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Abstract

How should we evaluate and compare the performances of policy institutions? We
propose to evaluate institutions based on their reaction function, i.e., on how well
they reacted to the different shocks that hit the economy, and we show that such
a reaction function evaluation is possible with only two sufficient statistics (i) the
impulse responses of the policy objectives to non-policy shocks, which capture what
an institution did on average to counteract these shocks, and (ii) the impulse responses
of the policy objectives to policy shocks, which capture what an institution could have
done to counteract the shocks. A regression of (i) on (ii) —a regression in impulse
response space— allows to compute the distance to the optimal reaction function,
and thereby evaluate and rank institutions. We use our methodology to evaluate US
monetary policy over the past 150 years; from the Gold standard period, the early Fed
years and the Great Depression, to the post World War II period, and the post-Volcker
regime.
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1 Introduction
How should we evaluate and compare policy institutions? How should we evaluate and
compare policy makers after their term in office? These questions are of central importance to
the good functioning of democratic and accountable institutions, but there is little consensus
on a method for evaluating and comparing performance.1

A naive approach could consist in measuring performance based on realized macroeco-
nomic outcomes. For instance, we could assess a central banker based on average inflation
and unemployment outcomes over her term. Unfortunately, that approach suffers from
three problems: (i) different policy makers may face different initial conditions, e.g. a cen-
tral banker can inherit a strong or weak economy from her predecessor, (ii) different policy
makers may face different economic disturbances, e.g., a central banker may experience a
financial crisis or an energy price shock that will affect her ability to stabilize inflation and
unemployment, and (iii) different policy makers may live in different economic environments,
e.g., a steeper or flatter Phillips curve will affect a central banker’s ability to control inflation.

This triplet of confounding factors coming from different initial conditions, different dis-
turbances and different economic environments severely limits our ability to evaluate policy
makers based on realized outcomes.2

To make progress it is instructive to consider an ideal, yet infeasible, approach for com-
paring policy makers: an experimental setting. Consider setting up a laboratory, in which
different policy makers are given the same mandate —minimizing a loss function involving
some policy objectives— and are subjected to the same initial conditions and the same eco-
nomic environment. The different policy makers are then exposed to the same sequence of
shocks, and they each make decisions that aim to achieve their mandate. Afterward, we can
compare performance from the realized losses and conclude which policy maker performed
better. Such comparison would be on equal grounds as the only source of variation would
come from the different ways each policy maker reacted to the same of sequence shocks, i.e.,
from the different reaction functions.

In this paper, we propose an empirical method that aims to mimic this ideal “reaction
function comparison” experiment while making minimal structural assumptions on the un-
derlying economic model and the underlying policy rule. Our approach exploits a simple
idea: while different policy makers are never exposed to the same sequences of non-policy
shocks, they are often exposed to the same types of shocks; for instance energy price shocks,
financial shocks, or even war shocks. By comparing how well different policy makers per-

1Take the example of modern central banks, which are granted a substantial degree of independence to
achieve their mandates. That independence comes with a need for accountability, and central bank governors
are regularly called to testify in front of elected officials to justify their actions. Yet, there is no systematic
quantitative evaluation of central bank decisions.

2See Fair (1978) for an early discussion of these points.
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formed in response to such common shocks, we can approach the ideal empirical setting
sketched above: assessing and comparing performance from the different ways each policy
makers reacted to the same types of shocks.

Geometrically speaking, our strategy amounts to projecting realized macroeconomic out-
comes on a space spanned by well chosen non-policy shocks and to study policy performance
in that space. In fact, in that subspace policy evaluation reduces to a simple optimization
problem that only involves two well-known (and estimable) sufficient statistics: (i) the im-
pulse responses of the policy objectives to a (well-chosen) non-policy shock, and (ii) the same
impulse responses but to a policy shock.

The first set of impulse responses —the impulse responses to a specific non-policy shock—
capture the average effects of that non-policy shock under the policy maker’s reaction func-
tion and allow to compute a conditional loss; a loss conditional on that non-policy shock.
For instance, with a quadratic loss function the conditional loss is simply the sum-of-squares
of that impulse response. While it is tempting to assess and compare performance based on
that impulse response alone, this is not enough since other factors beyond a policy maker’s
reaction function could generate a lower conditional loss, i.e., a more stable impulse response.
For instance, a different economic environment could make the economy more stable inde-
pendently of the policy makers’ reaction function. To assess how well a policy maker reacted
to that specific non-policy shock, we need to know the outcome of a policy rule counter-
factual: how a different reaction would have affected the economy. That counter-factual
is precisely given by the second set of impulse responses —the impulse responses to policy
shocks—, which allow to compute how a different reaction function would have affected
the conditional loss —what the policy maker could have done to counteract the non-policy
shock—.

We show that for a large class of models and loss functions the distance to the optimal
reaction, or Optimal Reaction Adjustment (ORA), can be computed from a simple regression
in “impulse response space”: a regression of the impulse responses to the non-policy shock
on the impulse responses to policy shocks.3

The ORA measures by how much more or less a policy maker should have reacted in
response to a given non-policy shock, and it provides a direct measure of policy performance
conditional on a specific type of non-policy shock. Overall policy performance can then
be assessed by measuring the ORAs for different types of non-policy shocks. Further, for
non-policy shocks that are common across different policy makers, the ORAs are portable

3The correlation between these two sets of impulse responses directly captures the performance of the
policy institution: A correlation of zero indicates best performance —the policy institution could not have
reacted any better to the macro shocks that affected the economy—, while a correlation of one (in absolute
value) indicates worst performance —the institution could have (but did not) perfectly met its objectives by
undoing the effects of these macro shocks—.
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moments in the sense of Nakamura and Steinsson (2018): we can use the ORAs to compare
policy makers or policy institutions across time (say the Fed in 1930s vs the Fed in the 2000s)
or across space (say the Fed vs the ECB).

It may seem surprising to be able to assess a reaction function without specifying or
estimating any policy rule. This reason this is possible, and the key insight underlying our
approach, is that the effects of any reaction function are encoded in the impulse responses to
policy and non-policy shocks. Even if we do not know the specific form of some past policy
rule, that reaction function left a footprint on the effects of policy and non-policy shocks,
and that footprint is sufficient to evaluate the reaction function. This is the essence of our
sufficient statistics approach.

The evaluation and comparison of policy makers thus reduces to estimating structural
impulse responses, and this realization opens a number of important avenues for policy
evaluation, as one can draw on a large macro-econometric literature to evaluate policy insti-
tutions. A recent discussion of structural shock identification can be found in Ramey (2016)
and modern impulse response estimation methods are discussed and compared in e.g., Stock
and Watson (2016), Kilian and Lütkepohl (2017) and Li, Plagborg-Møller and Wolf (2022).

We then apply our methodology to study the performance of US monetary policy over
the past 150 years. Our method allows us to address and revisit many interesting questions
regarding the conduct of monetary policy. To name a few, (i) did the founding of the Federal
Reserve in 1913 led to superior macro outcomes than during the Gold standard period (e.g.,
Bordo and Kydland, 1995)? And if so, by how much? (ii) While many people would agree
that monetary policy was superior during the 2007-2009 financial crisis than during the
1929-1933 financial crisis (e.g., Wheelock et al., 2010), can we confirm and quantify this
improvement? (iii) To what extent is the stable and low inflation environment of 2000s
versus the 1970s the outcome of good policy or simply good luck (e.g., Clarida, Galí and
Gertler, 2000; Gali and Gambetti, 2009)?

To assess and compare monetary policy performance across historical periods, we evaluate
how monetary policy responded to five types of non-policy shocks that are common across
periods: (i) financial shocks, (ii) government spending shocks, (iii) energy price shocks, (iv)
inflation expectation shocks and (v) productivity shocks, and we evaluate US monetary
policy over four distinct periods: (a) 1879-1912 covering the Gold standard period until the
founding of the Federal Reserve, (b) 1913-1941 covering the early Fed years to the US entering
World War II, (c) 1954-1984 covering the post World War II period until the beginning of the
Great Moderation, and (d) 1990-2019 covering the Great Moderation period, the financial
crisis and up to the COVID crisis.

Over these historical periods US monetary policy was confronted with different sequences
of shocks and possibly very different economic environments. With our ORA-based policy
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evaluation, we can compare policy performance over these four periods while by-passing the
many confounding factors that have plagued previous comparisons. The (still substantial)
empirical challenge is then to consistently estimate the impulse responses to monetary shocks
and the five non-policy shocks over each sub-period. Fortunately, we can leverage on a large
empirical literature on structural shocks identification, and we will use as much as possible
the state of the art in each setting: Hamilton (2003) for energy price shocks, Ramey and
Zubairy (2018) for government spending shocks, Leduc, Sill and Stark (2007) for inflation
expectation shocks, Gali (1999) for productivity shocks and Reinhart and Rogoff (2009) for
banking panics. To identify monetary shocks, we rely on Romer and Romer (2004b) and
Gürkaynak, Sack and Swanson (2005) for the post WWII periods. Identification is more
challenging (and less developed) for the pre WWII periods, and we propose a new identifi-
cation strategy for monetary shocks for the Gold Standard period. Specifically, we exploit
the specificity of the Gold Standard, in that the monetary base depends on the amount of
gold in circulation, and we use unanticipated large Gold mine discoveries (discoveries that
led to Gold rush) as an instrument for movements in the monetary base. For monetary
shocks during the early Fed years, we use the Friedman and Schwartz (1963) narrative dates
extended by Romer and Romer (1989).

Evaluating and comparing policy makers require to take a stand on a set of objectives, i.e.,
on a loss function. In our empirical application, we consider a quadratic loss function with
equal weights on inflation and unemployment.4 Given that loss function, our results point to
overall improvements in the conduct of monetary policy, though improvements have not been
monotonic. In response to bank runs, we do find that the policy response is substantially
better after 1951 than during the Gold Standard or the early Fed period. During the Early
Fed period the monetary response was much too passive in the face of financial disturbances;
not lowering the discount rate enough, in fact running a contractionary monetary policy. In
contrast, the monetary response was much closer to optimal in the post Volcker period,
though the zero-lower bound did constrain partially the Fed’s response.

That said, improvements in the conduct of monetary policy have not been monotonic,
and the post WWII period saw the worst performance in response to inflationary pressures
shocks: energy price shocks, inflation expectation shocks and TFP shocks. For all these
shocks, the Fed reaction was much too weak over 1951-1984, particularly in response to
inflation expectation shocks. This result echoes a large literature on the Fed’s failure to
satisfy the Taylor principle in the 1970s, but also goes further by allowing to compute the
distance to the optimal reaction —by how much more the Fed should have responded to
supply shocks—. In addition, we find that the Fed’s excess passivity carries to aggregate

4Importantly, our approach could accommodate other loss functions, for instance different loss functions
across time periods, or even micro-founded welfare-based loss functions.
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demand shocks and financial shocks as well. For instance, the Fed’s interest rate reaction
was too weak in the face of the military buildup shocks of the Vietnam war.

Last, we find that performance is universally superior during the post Volcker period:
the distances to the optimal reaction coefficients are smallest (and non-significantly different
from zero) for all types of shocks that we considered. The only (mild) exception is the
reaction to the financial shock for which the zero-lower bound did constrain partially the
Fed’s response, though the distance to an optimal reaction is still substantially smaller than
during the early Fed period.

Related literature

Perhaps surprisingly, the literature has produced few methods for evaluating and comparing
policy makers over time or over space.

An early contribution is Fair (1978) who highlights the distortions stemming from differ-
ent initial conditions and economic environments. His solution was to adopt optimal control
methods to compare policy makers. This approach amounts to specifying a structural model,
calculating what would have been the optimal policy based on the model and comparing the
loss under such optimal policy to the loss under the implemented policy. This general ap-
proach has been used within the context of other structural models, notably New Keynesian
models (e.g. Gali and Gertler, 2007; Galı, López-Salido and Vallés, 2003; Blanchard and
Galí, 2007). Unfortunately, specifying the correct model for (i) the policy rule and (ii) the
macroeconomic non-policy block is a very difficult task (e.g., Svensson, 2003; Mishkin, 2010).
Using our approach we can greatly reduce the risk of model mis-specification as impulse re-
sponses can be estimated with reduced form econometric methods that are more robust to
model mis-specification (e.g. Montiel Olea and Plagborg-Møller, 2021). Loosely speaking,
by assessing policy performance in response to specific non-policy shocks, we can break the
optimal policy assessment problem into smaller parts, which do not require a fully-fledged
structural model. That said, compared to a model-based assessment, our approach will only
evaluate performance from the reaction to a subset of all possible non-policy shocks.

In the context of monetary policy, the literature has studied the performance of the Fed
pre- and post-Volcker;5 specifically by assessing whether the Taylor principle —a central
bank should react more than one-to-one to inflation movements— was satisfied.6 However,
beyond that Taylor principle, that literature can say little about the optimality of the reaction
function, whether the Fed was reacting too much or too little after 1984. Overall, that

5See Judd and Rudebusch (1998); Taylor (1999); Clarida, Galí and Gertler (2000); Boivin (2005); Coibion
and Gorodnichenko (2011) for policy rules estimates.

6Based on Taylor rule estimates, these papers found that the parameters of the Taylor rule shifted around
1984 and that the Fed responded more vigorously to inflation variations after 1984, though this conclusion
has not gone unchallenged (e.g., Orphanides, 2003).
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approach can only provide a coarse evaluation of reaction functions.
Closer to our approach, Galı, López-Salido and Vallés (2003) and Blanchard and Galí

(2007) study the effect of technology shocks or oil shocks to assess the performance of the
Fed pre- and post-Volcker. Different from our approach however, their assessment of good
monetary policy focuses on the response of the real interest rate to a technology shock and on
its distance to a specific New-Keynesian model. In contrast, our approach allows to evaluate
the distance to optimality for the Fed’s reaction to technology or oil price shocks without
relying on any specific structural model. Instead, impulse responses are sufficient statistics.

In the context of fiscal policy Blinder and Watson (2016) improve on the naive approach
of policy evaluation —measuring performance based on unconditional realized outcomes—
by projecting out specific macro shocks, i.e., by trying to control for good luck or bad luck. In
contrast, our approach projects on the space spanned by specific non-policy shocks and study
performance in that space: comparing policy makers by studying how well they reacted to
the same shock.

A less structural literature has proposed ways to study policy rule counter-factuals (e.g.,
Sims and Zha, 2006; Bernanke et al., 1997; Leeper and Zha, 2003), though those approaches
are not fully robust to the Lucas critique. Instead, our approach builds on recent work that
shows how robustness to the Lucas critique is possible in a large class of macroeconomic
models, see McKay and Wolf (2022). The key underlying assumption is that the underlying
(unknown) model has a linear structure, and more specifically that the coefficients of the
non-policy block are independent of the coefficients of the policy block. The present paper
builds on these insights to evaluate policy institutions with minimal assumptions on the
underlying (and possibly time-varying) economic structure.

Last, our paper relates to Barnichon and Mesters (2022)’s sufficient statistics approach
to policy evaluation, though they focus on a different policy problem: the time t optimal
policy problem —how to set the policy path today given the state of the economy—, instead
of the unconditional policy problem that we consider here —how to set up the policy rule to
minimize the unconditional loss—. Barnichon and Mesters (2022) show that the character-
ization of the time t optimal policy path can be reduced to the estimation of two sufficient
statistics (i) forecasts for the policy objectives conditional on some baseline policy choice, (ii)
the impulse responses of the policy objectives to policy shocks. However, these two statistics
are not sufficient to evaluate the optimality of the underlying policy rule. The present paper
shows that a sufficient statistics approach to rule evaluation is possible, but it requires a
different set of statistics, and notably additional identifying restrictions: the identification
of (at least some) non-policy shocks.

The remainder of this paper is organized as follows. The next section illustrates our
method for a simple New Keynesian model. Section 3 presents the general environment.
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Section 4 provide the key population results for evaluating and ranking policy makers. The
results from the empirical study for monetary policy are discussed in Section 5. Section 6
concludes.

2 Illustrative example
To provide the intuition for our approach we present a simple example to illustrate how
we can evaluate and compare policy makers’ reaction function without having access to
the underlying economic model nor the policy rule. We take the baseline New Keynesian
(NK) model as the underlying economy and postulate that the researcher is interested in
evaluating a central bank with a dual inflation–output stabilization mandate. In this setting
the optimal policy is well understood and analytically tractable, allowing us to highlight the
main mechanisms of our approach and to link back to the broad NK literature (e.g. Galí,
2015).

Specifically, we consider evaluating a central bank based on the loss function

Lt =
1

2
(π2

t + x2
t ) , (1)

with πt the inflation gap and xt the output gap.
The log-linearized Phillips curve and intertemporal (IS) curve of the baseline New-

Keynesian model (Galí, 2015) are given by

πt = Etπt+1 + κxt + ξt , (2)

xt = Etxt+1 −
1

σ
(it − Etπt+1) , (3)

with it the nominal interest rate set by the central bank and ξt an iid cost-push shock.
To illustrate our approach suppose that the policy maker decides on the interest rate by

responding to the economy according to

it = ϕππt + ϕξξt + ϵt , (4)

where ϕ = (ϕπ, ϕξ) is the reaction function which captures the systematic response of the
central bank and ϵt is a policy shock. We assume that the structural shocks ξt and ϵt have
mean zero and are mutually uncorrelated.

For ϕπ > 1 we can solve the model and express the endogenous variables Yt = (πt, xt)
′ as
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functions of the exogenous shocks:

Yt = Γ(ϕ)ξt +R(ϕ)ϵt , with Γ(ϕ) =

[
1−κϕξ/σ

1+κϕπ/σ
−ϕπ/σ−ϕξ/σ

1+κϕπ/σ

]
, R(ϕ) =

[
−κ/σ

1+κϕπ/σ
−1/σ

1+κϕπ/σ

]
. (5)

The vectors Γ(ϕ) and R(ϕ) capture the impulse responses of the policy objectives to the
structural shocks ξt and ϵt as a function of the reaction function ϕ.

An optimal reaction function is defined as any ϕ = (ϕπ, ϕξ) that minimizes the expected
loss subject to the equations that describe the economy. Formally, let Φ denote the subset of
reaction functions that lead to a unique equilibrium. The set of optimal reaction functions
is given by

Φopt =

{
ϕ : ϕ ∈ argmin

ϕ∈Φ
ELt s.t. (2) − (4)

}
,

which is non-empty irrespective of the structural parameter values due to the inclusion of ξt
in (4) (e.g. Galí, 2015, page 133).

Reaction function evaluation

We will now illustrate how the impulse responses R(ϕ) and Γ(ϕ) are sufficient statistics to
evaluate a policy maker’s reaction function.

Let ϕ0 ∈ Φ denote a central bank’s reaction function which we assume is unknown to
the researcher. To evaluate ϕ0, we consider a thought experiment where ϕ0

ξ —the reaction
coefficient to the cost-push shock— is adjusted by some amount τ . Specifically, the adjusted
policy rule becomes

it = ϕ0
ππt + (ϕ0

ξ + τ)ξt + ϵt . (6)

Following the same steps that led to (5), we can solve the model under that modified policy
rule and express the endogenous variables as a function of exogenous shocks to get

Yt = (Γ +Rτ)ξt +Rϵt , (7)

where Γ ≡ Γ(ϕ0) and R ≡ R(ϕ0) denote the responses to the structural shocks under the
rule ϕ0 and are defined as in (5).

Notice how the impulse response R contains all the information needed to compute the
effect of changing the reaction coefficient ϕ0

ξ by an amount τ . In other words, it is possible
to learn the effect of a change to the rule coefficient ϕξ from the impulse responses to policy
shock. This insight, which holds more generally in a large class of dynamic models (see
section 4), is at the heart of our approach to evaluating reaction function from structural
impulse responses.
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To evaluate the reaction function, the idea is then to compute whether it is possible to
adjust ϕ0

ξ and lower the loss function. Mathematically, we will look for a τ ∗ that can best
lower the loss function, that is

τ ∗ = argmin
τ

ELt s.t. Yt = (Γ +Rτ)ξt +Rϵt

= argmin
τ

σ2
ξ (Γ +Rτ)′(Γ +Rτ) , (8)

where the second equality uses that the structural shocks have mean zero and are uncorre-
lated. A closed form solution for τ ∗ is given by

τ ∗ = −(R′R)−1R′Γ and ϕ∗
ξ = ϕξ + τ ∗. (9)

We refer to the statistic τ ∗ as the Optimal Reaction Adjustment, or ORA, as it measures
how much more (or less) the policy maker should have responded to the cost-push shock in
order to minimize the loss function. In other words, τ ∗ captures the distance to the optimal
reaction coefficient ϕ∗

ξ .7

Note how τ ∗ is given by the coefficient of the projection of Γ on −R. A number of points
are worth noting.

First, if the reaction function ϕ0 was optimal, there should not exist any alternative reac-
tion to ξt that can reduce loss, and the optimal adjustment τ ∗ should be zero. Geometrically,
this means that Γ —the impulse responses to the cost-push shock— should be orthogonal
to R —the impulse responses to the policy shock—.

Second, impulse responses to policy and non-policy shocks are sufficient to compute
the optimal reaction to the non-policy shock, and a regression in impulse response space
—regressing one impulse response on another— can determine that optimal coefficient. In-
tuitively, the goal of the ORA is to use the impulse responses to a monetary shock (which
capture how a different reaction coefficient ϕξ would affect the policy objectives) in order to
better stabilize the impulse response to the non-policy shock.

Third, it may seem surprising to be able to assess a reaction function without specifying
or estimating any policy rule. This reason this is possible, and the key insight underlying our
approach, is that the effects of any reaction function are encoded in the impulse responses
Γ and R, see (5) with Γ and R depending on ϕ. Even if we do not know the specific form
of some past policy rule, that reaction function left a footprint on the effects of policy and
non-policy shocks, and that footprint is sufficient to evaluate the reaction function. This is

7To prove the result ϕ∗
ξ = ϕξ + τ∗, use the expressions (5) for R and Γ under some starting rule ϕ =

(ϕπ, ϕξ). After some simple algebra, we obtain ϕξ + τ = (κσ − ϕπ)/(1 + κ2) = ϕopt
ξ for any ϕπ > 1, see Galí

(2015, section 5).
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the essence of our sufficient statistics approach.

Comparing reaction functions

The ORA statistic can be used to compare the reaction functions of different policy makers.
To avoid excessive notation at this stage, consider comparing two policy makers that used
reaction functions ϕ1 and ϕ2, respectively, and let the economic environment that they faced
by captured by the parameter vectors θ1 and θ2, respectively, which include all coefficients
in the Phillips and IS curves.

For each policy maker we compute the distance between ϕξ and ϕ∗
ξ . We have

τ ∗j = −(Rj′Rj)−1Rj′Γj for j = 1, 2 ,

where Rj ≡ R(ϕj) and Γj ≡ Γ(ϕj). We rank the policy maker with ϕ1 above policy maker
with ϕ2 if |τ ∗1 | < |τ ∗2 |.

The key insight is that while the environments are different (and thus the ϕ∗
ξ can be

different across policy makers), the ORA statistics τ ∗1 and τ ∗2 measure the same quantity:
the distance to the optimal reaction to the shock ξt.

By evaluating the performance of a policy maker in a specific direction —the reaction
to a specific non-policy shock—, we are able to evaluate and compare policy makers (or
more generally policy institutions) operating in different economic environments and facing
different histories of shocks.

In sum, this example illustrates how we can evaluate and compare policy makers based
on their reaction function without specifying an explicit reaction function nor a specific
structural macro model. Instead, the only requirement is to estimate the impulse responses
Γ and R over a policy maker’s term. The next sections show that these findings continue to
hold for a general linear macro model and discuss the econometric implementation.

3 Environment
A researcher is interested in evaluating a policy maker, who was in office during some sample
period S. The researcher’s evaluation is based on a loss function that aggregates different
policy objectives captured by Yt = (y′t, y

′
t+1, . . .)

′, with yt+h = (y1,t+h, . . . , yMy ,t+h)
′ an My×1

vector of gaps yt+h —deviations of some variables from targets— for the current period h = 0

and possibly future periods h = 1, 2, . . .. Note that we adopt a sequence space representation
(e.g., Auclert et al., 2021), so that Yt is a path of policy objectives. For instance, in the
static example of Section 2 we had Yt = yt = (πt, xt). In the baseline treatment, we consider
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the quadratic loss function
Lt =

1

2
EtY

′
tWYt , (10)

where Et(·) = E(·|Ft), with Ft the time t information set. The weighting matrix W is
assumed to be diagonal allowing the researcher to place more or less weight on certain ob-
jectives and horizons. While we consider a quadratic loss function in the baseline treatment,
our approach can be easily extended to arbitrary convex loss functions.

Suppose that the policy maker has Mp instruments denoted by pt = (p1,t, . . . , pMp,t)
′. At

time t the policy maker can set the time t value of the instruments as well as their expected
future path. We denote the path by Pt = (p′t, p

′
t+1, . . .)

′ and the time t expected path is
given by EtPt. A generic model for Yt and Pt is given by{

AyyEtYt −AypEtPt − AywEtWt = ByxX−t + ByξΞt

AwwEtWt −AwpEtPt −AwyEtYt = BwxX−t + BwξΞt

, (11)

where Wt = (w′
t, w

′
t+1, . . .)

′ denotes the path of any additional endogenous variables, X−t =

(y′t−1, w
′
t−1, p

′
t−1, y

′
t−2, . . .)

′ captures the initial conditions and Ξt = (ξ′t, ξ
′
t,t+1, ξ

′
t,t+2, · · · )′ is

the vector of non-policy shocks. Specifically, ξt is the time t vector of structural non-
policy shocks, while the shocks ξt,t+h, for h = 1, 2, . . ., are news shocks: information re-
vealed at time t about shocks that realize at time t + h. The maps A.. and B.. capture
the economic environment, and we collect all these parameters of the non-policy block in
θ = {Ayy,Ayp,Ayw,Aww,Awp,Awy,Byx,Bwx,Byξ,Bwξ}. The vector θ can be thought of as
describing the economic environment that the policy maker faces.

This model is general and allows expected future policy decisions to affect current and
expected future outcomes. Many models found in the literature can be written in this form;
prominent examples include New Keynesian models and more modern heterogeneous agents
models. We normalize the non-policy news shocks Ξt to have unconditional mean zero, unit
variance and to be uncorrelated with the initial conditions.

Turning to the policy block; we postulate that policy decisions can be written as

AppEtPt −ApyEtYt −ApwEtWt = BpxX−t + BpξΞt + ϵt , (12)

where ϵt = (ϵ′t, ϵ
′
t,t+1, ϵ

′
t,t+2, . . .)

′ a sequence of policy news shocks, i.e. exogenous shocks to
the future path of Pt that are released at time t. The policy rule (12) imposes no restrictions
as it allows the policy maker to respond to all available variables and shocks in the economy.
We normalize all policy news shocks ϵt to have unconditional mean zero with unit variance,
and to be uncorrelated with all non-policy news shocks and initial conditions. We collect
the coefficients of the policy rule in ϕ = {App,Apy,Apw,Bpx,Bpξ} and refer to these as the
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reaction function.
We denote by Φ the set of all reaction functions ϕ for which the model (11)-(12) implies

a unique equilibrium. A reaction function is optimal if it minimizes the unconditional loss
function. Specifically, we define the set of optimal reaction functions (there may exist more
than one optimal reaction function) as follows

Φopt =

{
ϕ : ϕ ∈ argmin

ϕ∈Φ
ELt s.t (11) − (12)

}
. (13)

The definition implies that we only consider optimal reaction functions that lie in Φ, i.e. the
set of reaction functions which imply a unique equilibrium.

For any ϕ ∈ Φ we can write the expected path of the policy objectives as a linear function
of the contemporaneous and expected future shocks as well as the initial conditions.

EtYt = Γ(ϕ)Ξt +R(ϕ)ϵt +H(ϕ)X−t , (14)

where X−t captures the state of the economy, and the maps Γ(ϕ) and R(ϕ) capture the causal
effects of the structural shocks Ξt and ϵt on the policy objectives. It is useful to realize the
similarity between (14) and (5) which was obtained for the illustrative New Keynesian model.
That static example is a special case with only contemporaneous policy shocks and where
initial conditions play no role.

Clearly, the maps Γ(ϕ) and R(ϕ) in (14) also depend on the environment as summarized
by θ, but since θ is not under the control of the policy maker we omit this from the notation.
The precise mapping from the model coefficients A.. and B.. to Γ(ϕ), R(ϕ) and H(ϕ) is
provided in Appendix A, but we will not require knowledge of this mapping in the main
text.

4 Measuring reaction function optimality
We propose to evaluate and rank policy makers or institutions based on their reaction func-
tions, i.e., on how well they reacted to the different non-policy shocks that hit the economy.
We postulate that each policy maker faces an economy that can be represented by the
generic model (11)-(12) where the parameters θ and ϕ may vary across policy makers. We
first develop the methodology for evaluating the reaction function of a single policy maker in
population. We then formalize how the methodology can be used to rank the performance
of multiple policy makers.
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4.1 Optimal reaction adjustments

Consider a policy maker with reaction function ϕ0 ∈ Φ. We do not assume that ϕ0 is
unknown to the researcher. Our evaluation of ϕ0 is based on measuring how far ϕ0 is from
the set of optimal reaction functions Φopt as defined in (13). We compute this distance in
the direction of the response to the state St which includes the structural shocks Ξt and the
initial conditions X−t.

Consider the augmented policy rule

A0
ppEtPt −A0

pyEtYt −A0
pwEtWt = (B0

px + TX)X−t + (B0
pξ + TΞ)Ξt + ϵt ,

where T = [TΞ, TX ] adjusts the ϕ0 response to the state St = (X′
−t,Ξ

′
t)

′. Given that ϕ0 ∈ Φ

we can combine this policy rule with the general model (11) to obtain the equilibrium
representation

EtYt = (Γ +RT )St +Rϵt , (15)

where R ≡ R(ϕ0) and Γ ≡ Γ(ϕ0). The equilibrium effect of T is found to be equal to RT St

on the objectives and is proportional to the effect of the policy news shocks as captured by
R.

In other words, as in the simple example, it is possible to compute the effect of a different
policy rule —changing the reaction to the non-policy shocks Ξt or the initial conditions Xt—
from the impulse responses to policy shocks. Such counter-factual analysis is fully robust
to the Lucas critique provided that in the (unspecified) underlying economic model, the
coefficients of the macro block in (11) are invariant to changes in the coefficients of the
policy rule (see Barnichon and Mesters, 2022; McKay and Wolf, 2022).

Similar to the simple New Keynesian example, the Optimal Reaction Adjustment (ORA)
is defined as the T that minimizes the expected loss function. Formally,

T ∗ = argmin
T

ELt s.t. EtYt = (Γ +RT )St +Rϵt . (16)

The ORA determines how the reaction coefficients in front of the state St should have been
adjusted to minimize the unconditional loss. A given (i, j) entry of T measures how the
policy maker should have responded differently to the jth non-policy input when setting the
ith policy instrument.

An explicit expression is given by

T ∗ = −(R′WR)−1R′WΓ , (17)

which exists provided that the inverse exists, and highlights that the ORA can be viewed
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as the projection of the impulse responses to non-policy shocks on the impulse responses
to policy shocks. The weighting matrix W incorporates the preferences of the researcher
who aims to determine how the reaction function should have been adjusted to achieve the
objective of minimizing the loss function (10).

The following proposition establishes the key property of the ORA.

Proposition 1. Given the generic model (11)-(12), with Φ non-empty, we have that

ϕ∗ ∈ Φopt , where ϕ∗ = {A0
pp,A0

py,A0
pw,B0

px + T ∗
X ,B0

pξ + T ∗
Ξ } ,

where T ∗ = [T ∗
Ξ , T ∗

X ] is defined in (16).

The vector St captures the inputs that enter the policy maker’s problem at time t:
the time t non-policy shocks and the initial conditions at t. As these shocks and initial
conditions affect the current and expected future path of the objectives through the reaction
function (among other channels), the ORA computes the optimal adjustment to the reaction
coefficients B0

px and B0
pξ, i.e. B0

px → B0
px + T ∗

X and B0
pξ → B0

pξ + T ∗
Ξ , in order to minimize the

unconditional loss function.

Subset optimal reaction adjustments

One difficulty in practice is that there often exists insufficient exogenous variation to identify
all impulse responses Γ and R. For instance, estimating R would require being able to
identify the contemporaneous shocks to all policy instruments as well as all the policy news
shocks that create exogenous variation in the expected policy paths.

Fortunately, in practice we can still compute the distance to a subset of all reaction
function coefficients. This allows to evaluate policy makers based on the specific structural
shocks that can be identified or have already been identified by the literature.

To set this up, we denote by Ra the effects of ϵa,t on EtYt under ϕ0, where ϵa,t is a vector
formed from any subset or linear combination of the policy news shocks ϵt. Similarly, denote
by Γb the impulse responses of subsets or linear combinations Sb,t on EtYt.

The subset ORA is defined as

T ∗
ab = argmin

Tab
ELt s.t. EtYt = (Γb +RaTab)Sb,t + Γ−bS−b,t +Rϵt , (18)

where R separates as [Ra : R−a] and Γ as [Γb : Γ−b]. Using that the structural shocks are
mean zero and uncorrelated we can derive the closed form solution

T ∗
ab = −(R′

aWRa)
−1R′

aWΓb , (19)
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which shows that the subset ORA is equal to the projection of the identifiable non-policy
impulse responses Γb on the identifiable policy impulse responses Ra.

We have the following result.

Corollary 1. Given the generic model (11)-(12), with Φ non-empty, we have that the adjusted
reaction function

ϕ∗
ab = {A0

pp,A0
py,A0

pw,B0
ab + T ∗

ab,B0
−a−b}

satisfies
ELt(ϕ

∗
ab) ≤ ELt(ϕ

0) ,

where B0
ab captures the entries of [B0

px,B0
pξ] corresponding to the responses of EtPa,t to Sb,t

and B0
−a−b denotes the remaining entries.

The corollary ensures that adjusting the given reaction function for the policy instruments
in the direction of the identifiable non-policy shocks lowers the expected loss function. The
intuition here is the same as in the previous section: adjusting B0

paξb
does not change the

coefficients in the economy and hence for the class of models (11) such change is robust to
the Lucas critique.

The result is of great practically relevant as it shows that researchers never have to
recover the entire causal maps Γ0 and R0 to evaluate the reaction function. For instance,
suppose a researcher is interested in testing the central bank’s reaction to an oil price shock
when setting the short term interest rate, then only the impulse responses of the researcher’s
objectives, say inflation and unemployment, to interest rate shocks and oil price shocks are
needed. Ideally, in this scenario we would include all interest rate news shocks, but in practice
we can conduct a subset test after only identifying, for instance, the contemporaneous policy
shock.

Some further intuition

Next, we briefly discuss a few intuitive ways of interpreting and deriving the subset ORA
statistic. For simplicity we consider the setting where ϵa,t is a scalar policy shock and ξb,t is
a scalar non policy shock.

First, we can interpret the ORA statistic as resulting from a two step procedure. We
start from the definition of the Tab adjusted equilibrium in (18), i.e. recall

EtYt = (Γb +RaTab)ξb,t + Γ−bS−b,t +Rϵt .

In a first step we project EtYt on the non-policy shock, recalling that all policy shocks have
unit variance we have

E(ξb,tEtYt) = Γb +RaTab .
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This step effectively isolates our object of interest —the response to the specific non policy
shock ξb,t—, and removes the confounding effects of the initial conditions and other shocks,
i.e. S−b,t and ϵt.

In the second step we then solve the policy problem in the projected space, i.e. we solve

T ∗
ab = argmin

Tab
(Γb +RaTab)

′W(Γb +RaTab) .

Second, the ORA statistic has an intuitive and interesting direct instrumental variable inter-
pretation. Specifically, the subset ORA statistic can be expressed as a population generalized
moment estimator for Tab in the expression

ξb,t = −Tabϵa,t + ηab,t , (20)

where the instruments used are Yt and the weighting matrix is W . Indeed, we have

T ∗
ab = − (E(ϵa,tY′

t)WE(Ytϵa,t))
−1 E(ϵa,tY′

t)WE(Ytξb,t)

= −(R′
aWRa)

−1R′
aWΓb .

Note that the linear projection of ξb,t on ϵa,t is zero by definition, as structural shocks are
uncorrelated by construction. In contrast, both shocks are are correlated with the policy
objectives (i.e. equation (14)) and the instrumental variable estimator is exactly the ORA
statistic: the first stage projects the structural shocks on the policy objectives and the second
stage projects the resulting impulse responses on each other.

This interpretation implies that if the structural shocks ϵa,t and ξb,t are directly observed
we can compute the ORA using a simply instrumental variable regression. In practice, we
do not recommend this approach as structural shocks are usually not observable, or at least
subject to measurement error (Stock and Watson, 2018), and replacing the shocks in (20)
by proxies subject to measurement error is not inconsequential.

Third and finally, the ORA statistic is related to the Optimal Policy Perturbation (OPP)
statistic that was introduced in Barnichon and Mesters (2022) for the evaluation of time-t
policy paths EtPt. Specifically, they considered the problem: how to set the policy path
EtPt in order to minimize the conditional loss function Lt. A key result was that the subset
OPP statistic

δa,t = −(R′
aWRa)

−1R′
aWEtYt ,

corrects the policy path in order to lower the conditional loss, i.e. EtPt+Ra,pδa,t lowers the
loss when compared to the initial path EtPt. Here Ra,p is the impulse response of Pt to the
policy shock ϵa,t.
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Hence, we can view the sequence of {δa,t} as corrections to the policy path over different
time periods in the direction of the identified policy shock ϵa,t. A limitation of δa,t is that it
does not allow the researcher to distinguish between the different sources of policy mistakes,
i.e. which shocks should the policy maker have responded to differently. The ORA statistic
solves this limitation by asking; how much of the average policy mistakes can be attributed
to any specific non-policy shock. Specifically, we have that

T ∗
ab = Cov(δa,t, ξb,t)

= −(R′
aWRa)

−1R′
aWΓb .

This derivation highlights that the ORA is an unconditional statistic, it captures the average
adjustment to the reaction function, that would have lowered the unconditional loss ELt.

4.2 Comparing policy institutions with ORAs

With the ORA and its properties established we now discuss how the ORA can be used
to compare policy institutions or policy makers. As examples we can think of evaluating
different central banks chairs based on their ability to control inflation and output gaps,
or different presidents of a country based on their ability to keep output close to potential.
Our comparisons are based on evaluating policy makers on their use of the same policy
instruments for offsetting the same non-policy shocks. As such we may generally compare
policy makers from the same institution across different time periods or policy maker from
different but comparable institutions from different countries.

Suppose that there are p policy makers that the researcher aims to compare. Each policy
maker faces an economy that can be described by the general model (11), but the parameters
θ that govern the model may vary across policy makers, say θj for j = 1, . . . , p. Similarly,
each policy maker is assumed to set policy according to the generic rule (12), but may use
a different reaction function ϕj. Following the notation defined above, let ϕ0

j denote the
chosen reaction function of policy maker j. We note that while here we treat the parameters
as fixed within the term of each policy maker, in our econometric implementation section
below we show how we can extend the approach to allow the parameters to change within
terms.

Using the methodology established above we can compute for any given policy maker
the distance to the optimal reaction function in any identifiable direction using the (subset)
ORA statistic. Specifically, let

T j∗
ab = −(Rj′

a WRj
a)

−1Rj′

a WΓj
b
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denote the subset ORA statistic for policy maker j in the direction of responding to non-
policy shocks Sb,t using the policy instruments moved by the policy shocks ϵa,t. We recall
that Rj

a and Γj
b are the impulse responses of the objectives with respect to the policy and non-

policy shocks computed under the reaction function ϕ0
j and given the economic environment

θj.
The ORA statistics take into account the preferences of the researcher over the different

objectives or ranking criteria. As such if the researcher has no further preferences over the
types of shocks we may simply aggregate the entries of T j∗

ab , i.e.

tj∗ab = ∥vecT j∗
ab ∥ , (21)

where any desired norm ∥·∥ can be used. We rank policy makers based on tj∗ab, for j = 1, . . . , p,
where the smallest value corresponds to the best performing policy maker. For interpretation
purposes it is generally useful to present the ranking separately for each combination of
instrument and non-policy input as each ranking is informative about a specific dimension
of policy.

In practice there could be cases where the researcher has preferences over the types
of non-policy inputs. For instance, when evaluating a central bank one may find it more
important that the central bank offset oil price shocks as opposed to TFP shocks. In such
cases a weighted norm can be used in (21) to aggregate the entries of T j∗

ab .

4.3 Computing ORA statistics

We discuss the computation of the optimal reaction function adjustments using observation
data. Without loss of generality we will consider the subset ORA statistic defined in (19).
Corollary 1 shows that if T ∗

ab ̸= 0 then ϕ0 is not optimal and adjusting by T ∗
ab brings the

reaction function closer to the set of optimal reaction functions.
The starting point is the equilibrium representation (14), restated here for convenience

EtYt = ΓSt +Rϵt .

Following empirical practice, we truncate the relevant horizon at H and define Yt:t+H =

(y′t, . . . , y
′
t+H)

′ as the evaluation criteria of interest at time t. Further, suppose that the policy
maker under consideration was active for periods t = 1, . . . , n during which the reaction
function ϕ0 was used.

The causal effects Ra and Γb can be estimated by considering

Yt:t+H = ΓbSb,t +Raϵa,t +Ut:t+H , t = 1, . . . , n, (22)
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where Ut:t+H includes all other structural shocks, both policy and non-policy inputs that are
not included in the selections a and b, respectively, as well as the forecast errors Yt:t+H −
EtYt:t+H .

We can recognize (22) as a system of stacked local projections (Jordà, 2005). This implies
that given (i) an appropriate identification strategy and (ii) an accompanying estimation
method, we can estimate the impulse responses Ra and Γb using standard local projection
methods. Any identification strategy — short run, long run, sign, external instruments,
etc — can be used, based on which an appropriate estimation method — OLS or IV, with
or without shrinkage, etc — can be selected, see Ramey (2016) and Stock and Watson
(2018) for different options. Moreover, we recall from Plagborg-Møller and Wolf (2021) that
in population local projections and structural VARs estimate the same impulse responses;
therefore all SVAR methods discussed in Kilian and Lütkepohl (2017), for instance, can also
be adopted for estimating the impulse responses Γb and Ra.

In sum, given (22), observational data that covers the term of the policy maker, and by
making use of the existing literature we can recover estimates for Ra and Γb. Here we will
not discuss any specific approach but instead directly postulate that the researcher is able
to obtain estimates, say R̂a and Γ̂b, which can be approximated by

vec

([
R̂a

Γ̂b

]
−

[
Ra

Γb

])
a∼ F ,

where F is some known distribution function that can be estimated consistently by F̂ . Such
approximation can be obtained for many impulse response estimators using both frequentist
(asymptotic and bootstrap) and Bayesian estimators.

Using the approximating distribution F̂ can simulate draws for Ra and Γb, and compute
T ∗
ab = −(R′

aWR′
a)

−1R′
aWΓb for each draw. Given the sequence of draws we can construct

a confidence set for T ∗
ab, or any of its individual entries at any desired level of confidence.

We note that if the distribution F is normal we can use the delta method to analytically
compute the distribution of T ∗

ab.

5 Evaluating US monetary policy, 1879-2019
In this section we use our methodology to evaluate the conduct of monetary policy in the US
over the 1876-2020 period using quarterly data. We consider four distinct periods: (i) the
Gold Standard period 1879-1912 before the creation of the Federal Reserve, (ii) the early Fed
years over 1913-1941, (iii) the post World War II period 1954-1984 and (iv) the post-Volcker
period over 1990-2020.
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During the Gold Standard period, there was no active monetary policy (the Federal
Reserve did not exist yet), and we use this period as a benchmark to see what a fictional
policy institution could have done in this period. A Gold Standard monetary regime is now
generally considered a sub-optimal regime with excessive fluctuations in inflation and unem-
ployment (e.g. Friedman and Schwartz, 1963). In that context, this passive monetary policy
period is instructive as a benchmark against which we can compare later Fed performances.
The early Fed period starts with the founding of the Fed in 1913 and ends with the US
entering the second world war. The post-war period starts in 1951 with the Fed regaining
some independence after the Treasury-Fed accord (e.g. Romer and Romer, 2004a).8 The post
Volcker period starts in 1984 —the beginning of the so-called Great Moderation period—
and ends right before the pandemic.

We evaluate the Fed as a policy institution based on the loss function

Lt =
1

2
Et

H∑
h=1

βh(π2
t+h + λu2

t+h) , (23)

where πt denotes inflation, ut the unemployment rate, β the discount factor and λ the
preference parameter. Our baseline choice for the loss function sets β = λ = 1 and considers
H = 20 quarters.9 Inflation is measured as year-on-year inflation based on the output
deflator from Balke and Gordon (1986). The unemployment rate before 1948 is taken from
the NBER Macrohistory database over 1929-1948 and extended back to 1876 by interpolating
the annual series from Weir (1992) and Vernon (1994). The top panel in Figure 1 shows the
time series for inflation and unemployment.

5.1 Naive approach

To provide a benchmark for our results, we first evaluate the Fed based on realized outcomes
for inflation and unemployment, as shown in Figure 1. In terms of first moments (first two
rows of 1), the Early Fed period fares very poorly because of high average unemployment
(driven by the Great Depression), while the post WWII period fares poorly because of high
average inflation (driven by the Great Inflation of the 1970s). Instead, the Gold Standard

8We exclude the period covering World War II until the Treasury-Fed accord of 1951, as the Fed was
financing the war effort and had no independence. In April 1942, at the request of the Department of the
Treasury, the Fed formally committed to maintaining a low interest-rate peg on short-term Treasury bills
and also implicitly capped the rate on long-term Treasury bonds. The goal of the peg was to stabilize the
securities market and allow the federal government to engage in cheaper debt financing of World War II. This
system lasted until the 1951 Treasury-Fed accord separated government debt management from monetary
policy (Romero, 2013).

9The robustness of our findings with respect to these choices is assessed in the web-appendix. We stress
that the choice for the loss function is merely an evaluation criteria in our context what the true loss function
of the different Fed chairs was is irrelevant from our perspective.
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period appears (perhaps surprisingly given common wisdom) as the most successful monetary
regime, even better than the post Volcker period often referred to as the Great Moderation.
In terms of second moments however (last two rows of 1), the Pre Fed period now also fares
poorly out with very high inflation volatility, at least much higher than after World War II,
though again the worse period is the early Fed with very high volatility in both inflation
and unemployment. The post-Volcker period shows the most stable inflation by far, though
the volatility of unemployment is comparable to that found in the Pre Fed and post WWII
periods. Overall, the Post Volcker period appears as the most successful one, followed by the
Post WII and the Pre Fed period roughly on a par, and with the Early Fed period displaying
the worse outcomes by far.

Unfortunately, these unconditional realized outcomes cannot be used to assess monetary
policy performance. While they could be due to poor monetary policy —an inadequate
reaction function—, many co-founding factors outside the Fed control could also explain
those results. For instance, the poor realizations in terms of inflation and unemployment over
1913-1941 could have been caused by bad luck (an unfortunate sequence of shocks), adverse
initial conditions or by a difficult economic environment. Similarly, the good performance of
the economy in the Post Volcker period could be the outcome of good luck instead of good
policy.

To assess policy performance across time, we thus turn to the ORA methodology proposed
in this paper.

5.2 Econometric implementation for ORA

To evaluate policy performance, we will assess how well the monetary authorities adjusted
the contemporaneous policy rate in response to five separate non-policy shocks: financial
shocks, government spending shocks, energy price shocks, inflation expectation shocks and
TFP shocks.

This requires identifying six structural shocks: (i) shocks to the contemporaneous policy
rule —the traditional monetary shock—, and (ii) the five non-policy shocks listed above, as
we describe below.

To estimate the corresponding impulse responses, we rely on a Bayesian structural vector
autoregressive model (SVAR) that includes a proxy for the policy shock, the non-policy
shock, the outcome variables πt and ut, the growth rate of the monetary base, the policy
rate, as well as possibly additional control variables wt. During the 1879-1912 Gold Standard
period where there is no policy institution, we take the 3-months treasury rate as the “policy
rate” that a fictitious central bank could have controlled. For the 1913-1941 early Fed period,
we use the fed discount rate as the policy rate. To capture the policy stance during the post

22



WWII periods, we use the fed funds rate as the policy rate. The specific additional variables
wt and instruments zt are discussed in detail below. The historical monetary data are taken
from Balke and Gordon (1986)

The SVAR is specified for yt = (xit, πt, ut, ϵt, pt, w
′
t)

′, where wt denotes additional control
variables. We have

A0yt = A1yt−1 + . . .+ Apyt−p + et , (24)

where A0, . . . , Ap are the coefficient matrices and et captures the structural shocks. ϵt is
chosen as the conventional contemporaneous monetary policy shock, and ξt can correspond
to shock to energy prices, financial intermediation, productivity, government spending and
inflation expectations, see the discussion below.

We estimate the reduced form of the SVAR model using standard Bayesian methods,
which shrink the reduced form VAR coefficients using a Minnesota style prior. The prior
variance hyper-parameters follow the recommendations in Canova (2007). Importantly, while
we rely on a structural VAR for estimating the impulse responses, other estimation methods
could have been used, for instance local projections (Jordà, 2005; Stock and Watson, 2018).

We normalize all shocks such that they have unit variance which can be implemented
in practice by computing the conventional one standard deviation impulse responses. This
scaling is important to ensure comparability of the shocks across periods. With the draws of
the parameters from the posterior density we compute the impulse responses R0 and Γ0, and
the subset ORA statistic T ∗

0 using (18). Besides reporting Γ0 we also report the adjusted
Γ0 + R0T ∗

0 to assess how the impulse response to the non-policy shocks could have been
adjusted.

5.3 Shock identification

For each of our periods, we aim to identify a contemporaneous monetary policy shock and
five non-policy shocks: financial shocks, government spending shocks, energy price shocks,
inflation expectation shocks and TFP shocks.

5.3.1 Monetary policy shocks

We consider two main approaches for identifying monetary policy shocks. As our baseline
identification scheme for monetary shocks, we use the state of the art in the literature, relying
as much as possible on a narrative approach. As robustness, we also use a sign restriction
identification.

Pre Fed regime For the Pre Fed Gold Standard period, there is no clear baseline identi-
fication approach to identify monetary shocks, and we propose a new approach that exploits
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the unique feature of the Gold Standard. Under a Gold Standard, the monetary base depends
on the amount of gold in circulation, which can itself vary for exogenous reasons related to
the random nature of gold discoveries or development of new extraction techniques (e.g.,
Barsky and De Long, 1991). As such, we use unanticipated large gold mine discoveries (dis-
coveries that led to gold rushes) as an instrument for movements in the monetary base. To
the extent that the timing of the discovery is unrelated to the state of the business cycle,
gold mine discovery will be a valid instrument. Mirroring Gold discovery, we will also use
peak mine extraction —the moment where the mine output reached its peak production—.

Figure ?? plots gold production along with our identified dates: the peak of the Comstock
Lode mine in Nevada in 1877-Q1, the discovery of Gold in Alaska in 1896-Q3 (which led
to the Alaska gold rush), the discovery of large Gold mines in Nevada in 1902-Q1 (which
led to the Nevada gold rush), the Nevada gold mine maximum in 1910-Q1.10 Given the
unpredictability of the amount of gold available in any given region (either at the onset of a
gold rush or at its zenith), we can consider these events as unanticipated. We code the Gold
shocks as one when a new mine was discovered and minus one when the peak was reached.

Early Fed regime During the Early Fed period we use the Friedman and Schwartz (1963)
dates extended by Romer and Romer (1989) as instruments to identify monetary policy
shocks. We include five episodes —1920Q1, 1931Q3, 1933Q1, 1937Q1 and 1941Q3— where
movements in money were “unusual given economic developments” (Romer and Romer,
1989). In the words of Romer and Romer (1989), these “unusual movements arose, in
Friedman and Schwartz’s view, from a conjunction of economic events, monetary institutions
and the doctrines and beliefs of the time and of particular individuals determining policy”.
The Friedman and Schwartz (1963) dates are also modeled using dummies.

Post World War II regime For the Post World War II period we use the Romer and
Romer (2004b) identified monetary policy shocks as instruments.

Post Volcker regime For the Post Volcker period we use the high-frequency identification
(HFI) approach, pioneered by Kuttner (2001) and Gürkaynak, Sack and Swanson (2005),
and use surprises in fed funds futures prices (FF4) around FOMC announcement as proxies
for monetary shocks.

Alternative identification scheme One limitation of using different shock proxies over
the different regimes is that each proxy may have different characteristics that could affect the

10Another important date is the Alaska gold mine maximum in 1915, though it is not useful in this context
since the strict gold standard era stops in 1913 with the founding of the Fed.
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results and the ORA comparison across periods.11 To guard ourselves against this possibility,
we will also use an identification of monetary shock that is consistent across regimes, which
will ensure that the monetary shocks are defined and identified in the exact same way across
regimes. Specifically, we use sign restrictions, another popular method to identify monetary
shocks (e.g., Uhlig, 2005). This approach has the benefit that it can be implemented over
the entire sampling period. With the VAR including inflation, unemployment, the policy
rate and the growth rate of the monetary base, we impose the following sign restrictions:
a positive monetary shock raises the short-term rate in impact, lowers money growth on
impact, lowers inflation after four quarters and raises unemployment after four quarter.
Other than that, the responses are unconstrained. As we will see the results from the sign
restricted identification scheme are remarkably in line with the results obtained with our
baseline identification of monetary shocks.

5.3.2 Non-policy shocks

Financial shocks As our main financial shocks we use narratively identified bank panics
as directly as an observable shock series. Each included panic was triggered by either a run
on a particular trust fund or by foreign developments. The dates for the banking panics
are taken from Reinhart and Rogoff (2009), Schularick and Taylor (2012) and Romer and
Romer (2017). To capture the severity of the bank run, each non-zero entry is rescaled by the
change in the BAA-AAA spread at the time of the run, similar to the re-scaling of Bernanke
et al. (1997) and in the spirit of Romer and Romer (2017)’s scaling of their financial distress
index.12 The use of banking panics comes with two concerns. First, a potential worry is that
these banking panics are themselves due to the inflation and unemployment outlook, making
the banking panic dummy endogenous. Second, there are no major bank runs over our post
WWII period. Therefore, as an alternative strategy, we use innovations to the corporate
credit spread (BAA-AAA) available over 1919-2019, effectively regressing the spread on
current and past values of inflation, unemployment, real GDP growth, as well as lags of
the 3-month and 10-year treasury rates. This identification amounts to a recursive ordering
where the identifying assumption is that inflation and unemployment react with a quarter
lag to innovations to the corporate credit spread.

11For instance, exogeneity and relevance may differ across instrumental variables, see e.g., Barnichon and
Mesters (2020) for a discussion of the different strengths and limits of the Romer and Romer (2004b) and
the Gürkaynak, Sack and Swanson (2005) shock proxies.

12Using bank runs as 0-1 dummies does not change conclusions drastically though it makes the estimates
a bit less precise. Since the time series for AAA yields only start in 1919, we backcasted AAA yields before
1919 with yields on 10-year maturity government bonds from the Macro History database (Jordà et al.,
2019).
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Government spending shocks For government spending shocks we consider news shocks
to defense spending as constructed in Ramey and Zubairy (2018).

Productivity shocks To identify productivity shocks we use the identification scheme of
Gali (1999) and Barnichon (2010): we estimate bi-variate VARs with log output per hour
and unemployment over each policy regime, and we impose long-run identifying restrictions,
specifically that only productivity shocks can have permanent effects on productivity. The
quarterly time series for output per hour is taken from Petrosky-Nadeau and Zhang (2021)
and starts in 1890.

Energy shocks To identify energy shocks, we extend the approach of Hamilton (1996)
and Hamilton (2003) by identifying energy shocks as instances when energy price rises above
its 3-year maximum or falls below its 3-year minimum. Since coal was the primary US energy
source until World War II and oil only became the pre-dominant energy source after World
War II, we measure energy price prices from the wholesale price index for fuel and lighting,
available over 1890-2020.

Inflation expectation shocks An important feature of a successful central bank is the
anchoring of inflation expectations. In this context, we aim to measure how well the Fed has
been responding to innovations to inflation expectations, with the clear example being the
de-anchoring of inflation expectations in the 1970s. To do so, we aim to identify inflation
expectation shocks, meant to capture threats to the anchoring of inflation expectations.

As measure of inflation expectations, we rely on the Livingston survey that has been
continuously run over 1946-2019.13 Of interest for us, the Livingston survey includes a
question about 8-months ahead inflation expectations. Prior to World War II, there are no
systematic inflation expectation survey , so we instead rely on Cecchetti (1992)’s measure
of inflation expectations for the Early Fed period.14

To identify innovations to inflation expectations, we proceed similarly to Leduc, Sill
and Stark (2007) and project inflation expectations on a set of controls that include past
values of inflation expectation, inflation, unemployment, lags of the 3-month and 10-year
treasury rates. In addition, we also project on current and past values of the other identified
non-policy shocks: financial, government spending, energy price and TFP. The idea of this

13The Livingston survey is conducted with a pool of professional forecasters from non-financial businesses,
investment banking firms, commercial banks, academic institutions, government, and insurance companies,
see (Leduc, Sill and Stark, 2007).

14Cecchetti (1992)’s measure of inflation expectations relies on Mishkin (1981)’s insight that the ex-
ante real interest rate can be recovered from a projection of the ex-post real interest rate on the time t
information set. The difference between the ex-ante and ex-post real interest rate provides a measure of
inflation expectations.
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exercise is to capture movements in inflation expectations that cannot be explained by the
other shocks, i.e., that go above and beyond the typical effect of the non-policy shocks on
inflation expectations.

5.4 Results

We split our results into two parts. First, we discuss the ORA statistics and compare the
Fed over time. Second, we zoom in on the specific sub-periods and assess the economic
magnitudes of the improvements in the reaction function.

ORA-based assessments of monetary policy over 1879-2019

Table 2 shows the baseline ORA statistics computed using our baseline monetary policy
shocks and baseline non-policy shocks. The key benefit of the ORA is that the distance
to the optimal reaction coefficient is comparable across periods —capturing how the policy
maker should have adjusted its reaction to the same non-policy shock—, so that elements
within the same columns are comparable and allow to compare policy performance (with
respect to a specific non-policy shock) across periods. Moreover, while the magnitude of
the reaction function adjustment is difficult to interpret economically,15 the sign is easy to
understand: a negative sign implies that the policy response was too weak (i.e., too passive
) in the face of a given type of shock.

Overall, we find strong improvements in the conduct of monetary policy, but only in the
last 40 years, i.e., since Volcker started its dis-inflation program. Before that, we repeatedly
estimate large and significant ORAs to non-policy shocks, particularly before World War
II, but also after 1951 with monetary policy being generally too passive in the face of both
aggregate demand type shocks and aggregate supply type shocks.

We first describe the general results, contrasting performance across the different periods,
before turning to the more specific results in the next section.

During the Gold Standard period, monetary policy is (unsurprisingly) too passive in the
face of adverse shocks: whether these are bank runs, military build ups or technological
progress.16

Interestingly, this excess passivity continues to hold (in fact worsens) after the creation
15Recall that the ORA is a reaction coefficient adjustment. For instance, an ORA of 0.5 means that in

response to a 1 standard deviation non-policy shock, the reaction coefficient should have 0.5 point larger in
order to minimize the loss function., i.e., to best stabilize the impulse responses to that non-policy shock. The
ORA is difficult to interpret economically in terms of impulse responses because that coefficient adjustment
will also affect the equilibrium allocation indirectly through the feedback terms in the policy rule.

16Interestingly, the response to energy price shocks is appropriate because energy price shocks only increase
inflation for a short time only, too fast for monetary policy (and its transmission lags) to have time to
materially prevent the inflation increase, see Figure S9 in the Appendix.
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of the Fed. We find that the Early Fed not only responds much too little in the face of bank
runs —a result echoing previous findings in the literature (e.g., Friedman and Schwartz, 1963;
Hamilton, 1987)—, but also in the face of government spending shocks —letting government
spending shocks excessively affect unemployment and inflation— or to inflation expectation
shocks, in particular not reacting enough to the negative inflation expectation shocks of
1931-1932—.

US monetary policy during the 1970s has generally been considered poor (e.g., Romer
and Romer, 2004a), in particular not responding more than one-to-one with changes in
inflation (Clarida, Galí and Gertler, 2000) and violating the so-called Taylor principle. Table
2 confirms and generalizes this assessment to most aggregate shocks: the reaction function is
too weak in the face of increasing government spending shocks, energy prices and especially
inflation expectations. This latter result extends the findings of Leduc, Sill and Stark (2007)
that the largest deviations from the Taylor principle —the failure to raise the real rate in
the face of rising inflation— were in terms of the response to inflation expectation shocks.
Importantly however, the ORA allows to go much further by measuring not just whether
the Taylor principle holds or not but also by how much the policy rule should have been
adjusted in order to minimize the loss function. We will come back to these important points
in the next section.

Last, the post Volcker shows improvements in monetary policy across all dimensions, with
ORA statistics much smaller than in the earlier regimes, and not statistically significant.
The exception is the response to financial shocks, where the deviation from optimality is
significant, though much smaller than during the Great Depression. The presence of the
zero lower bound does seem to have limited somewhat the Fed’s ability to best react to the
2007-2008 financial crisis, echoing earlier results that fed funds rate policy was constrained
by the zero lower bound over 2009-2013 (Barnichon and Mesters, 2022).

ORA-based adjustments to monetary policy over 1879-2019

The ORAs reported in Table 2 capture how much the Fed should have adjusted the reaction
coefficient its contemporaneous policy rate to a one standard-deviation non-policy shock
in order to minimize the unconditional loss function (23). While the ORAs are useful to
compare reaction functions across periods, the magnitudes can be hard to interpret. In
addition, we will show how the ORA affects the impulse responses to non-policy shocks,
effectively showing how these optimal reaction adjustments translate into different policy
path responses to non-policy shocks and “improved” (i.e., more stable) impulse responses of
inflation and unemployment.

The appendix display all the ORA-adjusted impulse responses, but we will discuss the
most interesting ones in the main text.
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Responding to financial shocks For the early Fed period, we estimate a particularly
large ORA statistic in response to financial shocks, and Figure 3 displays the corresponding
impulse responses underlying this ORA estimated over 1913-1940. For comparison, Figure
4 displays the same impulse responses but estimatd over 1990-2019. In both figures, the
top row shows the impulse responses of inflation, unemployment and the interest rate to
a monetary policy shock.17 The bottom rows show the responses of the same variables to
a financial shock: for both periods, inflation contracts whereas unemployment increases,
though the inflation response is more muted for the post-Volcker period, again consistent
with the anchoring of inflation expectations.

The ORA adjusted impulse responses Γb + RaT ∗
ab in the bottom rows of Figures 3 and

4 (dashed green lines) show how adjusting the reaction coefficient to financial shocks would
have changed the impulse responses of inflation, unemployment and the policy rate. For
the early Fed period, we find that in response to an adverse shock, the Fed raised the
discount rate. In other words, the Fed was not only too passive, but in fact was following a
contractionary policy. Combined with the decline in inflation caused by the financial shock,
this means that the real policy rate increased substantially following financial shocks. This
finding echoes an earlier literature on the monetary factors behind the Great Depression
(e.g., Friedman and Schwartz, 1963; Hamilton, 1987). Instead, the ORA calls for lowering
the discount rate. Since this lower policy rate also mutes the inflation decline, this means
that the real policy rate now declines in response to a financial shock: an expansionary
monetary policy. In contrast, in the post Volcker period, the ORA calls for little adjustment
to the path of the fed funds rate.

Responding to energy price and inflation expectation shocks Figures 5 and 6 plot
impulse responses estimated over the post WWII period. The impulse response to monetary
shocks are in line with earlier evidence (e.g., Coibion, 2012). In response to an energy price
shock or an inflation expectation shock, inflation rises progressively, while the policy rate
response is relatively mild. In fact, in both cases the real interest rate declines following an
energy price shock or inflation expectation shock. In other words, the Taylor principle is not
satisfied, a finding echoing an earlier literature on the performance of the Fed during the
1970s (Clarida, Galí and Gertler, 2000; Leduc, Sill and Stark, 2007). However, the ORA goes
further and allows us to compute how the policy rate should have responded to these shocks,
as displayed by the dashed green lines. The ORA adjustment restores the Taylor principle
and the real rate rises following both shocks. Most striking is the large response of the policy
rate to an inflation expectation shock (lower-right panel, Figure 6), which contrasts with the

17Note that the magnitude of the response of inflation is very different across the periods; the responses
being much small in the post Volcker period, consistent with the anchoring of inflation expectations in the
recent period (e.g., Gürkaynak, Levin and Swanson, 2010).
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absence of response before ORA adjustment.

Responding to government spending and TFP shocks While earlier studies of Fed
performance have generally focused on the (weak) response of the Fed to financial distress
in the early 1930s or to the (weak) response of the Fed to inflationary pressures during the
1970s, our approach allows to study and compare performance in response to many other
shocks. Figures 7 plots the impulse responses to negative government spending shocks in
the Early Fed period. We can see that the Fed’s excessive passivity extends to government
spending shocks as well. In fact, instead of lowering the discount rate to tame the rise in
unemployment following a decline in government spending, the Fed was actually raising the
discount rate, worsening the negative unemployment effect of the adverse shock to public
spending (green line, lower right panel).

In a similar vein, Figure ?? plots the impulse responses to negative TFP shocks for the
post WWII period. Again, the Fed response is too weak, leading to excessive inflation. The
ORA adjustment restores a contractionary monetary policy by raising the real interest rate
following an adverse TFP shock (green line, lower right panel).

Counterfactual historical policy scenarios

With the ORA in hand, we can also create counter-factual historical policy scenarios, in
which the coefficients of the policy rule are adjusted according to our median ORA estimates.
Figure 9 plots the effects of the ORA adjustments on the paths of the policy rate, the inflation
rate and the unemployment rate. These counter-factuals are interesting from a historical
perspective, highlighting moments in time where the monetary authority could have reacted
differently to key events.

Specifically, given the identified non-policy shocks Ξb,t, we can compute ∆yt, the effects of
the ORA adjustments on the macro objectives, and ∆pt, the effects of the ORA adjustments
on the policy rate from

∆yt = Ry,a ∗ T ∗
abΞb,t and ∆pt = Rp,a ∗ T ∗

abΞb,t , (25)

where ∗ is the convolution operator, Ry,a and Rp,a are the impulse responses of the macro
objectives and the policy rate to a contemporaneous policy shock, and Ξb,t denotes the five
types of non-policy shocks that we considered: financial, government spending, energy price,
inflation expectation and TFP. In addition, Figure 10 decomposes the total adjustments to
the policy rate (∆pt) over each period by isolating the contribution of each one of the five
non-policy shocks. This decomposition allows us to pinpoint why the policy rate should have
been different at any particular point in time.
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We stress that the magnitudes of these counterfactuals ∆yt and ∆pt cannot be interpreted
as magnitudes of policy “failures” across periods, as these magnitudes are not comparable
across periods. The reason is that if the economic environments are different across periods
(as is most likely the case), a given Optimal Rule Adjustment can have different effects on the
endogenous variables (inflation, unemployment and the policy rate): the effects can can be
amplified or reduced depending on the economic environment and on the other parameters
of the policy rule.18

In the pre Fed period, there were substantial deviations from an optimal reaction coeffi-
cients, calling for lower interest rates (about 3/4 ppt) in the aftermaths of the 1893 and 1907
bank runs, as well as higher interest rates in response to higher military spending following
the war against Spain in 1898, and the navy build-up of 1902-1904 (Figure 10, left column).
That said, over the per Fed period, our identified non-policy shocks explain only a small
share of the total variance of inflation and unemployment over 1879-1912, so that the ORA
corrections only have a moderate effect on the behavior of inflation and unemployment over
that period.

In the early Fed period, the ORA calls for large adjustments. First, the large increase in
military spending over 1918 is responsible for part of the inflation outburst in 1919-1920, and
the ORA calls for an almost 1ppt higher discount rate to tame that increase. Second, and
most strikingly, the ORA calls for large adjustments in the early stage of the Great Depression
(1931-1932). In response to the bank runs and the negative inflation expectation shocks of
1931 (Figure 10), the ORA cancels the discount rate increases observed in 1931 —hikes
often been blamed for turning the initial recession caused by the 1929 stock-market crash
into a full blown depression (e.g., Hamilton, 1987)— and subsequently lowers the discount
rate all the way to almost (but still above) zero in 1932. This would have avoided about
10 percentage points in unemployment —as much as half of the rise in unemployment over
1930-1932— as well as the deflation. The re-inflation shock following Roosevelt’s election
would have then been countered by a higher discount rate.19

Turning to the post world war II period, the ORA calls for substantially higher fed funds
rate throughout the 1960-1980 period. While the ORA does call for more tightening (about
1/2 ppt) in the face of large government programs related to US space program in the early
60s and the Vietnam war in the second half of the 60s, the largest adjustments by far occur
during the 70s (as much as 6 ppt higher fed funds rate) in response to the oil price shocks
of 1974 and 1979 and the inflation expectation shocks occurring during that period. With

18In other words, while the ORAs are comparable across periods —depending only on how well the policy
maker reacted to a specific non-policy shock—, the counterfactuals ∆yt and ∆pt are affected by other factors
outside the policy maker’s control.

19Of course, had the US avoided the deflation and the large unemployment run-up, such a re-inflation
shock would not have happened, for instance because Roosevelt may not even have been elected. This
counter-factual exercise is based on an ex-post realization of shocks.
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such strong response, as much as about 5 ppt of inflation could have been avoided (at the
cost of relatively mild extra unemployment), see Figure 9. In fact, one might argue that the
“trend” inflation of the 1970s could have been avoided.

In contrast, during the post Volcker period, the ORA policy rate adjustments are small
and never significantly different from zero.

Robustness

We considered two main robustness exercises. First, we consider robustness to identification
of monetary shocks, and table 3 shows the ORA statistics estimated using sign-identified
monetary policy shocks. The results are remarkably consistent with our baseline estimates,
with ORAs generally of similar magnitudes and same levels of statistical significance.20

Second, we consider robustness to the definition of the monetary period. Table 4 display
ORA estimated for alternative definition of the monetary regime: (i) the Gold Standard
period over 1979-1932,21, (ii) the interwar period after the US went off the Gold Standard
in 1933, (iii) the Bretton Woods system (1946-1971), (iv) the post Bretton Woods period
until the beginning of the Great Moderation (1971-1984), and (v) a pre Volcker period
(1951-1979).22

Overall the results confirm our previous conclusions. An interesting and novel result is
the comparison between the Bretton Woods and the Post Bretton Woods periods. Notably,
the Fed’s reaction to public spending shocks is too passive during the 1960s. The shocks of
the 1960s were most positive, capturing two large government programs related to US space
program in the early 60s and the Vietnam war in the second half of the 60s. Thus, our
estimated ORA implies that the Fed did not raise the policy rate enough in the face of these
large government programs, confirming earlier narrative evidence of a too soft reaction of
William Martin’s Fed during that period Romer and Romer (2004a); Hack, Istrefi and Meier
(2023). In contrast, it is during the 1970s that Arthur Burn’s Fed is too passive in the face
of energy price shocks and inflation expectation shocks.

20As a third alternative identification of monetary shocks, we identified monetary shocks using short run
restrictions (e.g. Sims, 1980). The results were also similar, so that overall our results are remarkably similar
across the three different identification approaches.

21In the baseline specification, we treated the Early Fed period as different from the Gold Standard, as the
Fed had considerably leeway in varying its god cover ratio. That said, the extent to which the Gold Standard
limited Fed monetary policy remains a debated question (e.g., Eichengreen, 1992; Hsieh and Romer, 2006).

22A practical limitation is that each sample period must be large enough to allow for the estimation of the
sufficient statistics R and Γ with “reasonable” precision. This minimum sample size depends on the number
of observation but also on the number and the size of the shocks that hit the economy over that period.
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6 Conclusion
In this paper, we showed that it is possible to evaluate and compare policy makers based
on the distance-to-optimality of their reaction function coefficients to well-chosen non-policy
shocks. We introduced ORA statistics to measure the distance and showed that these could
be computed from two sufficient statistics: (i) the impulse responses of the macro objectives
to non-policy shocks, and (ii) the same impulse responses to policy shocks. Importantly,
explicit knowledge of the policy maker’s reaction function is not necessary, because the
effect of an (unspecified) reaction function is already encoded in the impulse responses to
shocks, which are estimable.

Intuitively, our approach consists in projecting the policy objectives on the space spanned
by non-policy shocks and then studying the optimal policy problem in that sub-space.
Thanks to the projection, it is possible to evaluate the optimality of a specific reaction func-
tion coefficient: how “well” the policy maker or institution reacted to a specific non-policy
shock over a given period. The idea is then to compare policy makers by comparing their
distance to the optimal reaction coefficient to the same non-policy shock. Since computing
the distance to the optimal reaction coefficient only requires impulse response estimates, it
becomes possible to evaluate and compare policy makers or policy institutions across time
or even space.

While this paper studied the performance of US monetary policy over the past 150 years,
the methodology could be applied to many other important questions, such as comparing
the performance of different central banks over the same period, e.g., the Fed vs the ECB
during the Great Recession, or comparing the performances of policy makers over time, e.g.,
democrats vs republicans (Blinder and Watson, 2016).
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Appendix A: Equilibrium relationships
We briefly discuss how the general model (11)-(12) can be written as (14). Define

A =

 Ayy Ayw Ayp

Awy Aww Awp

Apy Apw App

 , B =

 Byξ

Bwξ

Bpξ

 , J =

 0
0
I

 and Zt =

 Yt

Wt

Pt

 . (26)

The model (11)-(12) is equivalent to

AEtZt = BEtΞt + JEtϵt .

For any ϕ ∈ Φ we have that there exists unique equilibrium representation. This implies
that A is invertible and we obtain

EtZt = A−1B︸ ︷︷ ︸
=D1

EtΞt +A−1J︸ ︷︷ ︸
=D2

Etϵt .

The block structure of D1 and D2 is given by

D1 =

 Γ
D1w

Θξ

 and D1 =

 R
D2w

Θϵ

 ,

where the maps Γ and R appear in the first position as they capture the effects of the shocks
on EtYt. The other maps capture the effects of the shocks on the endogenous variables EtWt

and EtPt.

B: Proofs
Proof of Proposition 1. Let T be a linear map, sufficiently small such that ϕ = {A0

pp,A0
py,A0

pw,B0
pξ+

T } ∈ Φ. If ϕ0 ∈ Φopt, ELt cannot be lowered by any T ̸= 0. Similar as in (14) we obtain
the equilibrium representation

Yt = (Γ0 +R0T )EtΞt +Vt ,

where Vt = R0Etϵt + Yt − EtYt and note that E[EtΞtV
′
t] = 0. The expected loss ELt

becomes

ELt =
1

2
E
(
[Γ0 +R0T ]EtΞt +Vt

)′ W (
[Γ0 +R0T ]EtΞt +Vt

)
=

1

2
Tr
{
[Γ0 +R0T ]′W [Γ0 +R0T ]ΣΞ

}
+

1

2
E (V′

tWVt)

The derivative of the map T → ELt is given by

R0′W(Γ0 +R0T )ΣΞ . (27)
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Evaluating at T = 0 and setting the derivative to zero implies

R0′WΓ0 = 0 ,

is a necessary condition for optimality. Noting that T → ELt is a convex map, it follows that
R0WΓ0 = 0 is also sufficient for T = 0 being a global minimizer, and thus ϕ0 ∈ Φopt.

Proof of Corollary 1. The left hand side of (??) is equivalent to the subset of (27) corre-
sponding to a, b and after post-multiplying (??) by Σ−1

Ξ . The right hand side follows by
direct calculation. The second part follows directly by noting T ∗

a,b sets the local gradient to
zero, hence it lowers the loss convex loss function.
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Figure 1: Inflation and unemployment, 1876–2020
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Notes: Year-on-year inflation based on the output deflator and the unemployment rate. The vertical lines
highlight the different periods: pre-Fed 1879-1912, early-Fed 1913-1941, post-WWII 1951-1984 and post-
Volcker 1990-2020.
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Figure 2: Pre Fed, 1879-1912, Reaction to Financial shocks
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Notes: The top (resp.) row shows the median responses (thick line) of inflation, unemployment and the 3-
months treasury bill (the “policy” rate) to a monetary policy shock ϵ (resp. financial shock ξ). The bottom
row shows the median responses (thick line) of inflation, unemployment and the policy rate to a bank panic.
The dotted green lines show the ORA adjusted impulse responses Γ0

0 + R0
0τ

∗
0 . The 95% and 67% credible

sets are plotted as dark and light shaded areas, respectively.
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Figure 3: Early Fed, 1913-1941, Reaction to Financial shocks
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ORA adjusted impulse responses Γ0
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∗
0 . The 95% and 67% credible sets are plotted as dark and light

shaded areas, respectively.
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Figure 4: Post Volcker Fed, 1990-2019, Reaction to Financial shocks
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Figure 5: Post WWII Fed, 1951-1984, Reaction to Energy shocks
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ORA adjusted impulse responses Γ0
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0 . The 95% and 67% credible sets are plotted as dark and light

shaded areas, respectively.
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Figure 6: Post WWII Fed, 1951-1984, Reaction to πe shocks
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Figure 7: Early Fed, 1913-1941, Reaction to G shocks
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Figure 8: Post WWII Fed, 1951-1984, Reaction to G shocks
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Figure 9: ORA corrections over 1879-2019
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Table 1: Realized Outcomes

Pre Fed Early Fed Post WWII Post Volcker
1879-1912 1913-1941 1951-1984 1990-2019

π 0.4 1.9 4.3 2.0
u 5.3 10.2 5.6 5.9
Var(π) 19.4 90.1 7.7 0.5
Var(u) 3.5 48.6 3.2 2.6

Notes: π and u denote the sample means of inflation and unemployment, and Var(π) and Var(u) denote the
sample variances of inflation and unemployment, as computed over the different periods.
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Table 2: ORA statistics for US monetary policy

Non-policy shock Bank panics G Energy πe TFP
Shock sign convention u ↑ u ↑ π ↑ π ↑ π ↑

Pre Fed
1879−1912

−0.9∗

(−1.5,−0.3)
−0.6∗

(−1.3,0)
−0.1

(−0.5,0.4)
— 0.6

(−0.2,1.1)

Early Fed
1913−1941

−1.2∗

(−1.9,−0.8)
−0.5∗

(−0.9,−0.1)
0.0

(−0.3,0.3)
0.7∗
(0.3,1.0)

0.1
(−0.2,0.5)

Post WWII
1951−1984

— −0.2
(−0.8,0.3)

0.8∗
(0.1,1.4)

1.2∗
(0.6,1.8)

0.5
(−0.2,1.2)

Post Volcker
1990−2019

−0.1
(−0.5,0.5)

0.1
(−0.7,1.0)

0.2
(−0.5,1.1)

−0.1
(−0.4,0.4)

−0.1
(−0.6,0.2)

Notes: Median ORA statistics together with 68% credible sets. The monetary policy shocks are identified
as described in main text: using gold rush discovery in the pre-Fed period, Romer and Romer (1989)’s
Friedman-Schwartz dates in the early Fed period, Romer and Romer (2004) monetary shocks for the post
WWII period and high-frequency surprises in the post Volcker period. The financial shocks are bank panics
or innovations to the BAA-AAA spread, the government spending shocks are from (Ramey and Zubairy,
2018, G), TFP shocks from (Gali, 1999, TFP), energy shocks are computed using the peak-over-threshold
approach of Hamilton (1996), and inflation expectation shocks (πe) are innovations to inflation expectations
as measured from Cecchetti (1992) for Early Fed period and from the Livingston survey (Post WWII and Post
Volcker periods). For the Pre Fed period the TFP, G and Energy ORAs are computed over the 1890-1913
period.
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Table 3: ORA statistics, sign-based identification

Non-policy shock Bank panics G Energy πe TFP
Shock sign convention u ↑ u ↑ π ↑ π ↑ π ↑

Pre Fed
1879−1912

−0.6∗

(−0.9,−0.3)
−0.4∗

(−0.7,−0.2)
0.0

(−0.4,0.4)
— 0.3∗

(0.1,0.6)

Early Fed
1913−1941

−0.8∗

(−1.2,−0.4)
−0.4∗

(−0.7,0)
0.0

(−0.3,0.3)
0.7∗
(0.4,1.1)

0.0
(−0.4,0.3)

Post WWII
1951−1984

— −0.3
(−0.6,0.1)

0.5
(−0.1,1.1)

0.7∗
(0.3,1.1)

0.5∗
(0.0,1.0)

Post Volcker
1990−2019

−0.3∗

(−0.7,0.0)
0.3

(−0.2,0.8)
−0.3

(−0.8,0.3)
0.2

(−0.2,0.5)
0.2

(−0.1,0.5)

Notes: Median ORA statistics together with 68% credible sets. The monetary policy shocks are identified
using sign restrictions as described in main text. The financial shocks are bank panics or innovations to
the BAA-AAA spread, the government spending shocks are from (Ramey and Zubairy, 2018, G), TFP
shocks from (Gali, 1999, TFP), energy shocks are computed using the peak-over-threshold approach of
Hamilton (1996), and inflation expectation shocks (πe) are innovations to inflation expectations as measured
from Cecchetti (1992) for Early Fed period and from the Livingston survey (Post WWII and Post Volcker
periods). For the Pre Fed period the TFP, G and Energy ORAs are computed over the 1890-1913 period.
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Table 4: ORA statistics, Alternative regime definition

Non-policy shock Bank panics G Energy πe TFP
Shock sign convention u ↑ u ↑ π ↑ π ↑ π ↑

Gold Standard
1879−1932

−0.9∗

(−1.2,−0.6)
−0.3∗

(−0.6,−0.1)
−0.1

(−0.4,0.2)
0.8

(−0.8,1.6)
0.1

(−0.1,0.4)

Interwar, off Gold
1933−1941

— −1.1
(−3.7,3.3)

−0.1
(−0.9,0.7)

0.3
(−0.4,1)

−0.5
(−1.2,0.2)

Bretton Woods
1946−1971

— −0.6∗

(−0.9,−0.2)
−0.2

(−0.8,0.4)
0.3

(−0.3,0.8)
0.4

(−0.1,0.8)

Post Bretton Woods
1971−1984

— 0.0
(−0.5,0.6)

0.7
(−0.2,1.3)

0.8∗
(0.0,1.2)

0.6
(−0.1,1.2)

Pre Volcker
1951−1979

— −0.4∗

(−0.7,0.0)
0.2

(−0.4,0.7)
0.6∗
(0.0,1.0)

0.3
(−0.2,0.9)

Notes: Median ORA statistics together with 68% credible sets. The monetary policy shocks are identified
using sign restrictions as described in main text. The financial shocks are bank panics or innovations to
the BAA-AAA spread, the government spending shocks are from (Ramey and Zubairy, 2018, G), TFP
shocks from (Gali, 1999, TFP), energy shocks are computed using the peak-over-threshold approach of
Hamilton (1996), and inflation expectation shocks (πe) are innovations to inflation expectations as measured
from Cecchetti (1992) for Early Fed period and from the Livingston survey (Post WWII and Post Volcker
periods). For the Pre Fed period the TFP, G and Energy ORAs are computed over the 1890-1913 period.
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