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1 Introduction

The simultaneous occurrence of low productivity growth (e.g. Fernald (2015) and Syverson (2017)), ris-
ing house prices in productive regions (e.g. Ganong and Shoag (2017)), and declining worker reallocation
across U.S. states (e.g. Molloy, Smith, and Wozniak (2014)) has spurred a large and growing literature
that uses equilibrium conditions and microeconomic data to measure the aggregate effects of residential
zoning restrictions (e.g. Hsieh and Moretti (2019), Herkenhoff, Ohanian, and Prescott (2018), Martellini
(2019), and Colas and Morehouse (2020) among others). Across a range of methodologies, estimated
welfare gains from moderate reductions in the stringency of residential real estate regulations are large,
commensurate with the $36 trillion dollar value of existing residential housing.1

While residential regulations have been studied and debated extensively, commercial regulations have
attracted less attention despite the $17 trillion dollar value of commercial real estate.2 Regulations such as
height limits, setbacks3, and floor area ratios4 apply to commercial as well as residential structures. Com-
mercial structures are also an important factor of production for most goods and services, comprising
nearly 20% of the U.S. fixed asset stock.5 We hypothesize that just as high apartment rents deter talented
workers from America’s most productive cities, high rental payments for commercial buildings do the
same for businesses. In this paper, we develop a theory that allows us to measure the effects of commer-
cial real estate regulations on welfare, productivity, and the spatial allocation of workers and business
activity across the U.S. We use our theory to estimate address-level regulatory distortions from the near-
universe of commercial property tax records. Moderately loosening commercial regulation across all
U.S. cities yields welfare gains worth 0.9% to 2.8% of lifetime consumption.

Our paper makes three contributions. First, we develop a model of optimizing landlords that yields
an intuitive formula for identifying the extent to which commercial real estate investment decisions
are distorted by zoning codes and other regulations.6 Regulations enter the problem by distorting the
amount of commercial building square footage that is placed on a plot of land. Optimization of com-
mercial landlords implies an intuitive formula for identifying the degree to which commercial real estate
is distorted: properties with a very high total value but disproportionately low improvement values
are more distorted. The primary benefit of this formula is that it relies on simple statistics available in a
number of datasets. Crucially, our regulatory distortions do not directly enter factor prices, which means
they are not commingled with factors that affect rents per building square foot (such as a desirable loca-
tion) or the cost of improvements (such as the physical difficulty of building in certain locations). Our
measures of distortion aggregate very cleanly, and can be used to study the of land use regulations. We

1This is the 2020 value as estimate by Zillow, which can be found at https://www.zillow.com/research/
zillow-total-housing-value-2020-28704/

2See NAREIT (2019).
3These require a landlord to “set back" the building from the perimeter of the property line, forcing them to build on only

a subset of their land.
4These are restrictions on the ratio between the floor area of the entire building and the area of the plot of land on which it

is built.
5See NIPA Table 1.1, “Current-Cost Net Stock of Fixed Assets and Consumer Durable Goods,’ at US Bureau of Economic

Analysis (2021b).
6Building codes, review boards, etc. are policies captured by our address-level regulatory distortions.
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study these consequences by embedding our measures of regulation in a new dynamic, spatial, general
equilibrium model where commercial buildings are combined with capital and labor to produce goods
and services, and where congestion generates negative externalities.

Our second contribution is to apply our theory to the near-universe of commercial property tax
records from CoreLogic in order to develop a model-consistent index of commercial regulations. We
base our analysis on a rich source of address-level, a.k.a. parcel-level, micro-data: municipal tax assess-
ments compiled by CoreLogic. It includes the market- and assessment- based estimates of the total parcel
value, land value, and structure value (a.k.a. improvement value) as well as building square footage and
alphanumeric zoning codes, among other fields. Despite CoreLogic’s comprehensive coverage of the
commercial real estate market, we face three major measurement challenges: (1) most regulatory restric-
tions are unobserved in our data, and zoning codes are only observed in roughly half of our sample, (2)
even among properties with non-missing zoning codes, zoning codes have different meanings in differ-
ent locations (e.g. zoning code C1 in city A has height limits, whereas C1 in city B does not), and (3) most
regulatory restrictions are highly multi-dimensional, with zoning codes alone taking on many different
attributes (including height limits, setbacks, floor-area-ratios, etc.).

Our theory provides the insights necessary to address these challenges by showing that commer-
cial regulations are identified from land and improvement values alone. Applying our formula to each
individual commercial property in the CoreLogic database, we obtain an address-level index of commer-
cial regulatory distortions. This index collapses the multidimensional heterogeneity of zoning laws and
building regulations, of which it is near-impossible to determine the facets that may be binding, into a
single, model-consistent metric.

We validate our index of commercial regulations in several ways. Among a subset of cities for which
zoning codes are available, we hand-collected zoning code attributes, and we show that our index of
commerical regulations is correlated with statutory floor area ratios (which restrict the ratio of building
square footage to land square footage) and height limits (which restrict the physical height of the build-
ing).7 These correlations between our regulatory index and statutory zoning restrictions are positive,
yet imperfect, implying that floor-area ratios and height limits alone are insufficient to summarize the
myriad distortions generated by complex zoning laws and other forms of regulation.

We then examine how our commercial regulations compare across cities. Our results confirm the
common prior that metro areas in Texas such as Dallas-Fort Worth and Houston face significantly weaker
commercial real estate regulation than metros in California, and more generally we find that coastal cities
face the most severe distortions to commercial real estate production. Houston provides a useful litmus
test since it famously lacks zoning laws, and we do identify Houston as a relatively undistorted city.
However, while Houston lacks zoning laws, city ordinances and private deed restrictions distort com-
mercial real estate investment, and these zoning-code-workarounds are reflected in our index. According

7Note that for many cities, the details of zoning code laws are not available online. Moreover, most zoning code handbooks
are technical and opaque legal documents. These factors prevent systematic compilation of zoning codes across the U.S.,
even for a small subset of characteristics. The extent of regulations (including zoning codes) also cannot be extracted from
construction costs indices (which include building codes), such as RSMeans. This is partly due to their limited sampling of
buildings across cities, and partly because—as we will discuss in Section 2.1.1—regulations need not influence costs directly.
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to our data, the least distorted city is Midland, Texas while the most distorted city is Urban Honolulu,
Hawaii.

Unlike many other attempts to measure the strength of local real estate regulations, such as the Whar-
ton Land Use Regulatory Index of Gyourko, Saiz, and Summers (2008), our measurement derives the
strength of regulations from a micro-founded model. We use a production-function based approach
and treat regulations as a distortion in the parcel-level builder’s problem. This allows us to distinguish
regulatory factors from demand factors that affect rents per building square foot and differential costs
of building across locations. Unlike the qualitative questions in Gyourko, Saiz, and Summers (2008),
from which principal component analysis yields the headline regulatory factor, our approach also al-
lows us to express zoning and other regulatory distortions in real terms, making it easily incorporated in
quantitative models. Lastly, our method yields a time series of commercial regulations, providing future
researchers with the opportunity to evaluate the effectiveness of zoning and regulatory reforms.

Our third contribution is quantitative: we use our distortion measure and our benchmark equilib-
rium model to evaluate the effect of both national and local changes to commercial regulations. Crucially,
we endogenize amenities (which dictate the cost of sending workers to a particular region) in our model
and allow them to depend negatively on congestion, and in the process contribute a novel identification
of the congestion costs of density. Since our model is invertible in steady-state, our estimation recovers
MSA-level amenity values. Ex-post, recovered amenity values are free to be flexible functions of local
characteristics. We specify a log-linear relationship between amenities and business district congestion
(workers per downtown-land-square-foot), and use a novel strategy based on model-generated instru-
ments to recover this relationship.

In our primary exercise, we raise average city-level regulations up to a deregulated benchmark (Mid-
land, Texas) and solve for the new steady state, while leaving the dispersion of parcel-level regulations
unaltered.8 National output increases by 2.9% as commercial investment booms and workers reallocate
from the midwest to the now-less-regulated states of Florida, California, Oregon, and Minnesota. No-
tably, the building stock increases by 17%. Because removing these regulations improves the allocative
efficiency of the economy, the measured Solow residual increases by 2.3%. At the same time, landlord
profits fall as building supply expands and rental rates of commercial real estate decline.

Our framework also allows for very granular counterfactuals within narrowly defined geographies.
Because we recover regulatory distortions at the parcel-level, we can project our distortions down onto
specific features of zoning codes such as floor area ratios and study what happens when we change those
features individually. We use New York City as a test case and simulate moving all zoning codes up to
the highest permissible floor area ratio in our sample, and find that doing so raises metro area GDP by
1.8 percent.

8Similar to the misallocation literature (e.g. Hsieh and Klenow (2009)), we treat (a) the average level of regulatory distor-
tions and (b) dispersion of parcel-level distortions as separate objects over which we conduct counterfactuals. We view our
primary exercise as conservative since it focuses on the average regulatory distortion and ignores dispersion, thus deregulation
does not improve the allocation of improvements within a city. As in models of misallocation like Hsieh and Klenow (2009),
the efficiency gains from reduced misallocation can potentially be large but can also be biased upwards by mismeasurement.
We nevertheless explore the impact of reducing dispersion in a different counterfactual.
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Our counterfactual exercises continue to yield large output gains from commercial deregulation if
we recalibrate the economy so that 40% of the workforce is in a remote-work sector which does not rely
on commercial buildings to produce. We also show that that using exogenous amenities yields near-
identical aggregate results to our baseline counterfactual. In the baseline, amenities improve in regions
that lose workers, offsetting the congestion costs in regions that gain workers; hence, the nation-wide
impact of these regulations does not depend to any significant degree on whether we treat amenities as
endogenous or not.

Lastly, while we do not explicitly model the adoption of zoning code regulations (e.g. see models
with endogenous local residential regulations by Parkhomenko (2018) and Bunten (2017) among others),
disamenities from congestion and landlord profits may provide a rationale for the existence of com-
mercial regulatory distortions. Nonetheless, we estimate large welfare gains from moderate levels of
deregulation even with both mitigating factors at play.

Literature We contribute to a burgeoning literature on the aggregate effects of spatial policy. Hsieh
and Moretti (2019) argue that land use regulations cause significant spatial misallocation. Diamond
(2016) combines a shift-share instrument with estimated housing supply elasticities from Saiz (2010)
to recover the external effects of worker composition on amenities and productivity. Fajgelbaum and
Gaubert (2020) study optimal spatial transfers in the presence of heterogeneous skill types, congestion,
and agglomeration. Rossi-Hansberg, Sarte, and Schwartzman (2019a) study spatial redistribution in the
presence of heterogeneous industries and occupations with variable patterns of spillovers, with an em-
phasis on the role of "cognitive non-routine" workers. Fajgelbaum, Morales, Suarez, and Zidar (2019)
find that heterogeneity in state taxes leads to significant misallocation across regions. Martellini (2019)
develops a model with learning spillovers and agglomeration effects in job search, quantifies their im-
pact on the urban wage premium, and studies their implications for the gains from housing deregulation.
Colas and Morehouse (2020) study how land use regulations affect carbon emissions. Herkenhoff, Oha-
nian, and Prescott (2018) use a similar production-function based approach and identify housing supply
restrictions as distortions in the first-order condition of the local housing sector. We build on this by
working with parcel-level microdata directly. Cun and Pesharan (2020) study the interaction of land use
regulations with migration. Grossman, Larin, and Steger (2020) find that low productivity growth in
the housing sector is partly to blame for an increase in the ratio of house wealth to income. Relative to
existing work, we provide the first, to our knowledge, macroeconomic analysis of commercial zoning
regulations, combining administrative micro-data with a spatial general equilibrium model. We then
quantify how commercial regulations distort capital and building investment decisions as well as the
spatial allocation of labor.9

Our paper also contributes to the field of leximetrics, or the quantification of the "strength" of regula-
tions, in the vein of La Porta, Lopez de Silanes, Shleifer, and Vishny (1998). We are not the first to bring
a leximetric approach to real estate regulations—an important antecedent is the Wharton Land Use Reg-

9Moreover, by abstracting from taste shocks, our model avoids the recent criticism of optimal place-based policy articulated
by Davis and Gregory (2021).
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ulation Index of Gyourko, Saiz, and Summers (2008), which focuses on residential buildings (and more
recently, Gyourko, Hartley, and Krimmel (2021)). However, the Wharton Index measures the strength
of local land use regulations in a fundamentally different way, by itemizing qualitative responses into
categories and then taking the principal component of those categories. We provide a complementary
approach and infer the strength of regulations using a model of optimizing real-estate firms.

We contribute to an extensive literature that attempts to measure land use regulations and quantify
their impact. Glaeser, Gyourko, and Saks (2005a) use construction cost data for residential structures, and
they find a significant and positive gap between price and cost. They argue that the difference is due to
zoning restrictions. The aforementioned Saiz (2010) attempts to measure physical constraints on housing
buildup. Tanure Veloso (2020) focuses on residential real estate but employs a complementary method
in which he regresses a Census tract-level housing supply productivity term on the tract-level share of
houses zoned as single-family units. This method links observed features of zoning codes to housing
supply productivity, which he exploits in counterfactual analysis. Delventhal, Kwon, and Parkhomenko
(2021) is, to our knowledge, the only other paper that studies commercial land use regulations, although
their focus is on one city (Los Angeles) and their discrete choice model and identification strategy are
more similar to Tanure Veloso (2020). Furth (2021) also identifies residential regulations at the parcel
level and measures the strength of multiple facets of land use regulations. Rivera-Padilla (2021) models
residential land use distortions as equivalent to a tax, rather than a productivity shifter, and identifies
them from the difference in rents between rural and urban regions in India. Tan, Wang, and Zhang
(2020) argue that the land share of residential building values is informative about regulatory strictness,
and they show that it is indeed correlated with floor area ratio restrictions in China. This paper’s iden-
tification strategy is the closest to our own. Our contributions are to (1) develop a theory that allows
us to measure the effects of commercial real estate regulations on welfare, productivity, and the spatial
allocation of workers and business activity across the U.S., (2) to use our theory to estimate address-level
regulatory distortions from the near-universe of commercial property tax records (which is made possi-
ble by the fact that our formula for regulations only requires the land share of total building value), and
(3) to estimate welfare gains from both national and local commercial deregulations.

An important precedent for our work is Davis and Heathcote (2007). They find that the value of
land, and the land share of housing prices, has been rising. They speculate that part of the reason for
the trends in land values may be due to cities that “implemented policies to slow further development".
Interestingly, they find very high land shares in cities where housing is thought to be heavily regulated,
such as San Francisco or San Jose, and they find low land shares in Houston, which is generally thought
to be lightly regulated. We formalize that intuition, and argue that variations in the land share are
informative about the strictness of land use regulations. Tan, Wang, and Zhang (2020) also identify
residential regulatory stringency using the land share of building value, although their focus is on one
specific dimension of regulation. We argue that the commercial land share is informative about a broader
range of regulations and distortions, as we discuss in greater detail in Section 2.1.1, and we show that
these distortions can aggregate tractably in a general equilibrium model.

Our identification of amenities relies on using the model itself to generate instruments. It builds on
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a tradition begun by Anderson and van Wincoop (2003), developed in Allen, Arkolakis, and Takahashi
(2020), and applied in Walsh (2019).

Finally, our model features parcels with heterogeneous distortions and productivities, and is therefore
related to a wide class of firm dynamics models where firms have heterogeneous markups and productiv-
ities. It permits an aggregation result similar to, for example, Peters and Walsh (2021): we can separate
the impact of land use regulations into one term equivalent to an average “wedge" and a second term
that captures the effect of misallocation (or mismeasurement) across parcels.

Outline The paper proceeds as follows: In Section 2 we develop our model of building supply and
our method of identifying land use regulations. We validate our model-based measures of regulation in
Section 3 by showing that they correspond well with statutory measures of regulation. In Section 4, we
embed our regulations into a novel general equilibrium spatial model appropriate for conducting policy
counterfactuals. In Section 5, we perform several counterfactuals that demonstrate the flexibility of our
approach. We conclude the paper with Section 6, and consign certain proofs, computational algorithms,
and a more detailed description of our data to the appendices.

2 A Model of Distorted Building Supply

This section introduces our measure of distortion and explains how we identify land use regulations.
We do so by focusing initially on the partial-equilibrium problem of landlords, taking prices as given for
now.

2.1 Individual Landlords

Within each city j, there are a finite number of differentiated parcels of land endowed to landlords.10

We index parcels of land by i, where i maps to an address in the CoreLogic data. Parcel i in city j(i) is
described by its fixed land square footage xi, parcel productivity zi, and building cost qi, and its time-
varying building square footage BSFi,t. The parcel productivity term zi is meant to capture the fact that
a unit of building square footage may not be equally useful in all parts of the city (consider a warehouse
on the outskirts of a metro area compared to one in the central city), and it allows us to match the
variation in price-per-building square foot observed in the data. The time-invariant building cost qi

differs across parcels and captures the relative difficultly of building in some locations than others. These
differences may be due to differences in soil quality and unionization rates of local construction workers,
for example. Note the lack of time subscripts on x, z, and q, which are immutable. We refer to the sum of
productivity-weighted building square feet on parcel i simply as the building Bi placed on parcel i. That
is, Bi,t = zi · BSFi,t. We denote the stock of buildings in city j as Bj,t.

The landlords rent their buildings out at the start of each period, earning rb,j,tBi,t on parcel i in city
j. For both realism and tractability, we assume “one-hoss-shay" depreciation (Luttmer (2011)): building

10As the number of parcels is very large and each one comprises a small share of overall building value, we assume that
landlords act as price-takers.
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square footage is constant (BSFi,t = BSFi) until the building fully depreciates all at once (i.e. the building
is torn down), where the probability of full depreciation is a constant δb. We denote the discounted
stream of rental payments made to each efficiency-weighted building square foot as pj,t:

pj,t =
∞

∑
s=t

(β(1 − δb))
s−trb,j,t

The building fully depreciates with probability δb after its use in production but before the start of
the next period. At the end of the period, if the current building has depreciated, the landlord may
combine the underlying land with improvements in order to create a new building that can be rented
out in subsequent periods. The building cost qi determines the efficiency with which the numeraire
good is converted to improvements mi,t on parcel i. For example, purchasing one unit of the numeraire
good yields 1/qi units of improvements on parcel i. The total cost of improvements MVi,t in units of the
numeraire is qimi,t. We denote the new efficiency-weighted building square footage built on a parcel at
period t as BN

i,t. The building technology is Cobb-Douglas, and the improvement share in production is
γ:

BN
i,t = zi mγ

i,tx
1−γ
i︸ ︷︷ ︸

BSFi,t

(1)

The building is also subject to a regulatory distortion τi,t ∈ [0, 1], which includes all policies that
cause landlords to purchase fewer improvements than they would optimally like to, given factor prices.
At the extremes, τi,t = 1 is completely deregulated; τi,t = 0 effectively forbids construction.

Note that, because improvements are combined with depreciated parcels in this period but do not
begin earning rents till next period, the builder discounts these flow payments. We also denote the net
present value of payments made to the entire building as building value, BVi,t. Unlike our data object total
value, TVi,t, it does not include the option value of rebuilding after depreciation.

BVi,t =
∞

∑
s=t

(β(1 − δb))
s−trb,j,tBi,t (2)

We are now ready to write out the problem of a landlord with a depreciated parcel.

max
mi,t

βτi pj,t+1zi(mi,t)
γx1−γ

i︸ ︷︷ ︸
BVi,t

− qimi,t︸ ︷︷ ︸
MVi,t

(3)

We denote i ∈ j as the set of parcels i in city J. We can now write out the law of motion for the
aggregate city-level building stock Bj,t:

Bj,t+1 = (1 − δb)Bj,t + ∑
i∈j

BN
i,t
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2.1.1 Different Interpretations of The Regulatory Distortion τi,t

Broadly speaking, τi,t is meant to capture any regulation that prevents landlords from building as much
as they would want to, given factor prices. These might include height restrictions, floor area ratios,
or setbacks. None of these regulations raise building costs or lower the rents that owners can earn per
building square foot; instead, they push landlords away from their optimality condition.

This model is isomorphic to one where landlords pay a tax 1/τi,t on each dollar of improvement and
rebate it to the representative household. Therefore, τi,t also captures costs that do not show up in the
price of improvements or in the value of the building. This may include the costs of hiring lawyers to
navigate the approval process or securing a variance, or paying for improvements in local infrastructure
to secure approval for construction.

Alternatively, τi,t may also capture the possibility that some projects are denied or delayed by local
zoning boards or in environmental reviews, especially if (as seems reasonable) the probability of rejection
is rising in how much the landlord builds on the parcel.

This specification rules out regulations that directly enter factor prices and productivities, which
means it avoids some potential pitfalls in trying to measure regulation but does not capture all possible
dimensions of land use regulations.11 Taxes and demand-side factors such as desirable locations will
be capitalized into the parcel-level price per building square foot pj,tzi, and will not show up in τi,t.
However, restrictions on what buildings may be used for will also be capitalized into pj,tzi, and so our
measure will not capture these kinds of regulations. Likewise, if different locations are inherently harder
or easier to build on (due to differences in soil quality, for example) this will be picked up in qi and not τi,t.
This does, however, mean that restrictions on building techniques will not be captured by this specifica-
tion. Schmitz (2020) studies bans on the use of prefabricated construction for residential buildings—our
method would not pick up the impact of such restrictions for commercial buildings. Hence, our results
will be a lower bound on the distortions imposed by land use regulations.

Notably, we do not model τi,t as a hard cap on development. In practice, zoning regulations typically
allow local governments to grant variances, which allow builders to exceed statutory restrictions on floor
area ratios and other restrictions. Our measure τi,t also incorporates the difficulty of getting variances.

2.2 Aggregation

This model admits aggregation up to a representative city-level builder.12 The representative city-level
builder’s problem makes clear how regulatory distortions τi,t lower the quantity of improvements and
cause misallocation across parcels.

In what follows, it will be convenient to define a time-invariant parcel-level productivity term:

Ci = z
1

1−γ

i xiq
−γ

1−γ

i (4)
11Our regulatory distortion τi,t is not capitalized into the value of the building, which we call BVi,t. However, it is capitalized

into the total value of a parcel, our data object TVi,t, as it reduced the option value of rebuilding. We make this distinction clear
in Appendix B.2.

12Appendix B.1 contains more details on the aggregation results outlined in this section.
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It is also useful to note that Ci is directly related to improvement value. We can show this by solving
Equation (3) for qimi,t, the quantity of improvement demand expressed in units of the final good. We
label this as improvement value, MVi,t:

(τi,t pj,tβγ)
1

1−γ Ci = qimi,t︸ ︷︷ ︸
MVi,t

(5)

We now define the problem of the representative builder in region j,

max
mj,t

βTj,t pj,t Dj,tm
γ
j,t(δbCj)

1−γ︸ ︷︷ ︸
BN

j,t

− mj,t︸︷︷︸
MVj,t

(6)

where the solution to this builder’s problem coincides with the aggregated solutions of all the indi-
vidual landlords’ problems in region j when Cj, Dj,t, and Tj,t take the following values:

Cj =

(
∑
i∈j

Ci

)
(7)

Dj,t =

∑i∈j τ
γ

1−γ

i,t Ci

∑i∈j Ci

/∑i∈j τ
1

1−γ

i,t Ci

∑i∈j Ci

γ

(8)

Tj,t =
∑i∈j τ

1
1−γ

i,t Ci

∑i∈j τ
γ

1−γ

i,t Ci

(9)

The term Cj is a measure of productivity, and does not depend on regulatory distortions. It is policy-
invariant (hence the lack of time subscripts—all the characteristics contained in Cj are immutable and
fixed) and we do not focus on it moving forward.

The term Dj,t captures the allocative efficiency losses arising from dispersion in regulatory distor-
tions, under the assumption that τi,t are measured correctly. A simple application of Jensen’s inequality
reveals that this term is weakly less than 1, and is only equal to 1 if all τi,t are equal. Dj,t also does not
change if we scale each τi,t up or down by a constant. Hence, eliminating dispersion in τi,t while keep-
ing the aggregate Tj,t fixed will lead to productivity gains (note that Dj,t enters directly into the output
quantity BN

j,t, and therefore affects total factor productivity, whereas Tj,t does not.) As in models of mis-
allocation like Hsieh and Klenow (2009), these gains will be overstated if there is measurement error or
misspecification in our parcel-level measures of regulatory distortion. Note that Dj,t can be estimated if
improvement values MVi,t and regulatory distortions τi,t are known, by substituting Equation (5) into
Equation (8):
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Dj,t =

(
∑i∈j MVi,t/τi,t

∑i∈j MVi,t/τ
1

1−γ

i,t

)/( ∑i∈j MVi,t

∑i∈j MVi,t/τ
1

1−γ

i,t

)γ

(10)

The term Tj,t is a measure of the average regulatory distortion in the economy. It takes on value 1
only if all τi,t are equal to 1. We can substitute Equation (5) into Equation (9) to show that Tj,t can be
expressed as a weighted average of improvement values:13

Tj,t =
∑i∈j MVi,t

∑i∈j MVi,t/τi,t
(11)

We will focus much of our attention on Tj,t going forward—it is an intuitive measure of regulatory
distortion, and it is not inflated by parcel-level measurement error. In other words, we focus on systematic
differences in the weighted average building value across regions.

We will also find it convenient, going forward, to write out the building supply curve in terms of a
supply shifter Ψ, which we derive in Appendix B.1:

pj,tBN
j,t = p

γ
1−γ

j,t δb · D
1

1−γ

j,t T
γ

1−γ

j,t Cj(βγ)
γ

1−γ︸ ︷︷ ︸
Ψj

(12)

Note that, because τ is a constant, γ alone controls the price elasticity of supply. We discuss the
implications of this in Appendix G.

2.3 Identifying Parcel-Level Parameters

In this section we describe how we recover building depreciation δb, the improvement share of building
value γ, and parcel-level regulatory distortions τi.

Our primary data source comes from CoreLogic, a major private provider of real estate data. This
dataset consists of county tax assessors’ data on the near universe of commercial parcels in the United
States, from 2009 to 2018. It includes the total value of the parcel TVi, derived from either assessments,
appraisals, or market transactions. This value is subdivided into land value LVi and improvement value
MVi. For a smaller subset of buildings, which still comprise a large share of overall total value, the data
also includes building square footage BSFi, the alphanumeric zoning code z(i) to which the building is
subject (example names include “C8" and “OR1"), and building age ai. We describe our data in more
detail in Appendix A.1.

As shown in Appendix B.2, we can recover the product of our aggregate measure of regulatory dis-
tortion Tj and the scale parameter γ as follows:

13This is mathematically and conceptually similar to a cost-weighted average markup, which Edmond, Midrigan, and Xu
(2021) show is the correct way to aggregate markups. To see the similarity, define M ≡ 1/T and µ ≡ 1/τ and compare to the
definitions of M and µ in that paper. Here, improvements correspond to costs.
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γ · Tj =

( 1−β(1−δb)
1−β

)∑i∈j MV
∑i∈j TV

β
(
1 + δb

1−β

∑i∈j MV
∑i∈j TV

) (13)

We get TV and MV from our CoreLogic sample. Under our depreciation assumption, δb is the inverse
of the average building age in our sample.14 We use a standard value of 0.96 for β, the last value needed
to identify Tjγ.

Unsurprisingly, we cannot separate Tj and γ without more assumptions or information. Regulatory
distortions cause landlords to spend too little on improvements as a share of total value, hence disentan-
gling distortions from the true improvement share is challenging. However, under the assumption that
Tj ≤ 1 for all j (i.e. that no city has “negative" regulations), every city-level observation of the left-hand
term in Equation (13) provides a lower bound for γ. Our approach is to treat the city with the highest
value of γ · Tj as a “deregulated benchmark", with Tj assumed to be equal to 1. In practice, we find
that the benchmark is Midland, Texas, a small metropolitan area with a large oil-producing sector. Our
assumption that TMidland = 1 yields an implied γ of 0.92.15

Even though our value of γ is likely an underestimate, it is very close to 1 and suggests that the
building production function is nearly linear in improvements. This is not dramatically out of line with
what other studies have found: Epple, Gordon, and Sieg (2010) estimate an improvement share of 0.84 for
residential buildings in Allegheny County, Pennsylvania, and they do not take into account regulatory
distortions. Combes, Duranton, and Gobillon (2021) finds a slightly lower share of 0.64 for single-family
homes in France, although they also do not directly measure regulation and only try to infer it from
observed (not statutory) floor area ratios.16 Glaeser, Gyourko, and Saks (2005b) find that construction
costs per building square foot are relatively flat across dramatically different residential building sizes,
which is consistent with a high improvement share in production. Moreover, a near-linear production
function is intuitively reasonable: roughly speaking, it suggests that a builder can double the number
of floors on a building for only slightly more than double the cost. In Appendix G, we explore the
implications of such a high γ and argue that the very high implied building supply elasticities are not as
far out of line with the literature as they seem.

A fixed, rather than city-specific, γ is crucial for our identification and ability to compare distortions
across regions. It is important to remember that our building supply elasticity is conceptually different
from the city-specific elasticities in Saiz (2010): that paper is concerned with the extensive margin of
construction into currently-undeveloped lots, whereas we focus on the intensive margin of construction

14Our calibrated value of 0.02 is fairly close to what Davis and Palumbo (2008) find under less stark assumptions about
depreciation.

15Note that if Midland has any degree of regulation—that is, if the true TMidland is less than 1—we will underestimate γ
and therefore overstate the degree of decreasing returns to replicable factors. Hence, we will underestimate the gains from
deregulation.

16Both of these papers also argue that the production function for buildings is reasonably well-approximated by a Cobb-
Douglas function in land and other inputs, which lends further support to our modeling choices. Ahlfeldt and McMillen (2014)
also argue that a Cobb-Douglas production function is a good approximation, and that some earlier estimates of a less-than-
unitary elasticity of substitution were biased downwards.
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Figure 1: Distribution of MV/TV
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Figure 2: Distribution of τ
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Notes: Figure 1 displays the ratio of the improvement value of each parcel to its total value. We exclude values above 0.99
and below 0.01, treating them as noise. We also drop parcels designated by CoreLogic as public property. Figure 2 uses the
same data and displays τ as calculated in Equation 14. Both figures use unweighted counts of parcels.

on already-developed land. The former is clearly affected by city-specific factors like geography, but
the latter measures the curvature of costs with respect to building height, which is not obviously city-
specific.

After having calibrated γ, we can recover Tj at the MSA level, and by modifying Equation (13) into
Equation (14), we can recover τi at the parcel level as well.

τi =

( 1−β(1−δb)
1−β

)MVi
TVi

γβ
(
1 + δb

1−β
MVi
TVi

) (14)

After having recovered τi, it is straightforward to use Equations (4) and (8) to get Dj.
Finally, we estimate pj from the subset of buildings jb with a recorded value for building square

footage BSF:

pj =
∑i∈jb BVi

∑i∈jb BSFi

2.3.1 Identifying τ from MV/TV

We can illustrate the variation in the data that allows us to estimate τi, and therefore also Tj and Dj. We
plot MV/TV, the key moment that identifies regulatory distortions, across all parcels in our sample in
Figure 1. We find that, for most parcels, this measure is significantly lower than what we would expect
to see in a world with no regulatory distortions and no measurement error.

Alongside the distribution of the data object MV/TV, we also plot the distribution of the model
object τ and show that—as one might expect from Equation (14)—the two distributions are quite similar
in shape.
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Figure 3: Distribution of Tj
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Figure 4: Distribution of Dj
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Notes: Figure 3 displays the distribution of Tj across cities, with Tj calculated as in Equation 9. Figure 4 uses the same data
and displays M as calculated in Equation 8. See the caption of Figure 1 for details on sample selection.

3 Results and Validation

In this section, we display some of the results of our empirical analysis. We begin by plotting the distri-
bution of Tj and Dj, the level and dispersion of regulatory distortions in each MSA.

We next perform several validation exercises that test the central argument of this paper, which is
that the improvement share of total value provides information about the degree of land use regulation
in a given city. We test this argument by comparing our measure of regulation against several real-world,
statutory measures of regulation, and we compare our measures across regions where we expect a priori
to find differences in regulations. We find that our model-derived measure of regulation align well with
these real-world measures. We also examine the threat to our identification posed by differences in
building age and argue that it is not a first-order concern.

3.1 The Distribution of Tj and Dj

In Figures 3 and 4, we plot the distribution of the “average" regulatory distortion Tj and the dispersion
in distortions Dj at the MSA level. Most cities are clearly far from the deregulated benchmark, and in
most cities τ is quite dispersed across parcels. Dj takes on a maximum value of 1.0 if all parcels have the
same regulatory distortion, and it is isomorphic to productivity in the construction sector. Hence, these
plots suggest that both the level and dispersion of τ may induce significant inefficiencies.

3.2 Zoning Code Dimensions

In this section, we plot our measure of regulatory distortion against two dimensions of statutory zoning
code strictness: floor area ratios in New York City, and height restrictions in Washington, DC. We chose
these cities and measurements because a high share of the parcels in these cities had non-missing zoning
codes, and because their websites made it easy for us to manually collect and clean these zoning code
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features. 17

We first project parcel-level regulatory distortions τi down onto zoning codes, and recover a code-
level regulatory distortion τz. Denoting i ∈ z as the set of parcels subject to zoning code z, we write:

τz =
∑i∈z MVi

∑i∈z MVi/τi
(15)

We expect a positive correlation between the model-derived measure and the statutory measures, but
we do not expect it to be perfect. We plot τ against only one dimension of zoning codes, and we do not
attempt to account for variances given to individual buildings.

We plot a binscatter of zoning-code level τz against these two statutory measures of regulation in
Figures 5 and 6. To construct the red best-fit line, we weight each zoning code by the sum of building
value subject to that code. We find a positive relationship in both cases, as expected.

Figure 5: FAR in NYC
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Figure 6: Height Limits in DC

4
4.

2
4.

4
4.

6
4.

8
Lo

g 
H

ei
gh

t L
im

it

-.8 -.6 -.4 -.2 0
Log Distortion

Notes: In Figures 5 and 6, the horizontal axis is the logarithm of the zoning code-level distortion τz, as calculated in Equation
15. The vertical axes are the logarithm of the regulation associated with each zoning code, namely floor area ratios in Figure
5 and height limits in 6. Floor area ratios are the maximum building floor area per ground area and are expressed as a ratio;
height limits are expressed in feet. Both Figures 5 and 6 are binscatters where the constituent zoning codes of each bin are
weighted by the sum of the value of the buildings (see Equation 2) in each code.

3.3 Downtowns

We next provide another graphical illustration of our measure of regulatory distortion and how it maps
onto the real world.

In Figures 7 and 8, we map the most and least distorting zoning codes in San Francisco, and contrast
this to statutory height restrictions provided in San Francisco Planning (2021). More specifically, we
rank all parcels by their code-level regulatory distortion τz

18 and map the top decile (least-regulating,

17The original data is available at City of New York (2021) and DC Office of Zoning (2021a), respectively. We go into greater
detail in Appendix A.2.

18We use this aggregated measure of τ instead of the individual parcel-level τ in order to reduce the impact of outliers and
measurement error, and to address issues with older buildings that we explain in greater depth in Section 3.5.
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Figure 7: Model Zoning Distortion
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Figure 8: SF Height Limit Zoning Map, 2021

Notes: In Figure 7, we plot zoning code-level distortions τz in San Francisco for the most- and least- distorted zoning codes.
We rank zoning codes by their τz, take the most- and least- distorting 10 percent of zoning codes, and put in a dot denoting
each building subject to those codes. Red dots correspond to buildings with the highest (least regulating) τz, and black dots
correspond to buildings with the lowest (most regulating) τz. In Figure 7, we provide a map of height limits taken from San
Francisco Planning (2021) and highlight downtown San Francisco, noted for having the largest concentration of high-rise office
buildings in the city.

in red) and bottom decile (most-regulating, in black.) We find that our model identifies downtown San
Francisco, the site of many of its most iconic skyscrapers, as relatively deregulated. We also find that
our measure of regulatory distortion tracks reasonably well with statutory measures of regulation, even
within a single jurisdiction where demand-side factors should be relatively similar. This suggests that
our measure is picking up underlying regulations rather than simple demand-side factors.

3.4 Cities in California and Texas

Much of the prior literature on land use regulation has argued that Texas is less regulated than Califor-
nia. In general, we expect to find that liberal coastal states should have stricter regulations than more
conservative states. We show in this section that this is the case for our measure of regulation.

In Figure 9, we plot our measure of regulation Tj for each of the ten years in our sample (2009-2018)
in the largest MSAs in those two states (Dallas and Houston in Texas; San Francisco and Los Angeles
in California.) We find that, as expected, the major cities in California are more regulated than those in
Texas. Indeed, Los Angeles is one of the most tightly regulated major cities in our sample. Figure 9 also
demonstrates that our measure of regulation is, reassuringly, stable across years.
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Figure 9: Cities in Texas and California

.7
5

.8
.8

5
.9

D
is

to
rti

on
s 

T j

2008 2010 2012 2014 2016 2018
Year

Dallas-Fort Worth Houston
Los Angeles San Francisco

Notes: This plot shows Tj for a set of 4 cities, two in California and two in Texas. In each year, we recalculate Tj using all
tax assessments from that year, rather than using buildings first assessed in that year.

3.5 Older Buildings

One possible issue with our identification strategy is that it might systematically overestimate regulation
for older buildings.19 If improvement value MV is fixed, or perhaps even declining as the building ages,
but the option to rebuild becomes more valuable as the economy grows, then older buildings should
have a low measured τ even if they are not truly more regulated.

We offer a few responses to this potential criticism. First, we show that T is not as tightly connected
to age as one might expect, perhaps because older buildings get renovated. In Figure 10, we plot our
baseline Tj against an alternative Tj calculated only with buildings from the last 10 years. The two series
are highly correlated, and the alternative Tj are clustered roughly along the 45 degree line. As described
in Appendix A.1, only 57 percent of the buildings in our filtered sample even have a recorded age,
and these are likely not selected at random, so the tight correlation in spite of these sources of noise is
reassuring. In Appendix C, we also show that age is not very predictive of parcel-level distortions ti.

More importantly, we have not used the parcel-level τ directly in our validation exercises and we do
not use them in our counterfactuals20. We aggregate them up and treat zoning codes or MSAs as our
units of observation. Older buildings may drive down the average τ and drive up its dispersion within a

19We thank Salim Furth for a very helpful conversation on this topic.
20In Appendix F, we follow Furth (2021) and use only buildings less than 10 years old to compute our counterfactuals, which

yields results that are smaller than but still comparable to our baseline specification.
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Figure 10: T Calculated From New Buildings
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Notes: In this Table, we compare our city-level distortions Tj as calculated with all parcels on the horizontal axis with an
alternative measure of Tj calculated using only buildings from the last 10 years. We only have 235 matched MSAs in this
sample, as no buildings in 6 MSAs have a recorded age.

zoning code or MSA, but we remove these effects in our counterfactual by using more-aggregated units
of observation. Stated differently, dispersion in the measured τ due to building aging will be picked
up more in D than T. This leaves differences in the impact of aging on the level and dispersion of τ

across our units of observation, but these differences may actually pick up on the effects of regulation if
builders in more-regulated MSAs or zoning codes rebuild less frequently.

4 General Equilibrium Model

In order to calculate the consequences of our measured land use regulations for output and welfare, we
need an equilibrium model where prices are allowed to vary. In this section we introduce just such a
model, building on Herkenhoff, Ohanian, and Prescott (2018). This section also demonstrates the ease
with which our measures of regulation can be incorporated into a macroeconomic model.

In what follows, t ∈ {0, 1, ..., ∞} indexes time and j ∈ {1, 2, ..., N} indexes regions, corresponding to
241 major metropolitan statistical areas, plus a remote work sector (denoted j = r) and a rest-of-country
aggregate. Locations (“cities") are differentiated on amenities aj and TFP Aj. A stand-in household sends
workers to cities to earn wages, allocates capital, and receives profits from landlords and final goods
producing firms. The final goods firms hire workers and rent capital from the representative household,
rent buildings from landlords, and combine these factors to produce a numeraire final good. Landlords
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combine a fixed factor (“land") with the final good to produce buildings, and they rebate their profits to
the stand-in household.

4.1 Households

The stand-in household has preferences over consumption ct and regional labor supply Lj,t. These prefer-
ences feature city-specific disutilities of labor.21 Amenities aj decrease the marginal disutility of sending
workers to a given city. We parametrize amenities as a function of “congestion", or the quantity of work-
ers per unit of commercial land Lj,t/Xj. This gives rise to one possible rationale for zoning regulations:
the representative household takes these amenities as given when choosing where to send workers, but
in doing so they generate unpriced externalities. The household invests it in capital and allocates both
workers Lj,t and capital Kj,t across regions. The wage rate in region j is given by wj,t, and we make
the assumption that capital is perfectly mobile, implying a single national rental rate of capital rk,t. The
household also receives profits from landlords πj,b,t and from final goods firms πj, f ,t. The household
solves the following optimization problem:

max
ct,it,Kj,t,Lj,t

∞

∑
t=0

βt

(
c1−σ

t
1 − σ

− 1
1 + 1

η

N

∑
j=1

(
Lj,t

aj(Lj,t/Xj)

)1+ 1
η

)
(16)

subject to:

ct + it =
N

∑
j=1

(
πj,b,t + πj, f ,t + wj,tLj,t + rk,tKj,t

)
Kt+1 = ik,t + (1 − δk)Kt

N

∑
j=1

Kj,t = Kt

4.2 Final Goods

Final goods firms combine labor Lj,t, buildings Bj,t, capital Kj,t at the city level to produce the numeraire
final good.22 We assume they operate constant returns to scale Cobb-Douglas production technologies
with city-specific total factor productivity Aj. The building share χj is assumed to be zero in the remote
work sector (χr = 0) and both constant and positive across all other non-remote regions (χj > 0 ∀j ̸= r).
Firms pay a national rental rate for capital rk,t. They pay city-specific wages wj,t and building rents
rb,j,t. They maximize the following static profit function and rebate all profits (which will be zero in
equilibrium) to the household:

21Similar to Herkenhoff, Ohanian, and Prescott (2018), these preferences stand-in for idiosyncratic preferences for a given
city and other forces that limit inter-regional mobility. As η → 0, it becomes more costly to send all workers to a given region.
See Berger, Herkenhoff, and Mongey (2019) for discrete choice micro-foundations of related firm-specific preferences.

22As we will explain in more detail later, Bj,t maps into productivity-weighted building square feet supplied by the land-
lords.
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πj, f ,t = max
Kj,t,Lj,t,Bj,t

AjLα
j,tB

χj
j,tK

1−α−χj
j,t︸ ︷︷ ︸

Yj,t

−wj,tLj,t − rk,tKj,t − rb,j,tBj,t

4.3 Representative Landlord

As described in Section 2.2, our model admits a representative city-level landlord. This landlord pur-
chases the final good m at cost 1/qj and combines it with newly-depreciated land to create new buildings
BN

j , as in Equation 6, which we rewrite below:

max
mj,t

βTj,t pj,t Dj,tm
γ
j,t(δbCj)

1−γ︸ ︷︷ ︸
BN

j,t

− mj,t︸︷︷︸
MVj,t

The stock of buildings in each city grows according to a standard law of motion:

Bj,t+1 = (1 − δb)Bj,t + BN
j,t

Note that we incorporate our measures of regulation T and D in a fully model-consistent manner.
This is one major advantage of our approach relative to Gyourko, Hartley, and Krimmel (2021).

4.4 Equilibrium

An equilibrium in this economy consists of prices {{rb,j,t, wj,t}∀j, rk,t}∞
t=0, quantities

{{Yj,t, Kj,t, Lj,t, Bj,t}∀j, {mi,t}∀i, it, ct}∞
t=0, and decision rules for investment, consumption, and labor

supply, such that, given prices, the stand-in household maximizes utility, firms maximize profits,
markets clear, and the resource constraint holds:

ct + ik,t + ∑
j

(
∑
i∈j

qimi,t

)
= ∑

j
Yj,t

4.5 Identification

We now identify the other parameters of the general-equilibrium model, again assuming a steady state
and dropping time subscripts. We set a subset of these parameters externally, using standard values, and
summarize these parameters in Table 1. We discipline the factor shares in production, region-level total
factor productivity, and productivity in the building sector using external data from the 2018 American
Community Survey (Ruggles, Flood, Goeken, Grover, Meyer, Pacas, and Sobek (2020) ) and the Bureau
of Economic Analysis, as summarized in Table 2.

We allocate labor supply across regions, and to the remote work sector, using the ACS. The variable
TRANWORK asks “How did this person usually get to work LAST WEEK?" (emphasis original), and we
define a remote worker as someone who answers “worked from home." We calculate the share of remote
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Table 1: External Parameters

Parameter Description Value Source
β Discounting 0.96 Standard, i.e. Herkenhoff and Raveendranathan (2023)
σ CRRA 2 Standard, i.e. Friend and Blume (1975)
η Labor Curvature 2 Standard, i.e. Keane and Rogerson (2012)
δk Non-Structures Depreciation 0.032 Standard, i.e. McGrattan (2020)
α Labor Share 0.594 Penn World Table (Feenstra, Inklaar, and Timmer (2015))

Notes: This Table reports the parameters which we set externally. We use standard values in all cases, and we provide
sources from the literature that support our choices.

Table 2: Additional Data Sources

Variable Description Source
Y Aggregate GDP US Bureau of Economic Analysis (2021b)
Yj MSA GDP US Bureau of Economic Analysis (2021a)
ik Equipment+IP Investment US Bureau of Economic Analysis (2021b)
Lj MSA Labor Supply ACS

ρL ≡ Lr/∑j Lj Remote Labor Supply Share ACS
ρW ≡ wrLr/∑j wjLj Remote Wage Bill Share ACS

Notes: This Table reports our key sources of data outside of CoreLogic. We get data on national output, metro-level output,
and investment from the Bureau of Economic Analysis; and we get metro-level labor supplies, the share of workers who work
remotely, and the wage bill share of remote workers from the American Community Survey. We define a remote worker as
anyone who lists their primary commuting mode as “worked from home" in response to the questions in variable TRANWORK.

workers ρL and set Lremote, the labor supply in the remote work region, as ρL times the aggregate labor
supply. We multiply each non-remote region’s labor supply by a factor 1 − ρL to avoid double-counting
workers.

We assume that the labor share is constant in the remote work and traditional regions. This means
that remote workers’ share of GDP will be proportional to their share of the wage bill. Analogously to
our procedure for labor supplies, we therefore calculate remote workers’ share of the aggregate wage bill
ρA, set Yremote to ρA times aggregate GDP, and multiply regional GDP in every other region by a factor
1 − ρA to avoid double-counting output.

We next turn to non-structures capital. We pin down the rate of return rk using standard parameters
and set rk =

1−β(1−δk)
β . The aggregate capital stock is such that investment ik exactly offsets depreciation,

hence K = ik/δk.
We can recover χn, commercial buildings’ factor share in non-remote regions, by noting that factor

payments to non-structures capital are equal to (1− α− χn)Yj in non-remote regions j ̸= r, and (1− α)Yr

in the remote region r. A little algebra yields: χn =
(
(1 − α)∑j Yj − rk ∑j Kj

)
/
(

∑j ̸=r Yj

)
. With the factor

share in hand, we can now calculate regional capital stocks:
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Kj = (1 − α − χj)Yj/rk (17)

We recover the level of the building stock Bj and the level of the supply shifter Ψj from the region-
j final goods firm’s first-order condition—that is, we set the value of the building stock pjBj equal to
the net present value of factor payments made to these buildings, Bj = χjYj/pj(1 − β(1 − δb)). This

then pins down the shifter Ψj = Bj/p
γ

1−γ

j We do not take the value of the building stock BVj ≡ pjBj

directly from CoreLogic for several reasons. First, we use a filtered subset of all parcels as described
in Appendix A, as we do not have full information on the universe of buildings in our data. Second,
the value of the building stock will be depressed relative to true factor payments because of property
taxes. Third, state policies like Proposition 13 in California may cause assessment values to be biased
downwards—see Office of the Assessor, County of Santa Clara (2021) for details. Note that while the
level of improvement value and total value may be artificially low, especially in California, we do not
use the level directly and are instead concerned with improvement value’s share of total value. The share
should not be systematically biased by any of the factors we describe above, unlike the level. Likewise,
property taxes should be capitalized into the parcel-level price per building square foot pjzi, as discussed
in Section 2.1.1, and are not a direct threat to our identification.

We recover the total amount of resources expended in improvements from the first-order condition of
the aggregate builder and the steady-state condition that new buildings replace depreciation, so pjBN

j =

δpjBj. Usefully, this also yields the demand curve for materials:

mj = γβTjδb pjBj (18)

Next we can recover total factor productivity from the production function of the final goods firms,
Aj = Yj/

(
Lα

j B
χj
j K

1−α−χj
j

)
. We then use ACS data on Lj and BEA data on Yj to recover wages from the

first-order condition of the final goods firms, giving us wj = αYj/Lj. Next we recover consumption by

subtracting investment in improvements and capital from output, giving us c = ∑j

(
Yj − δkKj −mj

)
. We

then recover amenities from the household’s first order condition:

aj = exp
(σ log c + 1

η log Lj − log wj

1 + 1
η

)
Our analysis will overstate the gains from deregulation if there are countervailing benefits to these

regulations. One possibility is that more commercial development would lead to more congestion and
therefore a lower quality of life. As noted earlier, the fact that many most regulated towns are famous
for their natural amenities lends some credence to this theory. In our preferred specification, captured
in Equation (19), we regress amenities aj against a measure of congestion: the ratio of workers Lj to the
sum of commercial land square footage Xj.23

One might be concerned, however, that this procedure would yield biased results: a place with high

23We sum land square footage xi across all parcels with a non-missing value, not only the ones in our filtered sample.
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exogenous amenities will draw a lot of workers in, meaning that L/X would be correlated with e. We
therefore use the model itself to generate instrumental variables, in a manner similar to papers like
Anderson and van Wincoop (2003), Allen, Arkolakis, and Takahashi (2020), and Walsh (2019).We re-
solve the model setting TFP and amenities to their average value and turning off zoning distortions,
meaning that the only reasons why populations would differ across regions are the land supply shifters
Ψ.24 This is particularly close to the "model-implied IV" of Rossi-Hansberg, Sarte, and Schwartzman
(2019b). We store this counterfactual value of L/X and denote it as L̂/X, and use that counterfactual as
an instrument for L/X in Equation (19). We report the measured coefficient and standard error below:

log aj = µ︸︷︷︸
−0.53∗∗∗

[0.07]

log(Lj/Xj) + ej (19)

We drop the remote work sector and the rest-of-country aggregator from this regression. There are
241 MSAs in this analysis, some of which are very small, so we weight the regression by the true popu-
lation of each MSA. We also use robust standard errors. The first-stage F-statistic is 191. This small but
statistically significant negative relationship between amenities and our measure of congestion suggests
that the increased labor supply attracted to a region by a larger building stock might make a place less
desirable. This provides one possible rationale for zoning regulations.

5 Counterfactuals

We can use our model for large-scale counterfactuals that illustrate the aggregate consequences of com-
mercial land use regulation, and we can use the same framework to simulate detailed local counterfac-
tuals. In this section, we provide some examples of both. We explain how we compute counterfactuals
in Appendix E, and we explain how we incorporate endogenous amenities into these counterfactuals in
Appendix E.1.

5.1 Aggregate Counterfactuals

This first set of counterfactuals demonstrates that land use regulations are consequential for both ag-
gregate output and the distribution of economic activity across space. The first experiment shifts the
“average" level of regulation in each city up to the benchmark by setting Tj = 1, the second experiment
reduces dispersion in zoning codes; the third experiment tests whether there are still meaningful gains
from deregulation in a world where remote work is more common, the fourth experiment studies how
local counterfactuals can have aggregate effects, and the fifth experiment tests whether congestion exter-
nalities meaningfully reduce the welfare gains from deregulation. We summarize the counterfactuals in
Table 3 and explain them in greater detail in the next few sections.

24We report the results of other approaches in D. This specification yielded the most pessimistic estimate of the negative
effects of congestion, so we use it as our baseline to make our results more conservative.
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Table 3: Aggregate Counterfactuals: Description

Counterfactual T D Amenities
Baseline Set to 1.0 Unchanged Baseline
Less Dispersion Unchanged max[Second Highest, Dj] Baseline
More Remote Set to 1.0 Unchanged Set so ρL = 0.4
Local Deregulation τc f = max[τ, min[Median in FIPS, 2τ]] Baseline
No Congestion Set to 1.0 Unchanged Exogenous

Notes: This Table provides a guide to each of our five aggregate counterfactuals. The first column explains how we change
the aggregate distortion Tj, the second explains how we change the dispersion term Dj, and the third explains whether we
endogenize amenities as in our baseline case or treat them as exogenous. For the “Local Deregulation" counterfactual, we do
not change Tj and Dj directly but rather change zoning code level τz and then re-aggregate.

Table 4: Aggregate Counterfactuals: Results

Baseline Less Dispersion More Remote Local Deregulation No Congestion
%∆Yj 3.0% 6.0% 1.5% 3.1% 2.9%
%∆Lj -0.8% -2.8% -0.8% -2.3% -1.0%
%∆Kj 2.6% 5.2% 0.4% 2.6% 2.5%
%∆Bj 17.4% 60.0% 19.2% 26.2% 16.6%
%∆ Landlord Profits -2.8% 7.6% -1.1% 11.0% -2.9%
%∆c 2.2% 6.1% 1.0% 4.0% 2.1%
%∆ Consumption Equiv. 1.5% 3.1% 0.8% 1.7% 1.5%

Notes: In Table 4, we display the results of our five aggregate counterfactuals. %∆X is the percent change in variable X
relative to the baseline, where X stands for output Y, aggregate labor supply L, capital K, building stock B, landlord profits,
and consumption. The final row is the percent change in consumption relative to the baseline needed to make the stand-in
household indifferent between moving to the counterfactual steady state or not.

We report the major results from these exercises in Table 4. We calculate the percent change in GDP
Y, labor supply L, capital stock B, and (efficiency-weighted) building stock B, aggregate landlord profits
(given by the rental payments made to buildings ∑j χYj less the cost ∑j mj needed to offset depreciation),
and consumption.

Finally, we compute the percentage change in consumption in the original steady state needed to
make the representative household equally well-off as in the new steady state. We derive this analytically
in E.2.

5.1.1 Baseline

In our baseline exercise, we simply set Tj = 1 in all regions and keep all other parameters the same. This
is an extremely conservative exercise that treats all of the dispersion in τ within a region as measurement
error; in other words, it leaves Dj unchanged. We report the results in the first column of Table 4. We find
that this leads to a nearly 3 percent increase in GDP, and a notably smaller increase in consumption. This
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Table 5: Most and Least Regulated Cities

Distortion Tj Change in Yj/Lj Change in Lj
Midland, TX 1.000 0.1% -3.5%
Shreveport-Bossier City, LA 0.998 0.1% -3.4%
Monroe, LA 0.987 0.4% -3.2%
Tuscaloosa, AL 0.985 0.4% -3.2%
Baton Rouge, LA 0.983 0.4% -3.2%
Lebanon, PA 0.701 8.3% 3.2%
Myrtle Beach-Conway-North Myrtle Beach, SC-NC 0.693 8.6% 3.4%
Ocean City, NJ 0.598 12.3% 6.3%
El Centro, CA 0.597 12.3% 6.3%
Urban Honolulu, HI 0.547 14.5% 8.1%

Notes: This table shows the five cities with the highest and lowest values of Tj, corresponding to the lowest and highest
degrees of regulation. The first column reports the city-wide distortion Tj, the second column represents the change in GDP
per worker in our baseline counterfactual where we set Tj = 1 ∀j, and the third column reports the change in city-level labor
supplies in that same counterfactual.

discrepancy arises because removing regulatory distortions leads landlords to invest more resources in
their building stock, leaving fewer to rebate to the household for consumption. The stand-in house-
hold in the original steady state would be indifferent between a 1.5 percent increase in consumption and
switching to the counterfactual steady state. Interestingly, we find that landlord profits fall in the new
steady state due to the drop in price per building square foot. This is not surprising: regulations in this
model effectively force landlords to spend “too little" on construction. which saves them money directly
and indirectly leads to higher equilibrium prices per building square foot. Higher construction expendi-
tures for landlords also leave fewer resources available for consumption, explaining why consumption
and welfare increase less than output. We speculate that part of the reason why these regulations persist
is because, while each individual landlord would be better off if their τi were set to its maximal value of
1, deregulating every parcel would lower prices and profits for all landlords.25

In Table 5, we show what MSAs grow and shrink the most in our baseline deregulation. We report the
regulatory distortion Tj, along with the change in GDP per capita and the change in labor supply after the
deregulation. We find that the least regulated cities are generally in the South, and that many of the most
regulated cities are beach towns. We speculate that certain cities with desirable natural amenities might
use these restrictions to avoid over-developing and lowering the value of those amenities. Interestingly,
our finding that Honolulu is the most regulated city mirrors what Gyourko, Saiz, and Summers (2008)
found for residential buildings: Honolulu singlehandedly pushed Hawaii to the top of their rankings of
most-regulated states.

We also find that, as expected, deregulation generally shifts labor from cities in initially less-regulated
states like Texas to cities on the more-regulated coasts. In Figure 11, we show the change in labor supply

25However, landlord profits do increase under counterfactuals where we allow Dj to change.
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Figure 11: Metropolitan Labor Supply Changes Across States in Baseline Counterfactual
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Notes: This table reports the change in labor supply Lj across the 241 cities in our baseline counterfactual, with the cities
combined into their constituent states. Cities and towns in the rest-of-country aggregator are not included, and we omit Alaska
and Hawaii for readability.

in all cities within a state.26

In Appendix F, we test how the results of this counterfactual vary as we change our data sample and
parametrization.

5.1.2 Reducing Dispersion

In this exercise, we take our measure of dispersion more seriously and perform an exercise inspired
by Hsieh and Klenow (2009): we move dispersion Dj up to a minimally-dispersed benchmark and re-
calculate the equilibrium. That is, we leave the average level of regulation in a city (Tj) fixed but reduce
the dispersion of regulation. We interpret “reduced dispersion" as allowing more-equal development
within a city as opposed to clustering commercial real estate in business districts.

Dj is tightly concentrated in a range of 0.04-0.07, with a single outlier observation (namely Yuma,
AZ) at roughly 0.13. Hence, we move Dj in all regions up to the maximum of their pre-reform Dj or the
second highest Dj in our sample (Youngstown-Warren-Boardman, OH-PA), so that the one outlier does
not skew our results.

26But note that we do not include the rest-of-country aggregator or remote work sector in this figure.
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We find that the gains from this exercise are very large: output goes up by 6%, and consumption-
equivalent welfare rises by 3%.

However, the benefits from this form of deregulation depend heavily on agglomeration and conges-
tion externalities. If de-centralizing commercial real estate reduces congestion by spreading out employ-
ment, this exercise may understate the benefits of reducing dispersion. If agglomeration externalities
have an increasing elasticity with respect to economic activity (that is, if reallocating activity from busi-
ness districts to the outskirts causes a net weakening of agglomeration forces), then moving such activity
away from the central business district will lessen the benefits of agglomeration, and so this exercise
would overstate the benefits of reducing dispersion. This is an interesting avenue for future research.

5.1.3 Expanded Remote Work

In the wake of the COVID-19 pandemic and the shift to remote work, one might wonder whether com-
mercial real estate regulations are as important. We have taken an extreme stance by setting the factor
share of buildings in the remote work sector to zero, and can therefore use our model to calculate a
“worst case" scenario for the gains from deregulation. Dingel and Neiman (2020) argue that almost 40
percent of jobs can be done from home, a number we treat as a rough upper bound for the near-future
impact of remote work. We now ask what happens to the benefits of deregulation after a large shift to
remote work.

This is deliberately a very extreme interpretation of the impact of remote work: as noted in Table 8,
office buildings account for less than one-fifth of the total value of our sample, and yet we assume that
commercial buildings (including warehouses and factories) are not an input at all into production done
at home.

We first use the counterfactual algorithm detailed in Appendix E to compute a new initial steady
state where remote work comprises 40% of the labor force. To do so, we scale down amenities aj in
all non-remote regions by a common factor υ, recalculate the steady-state share of remote work, and
continue scaling down until we find the υ∗ that delivers our desired remote work share.

Next, we start from the new high-remote work benchmark and perform our baseline deregulation.
We report the results in the second column of Table 4. We find that the gains from deregulation are
attenuated, but still amount to an 0.8% consumption equivalent gain in welfare in a world where four in
ten jobs are done remotely.

5.1.4 The Aggregate Consequences of Local Reforms

We next consider a simple counterfactual conducted at the local level: what if every county up-zoned
its most regulated buildings by moving every τz up to the median? Our goal is to understand whether
relatively conservative, easy-to-interpret policy changes at the local level can aggregate up and have
significant consequences at the national level. We also use this counterfactual to demonstrate that our
method can be used to perform detailed, specific policy counterfactuals and give granular advice to local
policymakers.

27



We first project regulatory distortions down onto zoning codes and recover τz as in Equation (15),
and treat buildings in each zoning code as if there was no dispersion in distortions. We now recalculate
Equations (10) and (11) after projecting down onto zoning codes:

MVz ≡ ∑
i∈z

MVi (20)

Dj =

(
∑z∈j MVz/τz

∑z∈j MVz/τ
1

1−γ
z

)/( ∑z∈j MVz

∑z∈j MVz/τ
1

1−γ
z

)γ

(21)

Tj =
∑z∈j MVz

∑i∈j MVz/τz
(22)

The misallocation term Dj does not stay the same—it gets closer to 1.0 as this procedure removes any
within-zoning-code dispersion in τ. The average dispersion Tj is unchanged after we project regulatory
distortions down onto zoning codes—this is immediately apparent after substituting Equations (20) and
(15) into Equation (22) and contrasting it with Equation (11). To perform this counterfactual, we change
τz, recalculate Tj and Dj in Equations (22) and (20), and use the algorithm in Appendix E.

We emphasize that, due to our data limitations, this is an extremely conservative exercise. Some
counties do not report their zoning codes at all in the datasets that CoreLogic compiles, hence these
counties would see no change in the extent of their regulation in our counterfactual. We do not allow
any τz to go up by more than a factor of 2, and we also cap Tj and Dj at 1.0 to prevent any city from
having “negative" average regulation or dispersion. Our results indicates that this modest reform could
increase output by roughly 3%.

5.1.5 Exogenous Amenities

We report the results of this counterfactual in the third column of Table 4. Perhaps surprisingly, we find
that aggregate outcomes barely change. Upon closer inspection, we find that this is because increases
in congestion in initially more-regulated cities, which gain more workers when we loosen regulations,
are offset in the aggregate by decreases in congestion in initially less-regulated cities. We show in Figure
12 that these responses differ greatly between the benchmark case with endogenous amenities and the
case with exogenous amenities. In the baseline case, amenities worsen in cities with larger increases in Tj

and greater labor supply increases, but they improve in cities that lose workers. Endogenizing amenities
therefore dampens the labor supply response to deregulation, with only a minor effect on aggregate
outcomes.

5.2 Local Counterfactual

We can also use our framework to perform detailed counterfactuals that change individual parcel-level
regulatory distortions, and can therefore provide advice to local policymakers. Below, we provide an
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Figure 12: Exogenous vs Endogenous Amenities
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Notes: This table compares the change in labor supplies across cities in our baseline counterfactual with endogenous ameni-
ties and an alternative with exogenous amenities. The horizontal axis corresponds to a city’s distortion Tj in the baseline, and
the vertical axis corresponds to the percentage change in Lj relative to the baseline in a counterfactual steady state where Tj = 1
in all cities.

examples of a fine-grained counterfactual within New York City: moving all buildings up to the highest
floor area ratio that we observe.

We first regress τz on FAR at the zoning code level, weighting zoning codes by their summed BV:

log τz = α︸︷︷︸
0.0343∗∗∗
[0.00433]

log FARz

This projects our measure of regulatory distortion down onto a real measure of regulation, and cap-
tures the impact of one dimension of regulation on zoning code strictness. We can use this projection
to estimate a counterfactual τz,c f in the case where we raise all buildings27 to the highest observed floor
area ratio, which we denote as FARmax:

log τCF
z = α log(FARmax) + ϵz

We then use Equations (21) and (22) to calculate M and T under the new τCF
z , and use them to

27We “cap" the zoning codes at 1, preventing us from having negative regulations, in the following sense: If τz > 1, we do
not change it in the counterfactual. If τz < 1 but τCF

z would be greater than 1, we set τCF
z = 1.

29



Figure 13: Zoning and counterfactual NYC
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Notes: In the left panel, we plot the buildings in Manhattan which are subject to the most- and least- regulating ten percent
of zoning codes. In the right panel, we plot the change in their square footages in the new steady state after counterfactually
moving all FAR up to the highest that we observe. We only plot Manhattan to improve readability, and because Manhattan is
likely more familiar to most readers than the rest of NYC.

compute a counterfactual.28

We find nontrivial local gains from this counterfactual, on the order of one percentage point of metro-
area GDP29. We summarize these results in Table 6. Note that the metro-level (efficiency-weighted)
building stock goes up only slightly when increase FARs in the largest city in the MSA. This suggests
that FARs do not bind for many buildings. Indeed, most buildings in our sample are not particularly
close to their statutory floor area ratio. This illustrates another advantage of our method: we can project
our measure τ onto statutory characteristics of regulations such as floor area ratios, and figure out which
of these characteristics are truly distortionary and which ones are not.

In Figure 13, we provide a graphical illustration of what this exercise would entail for NYC. We
focus on Manhattan and plot the buildings in the most- and least-regulating ten percent of zoning codes
in NYC, alongside the change in their building square footage in the new steady state following the
counterfactual. Business activity moves from Midtown (already built-up) to the Upper East and West
sides (mostly residential neighborhoods known for their opposition to development.) Note that the least
regulated buildings shrink in the new steady state due to decreases in the equilibrium price per building
square foot in the NYC metro area.

6 Conclusion

Our paper makes three contributions. First, we develop a model of the U.S. economy in which commer-
cial real estate is a productive, regulated, and potentially misallocated component of the capital stock.

28We only use the subsample of buildings where we can find a floor area ratio for this exercise. See Appendix A.2 for details.
29Note also that the counterfactual takes place in New York City proper, whereas (to preserve compatibility with the rest of

our model and analysis) we calculate changes in GDP at the level of the New York City MSA. Hence, these percentage gains
are diluted by the many cities and suburbs in the NYC metro that do not deregulate in this counterfactual.
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Table 6: NYC Counterfactual

Outcome: YNYC BNYC LNYC PNYC

Change Rel. to Baseline +1.8% +6.0% +0.0% -8.5%

Notes: This Table reports the results of moving all buildings in NYC We report the change in metro-level GDP Y, commercial
building supply B, labor supply L, and price per building square foot P in the new steady state.

Importantly, our model yields an intuitive formula for identifying the extent to which commercial real
estate investment decisions are distorted by zoning codes and other local regulations.

Second, we apply our theory to the near-universe of commercial property tax records from CoreL-
ogic in order to measure a model-consistent index of commercial regulations. Our analysis uses rich
address-level micro-data: municipal tax assessments compiled by CoreLogic. We validate our index of
commercial regulations by hand-collected zoning code attributes and showing that our index of com-
mercial regulations is correlated with statutory floor area ratios and height limits. We then examine how
our commercial regulations compare across cities. Our results confirm the common prior that metro
areas in Texas such as Dallas-Fort Worth and Houston face significantly weaker commercial real estate
regulation than metros in California, and more generally we find that coastal cities face the most severe
distortions to commercial real estate production.

Third, we use our distortion measure and our benchmark equilibrium model to evaluate the effect
of both national and local changes to commercial regulations. In our primary exercise, we raise average
city-level regulations up to a deregulated benchmark (Midland, Texas) and solve for the new steady state,
while leaving the dispersion of parcel-level regulations unaltered. National output increases by 3.0% as
commercial investment booms and workers reallocate from the midwest to the now-less-regulated states
of Florida, California, Oregon, and Minnesota.

One benefit of our framework is that it allows for very granular counterfactuals within narrowly de-
fined geographies. Because we recover regulatory distortions at the address-level, we can project our
distortions down onto specific features of zoning codes such as floor area ratios. We apply this coun-
terfactual to New York City and find that doubling floor area ratios would reallocate business activity
toward the Upper West Side of Manhattan, and yield local output gains of 0.5%.

Our framework opens a number of avenues for future research. The model and empirical exercises
can be extended to include residential zoning, heterogeneous workers, and intangible capital, and tran-
sition dynamics. Our framework is also well-suited for studying how regulations distort the allocation
of resources and workers not only across cities but within a given city, and to study phenomena such as
the interaction between inequality, homelessness and zoning distortions.
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A Data

In this appendix, we provide more details on our data. Appendix A.1 describes CoreLogic’s sample of
commercial buildings in greater detail,

A.1 CoreLogic

CoreLogic’s dataset is the most comprehensive available source of commercial parcel-level data. How-
ever, it is limited by the quality and quantity of the data compiled by local assessors.30 Not all of these
variables are available for all parcels in all cities, particularly building square footage. We restrict our
sample to buildings where total value, improvement and/or land value, and land square footage are
available. We also find that, for some parcels, MV/TV takes on values outside [0, 1], or in some cases
either MV or LV are recorded as 1 dollar. As the improvement share of building value is an important
object in our analysis, we drop buildings where the ratio MV/TV is greater than .99 or less than .01.
CoreLogic has also harmonized county-level land use codes, which explain what a parcel is primarily
used for. Our sample excludes all buildings which CoreLogic has identified as primarily residential;
hence, we treat the stock of commercial parcels as fixed and do not explore the decision to build a resi-
dential or commercial building on a given plot of land. We also drop buildings identified as public land.
The buildings we keep after filtering account for roughly 23 percent of all non-public parcels in CoreL-
ogic’s sample, but their total values sum to 73 percent of the total value of all non-public parcels in the
unfiltered sample.

Table 7 shows the availability of different variables in the 2018 sample, in both the raw version of the
data and the filtered version we use for our analysis. N and ∑ TV indicate the share of parcels, and the
share weighted by total value, preserved in the filtered sample. The variable a denotes the availability
of the age variable in the filtered and unfiltered samples, whereas ā indicates its mean value. Note that
some parcels list only MV or only LV. In those cases, we impute the missing value by subtracting the
non-missing value from TV. We record value availability after doing this imputation. We also record
what share of parcels have land square footage x, building square footage BSF, and an alphanumeric
zoning code z.

In Table 8, we further break down the buildings in our filtered sample by CoreLogic’s one-digit
land use codes. "Commercial"31 includes things as diverse as office buildings, parking lots, and funeral
homes; "Industrial" includes factories as expected but also things like warehouses and wineries; "Vacant
Land" includes empty lots but also golf courses; "Agriculture" includes things like farms and fisheries;
"Recreational" includes things like stadiums and bowling alleys, "Transportation" includes things like
harbors but also sweeps in utilities; and the final category includes buildings denoted as "Real property
(NEC)" or "Misc" by CoreLogic. Recall that our filtered sample excludes public buildings (encompassing

30To give one example of the limitations of using raw assessor data: we manually inspected parts of the data and found that
zoning codes “C-3" and “C3", with and without hyphens, coexisted in one jurisdiction. We therefore drop hyphens when we
analyze alphanumeric zoning codes.

31The notion of "commercial" buildings in our model encompasses all of the categories in this list and is broader than
CoreLogic’s usage of the term "commercial."
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Table 7: Variable Availability

Full Sample Filtered
TV .97 1.0

MV .9 1.0
x .97 .98

BSF .17 .63
a .15 .57
z .32 .39

N 1.0 .23
∑ TV 1.0 .74

ā 49 50
Notes: This table reports the availability of total value TV, market value MV, land square footage x, building square footage

BSF, age a, and zoning code z in the full and filtered sample; the share of buildings N and total building value ∑ TV in the
filtered sample; and the average age ā in the full and filtered sample.

Table 8: Building Types

Code Type Share of TV
2 Commercial .663

244-247 Office Buildings .176
3 Industrial .193
4 Vacant .002
5 Agriculture .096
7 Recreational .027
8 Transportation .016
9 Misc .002

Notes: This table reports the share of total value TV in the filtered sample by category of building. The numbers do not add
up to 1 because of rounding. Office buildings are a subset of commercial buildings.

things like schools, military bases, and property owned by different levels of government), which are
listed under code 6. We break out office buildings from the rest of the buildings labeled "Commercial"—
this subset of buildings is likely to become less important in the wake of the COVID-19 pandemic and
the resulting shift to remote work.

CoreLogic offers multiple measurements of land and total value depending on what information
each county tax assessor offers. These include the assessor’s estimate of market value, the assessed value
used for tax purposes, and estimated values from third-party appraisers. Not all jurisdictions report all
three values, and the first two have much better coverage than the third. CoreLogic also provides a
"calculated" value based on which of these three they think is the closest to the true market value. We
use this "calculated" value but find that this choice is not very consequential—we recalculate our indices
using market and assessed values instead of CoreLogic’s preferred value, and find that over 90 percent
of our observations of Tj and Mj change by less than 10 percent in either direction, and that most do not
change at all. We provide more proof that this choice is not very important in Appendix F.

We also highlight one important decision here: we do not treat buildings without an alphanumeric
zoning code as unregulated. Several jurisdictions such as Houston do not have any formal zoning codes,
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and yet they still have land use restrictions such as parking minimums as documented by Schmitt (2019).
Also, some jurisdictions such as Chicago (but not all of Cook County, Illinois) do have zoning codes but
do not report them in the tax assessments used by CoreLogic. We also do not treat missing zoning
codes as an unregulated or minimally-distorting benchmark in jurisdictions where they coexist with
non-missing zoning codes.

A.2 Zoning Code Parameters

We hand-collected zoning code data for New York City and Washington, DC from City of New York
(2021) and DC Office of Zoning (2021a), respectively. We also needed to supplement DC Office of Zoning
(2021a) with information from DC Office of Zoning (2021b) for zoning codes such as WR-3. We merged
them into the CoreLogic dataset, which has some errors in how individual zoning codes were recorded.
Hence, we did not get a match for all buildings.

Some zoning codes had a range of parameters associated with them—for example, “C1" districts
in New York City have a maximum permissible FAR of 1 or 2 depending on whether the residential
buildings in their neighborhoods are in R1-R5 districts or R6-R10 districts. As we do not observe all of
the different possible contingencies that may affect the FAR of a given building in a given zoning code,
whenever we see a New York City zoning code reported multiple possible FARs, we simply use the
midpoint of the highest and lowest values reported in the zoning reference tables in City of New York
(2021). We did not include attic allowances.

In DC Office of Zoning (2021a), the set of contingencies was even more complicated. Many zoning
codes were associated with a list of height limits, rather than one or two at most in NYC. If a zoning code
provided a list of possible height limits, we used either the median height limit or the average of the
middle two. STE-19 did not report a height limit, so we listed it as missing. Many codes listed a height
limit of 35 feet, or 40 feet if the building adjacent to them was already over 40 feet. We counted these as
35 feet. If a zoning code could apply to residential or non-residential buildings, we only used the height
limits associated with non-residential buildings. We also do not count the additional floors allowed for
penthouses in STE-7.
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B Aggregation Results

B.1 Individual and Aggregate Landlords

In this section we establish the connection between the problems of the individual landlord and the
aggregate landlord. In order to do so, we solve Equations (3) and (6), and show that they yield the same
quantity of improvements demanded and quantity of buildings supplied. We assume a steady state and
drop time subscripts.

First, we take the first-order condition of Equation (3) and solve for the optimal quantity of improve-
ments, expressed in units of the final good.

qimi︸︷︷︸
MVi

= (pjτiβγ)
1

1−γ z
1

1−γ

i xiq
−γ

1−γ

i︸ ︷︷ ︸
Ci

Next, we divide both sides by qi and use the resulting expression for mi to solve for the individual
landlord’s building production function in terms of prices and exogenous parameters:

BN
i = (pjτiβγ)

γ
1−γ Ci (23)

Only a random share δb of buildings depreciate and are rebuilt in each period, hence we can recover
the sum of individual landlords’ improvement demand and building supply curves in each period. Note
that the improvement demand curve is in units of the final good.

∑
i∈j

qjmj︸ ︷︷ ︸
MVj

= δb(pjβγ)
1

1−γ ∑
i∈j

τ
1

1−γ

i Ci

∑
i∈j

BN
i︸ ︷︷ ︸

BN
j

= δb(pjβγ)
γ

1−γ ∑
i∈j

τ
γ

1−γ

i Ci

Next we solve Equation (6) for both quantity of improvements demanded and quantity of new con-
struction supplied, mirroring the derivation above. Note that the technology that the representative
landlord uses to convert the final good to the improvement good is one-for-one, as qi is swept into the
parcel-level efficiency terms.
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mj︸︷︷︸
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= δb(pjβγ)
1

1−γ D
1

1−γ

j T
1

1−γ

j Cj

BN
j = δb p

γ
1−γ
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It is straightforward to use Equations (7), (8), and (9) to replace Cj, Dj, and Tj in the above two equa-
tions and thereby establish that the improvement demand and building supply curve of the representa-
tive landlord are identical to the summed-up demand and supply curves of the individual landlords.

B.2 Estimating τi and Tj

In this section, we explain in more detail how we estimate the regulatory distortions τi and Tj.
We first recover τi. Because we focus on a single parcel in the steady state, we drop time and parcel

subscripts.
The total value of the parcel (TV) is the net present value of payments made to the building stock Bi,

plus the option to rebuild on the parcel after the building depreciates. We denote the option to rebuild as
Vf , and note that it is available with probability δb. We may therefore write the total value of the parcel
as:

TV ≡ V(B, τ, z, q, x) = rb,jB + (1 − δb)βV(B, τ, z, q, x) + δbVf (τ, z, q, x)

If the building falls, the parcel owner puts improvements on the building today and starts earning
rents tomorrow. We denote m∗ as the solution to the parcel-owner’s problem and write:

Vf (τ, z, q, x) = βV(B, τ, z, q, x)− qm∗

In a steady state, qm∗ = MV, and therefore MV and B are constant every time the building needs to
be rebuilt. We can therefore take the infinite sum of payments and get that:

TV =
rb,jB
1 − β

− δbqm∗

1 − β

Recall:

MV = qm∗ = βγτBVi

And by definition, BV is the flow value of payments made to the building:

BV =
rb,jB

1 − β(1 − δb)
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Let us rewrite the first expression in TV in terms of BV:

rb,jB
1 − β

=
1 − β(1 − δb)

1 − β
BV

Hence we can add up and rearrange some terms to relate the total value of the parcel to the total
value of the building :

TV =
(1 − β(1 − δb)− δbβγτ

1 − β

)
BV

And let us again substitute MV:

TV =
(1 − β(1 − δb)− δbβγτ

1 − β

)MV
τβγ

Let us rearrange this expression in order to get γ in terms of TV, MV, and τ:

τβγ =
(1 − β(1 − δb)− δbβγτ

1 − β

)MV
TV

τ =

( 1−β(1−δb)
1−β

)MV
TV

γβ
(
1 + δb

1−β
MV
TV

)
This yields Equation (14).
We now turn to Tj and reintroduce the parcel-level index i. We can replace τi on the left hand side of

Equation (11) with Equation (14) and recover Equation (13):

Tj =
∑i∈j MVi

∑i∈j MViγ
(

β + δb β
1−β

MVi
TVi

)
/
(( 1−β(1−δb)

1−β

)MVi
TVi

)

=

( 1−β(1−δb)
1−β

)
∑i∈j MVi

βγ
(

∑i∈j TVi +
δb

1−β ∑i∈j MVi
)

We now multiply both the numerator and denominator by ∑i∈j TVi:

Tj = T1
j

∑i∈j TV

∑i∈j TV
=

( 1−β(1−δb)
1−β

)
∑i∈j MV

βγ
(

∑i∈j TV + δb
1−β ∑i∈j MV

) ∑i∈j TV

∑i∈j TV
=

( 1−β(1−δb)
1−β

)∑i∈j MV
∑i∈j TV

βγ
(
1 + δb

1−β

∑i∈j MV
∑i∈j TV

)
We now recover Equation (13):

γ · Tj =

( 1−β(1−δb)
1−β

)∑i∈j MV
∑i∈j TV

β
(
1 + δb

1−β

∑i∈j MV
∑i∈j TV

)
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C Age Regressions

We regress parcel-level τ on age, as well as county fixed effects, for the subset of parcels where we have
building age, and report the results in Table 14. We weight parcels by BV. Most notably, the regression
R-squared is below 5%, suggesting building age explains very little of our zoning distortion. We also find
that the impact of age on measured τ is surprisingly small—a 50-year-old building would on average
have a τ less than 0.1 lower than a brand-new building. Hence, these measured age effects in and of
themselves cannot explain much of the variation in τ seen in Figure 2.32

Figure 14: The role of building vintages: Regression of zoning distortion (τ) on age

(1) (2) (3) (4) (5) (6)
τ τ log τ log τ log τ log τ

Age -0.00189*** -0.00188*** -0.00350*** -0.00350***
(3.44e-06) (3.48e-06) (6.96e-06) (7.20e-06)

log(Age + 1) -0.105*** -0.0993***
(0.000225) (0.000227)

Constant 0.910*** 0.910*** -0.116*** -0.116*** 0.0995*** 0.0820***
(0.000162) (0.000158) (0.000328) (0.000327) (0.000765) (0.000768)

FIPS FE No Yes No Yes No Yes
Observations 4,650,804 4,650,787 4,650,804 4,650,787 4,649,281 4,649,264
R-squared 0.061 0.212 0.051 0.171 0.044 0.163

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1

Notes: This table reports the results of regressions of distortions τ on age, either in levels or logs, with and without controls
for the county in which the parcel is located.

32Admittedly, this may understate the impact of aging on τ if old buildings were far less regulated than new ones.
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D Alternative Amenity Specifications

In this section we consider several alternative specifications for amenities. We consider regressions of
amenities a on both L/X ("congestion") and L ("labor supply").

First, in Table X, we report the results of naive regressions of amenities on congestion and labor
supply, with and without weights for the

Figure 15: Naive Regressions

Log Amenities

(1) (2) (3) (4)

(Intercept) 10.090*** 10.071*** 8.586*** 6.526***
(0.015) (0.013) (0.390) (0.851)

Log Labor Supply 0.288*** 0.265***
(0.008) (0.007)

Log Congestion -0.049** -0.165***
(0.019) (0.040)

Estimator OLS OLS OLS OLS
Weights No Yes No Yes

N 241 241 241 241
R2 0.829 0.885 0.023 0.151

Notes: This table reports the results of regressions of the log of amenities a on the log of labor supply L and the log of
congestion L/X, with and without weighting by the labor supply of each observation. The observations are metropolitan
statistical areas—we do not include the rest-of-country aggregator or remote work sector.

Next, in Table 16, we focus on instrumental variable regressions of log amenities on log labor force.
The first instrument is the model-generated counterfactual L̂. The second is the supply shifter in the re-
gional building supply function Ψ, where the assumption is that the ease of building and the availability
of commercial land are uncorrelated with exogenous amenities. The third is the supply of commercial
land X. The fourth is the shifter per unit of land, a rough measure of how easy it is to build on each
unit of land. The fourth is a quadratic in the model-generated counterfactual L̂. By and large, these
coefficients are smaller than the ones in the naive regression in Table 15. However, only one of these
regressions has a negative sign on the coefficient of interest, and that one is not significant. This casts
doubt on the strength of negative externalities from a growing population.
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Figure 16: Instrumenting for Labor Supply L

Log Amenities

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(Intercept) 10.001*** 10.132*** 10.075*** 10.069*** 10.038*** 10.114*** 10.094*** 10.057*** 9.838*** 9.102
(0.151) (0.206) (0.016) (0.013) (0.144) (0.115) (0.092) (0.027) (0.756) (8.686)

Log Labor Supply 0.231* -0.080 0.278*** 0.275*** 0.255** 0.019 0.291*** 0.348*** 1.358 1.391
(0.096) (1.043) (0.009) (0.010) (0.091) (0.559) (0.058) (0.067) (3.324) (14.354)

Log Labor Supply Squared 0.510 0.433
(1.413) (3.584)

Instrument L̂ L̂ Ψ Ψ X X Ψ/X Ψ/X L̂, L̂2 L̂, L̂2

Weights No Yes No Yes No Yes No Yes No Yes

N 241 241 241 241 241 241 241 241 241 241
R2 0.797 -0.617 0.828 0.883 0.818 0.123 0.829 0.798 -4.328 -18.448
F 5.783 0.006 1007.543 775.540 7.763 0.001 24.737 27.270 0.132 0.012
First-stage F statistic 2.210 0.107 264.290 341.651 2.348 0.195 4.952 4.692 0.072 0.003

Notes: This table reports the results of instrumental variables regressions of the log of amenities a on the log of labor supply
L, with and without weighting by the labor supply of each observation. The observations are metropolitan statistical areas—we
do not include the rest-of-country aggregator or remote work sector .

Finally, in Table 17, we report the results of a similar set of regressions on L/X, our measure of
congestion. The only difference is that we use L̂/X as our instrument. The coefficient declines much
more strongly relative to Table 15, providing more support for negative congestion effects.

Figure 17: Instrumenting for Congestion L/X

Log Amenity

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(Intercept) 3.372*** -1.375 3.525*** -0.891 21.796 10.300 6.521*** 4.556* 71.743*** 55.491
(0.812) (1.518) (0.782) (1.408) (19.244) (5.775) (1.505) (1.889) (17.868) (31.838)

Log Congestion -0.293*** -0.528*** -0.286*** -0.505*** 0.568 0.008 -0.146* -0.255** 6.244*** 4.818
(0.038) (0.071) (0.037) (0.066) (0.899) (0.265) (0.070) (0.087) (1.732) (3.055)

Log Congestion Squared 0.156*** 0.125
(0.042) (0.073)

Weights No Yes No Yes No Yes No Yes No Yes
Instrument L̂/X L̂/X Ψ Ψ X X Ψ/X Ψ/X L̂/X, (L̂/X)2 L̂/X, (L̂/X)2

N 241 241 241 241 241 241 241 241 241 241
R2 -0.552 -0.581 -0.518 -0.494 -3.668 -0.016 -0.067 0.106 -1.724 -1.022
F 59.321 55.648 61.003 59.336 0.399 0.001 4.285 8.657 18.344 30.237
First-stage F statistic 220.282 89.358 251.075 101.171 0.601 9.045 18.030 43.513 14.171 4.574

Notes: This table reports the results of instrumental variables regressions of the log of amenities a on the log of congestion
L/X, with and without weighting by the labor supply of each observation. The observations are metropolitan statistical areas—
we do not include the rest-of-country aggregator or remote work sector .

Out of all our regressions, the one that uses L̂/X as an instrument for L/X implies the strongest
negative externality from congestion. We therefore use that one in our baseline specification to make our
results as conservative as possible.
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E Computing Counterfactuals

For each counterfactual, we alter a subset of parameters and recompute a new steady state. At a high
level, our algorithm takes as an input a vector of Yj, feeds it through all the equilibrium conditions of the
model, and gives as output a new guess for Yj.

All of our counterfactuals involve altering the τi terms in Equations (8) and (9), or altering the τz in
Equations (21) and (22), and recovering new values for T and D. Recall the building supply curve from
Equation (12) and denote Ψp

j as the pre-counterfactual Ψj. If we increase Dj by some factor Φ1 and Tj by
some factor Φ2, we increase Ψj as follows:

Ψj = (Φ1)
1

1−γ (Φ2)
γ

1−γ Ψp
j

Having recovered the new T, D, and Ψ, we move on to the rest of the counterfactual algorithm. We
will proceed by substituting out endogenous variables until we are left with a function that only takes
as inputs the vector Yj and exogenous parameters. We begin by rewriting the consumption equation:

c = ∑
j

Yj − δkKj − mj

In a steady state, Kj = (1 − α − χj)Yj/rk, hence we can replace Kj:

c = ∑
j

Yj − Yjδk(1 − α − χj)/rk − mj

Recall mj = TjγδbβpjBj, and pjBj = χjYj/(1 − β(1 − δb)), hence:

c = ∑
j

Yj − Yjδk(1 − α − χj)/rk − YjTjδbγβχj/(1 − β(1 − δb)) ≡ ∑
j

θjYj

Recall the labor supply equation:

Lj = (a
1+ 1

η

j c−σwj)
η

We can express wages in terms of labor supply, GDP, and factor shares and rewrite this as:

L
1
η

j = (a
1+ 1

η

j c−σαYj/Lj)

L
1
η +1
j

(a
1+ 1

η

j c−σα)

= Yj

We can also express L in terms of Y, B, and K:
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Lj =

 Yj

AjK
1−α−χj
j B

χj
j

 1
α

(24)

We can also use our supply function to recover B in terms of Y:

BVj = pjBj =
χjYj

1 − β(1 − δb)

BVj = pjBj = p
1

1−γ

j Ψj

pj =

(
BVj

Ψj

)1−γ

Bj = BVj/pj = BVγ
j (Ψj)

1−γ

=

(
χjYj

1 − β(1 − δb)

)γ

(Ψj)
1−γ

Because we already solved for K in terms of Y, we can now get labor entirely in terms of a guess for
Y:

Lj =

 Yj

Aj

(
(1−α−χj)Yj

rk

)1−α−χj
((

χjYj
1−β(1−δb)

)γ
(Ψj)1−γ

)χj


1
α

Now we replace Lj in Equation (24) with the above expression to get:

 Yj

Aj

(
(1−α−χj)Yj

rk

)1−α−χj
((

χjYj
1−β(1−δb)

)γ

(Ψj)1−γ

)χj


1
η +1

α

(a
1+ 1

η

j (∑k θkYk)
−σ α)

= Yj

We rearrange this expression one last time, as we find that this final expression converges more easily:

Yj =

(Aj
(
Kj
)1−α−χj

(
Bj
)χj
) 1

η +1
α

(
Yj(a

1+ 1
η

j

(
∑

k
θkYk

)−σ

α)

) α
1
η +1

(25)

Now we can take a guess for the vector Y, put it on the right-hand-side of the above equation, and
back out a new Y on the left. We use a “damped" algorithm: we start with a guess YG on the left, get the
new YN on the right, calculate a weighted average YW = p ∗YG + (1 − p)YN , and use YW as the new YG

in the next iteration. In practice we set p = 0.9.
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E.1 Endogenous Amenities

Here we briefly discuss how we compute the model with endogenous amenities. First, our guess for Yj

also yields a guess for the counterfactual Lj, which we now call Lc f
j in Equation (24). Second, we have

already computed the relationship between amenities and labor supply in Equation (19) and computed
the key coefficient µ in the process. We can combine these expressions, along with the original amenity
vector aj and labor supply vector aj, to calculate how amenities change if the current guess for Yj is
correct. More specifically, we recover the ratio rj between new and old amenities in Equation (26):

rj =
ac f

j

aj
=

exp(µ log(Lc f
j /Xj)

exp(µ log(Lj/Xj)
=
(Lc f

j

Lj

)µ
(26)

We multiply amenities in Equation (25) by rj, and keep the algorithm otherwise unchanged. Note that
we do not change amenities in the remote work region, and note that Xj divides out of this equation.

E.2 Certainty Equivalent

Consider a move between steady states A and B. We calculate the consumption-equivalent welfare in-
crease caused by moving from A to B by scaling consumption in A by some factor λ such that the
consumer is indifferent between it and B. Below we show how to use Equation (16) to get λ. Note that,
in the case where amenities depend on congestion, we must combine this with the method described
above in Appendix E.1 to account for the change in amenities.

We know consumption, amenities, and the labor supply in both the original and final steady states.
We can therefore write:

(λcA)1−σ

1 − σ
− 1

1 + 1
η

∑
j

(
LA

j

aA
j

)1+ 1
η

=
(cB)1−σ

1 − σ
− 1

1 + 1
η

∑
j

(
LB

j

aB
j

)1+ 1
η

Some algebra yields:

λ =

(1 − σ)

 (cB)1−σ

1 − σ
+

1
1 + 1

η

∑
j

(LA
j

aA
j

)1+ 1
η

−
(

LB
j

aB
j

)1+ 1
η


1

1−σ /
cA

We record λ − 1, i.e. the percentage change in consumption needed to equate utility in the old steady
state with the new, in Table 4.

46



F Robustness Exercises

In this section, we test the robustness of our results to different data filtering choices and calibrations.
In particular, we re-do the baseline counterfactual described in Section 5.1.1 and test how much the
headline results change. We explain these exercises in more detail below and report their results in Table
9.

Table 9: Robustness Exercises

Baseline Mkt. Value Assd. Value χ = .13 χ = .10 No Agriculture Young Buildings
%∆Yj 3.0% 3.2% 2.9% 2.5% 1.9% 2.9% 1.4%
%∆Lj -0.8% -0.8% -0.8% -0.7% -0.5% -0.8% -0.4%
%∆Kj 2.6% 2.8% 2.5% 2.2% 1.8% 2.5% 1.3%
%∆Bj 17.3% 22.7% 16.1% 16.9% 16.3% 16.8% 8.4%
%∆ Landlord Profits -2.8% -3.0% -2.7% -3.3% -4.0% -2.7% -1.5%
%∆c 2.2% 2.3% 2.1% 1.8% 1.4% 2.1% 1.0%
%∆ Consumption Equiv. 1.6% 1.7% 1.6% 1.4% 1.0% 1.6% 0.8%

In our first two robustness exercises, we test whether using CoreLogic’s preferred “calculated" values
instead of the assessors’ “market" or “assessed" values makes a significant difference. We recalculate all
regional parameters (TFP Aj, amenities aj, regulatory distortions Tj, dispersion Dj, etc) and recompute
the new steady state for each of our alternative data choices. Note that some of these measures are
missing in certain MSAs, hence we end up with 193 regions for market value and 233 for assessed,
compared to 243 with our preferred measure. The missing MSAs are thrown into the rest-of-country
aggregator. We find that our headline results mostly change by less than 10 percent.

We next test the sensitivity of our results to the value of χ. We get χ ∼ .15, at least for non-remote
regions. Our calibration is based on getting the factor share for non-structures capital, using an off-the-
shelf value for the labor share. then assigning the residual factor share to structures. First, let us go
through a back-of-the-napkin alternative calibration showing that this is not unreasonable.

Investment in non-residential structures in 2018 was 550 billion dollars per US Bureau of Economic
Analysis (2021b). This corresponds to flow investment MV = βγTδbBV in our model. Using the average
value of .87 for T, we get that 550b = 0.96 ∗ 0.923 ∗ 0.87 ∗ 0.0198 ∗ BV = 0.0152BV. This suggests a
structures capital stock of around 36 trillion, or nearly 1.9 times GDP. Hence we get: BV = χY

1−β(1−δb)
∼

χY
0.059 . Using this and the fact that BV ∼ 1.9Y, we get:

1.9 ∗ 0.059 = χ ∼ 0.11

So this rough alternative calibration yields a building share only slightly lower than our baseline,
which in turn only applies to non-remote work (in remote work, χ is 0.)

Even this is depressed by property taxes, which are around 2 of assessed building values in many
major cities according to Lincoln Institute of Land Policy and Minnesota Center for Fiscal Excellence
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(2021). These generate a second wedge, between BV and the true factor share of structures. This may
be exaggerated because assessments are lower than true values, so let us be conservative and instead
use 1 percent below. That would correspond to 360 billion in commercial property tax, which is around
60 percent of the property tax bill reported in Urban Institute (2018). We do not know what share of
property tax revenue comes from commercial properties. Note that 1 percent is not a random number:
NAREIT (2019) suggests a value of 15 trillion for the sum of commercial properties, roughly half of what
our calibration implies. Building values are depressed by these taxes, as the payments to buildings now
comprise factor payments χY less taxes, 0.01BV. Hence we can write:

BV =
χY − 0.01BV
1 − β(1 − δb)

∼ χY − 0.01BV
0.059

We can rearrange to get:

(1 + 0.01/0.059)BV ∗ 0.059 = χY

(1.17)BV ∗ 0.059 = χY

1.17 ∗ 1.9 ∗ 0.059 = χ ∼ 0.13

This is not far from the original calibrated value.
Nevertheless, we test how our results change at different values of χ, specifically at χ = 0.13 and

χ = 0.1. It remains zero in remote work. We assign the missing factor share to labor, i.e. we set α so
that factor shares sum to 1. Starting from Equation (17), we redo our identification and recalculate a new
initial steady state. Starting from this steady state, we redo our baseline counterfactual. Unsurprisingly,
we find lower output gains at lower values of χ, but even at χ = 0.1 the gains are significant.

We next test whether agricultural parcels (which arguably use a different technology with a different
γ) skew our results. We drop parcels whose primary land use is listed as agriculture, golf, or wild lands,
and we drop parcels that are listed as empty space zoned for commercial or industrial uses. That is,
we drop all parcels with a CoreLogic land use code starting with “4." We then re-calculate γ from this
sample based on the least-distorted MSA and find that it is basically unchanged. We recalculate all
regional parameters using this slightly smaller sample and recompute the new steady state. Using that
as our starting point, we redo our baseline counterfactual. We find that this makes almost no difference,
as agricultural parcels are simply not very economically significant.

Finally, we follow Furth (2021) and restrict our sample to buildings less than 10 years old as of 2018.
This costs us a large and presumably non-random share of our sample, as not all buildings have their
age recorded in CoreLogic’s data—recall Table 7. The impact of deregulation falls by roughly half when
using this restricted sample.
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G Non-Constant τ and the Elasticity of Building Supply

We have assumed that τ is a fixed parcel-level constant, and that it does not get smaller (more restrictive)
as the landlord tries to build more on the parcel. We will show here with a simple example that relaxing
this assumption changes the price elasticity of building supply, but does not change the counterfactual
increase in building supply if all regulations are removed.33

First, notice that from Equation 23, the price elasticity of supply is γ/(1− γ), which at our calibrated
value of γ = 0.92 yields a seemingly very high elasticity of 11.5. This seems very high compared to the
estimates in, for example, Baum-Snow and Han (2021). However, this elasticity ends up being quite dif-
ferent from what is usually calculated in the literature: we focus only on the quantity of construction on
a given parcel. Indeed, when Baum-Snow and Han (2021) try to connect their estimates to the literature
on the housing production function, they estimate a price elasticity of 3.5 for floorspace, which is con-
ceptually closer to what we estimate. Their preferred value is still lower than ours, but the magnitudes
are more comparable than they first appear. Murphy (2018) shows that current-price elasticities may also
be driven down by forward-looking behavior: if higher current prices predict even-higher future prices,
they give landlords a reason to wait before building. This forward-looking behavior means that rela-
tively small current-price elasticities are consistent with a very high improvement share in production.

Now we show how making τ a decreasing function of the level of construction breaks the link be-
tween the improvement share and the price elasticity of building supply. We specify τ as τ(m) = τ0m−ζ ,
where ζ > 0. That is, we assume that regulations get more restrictive as the landlord tries to increase the
quantity of improvements that they put on a parcel. For clarity, we drop subscripts and focus on a parcel
where τ0, x, and z are equal to 1.34 B is therefore directly equal to building square footage, making our
estimates easier to compare to Baum-Snow and Han (2021). We can therefore write the problem of the
landlord as:

max
m

m−ζ︸︷︷︸
τ(m)

·βpmγ − qm

Taking first-order conditions, we get the distorted optimal value of m, which we denote m1:

m1 =

(
(γ − ζ)βpj

q

) 1
1+ζ−γ

Putting this in the building production function and rearranging we get:

B =

(
(γ − ζ)βp

q

) γ
1+ζ−γ

The price elasticity of supply is now γ/(1+ ζ − γ), which is smaller than our baseline elasticity (and

33We thank Giacomo Ponzetto and Jacob Adenbaum for their feedback on this topic. We combined their suggestions for
how a non-constant τ could work into the example in this Appendix.

34The model yields the same first-order conditions as one where q = q̃/(τ0zx1−γ), hence this simplification is without loss
of generality.

49



can indeed be arbitrarily close to zero) as long as γ > 1.
Now let us return to our original model, where τ is a constant:

max
m

τ · βpmγ − qm

The first-order condition now yields a new value for the distorted optimal m, which we denote m2:

m2 =

(
τγβp

q

) 1
1−γ

With some algebra we can show that at following value of τ, the distorted optimal m2 will be identical
to m1:

τ =
γ − ζ

γ

(
q

(γ − ζ)βp

) ζ
1−γ+ζ

The quantity of improvements demanded, and therefore also the building square footage and build-
ing value, are exactly the same in the model with a constant and non-constant τ. Hence, the two models
are observationally equivalent in the cross-section. Because the two models have the same underlying
values for q and p, they also have the same implications for how much B would change if all regulations
were dropped, which is what we do in our baseline counterfactual. We believe that relaxing the assump-
tion of a constant τ is a promising direction for future work, but it would likely not change our baseline
results.
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