanism that we implicitly observe. The neural network allows a larger residual error to

generate a wedge that avoids a deflationary spiral. Therefore, we discard the solutions where

the residual error is larger.31 To find this area efficiently, we rely on neural networks. We

train a surrogate neural network model that provides a mapping from the parameter space to

the average residual error. Appendix B contains a general description of training a surrogate

neural network for the residual error to disregard parts of the parameter space in an efficient

way. We use this surrogate model to discard solutions and only consider solutions with a

sufficiently low residual error in the estimation. Figure 5 shows the cut-off value if we vary

one parameter. Notably, the cut-off value is also relatively close to the conventional solution

approach. Appendix H.2 contains more information on the surrogate model and provides a

heat map of the residual error.

4 Estimating a Nonlinear HANK Model

To demonstrate the potential of our developed neural network-based estimation approach,

we solve and estimate a nonlinear HANK model that features hundreds of state variables,

structural shocks, policy variables, and nonlinearities at the aggregate and individual levels.

We map our model to the key time-series of GDP growth, inflation, and the Federal Funds

rate for the US from 1984:Q1 until 2019:Q4. As an additional proof of concept, we also use

the model as our laboratory true-data generating process and apply our neural network-based

Bayesian estimation approach to recover the true model.

4.1 Model

The model is a nonlinear HANK model that captures idiosyncratic and aggregate risk. The

first essential ingredient is heterogeneity. The households face idiosyncratic income risk and a

31This approach to detecting areas with a deflationary spiral is only possible because we work with an
extended neural network. If we would solve the neural network only for one parameter combination, we cannot
assess how the residual error for this combination fares compared to other regions. Therefore, the discussed
problem can affect other neural network approaches even more severely and is potentially undetectable.

27

borrowing limit. The second key ingredient is that the zero lower bound constrains monetary

policy. The model features demand, supply, and monetary policy shocks.

4.1.1 Households

The economy consists of a continuum of households. The households choose consumption

Ci
t , labor N

i
t , and assets Bi

t to maximize their utility:

E0

∑∞

t=0
βt exp(ζDt)

[(
1

1− σ

)(
Ct

Zt

)1−σ

− χ

(
1

1 + η

)
(H i

t)
1+η

]
,

where ζt is an aggregate preference shock, which follows an AR(1) process ζt = ρζζt−1 + ϵζt .

Ct is aggregate consumption. The budget constraint in real terms can be written as:

Ci
t +Bi

t = τt

(
Wt

Zt
exp(sit)H

i
t

)1−γτ

+
Rt−1

Πt
Bi

t−1 +Divt exp(s
i
t), (40)

where Divit is the real dividend, Wt is real wage, H
i
t is labor, Rt is the gross nominal interest

rate, Πt is the gross inflation rate and. The taxation is progressive, which is governed by γτ

and τt determines the level of the post-tax income. The wage is divided by the productivity

level to avoid a fiscal drag in taxation. The agents individual labor productivity sit is stochastic

and follows an AR(1) process in logs sit = ρss
i
t−1 + ϵs,it . The dividend payout is scaled with

the level of the idiosyncratic shock. The agents face a borrowing limit B, which implies:

Bt ≥ B. (41)

The first-order conditions can be written as

1 = βRtEt

[(
ζt+1

ζt

)(
λit+1

λit

)
1

Πt+1

]
+ µit, (42)

λit =

(
Ci
t

Zt

)−σ
1

Zt
(43)

χ(H i
t)

η = (λit)
−σ

[
τt(1− γτ) exp(s

i
t)
Wt

Zt

(
exp(sit)

Wt

Zt
H i

t

)−γτ
]

(44)

where µit ≥ 0 is the normalized multiplier on the individual borrowing limit in equation (41).

4.1.2 Firms

The firm sector consists of a continuum of final goods producers and intermediate goods

firms.

Final Goods Producers The final goods retailers buy the intermediate goods and trans-

form them into the homogeneous final good using a CES production technology:

Yt =

(∫ 1

0
(Y j

t)
ϵ−1
ϵ df

) ϵ
ϵ−1

, (45)

28

where Y j
t is the output of intermediate goods firm j. The equilibrium price of the final good

and the demand for the intermediate goods of firm j can be expressed as:

Pt =

(∫ 1

0
(P j

t)
1−ϵdf

) 1
1−ϵ

, Y j
t =

(
P j
t

Pt

)−ϵ

Yt. (46)

Intermediate Goods Producers Intermediate goods producers are monopolistically

competitive. The firm j uses labor N j
t as input to produce output Y j

t with the following

production technology:

Y j
t = ZtN

j
t , (47)

where Zt is the total factor productivity. Total factor productivity follows a stochastic trend

Zt = gtZt−1, (48)

where the trend growth rate is subject to an AR(1) process

gt = ḡexp(zt), (49)

zt = ρzzt+1 + ϵgt . (50)

Labor is hired in competitive markets so that the wage is given as follows

Wt = ZtMCt. (51)

The firm j sets the price of its goods to maximize its profit subject to the demand curve for

intermediate goods and Rotemberg adjustment costs for changing prices:

max
P j
t

P j
t

(
P j
t

Pt

)−ϵ
Yt
Pt

−MCt

(
P j
t

Pt

)−ϵ

− φ

2

(
P j
t

ΠP j
t−1

− 1

)2

Yt, (52)

where Π is the inflation target of the central bank. Imposing a symmetric equilibrium and

discounting future profits with the real interest rate, the New Keynesian Phillips curve can

be written as:[
φR

(
Πt

Π
− 1

)
Πt

Π

]
= (1− ϵ) + ϵMCt + βφREt

Πt+1

Rt

[(
Πt+1

Π
− 1

)
Πt+1

Π

Yt+1

Yt

]
, (53)

where Πt = Pt/Pt−1. The Rotemberg adjustment costs are ex-post given back. The real

dividends of the firm sector can then be written as

Divt = Yt −WtNt. (54)

The dividends are distributed equally among the households so that Divt = Divit.
32

32An alternative formulation would be to make the dividend payments depending on the individual produc-
tivity of the agent along the lines of Kaplan et al. (2018).

29

4.1.3 Policy makers

The central bank sets the nominal interest Rt using a Taylor rule that responds to inflation

and output deviations from their targets Π and Y . The rule is persistent because the interest

rate response is smoothed with the previous period’s interest rate. In addition, there are i.i.d.

monetary policy shocks mpt. The zero lower bound restricts the nominal interest rate. The

rule is given as follows:

RN
t =

(
RN

t−1

)ρR (
R

(
Πt

Π

)θΠ
(
Yt
ZtY

)θY
)1−ρR

exp(mpt), (55)

Rt = max
[
1, RN

t

]
, (56)

where R and Y denote the deterministic steady state (DSS) values of the nominal interest

rate and output. While households face idiosyncratic shocks in the deterministic steady state,

the economy does not face (or expects) aggregate shocks.

The fiscal authority follows a passive policy rule, where it uses lump-sum tax taxes Tt to

keep their debts Dt on a constant path:

Dt =
Rt−1

Πt
Dt−1 − Tt. (57)

4.1.4 Market Clearing

Market clearing for the labor market, bond market, and goods market requires

Nt =

∫
N j

t dj =

∫
exp(sit)H

i
tdi (58)

Dt =

∫
Bi

tdi (59)

Yt =

∫
Ci
tdi. (60)

4.2 Estimation: Data, measurement equation and priors

We estimate the nonlinear HANK model with our newly developed neural network-based

Bayesian methods. In particular, we use our extended neural network to obtain the policy

functions and the neural network-based particle filter.

Measurement Equation We base the analysis on the quarterly GDP growth, annualized

GDP deflator inflation, and the Federal Funds rate from 1984:Q1 until 2019:Q4, e.g., similar

to Aruoba et al. (2021).33 The measurement equation is given as follows:Output Growth

Inflation

Interest Rate

 =


100

(
Yt

Yt−1/gt
− 1
)

400 (Πt − 1)

400 (Rt − 1)

+ ut, (61)

33GDP growth is based on real gross domestic product per capita using the civilian noninstitutional popu-
lation.

30

where the measurement error follows a Gaussian distribution ut ∼ N (0,Σu). The variance

of the measurement error for each time series is the fraction mE = 0.1 of its variance.

Estimated Parameters and Priors We are focusing on estimating the standard devia-

tions of the structural shocks. Importantly, our approach allows us to include the standard

deviation of the idiosyncratic shock that is directly related to household heterogeneity as

well as the aggregate shocks. The prior densities are truncated normal distributions for the

parameters. Note that in subsequent work, we will extend the number of parameters. Later

in this section, we also estimate many more parameters using simulated data.

The remaining parameters are calibrated. The aim is to choose them so that the model

can fit the current low interest rate environment and capture the heterogeneity of households

in line with the nonlinear models of Gust et al. (2017), Bianchi et al. (2021) and Aruoba

et al. (2021) as well as the heterogeneous agent frameworks of Kaplan et al. (2018) and

Fernández-Villaverde et al. (2021). While most parameters are standard, a few choices should

be highlighted. We set the level of government debt to 0.25 as in Fernández-Villaverde et al.

(2021). The borrowing limit B is set to allow a wealth Gini coefficient that aligns with the

average over the considered period, which stands at 0.83.34 The persistence of the labor

productivity ρs is set to 0.8, as in Fernández-Villaverde et al. (2021). The persistence of the

preference shock ρζ is set to 0.7 to match the frequency of hitting the ZLB easier.

4.3 Estimation: Neural Networks Based Approach

The neural network-based estimation approach consists of three steps: i) Train the extended

neural network to get the policy functions over the parameter space, ii) Train the neu-

ral network-based particle filter to get a direct mapping for the likelihood, iii) Run the

Metropolis-Hastings algorithm.

4.3.1 Step 1: Extended neural network to get the policy functions over the

parameter space

We are interested in obtaining the individual and aggregate policy functions over the param-

eter space. In addition to this, we also need the mapping of parameters to the deterministic

steady state. We set the number of agents L to 100. This implies we have together 205 state

and 4 pseudo-state variables (parameters). The batch size is set to 100. We are using for

each of this object a separate neural network.35 We evaluate the expectations using 20 Monte

Carlo draws. Appendix F shows how this model can be expressed in the general form that is

outlined in Section 2.

34The data is taken from the World Inequality Database.
35The neural networks contain five hidden layers with 128 neurons each. The activation function for

the hidden layers is Mish, which is a self-regularized non-monotonic function and is defined as f(x) =
x tanh(softplus(x)). The last layer uses a PReLu function.

31

Calibration

Parameters Value Parameters Value

β Discount factor 0.99825 θΠ MP inflation response 2.6
σ Relative risk aversion 1 θY MP output response 0.98
η Inverse Frisch elasticity 1 D Government debt 0.25
ϵ Price elasticity demand 11 B Individual borrowing limit −0.15
χ Disutility labor 0.91 φ Rotemberg pricing 100
g Average growth rate 1.0039 ρs Persistence labor productivity 0.8
γτ Tax progressivity 0.18 ρζ Persistence preference shock 0.7
Π Inflation target 1.00625

Estimation

Par. Prior Neural Network

Type Mean Std
Lower Upper Posterior
Bound Bound Median 5% 95%

σs Trc.N 4.5% 1.0% 1.0% 5.0% 2.89% 2.19% 3.73%
σζ Trc.N 1.5% 10.0% 1.0% 2.2% 1.25% 1.07% 1.45%
σg Trc.N 0.4% 0.1% 0.2% 0.6% 0.45% 0.40% 0.50%
σmp Trc.N 0.13% 0.01% 0.05% 0.38% 0.14% 0.12% 0.15%

Table 3: The upper panel shows the calibration for the nonlinear HANKmodel with the ZLB
and borrowing limit, which is used as data-generating process. The lower panel
shows the prior and compares the posterior for the neural network-based estimation
with a conventional approach. The prior type indicates the prior density function,
where Trc.N stands for a truncated normal distribution.

Step 1a: Deterministic Steady State Before moving to this part, we first need to solve

for the deterministic steady state of the model (the Bewley-Huggett-Aiyagari version of the

model). The reason is that the Taylor rule is specified in terms of the DSS. We start with

a neural network for the steady state values of R and Y over the parameter range ψSS . For

this, we solve the deterministic steady state economy over the parameter ranges to get this

mapping. Solving the system of equations in the DSS requires that we also solve for the

individual agents’ policy functions. Thus, we use a temporary neural network that maps

agents’ individual states and parameters to agents’ labor decisions.36

The loss function is set such that the optimality conditions of the household are satisfied.

The relevant one is the Euler equation adjusted for the borrowing limit. We capture the

Karush-Kuhn-Tucker conditions using the Fischer-Burmeister equation, as discussed in Ap-

pendix C.1.37 Furthermore, we ensure that product and bond market clearing and that the

DSS value of output coincides with output. We train this neural network over 10,000 itera-

36This neural network is temporary as it assumes constant aggregate dynamics. We use this as starting
point when we solve the (final) individual policy functions.

37Alternatively, the constraints could be directly embedded in the neural network architecture, e.g., in
Azinovic and Žemlička (2023).

32

0 2000 4000 6000 8000 10000
Iteration

10 6

10 5

10 4

10 3 Total loss

Figure 6: Figure shows the loss function over 10,000 iterations for the training of neural
network associated with the deterministic steady state values of the nominal rate
R and output Y .

tions. During each iteration step, we conduct 15 optimization steps. After each iteration, the

economy is simulated for 20 periods. The parameters are redrawn at every 50 iteration and

are initialized with a longer simulation of 100 periods. Figure 6 shows that the loss function

converges to an error in the magnitude of 10e-6.

The impact of the idiosyncratik risk σs over the parameter spacer on the DSS values of

the nominal rate (expressed as annualized net rate) and output (in levels) is shown in Figure

7. An increase in the idiosyncratic risk lowers the market clearing interest rate. Importantly,

we have now solved Bewley-Huggett-Aiyagari version of the model over the entire parameter

space. Note that we have also included the standard deviations of the aggregate shocks in

the training of the neural network. However, varying their level has no impact on the DSS

values, as it should be.

Step 1b: Individual and Aggregate Policy Functions We are now moving to solving

the HANK model in its nonlinear specification. We use two neural networks to train the

policy function over the parameter space. The first neural network provides the individual

policy functions of labor and the multiplier on the borrowing constraint. This neural network

is conditioned on the agent’s states, the entire state vector, including all agents’ states and

aggregate states, and the estimated parameters. The second neural network provides the

aggregate policy functions, namely inflation, and wage, and is conditioned on the state vector

33

0.015 0.030 0.045
s

3.5

4.0

4.5

5.0

R D
SS

0.015 0.030 0.045
s

0.9992

1.0000

1.0008

1.0016

1.0024

Y D
SS

Deterministic steady state values for R and Y

Figure 7: Figure shows impact of the idiosyncratik risk σs over the parameter space on the
DSS values of the nominal rate and output. The interest rate is expressed as net
rate in %, while output is in levels.

and the estimated parameters.

These neural networks are jointly trained to minimize the residual error in the individual

agents’ and aggregate equations. In particular, the loss function includes the Euler equation

adjusted for the borrowing limit. We again use the Fischer-Burmeister condition to cap-

ture results in the Karush-Kuhn-Tucker conditions. The aggregate conditions are the New

Keynesian Phillips Curve, bond market clearing in the current period plus the next period,

and product market clearing in the current period plus the next period.38 We use 20,000

iterations to train these two extended neural networks simultaneously. During each iteration

step, we conduct 15 optimization steps. After each iteration, the economy is simulated for

20 periods. The parameters are redrawn at every 50th iteration and are initialized with a

longer simulation of 100 periods. Figure 8 shows that the loss function converges to an error

in the magnitude of 10e-6.

The upper plot of Figure 9 shows the individual policy function for labor and consumption

of the households relative to their asset values. Once the household approaches the borrowing

limit (red dashed line), they work more and consume less. The dynamics are also becoming

increasingly nonlinear in the area of the borrowing limit. Note that if the asset value is

38An advantage of neural networks is that we can include more equations than policy functions in the Euler
equation method. In particular, we add both market clearing conditions instead of only one. Furthermore, we
also include market clearing for the next period

34

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

10 6

10 5

10 4

10 3 Total loss

Figure 8: Figure shows the loss function over 20,000 iterations for training the neural net-
works associated with the individual and aggregate policy functions.

(sufficiently) below the borrowing limit, the neural network starts to extrapolate.

The lower plot of Figure 9 shows the aggregate policy functions for inflation and wage

relative to the level of the preference shock. We can see a smooth kink if the preference shock

is sufficiently negative due to the zero lower bound. Furthermore, the model also features a

deflationary bias as the level of inflation is below the central bank’s target, as seen in the

Figure.

Step 2: Neural Network Particle Filter In the second step, we train the neural network

particle filter. We generate 15,000 likelihoods with the particle filter. For this, we randomly

draw from the parameter space and then run the particle filter, using the extended neural

networks as crucial input. We then use these 15,000 likelihood evaluations to train the

surrogate neural network that captures the outcome of the particle filter. Specifically, we

use 75% of the sample to train the neural network and the remaining fraction to validate

the neural network.39 We train this neural network for the likelihood function of over 10,000

iterations with a batch size of 100. Once we have obtained the neural network particle filter,

we have a direct mapping from the parameter values to the likelihood. Importantly, this

mapping is computationally very fast because our approach front-loads the computational

39The neural network features 128 nodes and four hidden layers. We use SiLU (Sigmoid Linear Unit) as an
activation function.

35

Individual policy functions

0.0 0.5 1.0 1.5 2.0
Assets, b

0.900

0.925

0.950

0.975

1.000

1.025

1.050

Labor policy

0.0 0.5 1.0 1.5 2.0
Assets, b

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100
Consumption policy

Aggregate policy functions

0.05 0.00 0.05

0

1

2

3

4

 policy

0.05 0.00 0.05

0.88

0.89

0.90

0.91

0.92

W policy

Figure 9: Figure illustrates the individual and aggregate policy functions. The upper panel
shows the impact of the assets on individual consumption and labor supply. The
lower panel shows the impact of the preference shock on the aggregate policy
functions for inflation (as annualized net rate) and wage.

costs. Thus, the costs to evaluate a single parameters draw are at this stage now very low

despite estimating a nonlinear HANK model.

36

Posterior: Random Walk Metropolis Hastings Equipped with these objects, we can

now move to the Random Walk Metropolis-Hastings (RWMH) algorithm. We set the number

of draws to 1 million (after a burn-in) to obtain the posterior distribution. It takes us less than

two days with a modern-day desktop computer to run the described estimation procedure,

which consists of training the extended policy functions, the neural network-based particle

filter, and running the RWMH algorithm.

4.4 Results

We estimate four parameters of the nonlinear HANK model with our neural networks ap-

proach. The results are summarized in the lower panel of Table 4. This shows that standard

aggregate data helps us to identify the degree of idiosyncratic risk. The reason is that the

level of idiosyncratic risk impacts the interest rate level and affects the frequency of encoun-

tering the ZLB. If idiosyncratic risk were absent, the frequency of hitting the ZLB would be

severely diminished. Nevertheless, the posterior distribution, shown in Figure 10, is relatively

looser than the aggregate shocks’ standard deviations. This indicates that aggregate data

helps, but distributional data, such as the wealth Gini coefficient, would further pin down

the degree of idiosyncratic risk. Note that as an external validation, the model evaluated at

the posterior mode gives a wealth Gini coefficient of 0.80, aligning with the average value

observed in the US during the estimation period.

The moments of the model evaluated at the posterior point to a high zero lower bound

frequency of around 10%. Average inflation is around 2.2%, which is below the central bank’s

target (in the model) of 2.5%. Thus, the model features a downside risk and below-target

inflation on average. However, this is only the case in the presence of sufficient heterogene-

ity, underscoring the interaction of nonlinearities and heterogeneity in the model. Another

takeaway is that fluctuations in income risk can be an important driver for the probability

of encountering zero lower bound.

The empirical analysis highlights two advantages of our neural networks approach over

more conventional estimation procedures of HANK models. The first advantage is that

we can estimate HANK models in their fully nonlinear specification. Consequently, our

method accounts fully for the impact of the zero lower bound (and the agents’ borrowing

limit). Other approaches usually restrict the aggregate dynamics (relying on linearisation or

perfect foresight) or the heterogeneous setup (using RANK or TANK models). The second

advantage is that our method does not restrict the choice of parameters that we can include

in the estimation. As the model solves simultaneously for the stochastic steady state and

the aggregate dynamics, we can include parameters that affect the steady state. To our

knowledge, this is the first estimation of a nonlinear HANK model.

4.5 Proof of Concept with Simulated Data

The previous analysis uses actual data. To provide a proof of concept for estimating the

nonlinear HANK model, we use simulated data to estimate 13 parameters of the nonlinear

37

0.01 0.02 0.03 0.04 0.05
Std. dev. labor productivity s

0

20

40

60

80 Posterior
Median

0.012 0.015 0.018 0.021
Std. dev. preference shock

0

80

160

240

320

0.002 0.003 0.004 0.005 0.006
Std. dev. growth rate shock g

0

300

600

900

1200

0.0008 0.0016 0.0024 0.0032
Std. dev. monetary policy shock mp

0

1000

2000

3000

4000

Figure 10: Posterior distribution of the estimated parameters of the nonlinear HANK model
estimated with the developed neural network estimation procedure.

HANK model with our neural networks approach. The key takeaway is that the posterior

medians are close to the true values despite estimating 13 parameters with only 3 time-series.

This demonstrates that our method is well suited to estimating complex nonlinear models.

The results are in Appendix G.

5 Conclusion

In this paper, we develop a novel estimation procedure using machine learning techniques. We

exploit the advantages of neural networks to estimate complex models, which are probably

out of reach otherwise. Our strategy rests on two key steps. First, we adapt the training of

the neural network to treat the parameters, which are estimated, as pseudo-state variables.

Second, we train a neural network as a surrogate model to approximate the likelihood in a

computationally efficient manner.

Our method applies to a large class of economic models such as heterogeneous agents

models, large representative agent models, sovereign default and endogenous bank run models,

or multi-country (county) models. Our approach has three major advantages: i) it can

account for many state variables, ii) it can capture nonlinear dynamics such as the zero lower

38

bound or borrowing limits, iii) it does not impose any restrictions on the set of parameters

to be estimated in a heterogeneous agent set up.

We apply our techniques to estimate a nonlinear HANK model using actual data. We

show that standard aggregate data allow us to identify the degree of idiosyncratic risk. The

reason is that the level of idiosyncratic risk impacts the interest rate level and affects the

frequency of encountering the ZLB. If idiosyncratic risk were absent, the frequency of hitting

the ZLB would be severely diminished.

The proposed neural network-based estimation method opens new and exciting avenues for

future research on the interaction between idiosyncratic and aggregate risk. For instance, the

impact of aggregate nonlinearities on inequality can be evaluated with empirically estimated

structural models.

39

References

Acharya, S., Dogra, K., 2020. Understanding hank: Insights from a prank. Econometrica 88,

1113–1158.

Ahn, S., Kaplan, G., Moll, B., Winberry, T., Wolf, C., 2018. When inequality matters for

macro and macro matters for inequality. NBER Macroeconomics Annual 32, 1–75.

Aruoba, B., Cuba-Borda, P., Schorfheide, F., 2018. Macroeconomic dynamics near the zlb:

A tale of two countries. The Review of Economic Studies 85, 87–118.

Aruoba, S.B., Cuba-Borda, P., Higa-Flores, K., Schorfheide, F., Villalvazo, S., 2021.

Piecewise-linear approximations and filtering for dsge models with occasionally-binding

constraints. Review of Economic Dynamics 41, 96–120.

Atkinson, T., Richter, A.W., Throckmorton, N.A., 2020. The zero lower bound and estima-

tion accuracy. Journal of Monetary Economics 115, 249–264.

Auclert, A., Bardóczy, B., Rognlie, M., Straub, L., 2021. Using the sequence-space jacobian

to solve and estimate heterogeneous-agent models. Econometrica 89, 2375–2408.

Azinovic, M., Gaegauf, L., Scheidegger, S., 2022. Deep equilibrium nets. International

Economic Review .

Azinovic, M., Žemlička, J., 2023. Economics-Inspired Neural Networks with Stabilizing Ho-

motopies. Technical Report.

Bach, F., 2017. Breaking the curse of dimensionality with convex neural networks. The

Journal of Machine Learning Research 18, 629–681.

Barron, A.R., 1993. Universal approximation bounds for superpositions of a sigmoidal func-

tion. IEEE Transactions on Information theory 39, 930–945.

Bayer, C., Born, B., Luetticke, R., 2020. Shocks, Frictions, and Inequality in US Business

Cycles. CEPR Discussion Papers 14364.

Bayer, C., Lütticke, R., Pham-Dao, L., Tjaden, V., 2019. Precautionary savings, illiquid

assets, and the aggregate consequences of shocks to household income risk. Econometrica

87, 255–290.

Bianchi, F., Melosi, L., Rottner, M., 2021. Hitting the elusive inflation target. Journal of

Monetary Economics 124, 107–122.

Bilbiie, F.O., 2020. The new keynesian cross. Journal of Monetary Economics 114, 90–108.

Boppart, T., Krusell, P., Mitman, K., 2018. Exploiting mit shocks in heterogeneous-agent

economies: the impulse response as a numerical derivative. Journal of Economic Dynamics

and Control 89, 68–92.

Challe, E., Matheron, J., Ragot, X., Rubio-Ramirez, J.F., 2017. Precautionary saving and

aggregate demand. Quantitative Economics 8, 435–478.

Chen, H., Didisheim, A., Scheidegger, S., 2021. Deep Structural Estimation: With an Appli-

cation to Option Pricing. mimeo.

40

Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Mathematics

of control, signals and systems 2, 303–314.

Duarte, V., 2018. Gradient-Based Structural Estimation. mimeo.

Ebrahimi Kahou, M., Fernández-Villaverde, J., Perla, J., Sood, A., 2021. Exploiting symme-

try in high-dimensional dynamic programming. Working Paper 28981. National Bureau of

Economic Research.

Fernández-Villaverde, J., Hurtado, S., Nuno, G., 2023. Financial frictions and the wealth

distribution. Econometrica 91, 869–901.

Fernández-Villaverde, J., Marbet, J., Nuño, G., Rachedi, O., 2021. Inequality and the Zero

Lower Bound. mimeo.

Fernández-Villaverde, J., Nuño, G., Sorg-Langhans, G., Vogler, M., 2020. Solving High-

Dimensional Dynamic Programming Problems using Deep Learning. mimeo.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press.

Gorodnichenko, Y., Maliar, L., Maliar, S., Naubert, C., 2021. Household Savings and Mone-

tary Policy under Individual and Aggregate Stochastic Volatility. CEPR Discussion Papers

15614.

Gust, C., Herbst, E., López-Salido, D., Smith, M.E., 2017. The Empirical Implications of

the Interest-Rate Lower Bound. American Economic Review 107, 1971–2006.

Han, J., Yang, Y., E, W., 2021. DeepHAM: A Global Solution Method for Heterogeneous

Agent Models with Aggregate Shocks. Technical Report.

Herbst, E.P., Schorfheide, F., 2015. Bayesian estimation of DSGE models. Princeton Uni-

versity Press.

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feedforward networks are universal

approximators. Neural networks 2, 359–366.

Kaplan, G., Moll, B., Violante, G.L., 2018. Monetary policy according to hank. American

Economic Review 108, 697–743.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980 .

Krusell, P., Smith, A., 1998. Income and wealth heterogeneity in the macroeconomy. Journal

of Political Economy 106, 867–896.

Le Grand, F., Ragot, X., 2021. Managing inequality over business cycles: Optimal policies

with heterogeneous agents and aggregate shocks. International Economic Review .

Lee, D., 2020. Quantitative Easing and Inequality. mimeo.

Lin, A., Peruffo, M., 2022. Aggregate Uncertainty, HANK, and the ZLB. Technical Report.

Maliar, L., Maliar, S., 2020. Deep Learning: Solving HANC and HANK Models in the

Absence of Krusell-Smith Aggregation. mimeo.

Maliar, L., Maliar, S., Winant, P., 2021. Deep learning for solving dynamic economic models.

41

Journal of Monetary Economics .

McKay, A., Nakamura, E., Steinsson, J., 2016. The power of forward guidance revisited.

American Economic Review 106, 3133–58.

Norets, A., 2012. Estimation of dynamic discrete choice models using artificial neural network

approximations. Econometric Reviews 31, 84–106.

Oh, H., Reis, R., 2012. Targeted transfers and the fiscal response to the great recession.

Journal of Monetary Economics 59, S50–S64.

Ottonello, P., Winberry, T., 2020. Financial heterogeneity and the investment channel of

monetary policy. Econometrica 88, 2473–2502.

Reiter, M., 2009. Solving heterogeneous-agent models by projection and perturbation. Jour-

nal of Economic Dynamics and Control 33, 649–665.

Richter, A.W., Throckmorton, N.A., Walker, T.B., 2014. Accuracy, speed and robustness of

policy function iteration. Computational Economics 44, 445–476.

Rottner, M., 2021. Financial Crises and Shadow Banks: A Quantitative Analysis. Economics

Working Papers EUI ECO 2021/02. European University Institute.

Schaab, A., 2020. Micro and Macro Uncertainty. Technical Report.

Scheidegger, S., Bilionis, I., 2019. Machine learning for high-dimensional dynamic stochastic

economies. Journal of Computational Science 33, 68–82.

Valaitis, V., Villa, A., 2021. A Machine Learning Projection Method for Macro-Finance

Models. FRB of Chicago Working Paper.

Winberry, T., 2021. Lumpy investment, business cycles, and stimulus policy. American

Economic Review 111, 364–96.

42

A Deep Learning and Neural Networks

Deep learning is a class of machine learning techniques with (deep) neural networks as a

fundamental building block.40 In this paper, we outline a neural network-based solution and

estimation approach. This strategy can be applied to complex and large macroeconomic

models that would have been considered to be out of reach previously. To achieve this task,

our approach utilizes two remarkable features of neural networks. The first feature is that

neural networks can approximate any continuous function as long as the neural network

is sufficient large. This is the so-called universal approximation theorem. The theorem

ensures that it is in theory possible to approximate (large) macroeconomic models with neural

networks. The second feature is that the neural network can handle large amount of inputs.

Specifically, a neural network-based solution method is very scalable because additional inputs

can be added at rather low computational costs. As a consequence, neural networks can tackle

the curse-of-dimensionality so that large models can be captured. However, there is more to

the universal approximation theorem and the scalability of neural networks. We demonstrate

how to exploit these features of neural neural networks to establish a novel path to the

estimation of macroeconomic models.

Before outlining our approach in the next sections, we provide a short-primer on the

design and training of neural networks. Afterwards, we discuss the universal approximation

theorem and the scalability in more detail.

A.1 Deep Neural Networks

Neural networks are a mathematical function that maps some inputs S into outputs Y :

Y = ψNN (S|W) (62)

where ψNN (·) is the neural network and W are the parameters of the neural network.

The neural network consists of several layers, which can be divided in the input layer,

hidden layer(s) and the output layer. The first layer is the input layer, which is visible.

Then, the neural network features a number of hidden layers. The final layer is the output

layer. Each hidden layer consists of several neurons, which can be seen as nodes in the neural

network and are explained in detail in the next paragraph. The amount of neurons determines

the width of the layer. The amount of layers determines the depth of the neural network. A

neural network with more than 3 layers in total is classified as deep. Figure 11 provides an

example of a deep neural network with three inputs, 2 hidden layers with 6 neurons each,

and 4 outputs. The displayed layers are dense as each layer is fully connected to each input

from the previous layer.

The neural network composes mathematical functions that are performed at the sin-

gle neurons in the network. A single neuron assigns its inputs s1, s2, . . . sS some weights

40Goodfellow et al. (2016) is an excellent overview for artificial intelligence and, in particular deep learning.
Fernández-Villaverde et al. (2020) or Maliar et al. (2021) also discuss machine learning in the context of
macroeconomic modeling.

43

Hidden Layer

Output Layer

Hidden Layer

Input Layer

Figure 11: Example of a deep neural network.

w1, w2, . . . , wS and takes it sum (adjusted by a bias/constant w0).
41 This value is then taken

to a nonlinear activation function h(·),such as ReLU (rectified linear unit) or hyperbolic

tangent function, which then results a single output ỹ

ỹ = h(w0 +
S∑

i=1

wisi) (63)

The activation function h(·) helps the neural network to approximate nonlinearities in

the data. The choice of the activation function for the hidden layers affects how well the

neural network can learn the underlying features from the data. The activation function

for the output layer also directly determines the possible outcomes of the neural network.

For instance, a sigmoid function at the output layer would restrict the potential values to

lie between 0 and 1. As shown in Figure 11, these neurons are stacked to form the neural

network. The entire neural network can then be summarized as all the parameters at each

single neuron, which is the parameter vector W .

Loss Function and Training The next step is to train the parameter vector W . We are

interested in minimizing the loss between the points and the prediction of the neural network.

A popular criteria for continuous variables is for instance the mean squared error loss ΦL:

ΦL(W) = 1/B
B∑
i=1

(Yi − ψNN (Si|W))2 (64)

where Yi is one point, ψNN (S|W) is the prediction of the neural network, which depends on

the parameter vector W , and Si is the input from the data.42 This loss is evaluated using a

total batch B of points.

41Depending on the position of the neuron in network, the input is either directly from the inputs or from
the outcome of the previous layer.

42There are alternative specifications for a loss function. The mean squared error loss is used as example
here because macroeconomic models can be expressed with such a loss function as shown later.

44

The next step is to optimize the parameters W to minimize the mean squared error loss:

W = argmin
W

ΦL(W) (65)

The optimization relies on a iterative stochastic gradient descent method. This updates the

parameter vectorW until the code converges to a local minima. An important step in finding

these weights is backpropagation. This allows to compute how a change in the weights affect

the final loss. The step size in updating the weights depends on the learning rate. The

setting of the learning rate is important to avoid local minima (sufficient large rate) but also

to ensure convergence (sufficient small rate).

One problem with neural networks is overfitting. To avoid this problem, the data is

separated usually in a training and test data. It should be emphasized that this is not a

problem for macroeconomic models as we can always generate new data with the model

to avoid overfitting. In that regard, macroeconomic models provide us with a big data

environment, which is very helpful for the use of deep learning techniques.

The training of such a neural network is usually based on graphics processing units (GPUs)

as these can be used to parallelize many but rather simple activities. PyTorch and TensorFlow

are popular open source machine learning librarys that can be used to build and train neural

networks.

A.2 Universal Approximation Theorem

An important argument for the usage of neural networks is the universal approximation theo-

rem, which states that a feedforward network with at least one hidden layer can approximate

any continuous function in a finite-dimensional space with any desired non zero error given

a sufficient width (Hornik et al., 1989; Cybenko, 1989; Bach, 2017).43 Importantly, macroe-

conomic models can be casted in such a finite-dimensional space. As a consequence, neural

networks can in theory be applied to solve macroeconomic models.

A.3 Scalability

A particular problem in solving models with global methods is the well-known curse-of-

dimensionality. Extending the complexity of the model (by raising the number of state

variables) results in an exponential increase of the computational problem. As a consequence,

it is infeasible to solve large and complex models with such classical solution techniques.

However, neural networks allow to break the curse-of-dimensionality as they can handle

high dimensional problems much better than classical function approximators (Barron, 1993;

Bach, 2017). The reason is that the number of neurons grows linearly with the number of

the dimensions of problem, while in the case of traditional function approximators the size

43The theorem relies on some conditions for the activation functions that are used in the hidden layer. It
holds for instance for ReLU or the sigmoid function. The neural networks that have been discussed can be
classified as feedforward. This implies that there are no loops or cycles in the neural network so that the
information only moves forward.

45

of the problem grows exponentially (Fernández-Villaverde et al., 2020). This scalability of

neural networks allows to handle models with a large number of states and tackle the curse-

of-dimensionality. As a consequence, neural networks can also in practice be applied to solve

complex macroeconomic models.

But, there is more to it than this. We explore how to use the scalibility of neural networks

to estimate macroeconomic models. The key trick is to treat the parts (parameters) of the

model that we want to estimate as inputs for the neural network. The neural network can

then be trained simultaneously not only for one economy but for all possible economies that

should be estimated. Importantly, the universal approximation theorem also provides the

theoretical groundwork for this approach as we only need a neural network with a sufficient

width to include this additional inputs. Exploiting these two features, we are able to outline

a general neural network-based solution and estimation method.

B Residual Error Neural Network

An important step is to check if the model was solved with a sufficient precision over the

parameter space. This is important as there does not necessarily exist a solution at each con-

sidered parameter combinations. While in linearized models the Blanchard Kahn conditions

directly can control for this, this is not the case in a nonlinear model. As this is a general

problem for global solution methods, it also directly affects our method.

To evaluate the solution, we suggest to analyse the residual error in the equations that the

neural networks minimize. Importantly, the neural network may not be able to find a solution

because there does actually not exist an equilibrium. In such a case, the neural network may

find some (incorrect) solution, but the residual error is larger than in other correctly solved

parts. It should be noted that global solution method often encounter numerical issues when

they cannot find a solution. This makes it easy to spot a problem. Our experience is that

the neural network is much less likely to encounter numerical problems, which result in a

breakdown of the algorithm. Instead the neural network provides a solution with a large

residual error.

Our strategy will be to evaluate the average residual error after we have solved for the

extended neural network. The residual error is the weighted mean residual error when simu-

lating the model for a sufficient large amount of time.44 The residual error depends directly

on the parameter: R(Θ̃). In particular, we are interested in finding a function that directly

maps the parameter combination to the residual function:

R(Θ̃) = ΩRE(Θ̃) (66)

where ΩRE is an unknown function.

44To obtain the mean residual error in practice, we simulate the model for a number of periods and calculate
in each period the residual error, where the expectations are approximated with a large amount of draws for
the Monte Carlo integeration of expectations, and average then over the periods. We weight the different
residual errors of the considered equations along with the weights in the loss function.

46

Figure 12: Residual error and surrogate neural network. The orange dots represent the
data sample, where the residual error has been calculated. The blue line is the
neural network, which was trained with these points from the residual error.
The red dashed lines indicates the cut-off value and parameter values, for which
the error is sufficiently small.

The usual approach to evaluate this function would be to evaluate the residual error at

each single draw. However, this is time wise a very costly approach and, therefore, not suited

for large models such as nonlinear HANK. To overcome this bottleneck, we propose to train

a neural network model that provides the outcome of the residual error. Specifically, we train

a neural network that provides the output of the function:

R(Θ̃) = ΩRE
NN (Θ̃) (67)

where ΩRE
NN is the neural network associated with the residual error. This type of neural

network is also denoted as surrogate neural network as it allows to calculate the outcome in

an efficient manner.

To train this separate neural network, we create a set of parameter values and correspond-

ing mean residual errors.45 The sample is divided in a training and validation sample. We

train the neural network with the training sample and avoid overfitting with the validation

sample. After we have trained ΩRE
NN (Θ̃), the residual error of the model can be evaluated

at a specific draw for negligible costs. While we calculate the residual errors at only several

thousand parameter points, we use the neural network to learn the connection between these

points. This allows us then to evaluate the likelihood at points that we did not assess ini-

tially. As a consequence, we can speed up the algorithm considerably. Even though, we have

focused on residual errors here, other measures to validate the precision of the solution can

be applied in a similar way.

A graphical characterization of the residual error can be seen in Figure 12. The orange dots

45The extended neural network of the model is used in the simulation to obtain the residual error.

47

represent the data sample, where the residual error has been calculated using the extended

neural network in a simulation. We use these points to train a neural network that directly

maps the parameter values into a log likelihood value. The graph shows that there is a strong

uptick in the residual error if the parameter is further increased. The increase in the mean

error is the result that the neural network cannot find an admissible solution. We set a cut-off

point, marked as the red line, to decide if a solution is feasible. If the value is below the point,

the solution is admitted. Otherwise, we disregard this parameter combination.

C Neural Network-Based Solution Algorithm for HANK

The algorithm uses a neural network approach to approximate policy functions based

onMaliar et al. (2021).46 We are going to use two separate neural networks for the indi-

vidual and aggregate policy functions. Our neural network

1. Set up the neural network to approximate the policy functions and guess the initial

values for the neural network to initialize the algorithm

(a) The neural network ψI
NN

(
Sit,St, Θ̃|Θ̄

)
for the individual policy functions({

N i
t

}L
i=1{

λit
}L
i=1

)
=
{
ψI
NN

(
Sit, St, Θ̃|Θ̄

)}L

i=1
(68)

(b) The neural network ψA
NN

(
St, Θ̃|Θ̄

)
for the aggregate policy functions(

Πt

W̃t

)
= ψA

NN

(
St, Θ̃|Θ̄

)
(69)

2. Solve for all time t variables for a given state vector of batch b. From the neural network,

we have a current guess for the policy functions, so that we start with

{N i
t}Li=1, {λit}Li=1,Πt, W̃t (70)

The next step is to calculate the following (aggregate) variables:

T̃t =

(
1

L

L∑
i=1

Bi
t−1Rt−1

)
1

Πtgt
(71)

Nt =

(
1

L

L∑
i=1

N i
ts

i
t

)
(72)

Ỹt = Nt (73)

ψ̃t = W̃t (74)

D̃ivt = Ỹt − W̃tNt (75)

46Maliar et al. (2021) use this approach to solve a consumption saving problem and Krusell-Smith economy

48

As a next step, we can calculate the nominal interest rate, where we impose the zero

lower bound

RN
t =

(
RN

t−1

)ρRR(Πt

Π

)θΠ
(
Ỹt

Ỹ

)θY
1−ρR

, (76)

Rt = max
[
1, RN

t

]
(77)

We pursue with calculating for each household individual variables:C̃i
t =

[
sitW̃t

χ(H i
t)

η

] 1
σ


L

i=1

(78)

{
ωi
t = W̃ts

i
tN

i
t +

Bi
t−1Rt−1

Πt
− T̃t + D̃ivt

}L

i=1

(79){
Bi

t = ωi
t − Ci

t

}L
i=1

(80)

Aggregate consumption is given as

Ct =
1

L

L∑
i=1

Ci
t (81)

Update the part to Monte Carlo Integration We use the all-in-one expectation

method of Maliar et al. (2021), which uses two randomly drawn shocks for each AR(1)

process to evaluate the expectations:

Random Draws 1:
{
ϵζ,1t

}L

i=1
, ϵζ,1t (82)

Random Draws 2:
{
ϵζ,2t

}L

i=1
, ϵζ,2t (83)

We first proceed with random draw 1 to calculate the next period values of the stochastic

state variables, that is:

ln(ζ1t+1) = ρζ ln(ζt) + ϵζ,1t+1 (84)

ln(s1t+1) = ρs ln(st) + ϵs,1t+1 (85)

where the superscript indicates to which shock draw the next period value is associated.

We can now calculate the individual control variables for the next period:(
{N i,1

t+1}Li=1

{λi,1t }Li=1

)
= ψ1

(
S1t+1; Θ

)
, (86)

and similarly for the aggregate control variables:(
Π1

t

W̃ 1
t

)
= ψ2

(
S1t+1; Θ

)
(87)

49

We can now calculate the aggregate variables again

T 1
t+1 =

(
1

L

L∑
i=1

Bi
tRt

)
1

Π1
t+1

(88)

N1
t+1 =

(
1

L

L∑
i=1

N i,1
t+1s

i,1
t+1

)
(89)

Y 1
t+1 = AN1

t+1 (90)

Div1t+1 = Y 1
t+1 −W 1

t+1N
1
t+1 (91)

We pursue with calculating for each household individual variables:Ci
t =

[
si,1t+1W

1
t+1

χ(H i,1
t+1)

η

] 1
σ


L

i=1

(92)

{
ωi,1
t+1 =W 1

t+1s
i,1
t+1N

i,1
t+1 +

Bi
tRt

Πt+11
− T 1

t+1 +Div1t+1

}L

i=1

(93){
Bi,1

t+1 = ωi,1
t+1 − Ci,1

t+1

}L

i=1
(94)

Aggregate consumption is given as

C1
t+1 =

1

L

L∑
i=1

Ci,1
t+1. (95)

We now calculate the Euler error for the Euler equations, that households satisfy the

borrowing limit, the New Keynesian Philipps Curve, the resource constraint in period

t and t+ 1, and market clearing for the bond in period t and t+ 1.{
Ri,1

1 = βRt

[(
ζ1t+1

ζt

)(
Ci
t

Ci,1
t+1

)σ
1

Π1
t+1

]
− λit

}L

i=1

(96)

{
Ri,1

2 = ΨFB
(
Bi

t +B, 1− λit
)}L

i=1
(97)

R1
N =

[
φ

(
Πt

Π
− 1

)
Πt

Π

]
− (1− ϵ)− ϵMCt − φ

Π1
t+1

Rt

[(
Π1

t+1

Π
− 1

)
Π1

t+1

Π

Y 1
t+1

Yt

]
(98)

R1
M = D − 1

L

L∑
i=1

Bi
t (99)

R1
MN = D − 1

L

L∑
i=1

Bi,1
t+1 (100)

R1
R = Ỹt − Ct (101)

R1
RN = Y 1

t+1 − Ct+1 (102)

where the function ΨFB is the Fischer-Burmeister, which can be used to represent

50

Kuhn-Tucker conditons. We will discuss the Fischer-Burmeister Condition below. Re-

peat the same steps as before, but now use the second random draw of the shocks. This

allows to calculate the following objects{
Ri,2

1

}L

i=1
,
{
Ri,2

2

}L

i=1
, R2

N , R
2
M , R

2
MN , R

2
R, R

2
RN (103)

3. Define the loss function:

R2 =
L∑
i=1

αi
1R

i,1
1 Ri,2

1 +
L∑
i=1

αi
2R

i,1
2 Ri,2

2 + αNR
1
NR

2
N + αMR

1
MR

2
M+ (104)

αMNR
1
MNR

2
MN + αRR

1
RR

2
R + αRNR

1
RNR

2
RN (105)

where
{
αi
1

}L
i=1

,
{
αi
2

}L
i=1

, αN , αM , αMP , αR, αRP determine the weights for the different

equations

4. Optimize the parameters of the neural networks ψ1 and ψ2 to minimize the loss function

with a stochastic gradient optimizer

5. Repeat steps 2 - 4for each batch (B times)

6. Simulate each batch economy b for T sim periods using randomly drawn shocks. This

creates then the state vector for the next iteration of the optimizer

7. Repeat steps 2 - 6 N iter times

C.1 Fischer-Burmeister Function

The Fischer-Burmeister function can be used to capture computationally the complementary

slackness conditions of the Karush-Kuhn-Tucker conditions. The complementary slackness

conditions can be written for instance as:

e ≥ 0, f ≥ 0, e× f = 0 (106)

The Fischer-Burmeister function is defined as

ΨFB (e, f) = e+ f −
√
e2 + f2 (107)

If ΨFB (e, f) = 0, then the complementary slackness conditions are satisfied.

We are interested using this to ensure that the borrowing constraint Bi
t ≥ B is satisfied

(see also equation (41)). In the algorithm, we used λit, which is defined as follows:

λit = 1− µit (108)

The complementary slackness conditions can be written as

1− λit ≥ 0 (109)

51

(
Bi

t −B
)
≥ 0 (110)(

1− λit
)
×
(
Bi

t −B
)
= 0 (111)

and we minimize the Fischer-Burmeister condition to ensure that these conditions are hold

ΨFB
(
1− λit, B

i
t −B

)
(112)

D Neural Network-Based Bayesian Estimation Algorithm

The following algorithm can be used to run a Neural Network-Based Bayesian Estimation

1. Train the model with the extended neural network approach to solve the model for the

entire parameter space

2. Train a new neural network to save the result of the particle filter

3. Calculate the likelihood at chosen points (e.g. with Random Walk Metropolis Hastings

Algorithm)

D.1 Neural Network-Based Particle Filter

1. Set up a neural network to approximate the likelihood function and intialize the net-

work. The neural network ΩPF maps the structural parameter values into a likelihood

value:

L = ΩPF

(
Θ̃|Data

)
(113)

2. Use the particle filter to solve for the economy and calculate the likelihood value

Lv(what we do at the moment)

3. Define the loss function

R2 = (L− Lv)2 (114)

4. Optimize the parameters of the neural networks ΩPF

(
Θ̃|Data

)
to minimize the loss

function

5. Repeat steps 2 to 4 B times

D.2 Estimation based on classical solution approach

We also use a Metropolis Hastings algorithm to estimate the parameters Θ̃, when we solve the

model with classical global solution methods. Our design of the algorithm follows Atkinson

et al. (2020).47. We initially draw randomly from the prior distribution to get a proposal den-

sity for the Metropolis Hastings algorithm. We then run a burn-in period with the Metropolis

47See also Herbst and Schorfheide (2015) for useful

52

Hastings algorithm to get an updated proposal density. This proposal density is then used to

start the final run of the Metropolis Hastings algorithm. The detailed approach is as follows:

1. Obtain a first candidate density for the Metropolis Hastings algorithm from, which the

parameters Θ̃ are drawn, as follows

(a) Draw from the prior distirbution a candidate vector Θ̃New

(b) Solve the model for the draw with a classical global solution method (e.g. with

a time algorithm that uses piecewise linear policy function and approximates ex-

pectations with Gauss-Hermiture quadrature)

(c) Use a particle filter to calculate the likelihood of the model lnL(Θ̃New|Data) and

combine it with the prior to obtain the log posterior ln g(Θ̃New|Data)

(d) Repeat these steps N init times and collect all draws as Θinit

(e) Approximate the covariance matrix with these draws

i. Choose all draws where the likelihood is above the 90% quantile, which is

denoted as Θ̂

ii. Calculate the deviations of each draw from the mean: Θ̃ = Θ̂− Θ̂

iii. Calculate the covariance matrix: Σ = (Θ̃′Θ̃)/(0.1N init)

iv. Define the mode, that is the draw associated with highest likelihood, as Θ̃

2. Draw a new parameter vector Θ̃New from the candidate density to evaluate the log

posterior. The candidate density is a multivariate normal distribution with mean vector

Θ̃ and covariance matrix cΣ, where the parameter is set to have an acceptance ratio

between 20 and 40%.

(a) Solve the model for the draw with a classical global solution method (e.g. with

a time algorithm that uses piecewise linear policy function and approximates ex-

pectations with Gauss-Hermiture quadrature)

(b) Use a particle filter to calculate the likelihood of the model lnL(Θ̃New|Data)

(c) Combine the likelihood with the prior to evaluate the log posterior ln g(Θ̃New|Data)

(d) Accept the draw if exp(ln g(Θ̃New|Data) − ln g(Θ̃|Data)) is larger than the draw

from a standard uniform distribution. If the draw is accepted, the candidate

density is updated to Θ̃ = Θ̃New

3. Repeat the previous step NBurn times.

4. Use these Nnurn draws to get an updated candidate density. W

(a) Keep only the last 75% of draws, which are denoted as Θ̂b

(b) Calculate the deviations of each draw from the mean: Θ̃b = Θ̂b − Θ̂b

(c) Calculate the covariance matrix: Σ = (Θ̃b′Θ̃b)/(0.75N burn)

53

(d) Define the mode, that is the draw associated with highest likelihood, as Θ̃

5. Use the proposal density defined in the previous step and repeat step 2a Nfinal times

To be continued ...

D.2.1 Details on the Solution and Estimation Algorithm

To be continued ...

E Equilibrium Conditions

E.1 Linearized 3 equation NK model

X̂ = EtX̂t+1 − σ−1
(
ϕΠΠ̂t + ϕY X̂t − EtΠ̂t+1 − R̂F

t

)
(115)

Π̂t = κX̂t + βEtΠ̂t+1 (116)

R̂F
t = ρAR̂

F
t−1 + σ(ρA − 1)ωσAϵ

A
t (117)

E.2 RANK model with ZLB

Add the equilibrium conditions of the RANK model

E.3 HANK model with ZLB

To have stationarity, we need to define the variables as follows X̃t = Xt
Zt
. The relevant

conditions can then be written as:

C̃i
t + B̃i

t =Wts
i
tH̃

i
t +

Rt−1

Πtgt
B̃i

t−1 − T̃ i
t + D̃iv

i
t, (118)

λ̃t = C̃t − h
C̃t−1

gt
(119)

1 = βRtEt

[(
ζt+1

ζt

)(
λ̃it

λ̃it+1

)σ
1

Πt+1gσt+1

]
+ µit, (120)

χ(H i
t)

η = (λ̃it)
−σ
(
sitW̃t

)
(121)

Ỹ j
t = N j

t , (122)

W̃t =MCt (123)

D̃ivt = Ỹt −WtỸt (124)[
φR

(
Πt

Π
− 1

)
Πt

Π

]
= (1− ϵ) + ϵMCt + φREt

Πt+1

Rt

[(
Πt+1

Π
− 1

)
Πt+1g

σ−1
t

Π

Ỹt+1

Ỹt

]
,

(125)

Rn
t = (RN

t−1)ρR

R(Πt

Π

)θΠ
(
Ỹt

Ỹ

)θY
1−ρR

, (126)

54

Rt =
[
1, RN

t

]
(127)

D̃t =
Rt−1

Πtgt
D̃t−1 − T̃t (128)

F Mapping the Model in the General Framework

F.1 Linearized 3 equation NK model

We can map the linearized NK model in the general form of the outlined estimation procedure.

The state variable and structural shock are:

St =
{
R̂f

t

}
, and νt =

{
ϵAt
}
. (129)

The control variables of the model are:

ψt =
{
X̂t, Π̂

}
. (130)

The parameters of the model are divided in calibrated (θ̄) and estimated ones (θ̃):

Θ̄ = {} , (131)

Θ̃ = {β, σ, η, ϕ, θΠ, θY , ρA, σA} . (132)

where we choose to vary all parameters so that the set for the calibrated parameters is empty.

The neural network ψNN is trained to determine the output gap and inflation:(
X̂t

Π̂t

)
= ψNN

(
St, Θ̃|Θ̄

)
. (133)

F.2 RANK model with ZLB

We can map the RANK model in the general form of the outlined estimation procedure. The

state variable and structural shock are:

St = {ζt} , and νt =
{
ϵζt

}
. (134)

The control variables of the model are:

ψt = {Ct, Nt, Tt, Yt, Divt,MCt} . (135)

The parameters of the model are divided in calibrated (θ̄) and estimated ones (θ̃):

Θ̄ = {β, σ, η, ϵ, χ,Π, Y } , (136)

Θ̃ = {θΠ, θY , φ, ρζ , σζ} . (137)

55

The neural network is trained to determine wage and inflation, which is sufficient to determine

the other variables:(
Πt

W̃t

)
= ψA

NN

(
St, Θ̃|Θ̄

)
. (138)

F.3 HANK model with ZLB

We recast the model to take out the stochastic trend in GDP growth, where we define variables

as follows. X̃t =
Xt
Zt
. The detrended equilibrium conditions can be found in Appendix A.

We can map the HANK model in the general form of the outlined estimation procedure:

St =
{{

B̃i
t−1

}L

i=1
,
{
sit
}L
i=1

, RN
t−1, C̃t−1, ζt, gt,mpt

}
(139)

νt =

{{
ϵs,it

}L

i=1
, ϵζt , ϵ

g
t , ϵ

mp
t

}
(140)

As we approximate the distribution using 100 agents (L = 100), this which corresponds to

205 state variables S and 105 structural shocks.

The control variables of the model are

ψt =

{{
C̃i
t

}L

i=1
,
{
N i

t

}L
i=1

,
{
B̃t

}L

i=1
, {µt}Li=1 , T̃t, Ỹt, D̃ivt,MCt

}
(141)

The parameters of the model are divided in calibrated (θ̄) and estimated ones (θ̃):

Θ̄ =
{
β, σ, χ, h, φ,B,D, ϵ, φR, g,Π, Y, ρr, κΠ, κY , ρs, ρzeta

}
(142)

Θ̃ = {σs, σζ , σg, σmp} (143)

We use two neural networks to separate between individual and aggregate policy functions.

The individual neural network solves for labor supply and the multiplier on the borrowing

constraint:({
N i

t

}L
i=1{

µit
}L
i=1

)
=
{
ψI
NN

(
Sit, St, Θ̃|Θ̄

)}L

i=1
, (144)

where Sit =
{
B̃i

t−1, s
i
t

}
. The neural network for the aggregate control variables determines

the wage and inflation:(
Πt

W̃t

)
= ψA

NN

(
St, Θ̃|Θ̄

)
(145)

G Estimation of HANK Model with Simulated Data

To provide a proof of concept for estimating the nonlinear HANK model, we use simulated

data to estimate 13 parameters of the nonlinear HANK model with our neural networks

approach. We use 150 periods and simulate the same series, as we want to use the same

56

Calibration for the data-generating process

Parameters Value Parameters Value

β Discount factor 0.99825 θΠ MP inflation response 2.6
σ Relative risk aversion 1 θY MP output response 0.98
η Inverse Frisch elasticity 1 D Government debt 0.25
ϵ Price elasticity demand 11 B Individual borrowing limit −0.15
χ Disutility labor 0.91 ρs Persistence labor productivity 0.8
g Average growth rate 1.00 σs Std. dev. labor productivity 0.045
γτ Tax progressivity 0.18 ρζ Persistence preference shock 0.7
φ Rotemberg pricing 100 σζ Std. dev. preference shock 0.015
Π Inflation target 1.00625 σg Std. dev. growth rate shock 0.004

σmp Std. dev. MP Shock 0.00125

Estimation

Par. Prior Neural Network

Type Mean Std
Lower Upper Posterior
Bound Bound Median 5% 95%

Parameters related to idiosyncratic risk

B Trc.N −0.15 0.025 −0.5 0.0 −0.14 −0.018 −0.10
ρs Trc.N 0.8 0.025 0.7 0.9 0.79 0.76 0.82
σs Trc.N 0.045 0.01 0.01 0.06 0.53 0.047 0.058

Parameters related to aggregate risk

β Trc.N 0.99825 0.001 0.995 0.9985 0.9981 0.9973 0.9984
g Trc.N 1.0039 0.001 1.0025 1.0055 1.0042 1.0037 1.0047
φ Trc.N 100 5 50 150 101 941 108
θΠ Trc.N 2.6 0.025 1.5 3.0 2.59 2.55 2.64
θY Trc.N 0.98 0.025 0.25 1.25 1.00 0.96 1.04
ρζ Trc.N 0.7 0.01 0.5 0.8 0.70 0.68 0.72
σζ Trc.N 0.015 0.01 0.001 0.022 0.012 0.011 0.13
ρg Trc.N 0.4 0.01 0.2 0.6 0.40 0.38 0.41
σg Trc.N 0.004 0.001 0.0001 0.006 0.047 0.0422 0.053
σmp Trc.N 0.00125 0.001 0.0001 0.00375 0.00171 0.00137 0.00212

Table 4: The upper panel shows the calibration for the nonlinear HANK model with the
ZLB and borrowing limit, which is used as data-generating process. The lower
panel shows the prior and compares the posterior for the neural network based
estimation with a conventional approach. The prior type indicate the prior density
function, where Trc.N stands for a truncated normal distribution.

observation equation.

The estimation includes 13 structural parameters, which can be roughly separated as

parameters related to idiosyncratic risk and aggregate risk. Table 4 shows the priors for the

estimated parameters. The prior densities are truncated normals for all parameters. The

prior mean corresponds to the true value, while the standard deviation is rather loose to

avoid that the results are driven by the prior. As before, the truncation ensures that the

drawn parameters lie inside the parameter space of the extended neural network.

We estimate 13 parameters of the nonlinear HANK model with our neural networks

approach. The results are summarized in the lower panel of Table 4. The key takeaway is

that the posterior median is very close to the true value. In particular, the true value is mostly

57

0.995 0.996 0.997 0.998
Discount factor

525

500

475

450

425

400

375

350

Posterior
Median
True value

60 80 100 120 140
Rotemberg pricing

430

420

410

400

390

380

370

360

350

1.003 1.004 1.005
Growth rate g

410

400

390

380

370

360

350

1.5 2.0 2.5 3.0
MP inflation response

1400

1200

1000

800

600

400

0.2 0.4 0.6 0.8 1.0 1.2
MP output response Y

800

700

600

500

400

0.70 0.75 0.80 0.85 0.90
Persistence labor productivity s

385

380

375

370

365

360

355

0.01 0.02 0.03 0.04 0.05 0.06
Std. dev. labor productivity s

480

460

440

420

400

380

360

0.5 0.6 0.7 0.8
Persistence preference shock

600

550

500

450

400

350

0.000 0.005 0.010 0.015 0.020
Std. dev. preference shock

1600

1400

1200

1000

800

600

400

0.2 0.3 0.4 0.5 0.6
Persistence growth shock mp

550

500

450

400

350

0.000 0.002 0.004 0.006
Std. dev. growth rate shock g

1100

1000

900

800

700

600

500

400

0.000 0.001 0.002 0.003
Std. dev. MP shock mp

385

380

375

370

365

360

355

0.5 0.4 0.3 0.2 0.1 0.0
Individual borrowing limit B

500

480

460

440

420

400

380

360

Figure 13: Posterior of the nonlinear HANK model estimated with the developed neural
network estimation procedure. Each parameter is varied, while the other pa-
rameters are fixed at the posterior median. The posterior median is the green
dashed line, while the true value from the data-generating process is the red
dotted line.

contained in the 90% credible interval for all parameters despite having such few time-series.

This demonstrates that our method is well suited to estimating complex nonlinear models.

The results are in Appendix G.

58

H Additional Results

H.1 Linearized 3 equation NK model

Figure 14 shows the policy function for inflation for variations of the parameters.

H.2 RANK model with ZLB

The surrogate neural network model that contains the residual error is shown in 15. While

the neural network is trained for all parameters, the figure shows the change in the residual

error for the standard deviation of the shock. Figure 16 shows how the combination of

parameters affect the residual error. The contour plot shows that the persistence and the

standard deviation have the most impact on the residual error.

59

Figure 14: Comparison between the neural network-based solution and the true analytical
solution. The plot shows how variations in the structural parameter affect the
policy function for inflation Π̂t. The policy function is evaluated at the one
standard deviation of the ergodic distribution and the unvaried parameters are
fixed at their mean. 60

Figure 15: Surrogate neural network model that contains the residual error. It shows the
trained neural network and contrasts it to the data that are used for training.
The red line corresponds to a cut-off value at a residual error at .25e-5.

Figure 16: Surrogate neural network that contains the residual error is presented as contour
plot. A dark value is associated with a low residual error, while a light value is
associated with a high value. The red line is set at a cut-off value at 0.5e-5.

61

	Introduction
	An Estimation Framework Based on Neural Networks
	Extended Nonlinear Model Representation
	Extended Neural Network-Based Solution Method
	Advantages of the Extended Neural Network Approach

	Likelihood, Particle Filter and Neural Networks
	Estimation
	Algorithm

	Proofs of Concept
	Comparison to an Analytically Derived True Solution
	Comparison to a Conventional Estimation of Nonlinear Models
	Model
	Calibration and Data-Generating-Process
	Estimation
	Results

	Estimating a Nonlinear HANK Model
	Model
	Households
	Firms
	Policy makers
	Market Clearing

	Estimation: Data, measurement equation and priors
	Estimation: Neural Networks Based Approach
	Step 1: Extended neural network to get the policy functions over the parameter space

	Results
	Proof of Concept with Simulated Data

	Conclusion
	Deep Learning and Neural Networks
	Deep Neural Networks
	Universal Approximation Theorem
	Scalability

	Residual Error Neural Network
	Neural Network-Based Solution Algorithm for HANK
	Fischer-Burmeister Function

	Neural Network-Based Bayesian Estimation Algorithm
	Neural Network-Based Particle Filter
	Estimation based on classical solution approach
	Details on the Solution and Estimation Algorithm

	Equilibrium Conditions
	Linearized 3 equation NK model
	RANK model with ZLB
	HANK model with ZLB

	Mapping the Model in the General Framework
	Linearized 3 equation NK model
	RANK model with ZLB
	HANK model with ZLB

	Estimation of HANK Model with Simulated Data
	Additional Results
	Linearized 3 equation NK model
	RANK model with ZLB

