Price Controls in a Multi-Sided Market

Michael Sullivan¹ msullivan@hbs.edu

July 21, 2023

¹Harvard Business School. This presentation draws on research supported by the Social Sciences and Humanities Research Council.

Digital platforms and platform regulation

- Rise of digital platforms has spurred interest in platform regulation
 - e.g., caps on # of Uber/Lyft drivers, EU's Digital Markets Act

Digital platforms and platform regulation

- Rise of digital platforms has spurred interest in platform regulation
 - e.g., caps on # of Uber/Lyft drivers, EU's Digital Markets Act
- Empirical study of platform regulation is difficult
- · Few settings with comparable, distinct platform markets that are differentially regulated

- Rise of digital platforms has spurred interest in platform regulation
 - e.g., caps on # of Uber/Lyft drivers, EU's Digital Markets Act
- Empirical study of platform regulation is difficult
- Few settings with comparable, distinct platform markets that are differentially regulated
- One such setting: the US food delivery industry
 - · Many cities have capped commissions that delivery platforms charge to restaurants
 - 22% of restaurants affected by April 2021
 - · Intended to benefit restaurants; proponents argue that platforms reduce restaurant profits

- entice restaurants to join platforms
 - · benefits consumers who value variety of restaurants

- entice restaurants to join platforms
 - · benefits consumers who value variety of restaurants
- 2 lead restaurants to lower prices on platforms
 - · restaurants partially pass commissions into prices

- entice restaurants to join platforms
 - · benefits consumers who value variety of restaurants
- 2 lead restaurants to lower prices on platforms
 - · restaurants partially pass commissions into prices
- 8 lead platforms to raise their consumer fees
 - reduces ordering on platforms
 - · but restaurants may prefer lower platform ordering

- entice restaurants to join platforms
 - · benefits consumers who value variety of restaurants
- 2 lead restaurants to lower prices on platforms
 - · restaurants partially pass commissions into prices
- 8 lead platforms to raise their consumer fees
 - reduces ordering on platforms
 - · but restaurants may prefer lower platform ordering
- Net effects of caps on restaurant and consumer welfare are thus uncertain

- · Goals of paper
 - · Estimate welfare effects of commission caps

- · Goals of paper
 - · Estimate welfare effects of commission caps
 - · Understand whether policymakers can do better

- · Goals of paper
 - · Estimate welfare effects of commission caps
 - · Understand whether policymakers can do better
- Approach
 - Assemble rich collection of data
 - · Estimate effects of caps via differences-in-differences event study
 - Formulate model of platform & restaurant competition
 - Use estimated model for policy evaluation

- · Caps benefit restaurants, but reduce total welfare and especially hurt consumers
 - · Consumers lose from increased fees...
 - · ...but restaurant responses mitigate losses increased platform uptake, price reductions

- · Caps benefit restaurants, but reduce total welfare and especially hurt consumers
 - · Consumers lose from increased fees...
 - · ...but restaurant responses mitigate losses increased platform uptake, price reductions
- Cap on both consumer fees and restaurant commissions may hurt restaurants

- · Caps benefit restaurants, but reduce total welfare and especially hurt consumers
 - · Consumers lose from increased fees...
 - · ...but restaurant responses mitigate losses increased platform uptake, price reductions
- · Cap on both consumer fees and restaurant commissions may hurt restaurants
- · Rise of platforms has benefitted consumers but reduced restaurant profits
 - Platform membership is a prisoner's dilemma for restaurants

Contributions

Estimate effects of price controls in a platform market

- Literature largely focuses on payment card interchange fees [Evans et al. 2015, Manuszak and Wozniak 2017, Kay et al. 2018, Chang et al. 2005, Wang 2023]
- · Li and Wang (2021) estimate effects of commission caps on delivery fees

Contributions

Estimate effects of price controls in a platform market

- Literature largely focuses on payment card interchange fees [Evans et al. 2015, Manuszak and Wozniak 2017, Kay et al. 2018, Chang et al. 2005, Wang 2023]
- · Li and Wang (2021) estimate effects of commission caps on delivery fees
- 2 Evaluate impacts of food delivery platforms on restaurant industry
 - Work on welfare consequences of digital platforms focuses on ride-hailing, accomodations [Castillo 2022, Calder-Wang 2022, Schaefer and Tran 2020, Farronato and Fradkin 2022]
 - Build upon literature on estimation of network-effects [Rysman 2004, Lee 2013, Farronato et al. 2020, Cao et al. 2021 Kaiser and Wright 2006, Fan 2013, Ivaldi and Zhang 2020, Sokullu 2016, Natan 2021]

Contributions

Estimate effects of price controls in a platform market

- Literature largely focuses on payment card interchange fees [Evans et al. 2015, Manuszak and Wozniak 2017, Kay et al. 2018, Chang et al. 2005, Wang 2023]
- · Li and Wang (2021) estimate effects of commission caps on delivery fees

2 Evaluate impacts of food delivery platforms on restaurant industry

- Work on welfare consequences of digital platforms focuses on ride-hailing, accomodations [Castillo 2022, Calder-Wang 2022, Schaefer and Tran 2020, Farronato and Fradkin 2022]
- Build upon literature on estimation of network-effects [Rysman 2004, Lee 2013, Farronato et al. 2020, Cao et al. 2021 Kaiser and Wright 2006, Fan 2013, Ivaldi and Zhang 2020, Sokullu 2016, Natan 2021]

8 Analyze decentralized pricing by sellers who set separate prices on and off platforms

- Empirical platform pricing literature focuses on fee/commission setting by platforms rather than pricing by platform users [Rosaia 2020, Ho and Lee 2017, Argentesi and Filistrucchi 2007]
- Complements Robles-Garcia (2022) (decentralized pricing without online/offline distinction) and Gaineddenova (2022) (efficiency of centralized vs. decentralized pricing)

Setting and data

2 Three empirical findings

Model

Setting and data

- Main players:
 - 🚺 DoorDash
 - Ø Uber Eats
 - 6 Grubhub
 - 4 Postmates (owned by Uber)
- Staggered adoption of commission caps by cities, counties, states
- Typical cap level is 15% (84% of policies)
 - 30% without cap

Price structure of delivery platforms

Consumer Bill = p + c

Restaurant Revenue = (1 - r)p

Platform Revenue = c + rp

where

- *p* = price of restaurant meal
- c = platform's consumer fees
 - · Focus on fixed fees, which responded to caps
- r = platform's restaurant commission rate

Consumer choices

- · Panel of itemized receipts from Numerator;
- + pprox 600k orders/month, 2019–21
- Includes platform, pick-up, first-party delivery, & on-premises orders
- Matches census, credit-card data
- Supplement with ZIP/month panel of sale & fee estimates

Paid with Visa Ending in 4073 Sushi Mizu Total: \$16.98

Your receipt

224 Park St, New Haven, CT 06511, USA

- For: Rolland Sullivan -

- 1x Any Favorite 3 Rolls (Sushi Bar Lunch) \$12.95
 - Salad
 - Peanut Avocado
 - Mango Avocado
 - Vegetable

Get Order Help	
Total Charged	\$16.98
Tip	\$1.00
Service Fee	\$1.94
Delivery Fee	\$0.00
Taxes	\$1.09
Subtotal	\$12.95

- Consumer choices
- Restaurants
 - Characteristics of restaurants on each platform and offline, 2020–21

Platform

- Both
- Doordash
- Uber Eats

- Consumer choices
- Restaurants
- Platform consumer fees and wait times
 - Scrape platform websites in Q2 2021 for 14 large metro areas
 - Use to construct platform/ZIP-level fee & wait time indices

DoorDash's response to Chicago's commission cap

Subtotal	\$16.00
Chicago Fee 🛈	\$1.50
	\$2.99
Chicago has temporarily capped the fees that we may charge local restaurants. To continue to offer	\$3.96
you convenient delivery while ensuring that Dashers are active and earning, you will now see a charge added to Chicago orders.	\$4.00
	Other

Caps raise consumer fees, reduce platform sales, raise platform update by restaurants

- Estimate effects of 15% cap by diff-in-diff
- Platform consumer fees rise by 9–22%
- Platform orders fall by 6%
- Share of restaurants on a platform rises by 8%

Modelling choice

Endogenous fees, ordering, platform adoption

Effect on DoorDash consumer fees

Caps raise consumer fees, reduce platform sales, raise platform update by restaurants

- Estimate effects of 15% cap by diff-in-diff •
- Platform consumer fees rise by 9–22% •
- Platform orders fall by 6% •
- Share of restaurants on a platform rises by 8%

Effect on DoorDash sales

Modelling choice

Endogenous fees, ordering, platform adoption

1) Caps raise consumer fees, reduce platform sales, raise platform update by restaurants

2 Restaurants charge higher prices on platforms

- · On average, a restaurant charges 26% more on a platform than for a direct order
- Full pass-through under 30% commission $= 0.3/(1-0.3) \approx 42\%$

Modelling choice

Restaurant pricing with online/offline distinction, commission pass-through

- 1) Caps raise consumer fees, reduce platform sales, raise platform update by restaurants
- 2 Restaurants charge higher prices on platforms
- 3 Both consumers and restaurants multihome

- Over half of restaurants on DoorDash are on Uber Eats
- Consumers order from the same platform across consecutive orders pprox 80% of the time

Modelling choice

Flexible multihoming on both sides

Your cost

30% Delivery Commission Payment processing included

Platforms set

Your cost

30% Delivery Commission Payment processing included

Platforms set commission rates

Restaurants sign up for platforms

Platform commission setting

Restaurant platform adoption

Restaurant price and platform fee setting

Onsumer choice

Model of consumer eating

- Consumers *i* in ZIPs *z* of metros *m*
- Each consumer makes T choices/month
- Eating options:
 - 1 home-made meal (j = 0)
 - 2 order meal directly from a restaurant j (f = 0)
 - **(3)** order meal from a restaurant *j* using a platform $f \neq 0$
- Platform sales depend on...
 - # of restaurants on each platform
 - platforms' consumer fees c
 - restaurant prices *p* of standardized meal

Consumer preferences

• Consumer *i* chooses a restaurant/platform pair (j, f) to maximize

$$\mathbf{v}_{ijft} = \begin{cases} \psi_{if} - \alpha_i \mathbf{p}_{jf} + \eta_i + \nu_{ijt}, & j \neq \mathbf{0} \\ \nu_{i0t}, & j = \mathbf{0} \end{cases}$$
(Restaurant meal) (Home-prepared meal)

among restaurants within five miles of consumer's ZIP, where

- ψ_{if} = utility index for platform f
- p_{jf} = restaurant j's price on platform f
- η_i = tastes for restaurant food
- ν_{ijt} = tastes for restaurant j

Consumer preferences

• Consumer *i* chooses a restaurant/platform pair (j, f) to maximize

$$\mathbf{v}_{ijft} = \begin{cases} \psi_{if} - \alpha_i \mathbf{p}_{jf} + \eta_i + \nu_{ijt}, & j \neq 0 \\ \nu_{i0t}, & j = 0 \end{cases}$$
(Restaurant meal)
(Home-prepared meal)

among restaurants within five miles of consumer's ZIP, where

- ψ_{if} = utility index for platform f
- p_{jf} = restaurant j's price on platform f
- η_i = tastes for restaurant food
- ν_{ijt} = tastes for restaurant *j*
- Specify consumer i's taste for platform f as

Network effects, consumer information, and restaurant discovery Details

Platform commission setting

Restaurant platform adoption

8 Restaurant price and platform fee setting

Consumer choice

Restaurant price setting and platform fee setting

· Restaurants set prices for direct orders and on each platform to maximize profits

Details

• Platform f sets consumer fees c_{fz} in ZIP z to maximize its profits in z:

Marginal costs represent payments to couriers

Platform commission-setting

2 Restaurant platform adoption

Restaurant price and platform fee setting

Consumer choice

· Restaurants simultaneously join platforms:

$$\underbrace{\mathcal{G}_{j}}_{\text{Chosen set of platforms}} = \arg \max_{\mathcal{G}} \underbrace{\mathbb{E}\left[\bar{\Pi}_{j}(\mathcal{G}, \mathcal{J}_{m,-j})\right]}_{\text{Expected variable profits}} - \underbrace{\mathcal{K}_{m}(\mathcal{G})}_{\text{Fixed costs of of platform adoption}} + \underbrace{\omega_{j}(\mathcal{G})}_{\text{Choice disturbance}}$$

where $\mathcal{J}_{m,-i}$ = platform adoption of rival restaurants

Platform commission setting

- Profit-maximization
- · Account for dynamic considerations in reduced-form fashion

Restaurant platform adoption

Restaurant price and platform fee setting

Consumer choice

Overview of estimation

Consumer preferences

- Estimate via MLE on Q2 2021 consumer panel for 14 large metros
- · Specify platform/metro fixed effects & exploit within-metro variation
- · When Uber Eats raises fees in Chicago,
 - 31% of lost consumers substitute to direct-from-restaurant ordering
 - 30% to other platforms
 - 38% to homemade meal
- Restaurant marginal costs
 - Recover from first-order conditions
- Restaurant platform adoption model
 - Estimate via GMM on restaurant platform adoption data
- Platform costs
 - Recover from first-order conditions

Consumer preferences

Estimate via MLE on Numerator transactions panel for Q2 2021

2 Restaurant marginal costs

- Recover from first-order conditions
- 15% commission cap raises restaurants' markups on platforms by 89%

Restaurant platform adoption model

- Estimate via GMM on restaurant platform adoption data
- Platform costs
 - · Recover from first-order conditions

Overview of estimation

Consumer preferences

Estimate via MLE on Numerator transactions panel for Q2 2021

Restaurant marginal costs

Recover from first-order conditions

3 Restaurant platform adoption model

- · Estimate via GMM on restaurant platform adoption data
- · Match observed patterns of platform adoption

Platform costs

· Recover from first-order conditions

Estimates of restaurants' fixed costs of platform adoption

- Decreasing incremental costs for joining platforms (\$'000s)
- Elasticity of # of restaurants on DoorDash with respect to DoorDash's commission rate
 - $\bullet = -0.52$ for Chicago metro area

Compare to mean monthly profits of \$12.6k for restaurant on no platform

Overview of estimation

Consumer preferences

- Estimate via MLE on Numerator transactions panel for Q2 2021
- Restaurant marginal costs
 - Recover from first-order conditions
- Restaurant platform adoption model
 - Estimate via GMM on restaurant platform adoption data

4 Platform costs

- Interquartile range of DoorDash delivery cost is \$7.08–9.72
 - DD pays couriers \$2–10/delivery

Counterfactuals

Assess

- 15% commission cap
- 2 15% commission cap + cap on consumer fee increases
- 3 Commission tax Here
- 4 Elimination of platforms

15% commission caps benefit restaurants but reduce total welfare

Participant surplus = sum of consumer and restaurant surplus from platforms

15% commission caps benefit restaurants but reduce total welfare

Could consumer fee caps solve commission caps' problems?

- Simulate a 15% commission cap with consumer fee hikes capped at \$1.00
- Policy restrains platform market power
 - Total welfare rises
 - % of restaurants on a platform rises by 10
 - # restaurant orders rises by 6%
- · But restaurants slightly worse off
 - Policy reduces share of orders placed directly by consumers by 12%

- Cap proponents caps argue that the rise of platforms has hurt restaurants
- Effects of platforms on restaurants depend on
 - Market expansion by how much do platforms raise the total # of restaurant orders vs. cannibalize direct-from-restaurant orders?
 - Membership costs by how much do commissions & adoption costs reduce profits?
- Evaluate by simulating platform elimination

Platforms reduce restaurant profits despite increasing sales

- $\approx \frac{1}{2}$ of orders on platforms would not be placed if platforms did not exist
- · Yet platforms reduce restaurant profits
- Platform membership is a prisoner's dilemma for restaurants

Effects of eliminating platforms

(dollars per capita, annual)

Outcome	Effect
Consumer welfare	-66.98
Restaurant profits	17.88
Platform variable profits	-58.06
Total welfare: lower bound	-107.16
Total welfare: upper bound	-49.10

Total welfare bounds:

- Lower \Rightarrow no platform fixed costs
- Upper \Rightarrow no platform profits

- 1 Expect seesaw effects in multi-sided markets
- Direct effects of policies targeting platforms may be counteracted by seller responses
 Sellers compete away their benefit from caps by lowering prices, joining more platforms
- 3 Less online business can help platform sellers due to online/offline substitution

- Argentesi, Elena, and Lapo Filistrucchi. 2007. "Estimating Market Power in a Two-Sided Market: The Case of Newspapers." *Journal of Applied Econometrics* 22 (7): 1247–1266.
- **Calder-Wang, Sophie.** 2022. "The distributional impact of the sharing economy on the housing market." Unpublished working paper.
- Cao, Guangyu, Ginger Zhe Jin, Xi Weng, and Li-An Zhou. 2021. "Market Expanding or Market Stealing? Platform Competition in Bike-Sharing." *RAND Journal of Economics* 52 (4): 778–814.
- **Castillo, Juan Camilo.** 2022. "Who benefits from surge pricing?", Unpublished working paper.
- **Chang, Howard, David S. Evans, and Daniel D. Garcia Swartz.** 2005. "The effect of regulatory intervention in two-sided markets: an assessment of interchange-fee capping in Australia." *Review of Network Economics* 4 (4): .

References II

- **Evans, David S., Howard Chang, and Steven Joyce.** 2015. "The impact of the US debit-card interchange fee regulation on consumer welfare." *Journal of Competition Law and Economics* 11 (1): 23–67.
- Fan, Ying. 2013. "Ownership Consolidation and Product Characteristics: A Study of the US Daily Newspaper Market." *American Economic Review* 103 (5): 1598–1628.
- Farronato, Charia, Jessica Fong, and Andrey Fradkin. 2020. "Dog eat dog: measuring network effects using a digital platform merger." NBER Working Paper 28047.
- **Farronato, Charia, and Andrey Fradkin.** 2022. "The Welfare Effects of Peer Entry: The Case of Airbnb and the Accommodation Industry." *American Economic Review* 112 (6): 1782–1817.
- **Gaineddenova, Renata.** 2022. "Pricing and efficiency in a decentralized ride-hailing platform." Unpublished working paper.

- Ho, Kate, and Robin Lee. 2017. "Insurer competition in health care markets." *Econometrica* 85 (2): 379–417.
- Ivaldi, Marc, and Jiekai Zhang. 2020. "Platform Mergers: Lessons from a Case in the Digital TV Market." CEPR Discussion Paper No. DP14895.
- Kaiser, Ulrich, and Julian Wright. 2006. "Price structure in two-sided markets: Evidence from the magazine industry." *International Journal of Industrial Organization* 24 (1): 1–28.
- Kay, Benjamin S., Mark D. Manuszak, and Cindy M. Vojtech. 2018. "Competition and complementarities in retail banking: Evidence from debit card interchange regulation." *Journal of Financial Intermediation* 34 91–108.
- Lee, Robin S. 2013. "Vertical integration and exclusivity in platform and two-sided markets." *American Economic Review* 103 (7): 2960–3000.

- Li, Zhuoxin, and Gang Wang. 2021. "Regulation powerful platforms: evidence from commission fee caps in on-demand services." Available at SSRN: https://ssrn.com/abstract=3871514.
- Manuszak, Mark D., and Krzysztof Wozniak. 2017. "The impact of price controls in two-sided markets: evidence from US debit card interchange fee regulation." Finance and Economics Discussion Series 2017-074. Washington: Board of Governors of the Federal Reserve System.
- Natan, Olivia. 2021. "Choice frictions in large assortments." Unpublished working paper.
- **Robles-Garcia, Claudia.** 2022. "Competition and Incentives in Mortgage Markets: The Role of Brokers." Unpublished working paper.
- **Rosaia, Nicola.** 2020. "Competing Platforms and Transport Equilibrium: Evidence from New York City." Working paper.

- **Rysman, Marc.** 2004. "Competition between networks: a study of the market for Yellow Pages." *Review of Economic Studies* 71 (2): 483–512.
- Schaefer, Maximilian, and Kevin Ducbao Tran. 2020. "Airbnb, Hotels, and Localized Competition." Unpublished working paper.
- **Sokullu, Senay.** 2016. "A semi-parametric analysis of two-sided markets: an application to the local daily newspapers in the USA." *Journal of Applied Econometrics* 31 (843-864): .
- Wang, Lulu. 2023. "Regulating Competing Payment Networks." Unpublished working paper.

- Platform f's tax payments when commission revenue taxed at rate t
- Set rate t so that revenue equals restaurant gain from 15% cap (before restaurant response to tax)

• Yields tax rate t = 1.8%

Back

Effects of a 15% commission cap and a commission tax, Los Angeles

Change in	Сар	Tax
Avg. ordering cost (\$)	0.52	0.05
Avg. commission rate (p.p.)	-15.00	-1.36
Shr. adopting a platform (p.p.)		
Platform orders (%)		
Restaurant profits (\$ p.c.)		
Platform profits (\$ p.c.)		
Consumer welfare (\$ p.c.)		

\$ p.c. = dollars per capita, annual

- Platform f's tax payments when commission revenue taxed at rate t
- Set rate t so that revenue equals restaurant gain from 15% cap (before restaurant response to tax)

• Yields tax rate t = 1.8%

Back

Effects of a 15% commission cap and a commission tax, Los Angeles

Change in	Cap	Tax
Avg. ordering cost (\$)	0.52	0.05
Avg. commission rate (p.p.)	-15.00	-1.36
Shr. adopting a platform (p.p.)	1.93	0.18
Platform orders (%)	-3.17	-0.26
Restaurant profits (\$ p.c.)		
Platform profits (\$ p.c.)		
Consumer welfare (\$ p.c.)		

\$ p.c. = dollars per capita, annual

- Platform f's tax payments when commission revenue taxed at rate t
- Set rate t so that revenue equals restaurant gain from 15% cap (before restaurant response to tax)

• Yields tax rate t = 1.8%

Back

Effects of a 15% commission cap and a commission tax, Los Angeles

Change in	Cap	Tax
Avg. ordering cost (\$)	0.52	0.05
Avg. commission rate (p.p.)	-15.00	-1.36
Shr. adopting a platform (p.p.)	1.93	0.18
Platform orders (%)	-3.17	-0.26
Restaurant profits (\$ p.c.)	3.18	3.05
Platform profits (\$ p.c.)	-2.45	-2.10
Consumer welfare (\$ p.c.)	-3.25	-0.25

\$ p.c. = dollars per capita, annual