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Abstract

This paper evaluates caps on the commissions that food delivery platforms charge

to restaurants. Commission caps may lead restaurants to join platforms and to

post lower prices on platforms, thereby benefitting consumers. But caps may also

lead platforms to raise their consumer fees, thereby reducing ordering on platforms

and consequently platforms’ value to restaurants. The net welfare effects of caps

are thus uncertain. To quantify these effects, I estimate a model of pricing and

platform adoption in a multi-sided market using data on consumer restaurant orders,

restaurants’ platform adoption, and platform fees. Counterfactual simulations imply

that commission caps bolster restaurant profits at the expense of consumers and

platforms.
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1 Introduction

The effects of policies on platform markets generally depend on equilibrium responses of all

market participants connected by the affected platforms. This paper provides an empirical

evaluation of a particular class of policies targeting a platform market: commission caps in

the food delivery industry. Many US cities have capped the commissions that food delivery

platforms (e.g., DoorDash) charge to restaurants. Commission caps have effects on the wel-

fare of restaurants and consumers that depend on countervailing responses of these two groups

of market participants. These responses, which reflect the multi-sided nature of the food de-

livery industry, complicate the analysis of commission caps relative to that of price controls

in standard one-sided markets. Caps may entice restaurants to join platforms, which would

benefit consumers who value the breadth of platforms’ restaurant networks. Restaurants may

also reduce their prices in response to a reduction in commissions. But commission caps may

lead platforms to raise the fees that they charge to consumers. This would harm consumers. It

would also reduce consumer ordering on platforms and consequently the value of platform mem-

bership to restaurants. An increase in platforms’ fees, though, could lead consumers to switch

from ordering from restaurants using food delivery platforms to ordering directly from restau-

rants. This benefits restaurants, who pay no commissions on sales made directly to consumers.

Due to the presence of offsetting effects of commission caps on restaurant profits and consumer

welfare as outlined above, the net effects of caps on the welfare of platform participants are

uncertain.

This paper empirically assesses the net effects of commission caps on consumer welfare, restau-

rant profits, and platform profits. To this end, I assemble data characterizing the US food

delivery industry. These data include a panel of consumer restaurant orders that provides

consumer locations at the ZIP-code level as well as item-level prices. I supplement this panel

with monthly data on estimated ZIP-level platform sales and average platform fees and on all

restaurants listed on each major delivery platform. Last, I collect data on platform orders from

delivery platform websites. These data characterize platform fees and estimated waiting times

for hundreds of thousands of potential deliveries across 14 large US metropolitan areas.

As a first pass, I compute difference-in-differences estimates of caps’ effects. Estimates exploiting

the staggered rollout of caps across municipalities suggest that caps raised fees by 9–22% across

platforms, reduced the number of orders placed on platforms by 6%, and an 8% increase in the

share of restaurants that join at least one platform. These estimates suggest that commission

caps harm consumers by prompting platform fee hikes, but that these harms are mitigated by

an increase in the selection of restaurants available on platforms.

I subsequently develop a model of the food delivery industry with which to quantify welfare

effects, to assess mechanisms contributing to these effects, and to evaluate alternative policies

intended to bolster restaurant profitability. In the model, platforms first set commission rates.

Next, restaurants choose which platforms to join to optimize profits in a discrete game of

incomplete information. After joining platforms, restaurants set profit-maximizing prices that
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may differ between direct-from-restaurant orders and orders placed on platforms. Platforms at

the same time set fees charged to consumers to maximize their profits given constant marginal

costs for fulfilling orders. Finally, each consumer chooses whether to order a restaurant meal,

from which nearby restaurant to order, and whether to use a platform in ordering. This model

captures network externalities affecting both sides of the platform market: consumers are more

likely to choose a platform with a wide variety of restaurants, and restaurants earn higher

profits from joining a platform that is more popular among consumers (all else equal) because

their incremental sales are higher from joining such a platform. Heterogeneity in consumer

tastes for platforms influences how consumers substitute between platforms and the alternative

of ordering directly from a restaurant. Consumers who are highly polarized in their tastes for

platform ordering, for example, are unlikely to substitute between ordering from a platform and

ordering directly from a restaurant. This would imply that platforms could lead consumers who

would not otherwise order from restaurants to do so using a platform, thus boosting overall

restaurant sales.

Estimation proceeds in multiple steps. The first step is maximum likelihood estimation of con-

sumer preferences. Next, I estimate platforms’ and restaurants’ marginal costs from first-order

conditions for optimal pricing. The subsequent step is generalized method of moments (GMM)

estimation of the restaurant platform adoption model. This GMM estimator selects parameters

governing costs of platform adoption to match (i) market-specific platform adoption frequencies

and (ii) the covariance of the profitability of platform adoption with platform adoption.

The main parameters of interest in the consumer choice model are those that govern price sen-

sitivity, network externalities, and substitution patterns. The endogeneity of platform fees and

restaurant networks—both of which depend on local unobserved tastes for platforms—poses an

identification problem. I address this problem using platform/metro-area fixed effects; conse-

quently, I rely on variation in fees and restaurant locations within a metro area to estimate price

sensitivity and network externalities. This variation owes in part to variation in local commis-

sion cap policies. My approach for estimating substitution patterns exploits the data’s panel

structure, which characterizes how consumers switch between alternatives across orders.

I use the estimated model to compare equilibria with and without a 15% commission cap.

Counterfactual simulations imply that commission caps raise restaurant profits, reduce con-

sumer welfare, and reduce platform profits. The sum of caps’ effects on these components of

total welfare is negative. The increase in restaurant profits across metro areas is 3.0% of the

sum of participant surplus (i.e., the effect of platforms’ availability on the sum of consumer

welfare and restaurant profits, which is positive). The total welfare loss is 6.2% of participant

surplus. Consumer welfare falls by 5.3% of participant surplus; this welfare loss exceeds the

platform profit losses from a cap of 3.9% of participant surplus. Although consumers pay more

for food delivery orders under commission caps, they benefit from the increased selection of

restaurants available on platforms and restaurant price reductions. Failing to account for in-

creased restaurant adoption of platforms due to commission cap leads to an overstatement of

caps’ harms to consumers of over 60%. Absent any restaurant price response to caps, consumer
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losses would be ten times greater. These results reflect the broader principle that multi-sided

markets feature numerous prices and quantities that may respond to policies in a manner that

dampens their direct effects.

One distributional rationale for caps is that they transfer surplus from platforms to local restau-

rants; this rationale is well founded in that caps boost restaurant profits at the expense of plat-

form profits, but it does not acknowledge that consumers in large part pay for caps’ benefits

to restaurants. Alternative policies may obtain the increases in restaurant profits from a cap

without negative effects on total welfare. One such policy is a cap on commissions combined

with a cap on platforms’ consumer fees. I find that such a policy does in fact raise total wel-

fare, but it may hurt restaurants by inducing consumers to switch from direct-from-restaurant

ordering to ordering through platforms; such substitution reduces restaurant profits because

restaurants do not pay any commission on sales made directly to consumers. This result relates

to another broader principle — in digital platform markets, substitution between online and

offline channels may imply that, counterintuitively, more online business for platform sellers

undermines seller profitability.

Another alternative policy is a tax on platform commission revenues whose proceeds are remitted

to restaurants. Under an appropriately selected tax rate, this policy achieves the increase in

restaurant profitability associated with a commission cap without a significant reduction in total

welfare. Although a tax induces platforms to reduce commissions and raise consumer fees, it is

less distortionary than a cap.

In addition to evaluating commission caps, I evaluate a common premise for commission caps:

that platforms reduce restaurant profits. Platforms help restaurants by boosting overall restau-

rant sales, but hurt them by charging commission. A counterfactual simulation suggests that

roughly half of restaurant orders placed on platforms would not be placed if platforms were elim-

inated. Additionally, platforms provide significant value to consumers; eliminating them reduces

consumer welfare by almost $70 annually per capita on average across metro areas. Restaurant

profits, however, increase by over $18 per capita a year on average across markets when platforms

are abolished. Platform membership is a prisoner’s dilemma for restaurants: restaurants would

collectively prefer to stay off platforms, but they individually gain from joining platforms and

consequently stealing business from rivals. This result explains the paradoxical coincidence of

restaurants’ voluntary platform membership with complaints that platforms reduce restaurant

profitability.

1.1 Related literature

This article makes several contributions to the empirical platforms literature.1 Its primary

contribution is to estimate effects of price controls in a platform market. There is extensive

1This literature often calls these markets two-sided markets or platform markets. I use these terms inter-
changeably. For overviews of the theory of multi-sided markets, see Rochet and Tirole (2006), Rysman (2009),
and Jullien et al. (2021).
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research on price controls,2 but limited research on their application in multi-sided markets

other than payment card markets. As noted in the introduction, responses of the multitudes

of prices and quantities in multi-sided markets complicates the analysis of price controls in

these markets. See Schmalensee and Evans (2005) for an overview of payment card interchange

fee regulation, and Rysman (2007), Carbó-Valverde et al. (2016), and Huynh et al. (2022) for

empirical studies of payment cards as platforms. Evans et al. (2015), Manuszak and Wozniak

(2017), Kay et al. (2018), Wang (2012), Chang et al. (2005), Carbó-Valverde et al. (2016), and

Li et al. (2020) are examples of papers studying study interchange fees and their regulation. I

add to this literature by developing and estimating a model to study the welfare effects of price

controls in multi-sided setting with distinct features. A major part of my contribution is the

analysis of seller prices and platform adoption responses to caps and of substitution between

the online and offline channels of ordering, which I find to be important determinants of caps’

effects. Futhermore, seller responses and online/offline substitution feature in many digital

platform markets (e.g., e-commerce). Economic research on food-delivery commission caps is,

to the best of my knowledge, limited to Li and Wang (2021). Li and Wang (2021) study the

effects of caps on restaurant sales and delivery fees using a difference-in-differences research

design. I complement their work by additionally estimating effects of caps on welfare and other

outcomes (including sales, other fees, and platform adoption by restaurants).

Another contribution of my article is in evaluating the impacts of food delivery platforms on the

restaurant industry. A recent literature assesses the welfare implications of digital platforms and

their effects on established industries; see, for example, Castillo (2022), Calder-Wang (2022),

Schaefer and Tran (2020), and Farronato and Fradkin (2022) for analyses of the ride-hailing and

short-term accomodations industries. I contribute to this literature by assessing the impacts

of food delivery platforms on the restaurant industry. Estimates of network externalities are

important inputs in this assessment; my works draws from a literature on the modelling and

estimation of network externalities (including Farronato et al. 2020, Cao et al. 2021, Lee 2013,

Sokullu 2016, Kaiser and Wright 2006, Fan 2013, Ivaldi and Zhang 2020, and—in the food

delivery context—Natan 2022).

The article’s third contribution is to analyze decentralized pricing by platform sellers who set

separate prices on and off platforms. Pricing on food delivery platforms is decentralized in that

sellers—not platforms—set menu prices.3 Robles-Garcia (2022) models decentralized pricing in

a two-sided market, but in a setting without an online/offline price distinction. Other papers

that empirically analyze prices in multi-sided settings are Argentesi and Filistrucchi (2007), Ho

and Lee (2017), and Jin and Rysman (2015).

There is little economic research on the food delivery industry other than that mentioned above;

other articles include Chen et al. (2022), Lu et al. (2021), and Feldman et al. (2022). Reshef

2See, for example, Chapelle et al. (2019) and Diamond et al. (2019) (rent controls); Giberson (2011) (price
gouging laws); and Ghosh and Whalley (2004) (price controls on an agricultural staple).

3The most popular US ride-hailing platforms (Uber and Lyft) use centralized pricing. See Chen et al. (2019),
Rosaia (2020), Buchholz et al. (2020), Cook et al. (2021), Cohen et al. (2016), Ming et al. (2020) for analysis of
ride-hailing platforms with centralized pricing, and Gaineddenova (2022) for analysis of a ride-hailing platform
with decentralized pricing.
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(2020) studies network externalities on Yelp’s food ordering platform.4 My paper also relates to

work on restaurant cost pass-through. Allegretto and Reich (2018) and Cawley et al. (2018) find

that, in different settings, restaurants largely pass through cost increases into menu prices.

1.2 Roadmap

The remainder of my paper proceeds as follows. Section 2 provides background on the US food

delivery industry and introduces my data. Section 3 presents empirical facts that inform my

modelling choices. Section 4 develops the model. Section 5 outlines my estimation procedure.

Section 6 reports estimation results. Section 7 describes the counterfactual analyses.

2 Data and background

2.1 Industry background

The major US food delivery platforms in 2020–2021 were DoorDash, Uber Eats, Grubhub,

and Postmates.5 These platforms facilitate deliveries of meals from restaurants to consumers,

earning revenue from prices charged to both consumers and restaurants. I refer to the prices

that platforms charge to consumers and restaurants as “fees” and “commissions,” respectively,

and the prices that restaurants charge for menu items simply as “prices.” In summary,

Consumer Bill = p+ c

Restaurant Revenue = (1− r)p

Platform Revenue = rp+ c,

where p is restaurant’s menu-item price, c is the fee, and r is the commission. Average basket

subtotals before fees, tips, and taxes were slightly below $30 across platforms in Q2 2021.6

Throughout this article, I assume that the commission rates for all leading platforms were

30% in areas without active caps. Both Uber Eats and Grubhub charged 30% commissions

in 2021. DoorDash’s full-service membership tier featured a commission rate of 30% in April

2021.7 Postmates did not publicly disclose its commissions. I cannot rule out the possibility of

restaurants negotiating commissions rates below those publicly advertised, but I do not analyze

such negotiation because I do not observe contracts between restaurants and platforms.

Each platform charges various fees that together constitute the overall consumer fee c. One

such fee is the delivery fee, which varies across restaurants, time, and location. Delivery fees

4Additional papers analyzing Yelp include Luca and Reshef (2021) and Luca (2016).
5Uber acquirer Postmates in December 2020, but did not immediately integrate Postmates into Uber Eats.
6Online Appendix Figure O.1 shows that order sizes were similarly distributed across platforms. About half

of all orders are between $15 and $35 before fees, tips, and taxes.
7Restaurants belonging to the other tiers, which had commission rates of 15% and 25%, received limited

marketing services and smaller delivery areas.
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do not, however, depend on the consumer’s selected menu items. Other fees include service

fees and regulatory response fees that vary across municipalities. An example of a regulatory

response fee is DoorDash’s “Chicago Fee” of $2.50 per order introduced in Chicago when that

city enacted its 15% commission cap. Service fees are often proportional to order value, but the

other fees do not depend on order value. In addition, platforms have responded to commission

caps by adjusting fixed fees rather than service fees. These observations motivate my choice to

treat platform consumer fees as fixed amounts rather than ad valorem rates.

Restaurants that adopt delivery platforms control their menus on these platforms. Their prices

on platforms need not equal their prices for direct-from-restaurant orders. Additionally, restau-

rants typically make an active choice to be listed on platforms.8 It is common for restaurant loca-

tions belonging to the same chain to belong to different combinations of online platforms.

Some other features of US food delivery warrant mention. Although I focus on consumers

and restaurants, delivery orders also involve couriers. I do not explicitly model couriers, and

instead specify platform marginal costs of fulfilling deliveries that are intended to capture courier

compensation. Additionally, some platforms offer subscription plans that allow users to pay

fixed fees to reduce per-transaction delivery fees. Given that modelling subscription plans would

complicate the analyis and also that these plans do not protect subscribers from platforms’

regulatory response fees, I abstract away from subscriptions in the model. I also abstract away

from the recommendation and search algorithms that delivery platforms use to direct consumers

toward restaurants.

Many local governments introduced commission caps in a staggered fashion after the beginning

of the US COVID-19 pandemic. Figure 1 displays the share of the US population residing in

a jurisdiction subject to a commission cap. Over 70 local governments representing about 60

million people had enacted commission caps by June 2021. Most caps limited commissions

to 15%, although some limited commissions to other levels between 10% and 20%. The first

commission caps were introduced as temporary measures, but several jurisdictions later made

their caps permanent.9

Figure 2 reports monthly spending on delivery platforms in 2020–2021, indexed to January

2020. Usage of online food delivery platforms tripled between January and May 2020 as the US

COVID-19 outbreak began and remained elevated thereafter even as governments relaxed public

health measures.10 As shown by Figure 3, restaurant membership of food delivery platforms

also grew during 2020–2021.11

Online Appendix Figure O.5 plots the average fees and commission charges over time in regions

8Some food delivery platforms list restaurants without their consent. This practice has decreased in popularity
in recent years, and has been outlawed in several jurisdictions including California and Seattle. See Mayya and
Li (2021) for a study of nonconsensual restaurants listings.

9These include San Francisco (July 2021), New York City (August 2021), and Minneapolis (December 2021).
The leading platforms brought legal action against San Francisco and New York City in response to their per-
manent caps.

10Oblander and McCarthy (2021) analyze the effects of the COVID-19 pandemic on consumer ordering.
11For each platform, I plot only restaurants that are partnered with the platform. In addition, I consider only

restaurants that are partnered with a platform as having adopted that platform in my empirical analysis.
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that had and that did not have a commission cap in place as of May 1, 2021. Platform price

structures consistently skewed toward commissions in places without caps, but the disparity in

charges paid by consumers and restaurants contracted in placed that adopted caps.

Figure 1: Share of US population in jurisdictions with commission caps
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2.2 Data

Transactions data. This article uses several data sources, the first of which is a consumer panel

provided by the data provider Numerator covering 2019–2021. Panelists report their purchases

to Numerator through a mobile application that (i) integrates with email applications to collect

and parse email receipts and (ii) accepts uploads of receipt photographs. I use Numerator

records for restaurant purchases whether placed through platforms or directly from restaurants

(including orders placed on premises, pick-up orders, and delivery orders). At the panelist

level, these data report ZIP code of residence and demographic variables. At the transaction

level, they report basket subtotal and total, time, delivery platform used (if any), and often the

restaurant from which the order was placed. At the menu-item level, they report item identifiers

and prices. The demographic composition of Numerator’s core panel is close to that of the US

adult population as measured with census data. In addition, market shares computed from these

data are similar to those computed from an external dataset of payment card transactions; see

Online Appendix O.4 for more information regarding this comparison. Table 1 reports the

number of unique consumers in the consumer panel recording at least one restaurant order in

Q2 2021 in the markets that I study in my primary analysis, which are the markets for which I

have detailed fee data. The market definition that I use throughout this paper is a metropolitan

area, formally a Core-Based Statistical Area (CBSA).

I supplement the Numerator data with platform/ZIP-level estimates of order volumes and av-

erage fees for each month from January 2020 to May 2021.12 Edison provides these estimates,

which are based on a large panel of email receipts.13 This dataset also includes estimates of av-

erage basket subtotals (i.e., dollar values of orders before fees, tips, and taxes), average delivery

fees, average service fees, average taxes, and average tips. I use these estimates to scale predicted

12I use ZIP rather than ZCTA as shorthand for “ZIP code tabulation area” in this paper.
13The panel includes 2,516,994 orders for an average of about 148,000 orders a month.
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Figure 2: Delivery platform sales, 2020–2021
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Notes: this plot reports indexed average monthly
spending on orders placed on DoorDash, Uber Eats,
Grubhub, and Postmates in the Numerator panel de-
scribed in Section 2.2.

Figure 3: Restaurant membership by platform
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Notes: this figure shows the number of restaurants
that belong to each major food delivery platform in
each month from January 2020 to May 2021.

Table 1: Observation counts for consumer panel by metro, Q2 2021

CBSA # consumers # transactions

Atlanta-Sandy Springs-Roswell, GA 4629 41775
Boston-Cambridge-Newton, MA-NH 1840 12399
Chicago-Naperville-Elgin, IL-IN-WI 6084 52415
Dallas-Fort Worth-Arlington, TX 4867 43101
Detroit-Warren-Dearborn, MI 2593 19074
Los Angeles-Long Beach-Anaheim, CA 7268 55500
Miami-Fort Lauderdale-West Palm Beach, FL 3860 30285
New York-Newark-Jersey City, NY-NJ-PA 10632 72803
Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 3904 26130
Phoenix-Mesa-Scottsdale, AZ 2827 22392
Riverside-San Bernardino-Ontario, CA 2779 20686
San Francisco-Oakland-Hayward, CA 1780 11074
Seattle-Tacoma-Bellevue, WA 1657 11225
Washington-Arlington-Alexandria, DC-VA-MD-WV 3488 28987
Total 58208 447846

Notes: this table reports the number of distinct panelists with at least one recorded restaurant order (“#
consumers”) and the total number of recorded restaurant orders (“# transactions”) in the Numerator panel from
April to June 2021.

orders in the Numerator panel to the market level and in my difference-in-differences analysis.

The Edison data match well external data sources including the Consumer Expenditure Survey

(CEX), DoorDash earnings reports, and an external payment card panel.14

Platform adoption I obtain data on restaurants’ platform adoption decisions from the data

provider YipitData. These data record all US restaurants listed on each major platform in each

14The Edison estimates of expenditures at the leading platforms sum to $33.6 billion for 2020. These platforms
account for 11.2% of restaurant spending by Numerator panelists with linked email applications. These estimates
together imply restaurant spending of $2296 per CEX consumer unit, close to the 2020 CEX estimate of food
spending away from home of $2375. The Edison data, which imply DoorDash revenues of $935 million and $1.2
billion in Q4 2020 and Q1 2021, also matches DoorDash’s earning reports, which claim revenues of $970 million
and $1.1 billion in these quarters. See Online Appendix O.4 for additional validation of the data.
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Table 2: Description of platform pricing data, Q2 2021

Delivery fees data Service/reg. response fees data

Platform # obs.
Avg. delivery Avg. wait

# obs.
Avg. service Avg. regulatory

fee ($) time (mins) fee (%) response fee ($)

DD 40437 2.18 29.16 3066 0.14 0.41
Uber 48062 1.93 41.64 4838 0.15 0.55
GH 688428 2.93 41.71 - - -
PM 2915 4.95 41.43 2915 0.20 0.53

Notes: the order-level dataset of fees charged by Postmates includes information on both delivery fees and fixed
fees. This explains why the number of observations for these two sort of fees coincide in the table.

month from January 2020 to May 2021.15 I obtain data on offline-only restaurants from Data

Axle, which provides dataset of a comprehensive listing of US business locations for 2021.

Platform pricing I collect data on platform fees in 2021. My procedure for collecting these data

involves drawing from the set of restaurants in a ZIP and inquiring about terms of a delivery

to an address in the ZIP for ZIPs in the 14 large US metropolitan areas in the listed in Table 1.

The address is obtained by reverse geocoding the geographical coordinates of the ZIP’s centroid

into a street address. Other variables that I record while collecting data on these fees include the

time of delivery, the delivery address, the restaurant’s address, restaurant characteristics, and

the estimated waiting time. I followed an analogous procedure to collect data on service fees and

regulatory response fees; this procedure involves entering delivery addresses near the centroid

of ZIPs in the markets listed by Table 1, randomly choosing a restaurant from the landing

page displayed after entering the delivery address, and inquiring about terms of a delivery from

the restaurant to the chosen delivery address. Table 2 provides observation counts and sample

means for the platform pricing datasets for Q2 2021. Section 2.3 describes how I address my

lack of data on Grubhub’s service and regulatory response fees.

I manually construct a dataset of commission cap policies including start and end dates. I

conducted a search of online news articles to construct this dataset. This dataset includes 72

distinct caps active on March 28, 2021, the same date that NBC News reported that it had

discovered 68 commission caps across the United States.

Also, I use ZIP-level data from five-year American Community Survey (ACS) from 2014–2019 to

study the dependence of platform fees and usage on local demographics. To characterize places

that adopt commission caps, I regress an indicator for a commission cap on local characteristics;

the results, which appear in Online Appendix Table O.1, reveal that places with a higher

Democratic vote share in the 2016 presidential election, with a higher population density, and

with a more educated population are more likely to enact commission caps.

15Note that I estimate my consumer choice model on data from Q2 2021. Because I do not have data on
restaurant platform adoption decisions in June 2021, I use the May 2021 platform adoption data for both May
2021 and June 2021.
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2.3 Fee indices

I construct measures of platform fees to analyze platform pricing. The consumer fee index cfz

for each pair of a platform f and a ZIP z is defined by

cfz = DFfz + SFfz +RRfz, (1)

where DFfz is a measure of platform f ’s delivery fees in ZIP z, SFfz is a measure of platform

f ’s service fee in z’s municipality, and RRfz is the regulatory response fee charged by f in z.

The delivery fee measure DFfz is the expected delivery fee charged by platform f in ZIP z

conditional on a set of fixed order characteristics:

DFfz = E[dfkfz|xk = x̄, f, z], (2)

where dfkfz is the delivery fee charged on order k on platform f in ZIP z, xk are observable

characteristics of order k, and x̄ is a fixed vector of characteristics. Variation in DFfz reflects

systematic differences in fees across platforms and regions for an order with the same xk char-

acteristics.16 It is important to include a rich set of order characteristics in xk so that the fee

indices do not reflect differences in the selection of restaurants across platforms and regions. In

practice, the observable characteristics that I include in xk are time of day and day of week,

a cubic in the delivery distance, and indicator variables for various restaurant cuisines and

restaurant chain indicators. I estimate (2) using a k-fold cross-validated Lasso (with k = 10),

which is a penalized regression estimator intended to prevent overfitting in the presence of

high-dimensional regressors. The high-dimensional regressors in my setting include a rich set

of controls for geography. Appendix A discusses my procedure for estimating (2) in detail. I

apply this procedure to the expected waiting times data as well to obtain waiting time indices

Wfz analogous to the DFfz delivery fee indices.

The service and regulatory response fee measures SFfz and RRfz are straightforwardly defined.

I define SFfz as platform f ’s median service fee in ZIP z’s municipality. Service fees are

generally proportional to order subtotals; I use a subtotal of $30 to compute service fees in

practice, given that average subtotals are close to $30 in my data. Recall that the fee data does

not include service fees for Grubhub. This omission is not critical given that Grubhub did not

enact regulatory response fees aside from a fee of $1 per order in California.17 It does, however,

limit my information on Grubhub’s service fees. I use the Edison transactions data to overcome

this limitation. These data include the average service fee, average order value before taxes and

fees, and estimated sales at the level of a ZIP/platform. The median and the sales-weighted

mean of ZIPs’ ratios of average service fees to average order value before taxes and fees are both

0.10. I therefore use 10% as Grubhub’s service fee in computing SFfz. Regulatory response fees

16In practice, delivery fees vary widely within CBSAs. Tables O.7 and O.8 report estimates from regressions
of delivery fees dfkfz on various order characteristics and geographical characteristics. The results show that
there remains a high level of unexplained variation in delivery fees within a CBSA or county, and they indicate
meaningful variation in average fees across places within a CBSA.

17Grubhub introduced this fee in response to a state mandate that platforms provide certain benefits to couriers.
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apply to entire municipalities, so I compute RRfz by identifying all regulatory response fees in

my data and then taking the sum of such fees charged by platform f in ZIP z’s municipality.

See Table O.3 in the appendix for a decomposition of each platform’s average fee index across

ZIPs into the delivery fee, service fee, and regulatory response fee components.

3 Four empirical findings

This section describes empirical findings that inform my modelling decisions.

3.1 Commission caps raise platforms’ consumer fees and lower platform order volumes

I estimate effects of commission caps on platforms’ consumer fees and platform order volumes

using two-way fixed effects (TWFE) regressions. The estimating equation for platform f is

yfzt = ψfz + φft︸ ︷︷ ︸
ZIP and month

fixed effects

+ βfxxzt︸ ︷︷ ︸
Treatment

+ βfCCzt︸ ︷︷ ︸
COVID control

+εfzt, (3)

where yfzt is an outcome variable for platform f in ZIP z for month t, ψfz are platform/ZIP

fixed effects, φft are platform/month fixed effects, xzt is a measure of ZIP z’s commission cap

policy during t, Czt is the number of new COVID-19 cases in ZIP z’s county as a fraction of

the county’s population in month z, and εzft is an unobservable assumed mean independent

of xzt. Here, the βfx parameters measure responses of the outcome variable to commission

caps. The outcome yfzt is either the log of platform f ’s average fee in ZIP z in month t or

the log of platform f ’s number of orders in z during t. I control for the number of COVID-19

cases in (3) because the severity of COVID-19 may affect both changes in these outcomes and

a jurisdiction’s decision to enact a commission cap. The treatment variable xzt is an indicator

for z having a commission cap of 15% or lower.18 Online Appendix O.7 provides results for

a specification in which places with any cap constitute the treatment group. The primary

identifying assumption underlying the TWFE approach is that, conditional on controls, the

outcome variable in places that enacted commission caps would have followed the same trend

as in places that never enacted commission caps if caps had not been imposed.

Recent research in econometrics—e.g., de Chaisemartin and D’Haultfœuille (2020)—highlights

problems affecting TWFE estimators in settings with heterogeneous treatment effects and stag-

gered treatment. To check the robustness of my findings, I additionally estimate fee and order

responses to commission caps using the estimator of Callaway and Sant’Anna (2021), who de-

velop estimators for average treatment effects on the treated that are robust to heterogeneous

treatment effects. The Callaway and Sant’Anna (2021) estimator yields similar estimates to

those from my TWFE estimator; see Tables O.9 in Online Appendix O.7

18I focus on caps of 15% or lower because 15% is the most common level of caps. I exclude ZIPs with caps
greater than 15% from the analysis.
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Table 3: Responses to commission caps (fees and order volumes)

Outcome
Platform Log fees Log # orders

Total - -0.06
(0.01)

DD 0.20 -0.06
(0.02) (0.01)

Uber 0.09 -0.05
(0.02) (0.01)

GH 0.12 0.07
(0.06) (0.02)

Notes: this table reports effects βfz in (3) of a commission cap of 15% or less on either (i) log average fees or
(ii) the log of the number of orders. Each estimator is computed on a ZIP/month level panel, and each ZIP is
weighted by its population. I do not include results for Postmates because I lack data on Postmates fees across
the sample period.

Table 3 provides estimated effects of commission caps for each of DoorDash (DD), Uber Eats

(Uber), and Grubhub (GH). I also estimate the effects of commission cap on the total number

of sales on these platforms; the “Total” row provides these estimates. Commission caps raised

average fees by 0.9–0.20 log points across platforms, which amounts to 9–22% increases in

fees. DoorDash’s estimated fee increase represents about one-third of the average revenue that

DoorDash loses on an order from the introduction of a 15% commission cap. Commission caps

reduce the number of orders on the two largest platforms, DoorDash and Uber Eats, by about

5% and 7%, respectively; caps, however, raise orders on Grubhub. The fact that caps had large

positive effects on fees while having relatively small—and possibly positive—effects on sales

could owe to the fact that caps attracted restaurants to join platforms.

Figure 4 provides event-study estimates of a commission cap’s effects at times relative to the cap

imposition. I estimated these effects by OLS applied to a variant of (3) in which βfx varies by

time relative to a cap’s introduction.19 The figure provides estimates for DoorDash, the largest

platform. There is not evidence of pre-trends in DoorDash’s fees or order volumes in places

that introduced commission caps. Additionally, Figure 4 suggests that platforms responded to

commission caps with fee hikes almost immediately. Online Appendix O.7 provides additional

event study plots from TWFE regressions and the Callaway and Sant’Anna (2021)/Sant’Anna

and Zhao (2020) estimator. These plots similarly show a lack of fee and sales pre-trends.

Online Appendix O.7 provides results for alternative specifications, including those with a con-

tinuous treatment variable, with observations for months before July 2020 (in which laws pro-

hibiting on-premises dining still applied) excluded, and with proportional service fees and fixed

delivery and regulatory response fees as separate outcomes. The estimates are similar to those

19This variant is

yfzt = ψfz + φft +

τ̄∑
τ=−τ̄

βfxτxz,t−τ + β+
fx

∑
τ>τ̄

xz,t−τ + β−fx
∑
τ<−τ̄

xz,t−τ + βfcCzt + εfzt,

The treatment variable xz,t−τ equals one if and only if a commission cap was first imposed in ZIP z in month
t− τ . I set τ̄ = 10 in practice.
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Figure 4: Effects of commission caps on DoorDash fees and order volumes

(a) Effects on log fees
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(b) Effects on log number of orders
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Notes: this figure reports estimates of commission caps’ effects on DoorDash’s log average fees and log order
volumes from a variant of 3 wherein the effect βfx varies by the month relative to the implementation of a
commission cap. I estimate these effects by OLS.

in the main text, and provide evidence that commission caps raised fixed fees but not service

fee rates. Last, Table O.16 in the Online Appendix reports estimates of (3) with the log average

basket subtotal as the outcome. I do not find significant effects on basket subtotals.

Modelling implication. Platforms’ consumer fees are endogenously determined in my model,

and they may respond to commission caps.

3.2 Commission caps induce restaurant uptake of platforms

Commission caps may also affect restaurants’ platform membership decisions. I use a difference-

in-differences approach mirroring that in Section 3.1 to estimate restaurants’ platform adoption

responses to caps. Although my data record all restaurants on delivery platforms at a monthly

frequency, my data on all US restaurants—including those that do not belong to a platform—

are at an annual frequency. I therefore estimate TWFE regressions at an annual level with

platform adoption measures as outcomes. The estimating equation is

yzt = ψz + φt︸ ︷︷ ︸
ZIP and month

fixed effects

+ βxxzt︸ ︷︷ ︸
Treatment

+ β′CCzt︸ ︷︷ ︸
COVID control

+εzt, (4)

where ψz are ZIP fixed effects, φt are time-period fixed effects, and xzt is an indicator for

whether a commission cap of 15% or lower is active in ZIP z during time period t. Additionally,

the vector Czt includes both the number of new COVID-19 cases and the cumulative number

of COVID-19 cases per capita in ZIP z’s county by time period t. The two time periods are

January 2020 and January 2021. The sample includes (i) treated ZIPs where commission caps

of 15% or lower were imposed between January and June 2020 and (ii) control-group ZIPs that

did not have commission caps by the second period. The two outcomes yzt are (i) the share of
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restaurants belonging to at least one platform and (ii) the average number of platforms that a

restaurant in the ZIP joins. Online Appendix O.7 provides results for platform-specific adoption

shares as outcome variables and for a continuous treatment variable.

Table 4: Effects of commission caps on restaurants’ platform adoption

(a) Difference-in-differences estimates

Share online # platforms joined

0.040 0.099
(0.003) (0.006)

(b) Within-metro estimates

Share online # platforms joined

0.070 0.207
(0.004) (0.011)

Notes: Table 4a reports OLS estimates of βx in (4). Each ZIP is weighted by its average number of restaurants
across the two time periods. Table 4b table reports results from ZIP-level regressions of the share of restaurants
in a ZIP that have adopted at least one online platform in May 2021 on an indicator for whether a commission
cap applied in the ZIP. It also reports results for an analogous regression wherein the average number of platforms
joined by a restaurant in the ZIP is the outcome variable. Each ZIP is weighted by its number of restaurants.
The tables report standard errors in parentheses.

Table 4a provides OLS estimates of βx in (4). These results suggest that commission caps

lead to a 4.0 percentage-point increase in the share of restaurants belonging to at least one

delivery platform and an increase of 0.099 in the average number of delivery platforms to which

a restaurant belongs. To assess the robustness of the estimates, I also estimate the effects of caps

using cross-sectional variation between municipalities within a metro area that differ in their

commission cap policies. The underlying identification assumption is that the unobservable

propensity for restaurants to join platforms does not differ within a metro area between places

with and without commission caps. I estimate effects of commission caps using within-metro

variation by regressing the share of restaurants in a ZIP belonging to at least one platform on

metro fixed effects and on an indicator for a cap of 15% or less being effect. Table 4b provides

the results for May 2021. These results, which suggest that commission caps raised the share

of restaurants belonging to a platform by 7.0 percentage points, are somewhat similar to those

from the difference-in-differences approach.

Modelling implication. Platform adoption by restaurants is endogenous and depends on

commission rates in my model.

3.3 Both consumers and restaurants multihome

I quantify multihoming in the food delivery industry by computing measures of consumer and

restaurant multihoming. The measure of consumer multihoming for a pair of platforms f

and f ′ equals the share of pairs of consecutive orders placed on any platform made by the

same consumer that contain a purchase from f among those that also contain a purchase

from f ′. To illustrate this measure, suppose that one consumer bought from DoorDash across

two consecutive orders and a second consumer bought from DoorDash and then Uber Eats.

Then, the multihoming measure for f = Uber Eats and f ′ = DoorDash among these two
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Table 5: Multihoming in the food delivery industry, April 2021

(a) Consumers of delivery platforms

Platform
Share of Share of pairs also

consecutive-order pairs including an order from...
including an order from DD Uber GH PM

DD 0.53 1.00 0.13 0.06 0.02
Uber 0.42 0.17 1.00 0.06 0.02
GH 0.16 0.21 0.16 1.00 0.01
PM 0.04 0.24 0.24 0.06 1.00

(b) Restaurants listed on delivery platforms

Platform
Share Share of restaurants

listed on also listed on...
platform DD Uber GH PM

DD 0.34 1.00 0.55 0.50 0.33
Uber 0.27 0.68 1.00 0.57 0.39
GH 0.24 0.71 0.65 1.00 0.38
PM 0.14 0.79 0.76 0.65 1.00

Notes: Table 5a reports, for each pair of platforms f and f ′, the share of pairs of consecutive orders placed by
the same consumer in April 2021 that include an order from f ′ among those that contain an order from f . Table
5b reports the share of restaurants on each major delivery platform that also belong to each other major delivery
platform for April 2021.

consumers would be one half.20 I characterize restaurant multihoming by computing the share

of restaurants listed on each platform that are also listed on each other platform. Table 5

reports the results, which show that both consumers and restaurants multihome. Although

consumers sometimes switch between platforms, they more often order from the same platform

across consecutive orders. Online Appendix O.3 provides evidence that repeat ordering from

platforms reflects persistent tastes for platforms rather than state dependence; this finding

motivates my decision to include the former but not the latter in the model.

Modelling implication. The model flexibly allows for both consumer and restaurant multihom-

ing.

20Another measure of consumer multihoming is the average Herfindahl–Hirschman index of a consumer’s shares
of orders made across platforms:

¯HHI =
∑
i

ni∑
i′ ni′

F∑
f=1

s2
if ,

where ni is the number of orders that consumer i placed on platforms and sif is the share of those orders that the
consumer placed on platform f . Among consumers residing in the 14 markets on which my study focuses during
the second quarter of 2021, ¯HHI equals 0.86, which indicates a high degree of purity in consumers’ platform-choice
sequences. Additionally, Figure O.4 in the Online Appendix reports the average number of platforms from which
a panelist has ordered after placing t orders, for t = 1, . . . , 30.
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Table 6: Markups of restaurant prices on food delivery platforms

Platform
Common Platform-specific
markup markups

Online 0.24 -
(0.01) -

DD - 0.28
- (0.09)

Uber - 0.27
- (0.01)

GH - 0.23
- (0.01)

Notes: this table reports estimates of the ϑf parameters in (5). I estimate the equation via an OLS regression of log
menu prices on platform indicator variables after transforming both variables by the fixed-effects transformation
(i.e., by subtracting off their within-item ι mean values across transactions) to purge the fixed effects ϕι from
(5). The estimation sample includes item-level transactions in Q2 2021. Standard errors appear in parentheses.

3.4 Restaurants charge higher prices for platform orders than for direct orders

Each leading delivery platform allows restaurants to post prices on the platform that differ from

the restaurant’s prices for direct orders and from the restaurant’s prices on other platforms. I

use my item-level transactions data to estimate the average markups of restaurant menu items

on delivery platforms relative to their direct-from-restaurant prices. This procedure involves

estimating

log pιft︸ ︷︷ ︸
Log price

= ϕι︸︷︷︸
Item fixed effect

+ ϑf︸︷︷︸
Mean markup

+ ειft, (5)

where ι is a menu item, f is a platform, and t is a transaction. Additionally, pιft is an observed

menu price, ϕι are menu-item fixed effects, and ειft captures both measurement error and item-

level deviations from the mean log markup ϑf of prices on platform f . I normalize ϑ0 = 0 for

the platform f = 0, which represents direct-from-restaurant ordering. To understand why I

interpret ϑf as a mean log markup of prices on platform f , note that

E[log(pιft/pι0t) | ι, f ] = ϑf .

I estimate (5) by OLS on data from Q2 2021. Table 6 reports estimates of ϑf when (i) ϑf = ϑ

for a constant ϑ across all platforms f and (ii) when ϑf varies across platforms. This table

implies that prices on online platforms are about 27% higher than those for direct orders on

average, and that this markup does not vary considerably across platforms. Online Appendix

O.6 describes price differentials between platform orders and direct-from-restaurant orders in

greater detail; it shows that markups are concentrated between 0% and 50%, and that price

variation among platforms is small.

To obtain the menu price measures that I use in estimating my model, I estimate mean differ-

ences in menu items’ prices across platforms and restaurant locations using a Lasso regression

with item fixed effects. The regression equation differs from (5) in that it allows markups of
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restaurants’ prices on platforms to vary across markets and restaurant locations belonging to

different subsets of platforms. Appendix B details this procedure. The price measures I ob-

tain systematically vary between the direct and platform-intermediated ordering channels, but

not between platforms. Additionally, I do not find evidence of differences in restaurant prices

on platforms between areas with and without commission caps using my item fixed-effects ap-

proach. One explanation for this finding is that the menu items purchased across platforms

and restaurant locations in my data are mostly sold by large chain restaurants. Chains may

practice uniform or zone pricing; that is, they may not condition their prices on local demand

and cost conditions, including the presence of a local commission cap.21 Uniform and zone

pricing could significantly limit price responses to a commission cap given that 56% of orders

placed on the four leading food delivery platforms were from chains with at least 100 locations,

and 48% were from chains with at least 500 locations in the first half of 2021. Using manu-

ally collected data on restaurant prices that includes prices at independent restaurants, I find

that the relative markups of restaurant prices on platforms (i.e., prices on platforms divided

by direct-from-restaurant prices) are about seven percentage points lower on average in places

with commission caps. Commission caps of 15% cut commission rates in half, but a seven per-

centage point reduction in restaurant prices markups on platforms is far less than one-half of

the markups reported by Table 6. If markups of restaurants’ prices on platforms mostly result

from pass-through of commissions, this suggests that restaurant prices do not fully respond

to commission caps. In fact, my model predicts that commission caps reduce the markups of

prices on platforms relative to direct-order prices by over one-half. Motivated by the fact that

caps have a limited effect on restaurant prices in practice, I evaluate commission caps with and

without restaurant price responses in my model-based analysis.

Modelling implication. I model restaurant price-setting for both direct orders and platform-

intermediated orders. This pricing model allows for incomplete pass-through of commissions.

3.5 Additional findings

Online Appendix O.2 presents four additional empirical findings that inform my modelling

choices. The first such finding is that consumers are more likely to order from a platform with

more local restaurants, and that consumers respond similarly to new chain and independent

restaurants on a platform. The model correspondingly features a positive relationship between

the number of restaurants on a platform and consumer ordering on the platform. Next, I

find that restaurants that join a platform tend to stay on the platform, which motivates my

decision to account for the value of restaurants in generating future profitability for platforms in

platforms’ commission-setting problem. The third additional finding is that market shares vary

across metros, which my model rationalizes through differences in local restaurant listings on

each platform as well as metro-specific tastes for platforms. Last, I find that young consumers

21See DellaVigna and Gentzkow (2019) and Adams and Williams (2019) for evidence of uniform and zone
pricing in retail.
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are more likely to use platforms, and that restaurants in places with relatively young populations

are more likely to join platforms. This suggests that restaurants respond to the profitability of

platform adoption.

4 Model

4.1 Summary of model

To analyze the welfare effects of commission caps and the economic forces shaping these effects,

I develop a model of the food delivery industry. This model features consumers who place

orders from nearby restaurants either through platforms or directly from the restaurant. Each

consumer and each restaurant belongs to a metro m, each of which is further partitioned into

ZIPs z. Each ZIP contains a fixed number of consumers and of restaurants.

Formally, I develop a sequential game equipped with a perfect Bayesian equilibrium solution con-

cept. Competition in each metro area is a separate game played by platforms and restaurants.

Platforms’ strategic variables are consumer fees and restaurant commission rates. Restaurants

differ in their locations and in costs of platform adoption decisions. Their strategic variables are

platform adoption and prices. The model has four stages. In the first stage, platforms simul-

taneously choose their commission rates to maximize their profits. Restaurants subsequently

choose which platforms to join. Upon joining platforms, restaurants choose prices to charge for

direct orders and for orders from each platform. Platforms set their consumer fees concurrently

as restaurants set prices. Last, consumers place orders. I specify that platforms set commissions

first because delivery platforms advertise commission rates to restaurants considering member-

ship. Platforms often change their fees after restaurants have joined platforms (e.g., in response

to commission caps) — this underlies the assumption that platforms set consumer fees after

restaurants join platforms.

Although the model captures numerous features of the food delivery industry with my model,

I abstract away from other features. First, restaurants in the same ZIP do not systematically

differ in their appeal to consumers or their costs of platform adoption. Reducing restaurant het-

erogeneity is necessary for tractability, although the model could be straightforwardly extended

to feature multiple discrete types of restaurants (e.g., chain versus independent restaurants,

downmarket versus upscale restaurants). Additionally, my model is static whereas platforms

face dynamic pricing incentives in reality. I capture these dynamic incentives in a reduced-form

way by including the size of a platform’s restaurant network—which affects future platform

profitability—in the platform’s objective function.

The remainder of this section details the stages summarized above in backwards order.
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4.2 Consumer choice

Consumer i contemplates ordering a restaurant meal at T occasions each month. In each

occasion t ∈ {1, . . . , T}, the consumer chooses whether to order a meal from a restaurant j

or to otherwise prepare a meal, an alternative denoted j = 0. A consumer who orders from

a restaurant, chooses both (i) a restaurant and (ii) whether to order from a platform f ∈ F
or directly from the restaurant, denoted f = 0. Let Gj ⊆ F denote the set of platforms on

which restaurant j 6= 0 is listed; I call Gj restaurant j’s platform subset. The consumer chooses

a restaurant/platform pair (j, f) among pairs for which (i) restaurant j is within five miles of

consumer i’s ZIP of residence and (ii) f ∈ Gj to maximize

vijft =

ψif − αipjf + ηi + νijt, j 6= 0

νi0t, j = 0,

where ψif is consumer i’s taste for platform f , pjf is restaurant j’s price on platform f , ηi is the

consumer’s taste for restaurant dining, and νijt is consumer i’s idiosyncratic taste for restaurant

j in ordering occasion t. The tastes νijt are assumed iid Type 1 Extreme Value. Additionally,

αi is consumer i’s price sensitivity, which I specify as

αi = α+ αLowIncLowInci,

where LowInci is an indicator for whether the consumer’s household income is below $40,000.

I specify consumer i’s tastes ψif for platform f as

ψif = δfm − αicfz − τWfz + λ′fdi + ζif .

for f 6= 0. I normalize ψi0 = 0 for all i. Here, δfm is a parameter governing the mean taste of

consumers in market m for platform f ; cfz is platform f ’s fee to consumers in ZIP z; Wfz is a

waiting-time index; and di is a vector of consumer characteristics. The characteristics included

in di are indicators for the consumer being younger than 35 years of age and for being married.

Additionally, the ζif are persistent idiosyncratic tastes for platforms, specified as

ζif = ζ†i + ζ̃if ,

where ζ†i ∼ N(0, σ2
ζ1) and ζ̃if ∼ N(0, σ2

ζ2) independently of all else. The ζ†i unobservable governs

consumer i’s taste for the online ordering channel whereas ζ̃if governs consumer i’s particular

taste for platform f .22

I specify consumer i’s taste for restaurant meals ηi as

ηi = µηm + λ′ηdi + η†i ,

22Note that the parameters σζ1 and σζ2 are random coefficients in the style of Berry et al. (1995) on channel
and platform indicators.
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where µηm governs average tastes for restaurant dining in metro m, di are consumer characteris-

tics, and η†i is consumer i’s idiosyncratic taste for restaurant dining. I assume that η†i ∼ N(0, σ2
η)

independent of all else. Consumer tastes for restaurant ordering become increasingly heteroge-

neous as ση is increased, which limits the substitutability of ordering and at-home dining.

4.3 Restaurant pricing and platform fee setting

Each restaurant sells a standardized menu item, whose price it selects after all restaurants have

joined platforms. Restaurants simultaneously set their prices across platforms to maximize their

profits. Platforms concurrently set their consumer fees cfz to maximize profits with restaurant

prices and platform fees together constituting a Nash equilibrium.

First consider restaurant pricing. Let p∗jf (Gj ,Jm,−j) denote the equilibrium price set by restau-

rant j on platform f when Jm denotes the platform adoption choices of all restaurants in metro

m. The equilibrium prices solve

p∗j = arg max
pj

∑
f∈Gj

[(1− rf )pjf − κjf ]Sjf (Jm, pj , p∗−j),

where κjf is restaurant j’s marginal cost of fulfilling an order on platform f , p−j are the prices

of other restaurants, and Sjf are restaurant j’s sales on platform f .23

The multi-sided markets literature—e.g., Rochet and Tirole (2006)—recognizes that transfers

between platform users can make the division of a platform’s prices between sides of users

irrelevant, a situation known as neutrality of the price structure. Restaurant price adjustments,

however, do not imply neutrality here, and restaurants do not perfectly pass through commission

increases into prices. This reflects that consumer fees are fixed whereas restaurant commissions

are proportional to restaurant prices. See Online Appendix O.14 for additional discussion of

restaurant pricing and commission pass-through.

Next consider platform fee setting. Each platform f ’s profits in a ZIP z depend on their marginal

costs mcfz, which represent compensation to couriers. Platform marginal costs may vary across

locations due to differences in going rates for couriers across regions due to, e.g., local labour

demand and supply conditions as well as local regulation of benefits owed to couriers. I assume

that platforms are price-takers in local labour markets and that, consequently, their marginal

costs do not depend on orders volumes. A platform f ’s profits from sales in ZIP z are

Λfz = sfz(cz,Jm)︸ ︷︷ ︸
Sales

×

 cfz︸︷︷︸
Consumer

fee

+ rfz︸︷︷︸
Restaurant
commission

p̄∗fz︸︷︷︸
Average restaurant

price in z on f

− mcfz︸ ︷︷ ︸
Marginal

cost

 , (6)

where sfz are platform f ’s sales in ZIP z. The quantity p̄∗fz is the sales-weighted average price

23Sales also depend on platform fees, which I suppress in the notation. Online Appendix O.10 provides an
expression for sales Sjf .
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charged by a restaurant for a sale on f in ZIP z. DoorDash and Grubhub choose cfz in each

ZIP z to maximize Λfz, whereas Uber Eats and Postmates set their fees in ZIP z to maximize

Λfz + Λf ′z, where f denotes Uber Eats and f ′ denotes Postmates.

4.4 Restaurants’ platform adoption choice

Restaurants choose which platforms to join in a positioning game in the spirit of Seim (2006). In

this model, restaurants simultaneously choose which platforms to join. Each restaurant makes

its choice to maximize the sum of its expected profits and a choice disturbance representing

misperceptions of the profitability or non-pecuniary motives for platform adoption. A restaurant

j’s expected profits from joining platforms G are

Πj(G, Pm) = EJm,−j

∑
f∈G

[(1− rfz))p
∗
jf (G,Jm,−j)− κjf ]Sjf (G,Jm,−j , p

∗) | Pm


︸ ︷︷ ︸

:=Π̄j(G,Pm)

−Km(G). (7)

The expectation in (7) is taken over rivals’ platform adoption decisions Jm,−j , which are un-

known to restaurant j when it chooses which platforms to join. Rival restaurants’ decisions are

determined by the probabilities Pm = {Pk(G) : k,G} with which rival restaurants k choose each

platform set G. Additionally, Km(G) is j’s fixed cost of joining platforms G. Restaurants cor-

rectly anticipate the prices pjf and fees cfz that arise in the model’s downstream stages.

Restaurant fixed costs Km(G) do not represent payments to platforms. Instead, they include

fixed costs undertaken in contracting with platforms; in maintaining the restaurant’s menu on

platforms; in interacting with platforms regarding payments and customer service; in processing

online orders; and in training staff to interface with platforms. By specifying a separate cost

for each subset of platforms G, I allow for diminishing costs of joining additional platforms.

Additionally, I normalize Km({0}) to zero in each market.

Restaurant j’s choice of platforms maximizes the sum of its expected profits and a disturbance

ωj(G) that represents either restaurant misperceptions of the profitability of platform adoption

or non-pecuniary motives for platform adoption:

Gj = arg max
G:0∈G

[Πj(G, Pm) + ωj(G)] . (8)

In conducting welfare analysis, I do not count the ωj(G) toward restaurant profits.

An equilibrium in the platform adoption game is a sequence of probabilities P ∗m = {P ∗j (G) : j,G}
such that

P ∗j (G) = Pr

(
G = arg max

G′
Πj(G′, P ∗m) + ωj(G′)

)
(9)

for all restaurants j in market m and for all platform subsets G. The right-hand side of (9)

is the probability that restaurant j’s best response to rivals’ choice probabilities P ∗m is to join

platform subset G. Thus, an equilibrium is defined as a sequence of choice probabilities that

arise when restaurants’ best responses to each other’s choice probabilities give rise to these
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choice probabilities. Condition (9) defines P ∗m as a fixed point, and Brouwer’s fixed point

theorem ensures the existence of an equilibrium.24 Although equilibrium existence is ensured,

an equilibrium may not be unique. In practice, I do not find multiple equilibria at my estimated

parameters.25

I specify restaurants’ platform adoption disturbances as

ωj(G) =
∑
f∈G

σrcω
rc
jf + σωω̃j(G), (10)

where ωj(G) are mean-zero type 1 extreme value random variables drawn independently across

j and G. Additionally, the ωrcjf are standard normal random variables drawn independently

across restaurants and platforms. The parameter σω governs the variability of platform-subset-

specific idiosyncratic disturbances, whereas σrc governs the extent to which platform subsets are

differentially substitutable based on their constituent platforms. The specification in (10) makes

the choice model a random coefficients logit model in the style of Berry et al. (1995).

My use of a Seim (2006) positioning game is justified by the facts that (i) equilibria of the

game are easier to find than Nash equilibria in complete information games and (ii) complete

information entry games suffer from problems related to multiplicity of Nash equilibria reflecting

non-uniqueness in the identities of players that take particular actions. These problems that

do not arise in my model. One critique of positioning games in the spirit of Seim (2006) is

that they give rise to ex post regret: after players have realized their actions, some players

would generally like to change their actions in response to other players’ actions. This is not

a considerable problem in my setting because the large number of restaurants leaves little

uncertainty in each restaurant’s payoffs from joining platforms Gj .26

4.5 Platform commission setting

The first stage of the model is platform commission setting. Each platform’s commission rate

maximizes a weighted sum of (i) the platform’s expected profits and (ii) the expected size of the

platform’s network of restaurants. This second term addresses the omission of dynamic pricing

incentives from my measure of platform profits. If restaurants exhibit state dependence in the

platforms they join, then a platform’s future profitability increases when it induces a restaurant

to join a platform. Rather than account for this effect in a fully structural manner, I take a

24The equilibrium can be interpreted as a quantal response equilibrium (McKelvey and Palfrey 1995).
25In each metro area in my data, I compute equilibria using the algorithm outlined in Online Appendix O.14

from the following initial choice probabilities: (i) the ZIP-specific empirical frequencies of restaurants’ platform
choices, (ii) probability one of restaurants choosing not to join any platform, (iii) probability one of restaurants
choosing to join all platforms, and (iv) the ZIP-specific empirical frequencies of restaurants’ platform adoption
choices randomly shuffled between platform subsets within each ZIP. I find the same equilibrium in each market
using each of these initial choice probabilities.

26Formally, for any sequence of choice probabilities {PJ,m}∞J=1 indexed by the number of restaurants J , the
difference between the share of restaurants joining each platform subset (as encoded in Jm) and Pz(Gj) converges
to zero almost surely due to the strong law of large numbers. This suggests that for a large number of restaurants,
the integrand in the definition of Π̄j is approximately constant across Jm,−j draws, thus leaving little scope for
ex post regret.
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reduced-form approach that has precedent in the literature. Castillo (2022) and Gutiérrez (2022)

specify platform objective functions including terms representing user surplus, which capture

unmodelled dynamic considerations. Additionally, Wang et al. (2022) propose a restaurant-

recommendation system that has been adopted by Uber Eats and that accounts for restaurants’

interests in making recommendations, suggesting that platforms value user interests in addition

to short-run profits.

The expected profits of platform f in metro m at the time of commission setting are

Λ̄fm(rm) =
∑
z∈Zm

EJm [Λfz | P ∗m(rm)] , (11)

where Λfz are the ZIP-specific profits defined in (6) and Zm is the set of all ZIPs in metrom. The

rm vector includes all platforms’ commissions in metro m, and P ∗m(rm) are choice probabilities

from an equilibrium in restaurants’ platform adoption. The expectation is taken over the

equilibrium distribution of restaurants platform adoption choices Jm, which are governed by

the P ∗m(rm) probabilities. The problem of a single-platform firm f is then

max
rfm

[
Λ̄fm(rm) + hfmJf (rm)

]
, (12)

where Jf (rm) is the expected number of restaurants that adopt platform f in metro m and hfm

are model parameters. The problems of Uber Eats and Postmates, which are jointly owned,

differ from (12) in that these platforms’ objective functions are sums of Λ̄fm(rm) + hfmJf (rm)

over f ∈ {Uber Eats,Postmates}.

5 Estimation

5.1 Estimation of the consumer choice model

My estimation procedure features a step for each stage of the model. The estimator of the

consumer choice model maximizes the likelihood of consumers’ observed sequences of platform

choices conditional on observed covariates. In tis model, each consumer i places Ti ≤ T orders

from restaurants, with Ti varying across i. Recall that T is the maximum number of ordering

occasions in my model. In practice, I treat each panelist/month pair as a separate consumer,

and I set T = 20 to the 99th percentile of the number of monthly orders placed by a panelist in

Q2 2021. The sample includes consumers who place at least one restaurant order in Q2 2021,

excluding consumers who place over T orders in a month. The objective function is

 L(θ, Yn, Xn) =
n∑
i=1

log

∫ Ti∏
t=1

`(fit | xi, wm(i),Ξi; θ)×
T∏

t=Ti+1

`0(xi, wm(i),Ξi; θ)dH(Ξi; θ)

 ,

(13)
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where n is the sample size, Yn = {fit : i, 1 ≤ t ≤ Ti} contains each consumer’s selected platform

fit across ordering occasions t. Similarly, Xn = {xi, wm(i) : 1 ≤ i ≤ n} contains observable

consumer characteristics xi and characteristics wm(i) of the consumer’s metro area m(i) . The

xi vector includes consumer i’s ZIP, age, marital status, and household income. The wm vec-

tor includes restaurants’ platform adoption choices, platform fees cfz, waiting times Wfz, and

restaurant prices pjf . The random vector Ξi, which is distributed according to H, includes the

persistent channel tastes ζ†i , the persistent platform tastes ζ̃if , and the unobservables η†i govern-

ing tastes for restaurant orders. Additionally, `(f | x,Ξ; θ) is the probability that a consumer

chooses to order from platform f conditional on explanatory variables x, taste unobservables

Ξ, and model parameters θ, whereas `0(x,Ξ; θ) is the conditional probability that the consumer

does not order from a restaurant. Online Appendix O.10 provides expressions for ` and `0.

Under my chosen parametric assumptions, ` and `0 have closed forms but the integral in (13)

does not. I approximate this integral by simulation with 300 draws of Ξi for each consumer i in

my sample. Last, estimating my model on data from all markets and including platform/metro

fixed effects δfm and metro-specific tastes µηm for restaurant orders is computationally difficult

due to the large number of parameters involved. I limit the number of parameters by estimating

the model on data from the largest three metros: those of New York City, Los Angeles, and

Chicago. I subsequently estimate the δfm and µηm parameters for each remaining metro m by

maximizing (13) as computed on data from metro m with respect to these parameters, holding

fixed the other parameters at their estimated values.

Identification. A primary identification concern in demand estimation is price endogeneity, i.e.,

that unobserved demand shifters affect both consumer demand and prices. In the model, these

unobserved demand shifters are the platform/metro fixed effects δfm. My solution to the endo-

geneity problem is to estimate the δfm as parameters, a solution that relies on the assumption

that unobserved demand shifters affect platform demand at the metro level but not at more

granular levels of geography. With platform/metro fixed effects specified, estimation of con-

sumer responsiveness to fees (i.e., αi) relies on within-market variation in fees, which is partly

attributable to variation in commission cap policies and in local demographics. A concern re-

lated to price endogeneity is the endogeneity of platforms’ networks. This problem arises in my

setting because unobservable demand shifters affect both consumer demand and restaurants’

platform adoption decisions. Platform/metro fixed effects also address this endogeneity prob-

lem. I estimate effects of restaurants’ platform adoption decisions on consumer ordering using

variation in platform networks within a metro.

The panel structure of my data permits the identification of the scale parameters σζ1, σζ2, and

ση governing heterogeneity in consumer tastes for platforms and restaurant dining. Recall that

consumer i’s persistent unobserved tastes for platform f are ζif = ζ†i + ζ̃if , where ζ†i ∼ N(0, σζ1)

and ζ̃if ∼ N(0, σζ2). When σζ1 is large, consumers are polarized in their tastes for ordering

through platforms. This leads consumers to either repeatedly order meals through platforms

or repeatedly order meals directly from restaurants. Repetition in the choice to order through
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a platform is consequently informative about the value of σζ1. Similarly, a large value of σζ2

implies that consumers are highly polarized in their tastes for individual platforms. This leads

consumers to repeatedly choose the same food delivery platform when using a platform to order

a meal. Conversely, when σζ2 is low, consumers do not have strong idiosyncratic preferences

for platforms, and are more likely to switch between delivery platforms. Thus, repetition in

platform choice is informative about the value of σζ2. Last, ση controls polarization among

consumers in tastes for restaurant dining. When consumers are highly polarized in their tastes

for restaurant meals, they tend to either frequently order from restaurants or rarely order

from restaurants. Thus, heterogeneity across consumers in the number of orders placed from

restaurants is informative about the value of ση. Note that state dependence alternatively

explains persistence in consumer ordering; my model rules out this possibility.

Market size. The model of Section 4.2 yields predictions of sales given counts of consumers in

each ZIP. I set the number of consumers in each ZIP so that the model implies platform sales

equal to sales estimates. Appendix C explains this procedure in detail.

5.2 Estimation of restaurant marginal costs

The profits of a restaurant j that adopts platforms Gj are∑
f∈Gj

[(1− rf )pj0 − κjf ]Sjf (Jm, p), (14)

where Sjf are restaurant j’s sales on platform f , Jm are the platform adoption decisions of

all restaurants in market m, and p contains the prices of all restaurants. For expositional

convenience, I introduce r0 = 0 as the commission rate for direct-from-restaurant ordering. The

first-order condition for restaurant profit maximization is


(1− rf1)Sjf1

(1− rf2)Sjf2

...

(1− rfk)Sjfk


︸ ︷︷ ︸

=S̃j

+



∂Sjf1
∂pjf1

∂Sjf2
∂pjf1

. . .
∂Sjfk
∂pjf1

∂Sjf1
∂pjf2

∂Sjf2
∂pjfd

. . .
∂Sjfk
∂pjf2

...
...

. . .
...

∂Sjf1
∂pjfk

∂Sjf2
∂pjfk

. . .
∂Sjfk
∂pjfk


︸ ︷︷ ︸

=∆p




(1− rf1)pjf1

(1− rf2)pjf2

...

(1− rfk)pjfk


︸ ︷︷ ︸

=p̃j

−


κjf1

κjf2

...

κjfk


︸ ︷︷ ︸

=κ̃j


= 0, (15)

where Gj = {f1, . . . , fk}. Solving for marginal costs yields

κ̃j = p̃j + ∆−1
p S̃j . (16)

Equation (16) provides the basis of my estimation of restaurant marginal costs — I compute

the right-hand side of (16) at estimated parameters and observed prices for each restaurant j
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in a market m. In addition, I assume that

κjf =

κdirect
z , f = 0

κplatform
z , f 6= 0,

where κdirect
z is a restaurant’s cost of preparing a meal for a direct order and κplatform

z is the

cost of preparing a meal for a platform order. Marginal costs of preparing platform orders may

differ from those for direct orders due to differences in the packaging and to and to costs of

communicating with platforms. The costs κjf that I recover from (16) generally differ across

restaurants within a particular platform f due to sampling error. In light of these differences, I

use the cross-restaurant average of the κj0 costs recovered from (16) as my estimator of κdirect
z . I

similarly use the average κjf recovered from (16) across pairs of platforms f 6= 0 and restaurants

j locating on these platforms as my estimator of κplatform
z .

5.3 Estimation of platform marginal costs

I estimate platform marginal costs from first-order conditions for the optimality of platform

consumer fees. This procedure follows the standard approach for estimating marginal costs in

the differentiated products literature following Berry et al. (1995). Within a ZIP z, platforms’

consumer fees solve the following system of first-order conditions:

(H�∆c)(cz + rm � pz −mcz) + sz = 0,

where cz is a vector containing each platform’s consumer fee in ZIP z, rm is a vector containing

each platform’s commission rate, pz is a vector including the sales-weighted average restaurant

price in the ZIP on each platform f , and mcz is a vector containing each platform f ’s marginal

cost mcfz. The vector sz similarly contains each platform f ’s sales in z. The � operator denotes

entry/component-wise multiplication.27 Letting F denote the number of online platforms, ∆c

is an F × F matrix whose (f, f ′) entry is ∂sf/∂cf ′z. The H matrix also has dimension F × F ;

its (f, f ′) entry indicates whether f and f ′ have the same owner.28 Therefore,

mcz = cz + rm � pz + (H�∆c)
−1sz. (17)

I estimate mcz by substituting the observables cz, rm, and pz and ∆c and sc as evaluated at

the estimated consumer choice model parameters into the right-hand side of (17).

27My exposition follows Conlon and Gortmaker (2020).
28When the platforms are ordered as DoorDash, Uber Eats, Grubhub, and then Postmates, H is given by

H =


1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 1

 .
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5.4 Estimation of parameters governing platform adoption by restaurants

I estimate the parameters Km and Σ = (σω, σrc) governing restaurants’ platform adoption

decisions using a two-step generalized method of moments (GMM) estimator. Recall that, as

stated by (8), restaurants choose platforms to join to maximize their profits given beliefs that are

consistent with actual choice probabilities. The first stage of my estimation procedure involves

estimating restaurants’ conditional choice probabilities (CCPs) as a function of state variables

affecting their profits. The second stage involves setting restaurants’ choice probabilities to

the estimated CCPs and subsequently fitting the model’s prediction of restaurants choices to

observed choices.29

In the first stage, I specify platform adoption CCPs as a multinomial logit and estimate the

parameters of this logit by maximum likelihood. The included covariates are: the population

within five miles of the restaurant; the number of restaurants within five miles; municipality fixed

effects; an indicator for an active local commission cap; and the shares of the population within

five miles that are under 35 years of age, married, both under 35 years of age and married, and

that have a household income under $40,000. I also include interactions of the overall population

with the of demographic group shares and with the total number of restaurants.

Given first-stage CCPs P̂m, it is straightforward to compute each restaurant’s probability of

joining platforms G for a trial value of parameter values θadopt, where θadopt includes the common

fixed costs of platform adoption {Km(G)}G,m as well as the Σ parameters. As noted, I estimate

θadopt using a GMM estimator.30 Defining this estimator requires new notation. Let nJ be the

number of restaurants in the sample, and let GnJ denote the nJ -vector of observed platform

adoption choices. Additionally, let Πe
nJ

denote a nJ × nG matrix whose (j, k) entry is equal to

restaurant j’s expected variable profits from selecting the kth platform subset Gk, where nG is

the number of platform subsets G. Last, let Dj be the log of the population under age 35 within

five miles of j; I use Dj as a shifter of the profitability of platform adoption.

My GMM estimator is based on moment conditions that match the model’s predictions to the

data. The first set of moment conditions match the model’s predictions of aggregated choice

probabilities to empirical frequencies. These conditions involve the functions

gmG(Gj ,Πe
j , Dj ; θ

adopt) = 1{m(j) = m}
(
Q(G,Πe

j ; θ
adopt)− 1{Gj = G}

)
∀m,G,

where m(j) is restaurant j’s market and

Q(G,Πe
j ; θ

adopt) = Pr

(
G = arg max

G′

[
Π̄j(G′, P̂m)−Km(G) + ωj(G)

]
| θadopt

)

is the probability that restaurant j chooses platforms G. Note that, when θadopt
0 are the true

29Singleton (2019) similarly uses a CCP estimator to estimate a Seim (2006)-style positioning model.
30I do not use a maximum likelihood estimator on account of the finite-sample problems of maximum likelihood

estimation, which are well documented in the industrial organization literature on entry games; see Pakes et al.
(2007) and Collard-Wexler (2013) for more detailed explanations.
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model parameters and Πe
j is computed using restaurants’ true conditional choice probabilities,

the law of iterated expectations implies E[gmG(Gj ,Πe
j , Dj ; θ

adopt
0 )] = 0. The corresponding

sample moment conditions are

1

nJ

nJ∑
j=1

gmG(Gj ,Πe
j , Dj ; κ̂) = 0 ∀m,G. (18)

I target the Σ parameters that govern substitution patterns with additional moment conditions.

Each of these moment conditions equalizes the covariance of Dj and a measure of platform

adoption as computed on the estimation sample and as predicted by the model. The two

measures of platform adoption that I use are (i) an indicator for whether the restaurant joins

any online platform and (ii) the number of online platforms that a restaurant joins. These

moment conditions are based on the functions

gω,1(Gj ,Πe
j , Dj ; θ

adopt) = Dj ×
(
1{Gj 6= {0}} − (1−Q({0},Πe

j ; θ
adopt))

)
gω,2(Gj ,Πe

j , Dj ; θ
adopt) = Dj ×

(
|Gj | −

∑
G
|G| ×Q(G,Πe

j ; θ
adopt)

)
,

where |G| is the cardinality of set G. When θadopt
0 are the true model parameters that generate

Gj , and when Πe
j is computed using the true CCPs,

E[gω(Gj ,Πe
j , Dj ; θ

adopt
0 )] = 0. (19)

The sample moment conditions corresponding to (19) are

1

nJ

nJ∑
j=1

gω,k(Gj ,Πe
j , Dj ; κ̂) = 0, k ∈ {1, 2}. (20)

Increasing σω and σrc make restaurants less responsive to expected profits when choosing which

platforms to join. Given that a higher population of young people—who are especially likely to

enjoy platforms—boosts the profit gains from joining platforms, a larger covariance between Dj

and platform adoption suggests smaller values of σω and σrc.
31 A natural alternative to using

the moment condition (19) in the GMM estimation would be to replace the profit shifter Dj with

estimated profits. I choose to use demographics Dj rather than estimated profits because the

latter are more likely to suffer from measurement error due to sampling error or misspecification

error, which would introduce bias.

31Responses of the share of restaurants on platforms and of the average number of platforms joined differentially
depend on σω and σrc. Increasing σrc makes platform subsets with more overlap more substitutable, and subsets
with less overlap less substitutable. This means that, when σrc is high, restaurants that do not belong to any
platform are more likely to substitute to a platform subset with one platform than to one with multiple platforms.
Thus, for a fixed increase in the share of restaurants belonging to at least one online platform, the average number
of platforms joined increases by less when σrc is larger.
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The sample moment condition corresponding to (19) is

1

nJ

nJ∑
j=1

gω(Gj ,Πe
j , Dj ; κ̂) = 0. (21)

My estimator κ̂ is the vector of parameter values that solves equations (18) and (21). Given

that that the number of equations across (18) and (21) is equal to the number of parameters,

it is generally possible to solve these equations exactly.

5.5 Estimation of restaurant-network weights in platform objective functions

I solve for the hfm weights on restaurant-network sizes in platform objective functions from first-

order conditions for optimal commission rates, substituting in estimates for true parameters in

these conditions. See Online Appendix O.13 for a detailed explanation of the procedure.

6 Estimation results

6.1 Parameter estimates for consumer choice model

Table 7 reports estimates of consumer choice model parameters. Several estimates are notewor-

thy. First, the scale parameter σζ1 of persistent tastes for online ordering is large, indicating

dispersion across consumers in tastes for online ordering. The scale parameter of platform-

specific tastes σζ2 is smaller but also sizeable, suggesting that consumers are divided by both

overall taste for online ordering and by tastes for specific platforms. Additionally, the esti-

mated demographic effects λfage and λfmarried imply that young and unmarried consumers prefer

delivery platforms relative to older and married consumers. The parameters ληyoung and ληmarried

govern differences in tastes for restaurant orders between demographic groups; we see that

young consumers and unmarried consumers have lower tastes for restaurant orders that are not

placed on platforms. In addition, the fact that αLowInc is positive indicates that low-income

consumers are more price-sensitive than their higher-earning counterparts, although the differ-

ence is small. Estimated own-price elasticities in the Chicago metro range from -0.96 to -3.05

across platforms.32 Consumers are estimated to prefer platforms with lower waiting times, as

the estimated disutility τ of waiting time (in hours) is positive and statistically significant. The

large estimate of ση suggests limited substitutability between restaurant ordering and at-home

dining. Last, platform sales responds to the number of restaurants on the platform — the

estimated elasticities of platform sales with respect to platform network size range from 0.48 to

1.10 across platforms in the Chicago metro.33

32Note that, unlike in the case of one-sided markets, elasticities under one in absolute value do not contradict
profit maximization under non-negative marginal costs. This is because the effective marginal cost that platforms
consider in setting consumer fees are marginal costs net of restaurant commissions. See Online Appendix Table
O.22 for cross-price elasticity estimates.

33See Online Appendix Table O.23 for details on the computation of these elasticities.
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Table 7: Selected estimates of consumer choice model parameters

Parameter Estimate SE

α 0.228 0.003
αLowInc 0.009 0.001
σζ1 3.38 0.02
σζ2 1.67 0.01
τ 0.97 0.08
λDD

young 1.19 0.02

λDD
married -0.87 0.02
λUber

young 1.06 0.02

λUber
married -1.07 0.02
λGH

young 0.70 0.02

λGH
married -0.63 0.02
λPM

young 0.89 0.03

λPM
married -1.98 0.03
ση 2.110 0.005
ληyoung -0.68 0.01
ληmarried 0.18 0.01

Notes: this table reports estimates of the parameters of the consumer choice model. Estimates of the plat-
form/metro fixed effects δfm and the metro fixed effects µηm in consumer tastes for restaurant dining are omitted.

To evaluate the estimates and understand their implications for ordering behaviour, I compute

substitution patterns predicted by the model. First, Table 8 provides the shares of consumers

substituting to each platform and to making no purchase among those who substitute away from

a platform f upon a uniform increase in f ’s consumer fees. The estimates show that, across

platforms, between 25% and 40% of platforms’ consumers who substitute away from ordering

on a platform no longer place any restaurant order. An additional 24–34% switch to ordering

directly from a restaurant whereas the remainder switch to a different platform.

Table 8: Between-platform diversion ratios for the Chicago metro

Quantity response for...
Platform No purchase Direct DD Uber GH PM

DD 0.40 0.34 -1.00 0.17 0.07 0.02
Uber 0.38 0.31 0.21 -1.00 0.07 0.02
GH 0.30 0.29 0.22 0.17 -1.00 0.02
PM 0.25 0.24 0.24 0.19 0.09 -1.00

Notes: this table reports the share of consumers who substitute to each platform and to making no purchase
among those who substitute away from a platform f upon a uniform increase in f ’s consumer fee. Formally, the
table reports

dff ′ =

(
∂sfm(cf ′m + h)

∂h

∣∣∣∣
h=0

)
/

(
− ∂sf ′m(cf ′m + h)

∂h

∣∣∣∣
h=0

)
where cf ′m is a vector of the consumer fees charged by f ′ across all ZIPs within m; sfm are alternative f ’s sales in
m. Each column provides diversion ratios dff ′ for a particular alternative f whereas each row provides diversion
ratios dff ′ for a particular platform f whose consumer fees increase across m.

Figure O.21 in Online Appendix O.15 describes sales differences between restaurants that belong

and do not belong to online platforms. The figure shows that, on average across ZIPs and relative
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to restaurants that do not belong to any platform, the sales of a restaurant that joins DoorDash,

the most popular platform, are 29% higher.

6.2 Estimates of restaurant marginal costs

Table 9 describes the restaurant markups implied by my estimates of κjf . Restaurants’ markups

on platforms are much larger where commission caps are in effect. Their markups for direct

orders are about a fifth of their prices. Additionally, the estimated costs for direct orders and

platform-intermediated orders differ by only one cent on average across ZIPs.34

Table 9: Restaurant markups ($)

Means ± std. dev. across ZIPs by channel, policy

Channel No cap Cap

Direct 4.34±0.02 4.33±0.02
Platform 1.96±0.15 3.60±0.12

Notes: the table describes markups (1 − rf )pjf − κjf across ZIPs separately for direct orders (for which the
commission rate is r0 = 0) and platform-intermediated orders, and also separately for ZIPs with commission
caps and those without caps. Note that the average price for a direct-from-restaurant order is $21.89 (standard
deviation: $1.17).

6.3 Estimates of platform marginal costs

Table 10 describes the estimated cross-ZIP distribution of platform marginal costs, which reflect

courier compensation, and platform markups. As of September 2022, DoorDash’s website stated

that “Base pay from DoorDash to Dashers ranges from $2–$10+ per delivery depending on the

estimated duration, distance, and desirability of the order”; (“Dashers” is DoorDash’s name for

its couriers).35 This level of courier pay lines up well with the estimated interquartile range of

DoorDash’s marginal costs of $7.08 to $9.72.

Table 10: Estimates of platforms’ marginal costs ($)

Platform
Marginal costs Markup

Mean 25th %ile Median 75th %ile Mean 25th %ile Median 75th %ile

DD 8.20 7.08 8.79 9.72 5.90 5.38 5.86 6.43
Uber 8.08 6.95 8.04 9.13 5.83 5.44 5.84 6.22
GH 9.39 7.40 9.87 10.94 4.52 4.26 4.58 4.91
PM 13.98 11.86 14.21 15.72 4.79 4.27 4.80 5.37

6.4 Estimates of the restaurant platform adoption model

Table 11 reports estimates of the parameters governing platform adoption by restaurants. In

interpreting these parameters, note that the average expected variable profits of a restaurant

34Figure O.19 in Online Appendix O.9 reports the distribution of the estimated difference κplatform
z − κdirect

z ,
which concentrates in [-$2.00, $2.00].

35See https://help.doordash.com/consumers/s/article/How-do-Dasher-earnings-work.
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that joins no online platform across ZIPs in my sample is roughly $12,500 a month. The fixed

cost estimates are at a monthly level. The three lowest of the estimated fixed costs Km(G)

are those for platform subsets including a single platform, which is to be expected if joining

multiple platforms is more costly than joining a single one. I compute the standard errors

reported by Table 11 using the bootstrap procedure described in Appendix D. The estimated

scale parameter of restaurants’ idiosyncratic ω̃j(G) disturbances of joining the platforms in G is

about $650, which implies a standard deviation of about $834. This is smaller than the fixed

costs of joining platform subsets. The parameter σrc, which controls the variance of random

coefficients on platform membership of subsets, is statistically significant.

Table 11: Estimates of restaurant platform adoption parameters ($’000s/month)

Parameter Estimate SE

σω 0.65 0.04
σrc 0.34 0.03
Fixed cost: DD 1.45 0.07
Fixed cost: Uber 1.52 0.07
Fixed cost: GH 2.34 0.10
Fixed cost: PM 1.56 0.08
Fixed cost: DD, Uber 2.32 0.11
Fixed cost: DD, GH 2.33 0.11
Fixed cost: DD, PM 2.00 0.08
Fixed cost: Uber, GH 2.29 0.12
Fixed cost: Uber, PM 3.04 0.15
Fixed cost: GH, PM 2.97 0.14
Fixed cost: DD, Uber, GH 2.68 0.11
Fixed cost: DD, Uber, PM 3.12 0.15
Fixed cost: DD, GH, PM 3.05 0.14
Fixed cost: Uber, GH, PM 2.99 0.14
Fixed cost: All 1.89 0.06

Notes: the table reports estimates of parameters governing restaurants’ platform adoption decisions and, in the
“SE” column, their standard errors. The “Fixed cost” parameters are cross-metro averages of fixed costs of
joining the various platform subsets.

6.5 Estimates of restaurant-network weights in platform objective functions

Table 12 describes estimates of the weights hfm that platforms place on their restaurant

networks in setting commissions. These estimates suggest that dynamic considerations in

commission-setting are significant — beyond the benefit of a restaurant on a platform’s contem-

poraneous profits, platforms value the addition of a restaurant to their network by $850–$1044

on median across metros.

7 Counterfactual analysis

This section uses my model to evaluate commission caps. It also evaluates alternative policies

intended to bolster restaurant profitability, and the impact of delivery platforms on the restau-

rant industry. I evaluate commission caps by comparing baseline equilibria without commission
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Table 12: Estimates of restaurant-network weights ($)

(a) Cross-metro distribution of estimated weights

Platform
Quantile

25% Median 75%
DD 740 850 979
Uber 550 606 671
GH 966 1059 1066
PM 992 1044 1195

(b) Standard errors for cross-metro median weights

Platform SE
DD 44
Uber 30
GH 34
PM 67

Notes: this table reports quantiles of the estimated hfm weights taken across metros m for each leading platform.

caps to equilibria under caps. Rather than perform this section’s counterfactual analyses on full

metro areas, I perform them on the core municipality of each metro area and, in the case of New

York’s metro area, on Manhattan. Limiting attention to metro areas’ core subregions reduces

the computational cost of computing equilibria. I compute equilibria using a combination of

algorithms described by Online Appendix O.14.

7.1 Evaluation of commission caps

Figure 5 reports aggregate welfare effects of commission caps as shares of participant surplus

from delivery platforms.36 Caps achieve their intended objective of boosting restaurant profits,

but they reduce total welfare. Both consumers and platforms suffer from commission caps,

although consumer losses exceed those of platforms despite the fact that the policymakers

intended caps to benefit restaurants at platforms’ expense. The welfare loss here reflects that

commission caps impede platforms from balancing consumer fees and restaurant commissions

to encourage both sides’ participation on platforms; limits on commissions lead platforms to

rely more heavily on consumers for revenue, thus reducing consumers’ platform usage. Indeed,

consumers lose from commission caps because—as shown by Table 13—platforms raise their fees

in response to caps by more than restaurants lower their prices. This positive net change in the

consumer’s cost of ordering from platforms outweighs the benefit of expansions in platforms’

restaurant networks owing to caps. Figure 5 shows that commission caps reduce consumer

surplus by over 5% of participant surplus from food delivery platforms, raise restaurant profits

by about 3% of participant surplus, and reduce platform profits by about 4% of participant

surplus. Summing over these effects, total welfare falls by over 6% of participant surplus.

Figure O.22 in the Online Appendix shows that young and unmarried consumers experience

especially high losses from commission caps, which reflects that these consumers are especially

likely to use delivery platforms.

The effects of commission caps are dampened by responses related to the multi-sided nature

of the food delivery market. Table 14, which summarizes welfare effects of caps as shares of

36As detailed in Section 7.6, I use my model to estimate the participant surplus associated with delivery
platforms, i.e., the sum of consumer and restaurant surplus from platforms. Online Appendix O.9 provides an
analogue of Figure 5 that reports caps’ welfare effects as a share of the sum of participant surplus and variable
platform profits.
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Figure 5: Welfare effects of 15% commission cap relative to participant surplus from platforms
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Notes: this figure plots ratios of welfare effects and the participant surplus from delivery platforms aggregated
across metro areas. Note that the figure provides cumulative welfare changes when consumers’ changes are
considered first, then restaurants, and then platforms.

Table 13: Fee and price effects of a 15% commission cap

Outcome Mean Median Min. Max.

Fee 5.25 5.36 4.48 5.74
Restaurant price -4.72 -4.83 -5.22 -3.94
Net change 0.52 0.53 0.50 0.55

Fees (fixed prices) 4.28 4.34 3.68 4.68

Notes: the table reports average effects of a commission cap on platform fees and restaurants prices on platforms.
The “Fees (fixed prices)” row reports average effects of a 15% commission cap on fees in a scenario in which
restaurants cannot adjust their prices upon the imposition of the cap.

platform revenue, illustrates this point. Whereas Table 14a reports results for the case in which

restaurant prices respond to caps, Table 14b reports results for the case in which restaurant

prices are held fixed. Whereas “Consumer welfare (fees/prices only)” reports effects that do

not account for changes in platforms’ restaurant networks, “Consumer welfare (total)” reports

effects that do take account of these responses. A comparison of these rows shows that consumer

losses from commission are mitigated by the fact that caps lead additional restaurants to join

platforms. Indeed, when restaurant prices respond to caps, consumer losses are over 60% greater

when caps’ effects on platform restaurant networks are ignored. These losses are mitigated to

an even greater extent by restaurant price adjustments: the average effect of a cap on consumer

welfare is over 10 times greater when restaurant prices do not respond to the cap. Other

components of total welfare are similarly larger in magnitude absent price responses.

Figure 6 plots commission caps’ effects on (i) the number of orders placed on platforms and

(ii) the share of restaurants joining a platform across metros. Note that the predicted effects

of caps on sales and restaurant platform adoption are similar to the difference-in-differences

estimates of commission caps’ effects reported by Section 3. Additionally, the figure shows that

differences in caps’ effects on restaurant uptake of platforms largely explain differences in effects

on ordering across metros.
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Table 14: Welfare effects of 15% commission cap (% of platform revenue)

(a) Restaurant price response

Outcome Mean SE Median SE Min. Max.

Consumer welfare (fees/prices only) -3.62 0.06 -3.83 0.07 -4.18 -2.67
Consumer welfare (total) -2.24 0.06 -2.30 0.09 -2.68 -1.45
Restaurant profits 1.25 0.04 1.13 0.08 0.04 2.65
Platform variable profits -1.64 0.05 -1.66 0.07 -2.05 -1.01
Total welfare -2.63 0.10 -2.31 0.11 -3.83 -1.77

(b) No restaurant price response

Outcome Mean SE Median SE Min. Max.

Consumer welfare (fees/prices only) -25.88 0.08 -28.75 0.23 -31.73 -18.47
Consumer welfare (total) -22.40 0.09 -24.78 0.32 -28.58 -14.48
Restaurant profits 9.20 0.08 7.81 0.21 4.07 15.60
Platform variable profits -18.34 0.12 -21.00 0.45 -23.09 -11.51
Total welfare -31.54 0.20 -33.48 0.62 -41.48 -21.80

Notes: all welfare and profit figures are expressed as shares of platform revenues without caps. I compute the
means and medians across regions wherein I simulate commission caps, and I weight each region by its population.
I compute standard errors using a bootstrap procedure with 100 replicates.

Figure 6: Cross-metro comparison of commission caps’ sales and platform adoption effects
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Notes: each point provides the estimated effect of a 15% commission cap on the share of restaurants that join at
least one online platform and on overall online platform sales. The solid lines are ordinary least squares regression
lines, and the R2 of the regression is displayed in the lower right corner.

7.2 Alternative commission caps

Negative effects of 15% commission caps on consumer welfare and total welfare do not rule out

positive effects of capping commissions at higher or lower levels. To determine how the effects

of alternative caps compare to those of 15% caps, I compute equilibria under caps from 0% to

29% and compare them to the baseline equilibrium wherein commission rates equal 30%. Figure

7 provides results for the Los Angeles. Lowering the cap level monotonically raises restaurant

profits while lowering platform profits, consumer welfare, and total welfare. This finding applies

to all metro areas. Thus, the signs of the estimated welfare effects of the 15% commission cap

do not depend on the 15% level of the cap, but instead broadly apply to commission caps.
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Figure 7: Welfare effects of alternative commission caps in Los Angeles
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Notes: this plot provides welfare effects of capping commissions at levels between 30% and 0% as a share of total
platform revenue in the baseline equilibrium.

7.3 A two-sided cap

Given that commission caps boost restaurant profits at the expense of consumers, it is plausible

that a cap on both restaurants commissions and on consumer fees could make both sides of the

market better off. To evaluate this possibility, I consider a counterfactual in which governments

prohibit platforms from raising their consumer fees by more than $1.00 upon the imposition of

commission caps.

Figure 8 provides the welfare effects of such a two-sided cap aggregated across markets. Al-

though the two-sided cap raises overall welfare and participation on platforms—the share of

restaurants on a platform rises by 10 percentage points and the number of restaurant orders

rises by 6%—restaurants are slightly worse off from the two-sided cap. This is because the

policy makes platforms more attractive to consumers by increasing the variety of restaurants

available to consumers through platforms and by reducing restaurant prices on platforms. Thus,

the two-sided cap leads consumers to switch from ordering from restaurants directly to using

food delivery platforms, thus undermining the profitability of restaurants who pay no commis-

sions on direct-to-consumer orders. Indeed, the share of orders placed directly by consumers

falls by 12% under the two-sided cap. This result justifies why restaurants have lobbied for

a cap on commissions rather than a cap on platforms’ overall price levels (i.e., sums of con-

sumer fees and restaurant commissions). The result also illustrates a counterintuitive fact of

digital platform markets — measures that bring more online business to platform sellers (e.g.,

consumer fee caps) may undermine seller profitability due to substitution between online and

offline channels.

7.4 Taxing commissions

Commission caps lower welfare by distorting platforms’ balance of consumer fees and restau-

rant commissions and thereby reducing consumer platform usage. I investigate whether a tax

on commission charges could avoid this distortionary impact, and increase restaurant profits
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Figure 8: Welfare effects of two-sided cap relative to participant surplus from platforms
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Notes: this figure plots aggregate welfare effects of a 15% commission cap combined with a $1.00 cap on consumer
fee increases relative to participant surplus.

without entailing large consumer losses. Revenues from this tax are assumed to be remitted

to restaurants. Besides directly providing revenue to restaurants, a commission tax penalizes

commissions as a revenue source for platforms relative to consumer fees, which could lead plat-

forms to reorient their price structures away from commissions and toward fees. The tax that I

consider is a share t of a platform’s commission earnings. Recalling the expression for platform

f ’s profits in (11), platform f ’s tax obligations are

t×
∑
z∈Zm

rfz p̄
∗
fzsfz.

I set the tax rate t so that government revenue from the tax absent a pricing response by

platforms is equal to restaurants’ profit gains from a 15% commission cap. This yields t = 1.8%

for Los Angeles, the city on which I focus my analysis of a commission tax.

Table 15 reports effects of both a 15% commission cap and the commission tax for Los Angeles.

Note that the sum of the change in restaurant profits and the change in government revenue

is similar for each policy. Consumers and platforms, however, are better off under the tax.

Although a tax alters platform pricing incentives, its distortion of platforms’ price structures

is small relative to that of cap; responses in fees and commissions to a tax are relatively small.

Consequently, reductions in consumers’ platform orders and consumer welfare are small.

7.5 Role of multihoming

Restaurants multihome across food delivery platforms. The freedom of restaurants to multihome

across food delivery platforms may reduce restaurant profits in two ways. First, platforms have

a greater competitive pressure to lower commission rates when the restaurants that the low

commissions attract are exclusive to the platform. Second, a prohibition on multihoming would

directly reduce restaurant membership on delivery platforms and thereby weaken restaurants’
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Table 15: Comparison of commission cap and commission tax

Change in... Cap Tax

Avg. consumer fee ($) 5.62 0.60
Avg. commission rate (p.p.) -15.00 -1.36

Avg. platforms adopted (%) 4.58 0.43
Shr. adopting a platform (p.p.) 1.93 0.18

Platform orders (%) -3.17 -0.26

Restaurant profits ($ p.c.) 3.18 0.26
Platform profits ($ p.c.) -2.45 -2.10
Consumer welfare ($ p.c.) -3.25 -0.25
Government revenue ($ p.c.) 0.00 2.79
Total welfare ($ p.c.) -2.53 0.69

Notes: welfare changes are reported in dollars per market resident over the age of 18 on an annual basis, denoted “$
p.c.” “Avg. consumer fee” and “Avg. commission rate” are averages weighted by sales in the baseline equilibrium.
“Avg. platforms adopted” gives the change in the average number of online platforms that a restaurant in the
market adopts. “Shr. adopting a platform” gives the percentage point change in the share of restaurants that
join at least one online platform. The symbol “(%)” indicates a percentage rather than absolute change.

competitive pressures to join platforms, which entails fixed adoption costs and commission

charges. In Online Appendix O.16, I find that—for the above reasons—multihoming reduces

restaurant profits.

7.6 Effects of online platforms on the restaurant industry

Although delivery platforms offer a valuable service to consumers, the effect of platforms on

restaurant profitability is a priori ambiguous. This is because platforms have countervailing

market expansion and cannibalization effects — platforms raise restaurant sales, but sales on

platforms cannibalize restaurants’ commission-free sales made directly to consumers. Platform

membership also entails fixed costs. To evaluate the effects of platforms on the restaurant

industry, I consider a counterfactual in which platforms are eliminated. Savings on platform

fixed costs should be accounted for in an analysis of the overall welfare effects of eliminating

platforms. Rather than estimate fixed costs, I compute welfare outcomes under two scenarios:

(i) platform fixed costs are equal to zero, and (ii) platform fixed costs are equal to platform

variable profits. Changes in total welfare under these scenarios provide sharp lower and upper

bounds on the total welfare effects of eliminating platforms when both platform profits and

platform fixed costs are non-negative.

My estimates of the welfare effects of eliminating platforms account for differences between

deliveries made by restaurants’ own delivery services and those delivered by online platforms.

Consumer preferences to order from platforms rather than directly from restaurants (e.g., be-

cause deliveries from platforms are more reliable) are captured by the δfm fixed effects and ζif

idiosyncratic tastes in the consumer utility model. Additionally, restaurants may face differential

costs of fulfilling orders that they deliver themselves versus those delivered through platforms.

The model accounts for these differential costs through the Km(G) costs of platform adoption
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and differential marginal costs between direct and platform-intermediated orders.

Figure 9 plots reductions in restaurant ordering across metros; it shows that in about half of

cases, a restaurant order placed on a platform is no longer placed when platforms are eliminated.

Thus, platforms have a substantial market expansion effect. Table 16 summarizes the welfare

effects of eliminating food delivery platforms.37 Even though platforms boost restaurant order

volumes, they reduce restaurant profits. This reflects that platform adoption boosts a restau-

rant’s profits largely at the expense of its rivals. This situation is analogous to a firm’s ability

to profit from undercutting its rival’s prices despite the fact that an industry-wide agreement

to sustain high prices could raise the sum of firm profits. These results suggest that restaurant

collusion against platform membership would be profitable for restaurants.

Figure 9: Effects of eliminating delivery platforms on restaurant orders

Change in restaurant orders (%)

−60 −55 −50 −45 −40 −35

Notes: this figure reports the effects of eliminating delivery platforms on restaurant orders across metros. The
reported changes are relative to platform orders in the baseline equilibrium. The plotted points are the cross-metro
minimum effect, the 0.25, 0.50, and 0.75 quantiles of the effects across metros, and the cross-metro maximum
effect.

Table 16: Welfare effects of eliminating delivery platforms (dollars per capita, annual)

Outcome Mean effect

Consumer welfare -66.98
Restaurant profits 17.88
Platform variable profits -58.06
Total welfare: lower bound -107.16
Total welfare: upper bound -49.10

Notes: this table summarizes effects of abolishing food delivery platforms across markets. All welfare figures are
in annualized dollar-per-capita terms.

8 Conclusion

This article evaluates caps on food delivery platforms’ commission charges to restaurants. The

primary contribution of the article is to assess the role of simultaneous platform and seller re-

sponses in shaping the effects of policies affecting prices in multi-sided markets. I make this

assessment using a model of platform competition and a rich collection of datasets characteriz-

ing the US food delivery industry. One main finding is that commission caps benefit restaurants

but undermine overall welfare and especially hurt consumers. This reflects that caps impede

37See Online Appendix O.15 for market-specific results.
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platforms from balancing restaurant commissions and consumer fees to induce both sides’ par-

ticipation — caps prompt consumer fee hikes that undermine ordering on platforms. With

that said, responses of restaurants’ prices and platform adoption decisions significantly blunt

consumer harms, as restaurants reduce their prices on platforms and join more platforms as a

result of caps. The result that seller responses may dampen the effects of platform price changes

more generally applies to platform markets. Additional analyses of a two-sided price cap and

of the elimination of platforms illustrate another general fact about digital platform markets:

increased business on a digital platform may harm platform sellers when consumers substitute

between online and offline purchasing.
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Appendices

A Delivery fee measures

I estimate the conditional expectation in (2) using a linear regression of the form

dfkfz = x′kβf + w′zµf + φxdist
k wdens

z + εkfz, (22)

where wz are characteristics of ZIP z and xdist
k and wdens

z are scalar components of xk and

wz, respectively, that are explained at the end of this paragraph. Additionally, εkfz is an

unobservable that is mean-independent of xk and wz, f , and z.

The observable characteristics included in wz are municipality indicators; county indicators;

CBSA indicators; local density defined as the population within five miles of ZIP z; and several

variables measuring the demographic composition of the area within five miles of z.38 Last, xdist
k

is the delivery distance for order k and wdens
z is the local density of z; I included variables’ inter-

action in (22) to capture the possibility that the cost of increasing an order’s distance depends on

population density due to traffic congestion. It is important to include a rich set of geographical

features so that the fee indices flexibly capture fee differences across geography.

38These variables include the shares of the population in various age groups, the share of the population over
15 years of age that is married, and the shares of the population over 18 years of age having achieved various
levels of educational attainment.
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There are several problems in estimating (22) by OLS: OLS is prone to overfitting in settings

with many regressors, and using OLS would require a somewhat arbitrary selection of a non-

collinear set of geographical indicators to include in wz. The Lasso does not suffer from these

problems, and I therefore use it to estimate (22).39 The Lasso minimizes the sum of squared

residuals plus the L1 norm of the coefficient vector times a penalization parameter. In my set-

ting, the Lasso provides a data-driven method for selecting geographical indicators for inclusion

in wz based on their relevance in predicting delivery fees. I select the value of the penalization

parameter using k-fold cross validation, with k = 10.

Upon estimating the parameters (βf , µf , φf ) of (22) with a Lasso estimator separately for each

platform f , I compute the delivery fee measure D̂F fz as

D̂F fz = x̄′β̂f + w′zµ̂f + φ̂f x̄
dist
k wdens

z .

I set x̄ to the average xk across all orders in my sample. Additionally, I estimate each regression

on observations recorded in the second quarter of 2021.

B Restaurant price measures

This appendix describes the construction of restaurant price measures used in model estimation.

I define such a measure pfGz for each combination of a platform f , a platform subset G, and

a ZIP z. Variation in the pfGz measures across platforms, platform subsets, and ZIPs reflects

variation in the price of a fixed menu item offered by a restaurant chain across platforms, across

ZIPs z, and across restaurant locations adopting different platforms G. I estimate a menu item’s

relative price across platforms, locations on different platform subsets, and locations in different

regions using a Lasso regression with item fixed effects and log price as the dependent variable.

The Lasso selects which interactions of platform, platform subset, and geography are empirically

relevant in explaining prices. With relative prices in hand, I obtain absolute prices by fixing

the price of an order from Uber Eats in the New York City metro area from a restaurant that

belongs only to Uber Eats to the average size of an Uber Eats order in New York before fees

and taxes.

The Lasso is based on

log pιfGmt = ϕι + ϑfGm + ειfGmt, (23)

where ι denotes a menu item, t denotes a transaction, pιfGmt is the observed transaction price of

the item ι, ϕι are item fixed effects, and ϑfGm are platform/platform subset/metro fixed effects.

Here, f and m are the the platform and metro of the transaction in question, and G is the set

of platforms that the restaurant has joined. I interpret the ειfGmt as measurement error. When

39See Tibshirani (1996) for explication of the Lasso.
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ειt = 0 yields, we have (suppressing the transaction subscript)

pιfGm
pιf ′G′m′

= eϑfGm−ϑf ′G′m′ . (24)

Thus, the ϑ parameters imply relative prices of a menu item on a particular combination of

platform, platform subset, and metro.

Defining price indices in levels at the level of a platform, platform subset, and metro triple

requires fixing one of the pιfGm prices; once such a price is fixed, (24) and the ϑ fixed effects

imply pιfGm for all remaining (f,G,m) triples. In practice, I fix the price of an order on Uber

Eats from a restaurant that belongs only to Uber Eats in New York City’s metro area to the

average basket size for an order from Uber Eats in New York City’s metro area. Note that Uber

Eats is the largest delivery platform in New York City’s metro area, which is the largest metro

area in the United States. This average basket size is $29.50.

In estimating the Lasso, I specify ϑ as a linear combination of fixed effects for interactions of

platforms, platform subsets, and metros:

ϑfGm = Υf + ΥG + Υm + ΥfG + Υfm + ΥGm + ΥfGm. (25)

The collinearity of fixed effects does not preclude the application of the Lasso, which selects

the granularity of fixed effects to manage a bias/variance trade-off. I select the penalization

parameter entering the Lasso objective function using 10-fold cross-validation. Rather than

estimate (23) directly, I estimate the equation after applying a fixed-effects transformation to

both sides of the equation to removes the item-level fixed effects ϕι from (23). The estimation

sample includes all transactions in the Numerator data in Q2 2021 placed in one of the 14 metro

areas that this article analyzes. My restaurant price indices are then

pfGm = pf0G0m0e
ϑ̂fGm−ϑ̂f0G0m0 ,

where f0 denotes Uber Eats, G0 denotes the platform subset containing no online platform other

than Uber Eats, and m0 is the New York City metro area. In addition, the ϑ̂ are estimates of

the ϑ parameters. As suggested above, pf0G0m0 = $29.50.

I now discuss several caveats in the computation of the indices. First, I lack item-level data

on Postmates orders. Consequently, I set the price indices for Postmates equal to those for

Uber Eats. In particular, when f1 is Postmates and f0 is Uber Eats, I set pf1Gm = pf0G∗m,

where G∗ is equal to G with membership of Postmates and Uber Eats interchanged. That is, G∗

includes Postmates (Uber Eats) if and only if G includes Uber Eats (respectively, Postmates),

and G and G∗ each contain DoorDash and Grubhub if and only if the other set does. Another

concern is that restaurant prices depend on the presence of a commission cap. I do not detect a

difference in menu items’ prices on online platforms between areas with and without commission

caps. This could owe to the fact that most of the items for which I observe purchases across

platforms are sold by chain restaurants that may practice uniform or zone pricing; that is, they
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Figure 10: Restaurant price indices (medians and interquartile ranges)
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Notes: Panel (b) reports the median and interquartile range of each platforms’ price indices divided by the
respective direct price indices.

may not condition their prices on local commission cap policies.40 I alternatively check for a

difference between restaurants’ prices on platforms between areas with and without commission

caps by manually collecting data on restaurant prices. In particular, I randomly drew 20 and

10 restaurants on each of DoorDash and Uber Eats in each CBSA, respectively and found the

price of an item from their menu on each delivery platform to which they belong. I also found

the price of the same item for direct-from-restaurant orders. Collecting these data manually

between July 21 and August 18, 2021 yielded a dataset of 593 prices for menu items on platforms

for which a direct-from-restaurant price is available. A platform/menu item level regression of

the ratio of the platform-intermediated price to the direct-from-restaurant price on an indicator

for a commission cap being in place with platform and CBSA fixed effects included yields a

coefficient of -7.02% (standard error: 2.94%) on the commission cap indicator. I adjust my

estimated markup of platform-intermediated prices over direct-from-restaurant prices by this

amount in computing my restaurant price measures. In particular, I set the restaurant price

index for online platform f , platform subset G, and metro m to

pcap
fGm = p0Gm

[
pfGm
p0Gm

− 0.0702

]
for ZIPs z where commission caps are in effect.

Figure 10 displays the median and interquartile range of restaurant price indices across metros

m and subsets G for each platform f . This figure shows that that there is a systematic difference

between direct-order prices and online platform prices, but not between the prices charged by

restaurants across different online platforms.

40See DellaVigna and Gentzkow (2019) and Adams and Williams (2019) for discussions of uniform and zone
pricing.
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C Market size

I set the number of consumers in each ZIP and distribution of these consumers’ demographic

types (i.e., their ages, marital statuses, and incomes) using a combination of the Edison platform/ZIP-

level estimates of sales volumes, the Numerator panel, and the ACS. For each metro m, I tenta-

tively set the number of consumers in each ZIP to the ACS estimate of the ZIP’s population. I

then set the distribution of consumers across demographic types equal to the distribution among

Numerator panelists residing in the ZIP. For ZIPs with fewer than 10 Numerator panelists, I

instead set the distribution equal to that in the collection of ZIPs within five miles of the ZIP in

question. Next, I compute an equilibrium in restaurant prices conditional on observed platform

adoption decisions, fees, and commissions in April 2021. The ratio of the number of platform

orders in the market from the Edison transactions dataset for April 2021 to the expected num-

ber of platform orders in this equilibrium provides the factor by which I multiply each ZIP’s

number of consumers. After scaling up the tentative number of consumers in each ZIP by this

market-level factor, my model’s predictions of metro-level sales align with the Edison estimates.

As noted in Section 2.2, the Edison sales estimates align with DoorDash’s earnings reports and

the Consumer Expenditure Survey.

D Bootstrap procedure

This appendix describes the bootstrap procedure that I use to compute standard errors. This

procedure has features of the parametric bootstrap and of the nonparametric bootstrap. The

parametric part involves drawing from the estimated asymptotic distribution of the consumer

choice model estimates and using these draws as inputs in later stages of estimation. The non-

parametric part primarily involves sampling with replacement from the population of restau-

rants. Recall that I estimate my consumer choice model via maximum likelihood. I estimate

the asymptotic variance of my maximum likelihood estimator using the outer product of the

gradients estimator. I then take B = 100 draws from the associated estimate of the asymptotic

distribution of Z =
√
n(θ̂cons − θcons

0 ), where θcons
0 is the true choice model parameter vector,

θ̂cons is the maximum likelihood estimator, and n is the sample size. Let Zb denote the bth draw,

and let θ̂cons,b = θ̂cons + n−1/2Zb. I estimate restaurants’ and platforms’ marginal costs, call

them m̂cb under each θ̂cons,b. For each b, I also take a standard bootstrap draw of restaurants

within each market, where each market is defined by its ZIP and its platform subset choice. Let

J b denote the bth draw. I proceed to estimate the parameters of restaurants’ platform adoption

game at {θ̂cons,b,J b, m̂cb} for each b. This procedures yields estimates θ̂adopt,b of the parameters

of restaurants’ platform adoption game for each bootstrap replicate b. The standard errors that

I report for these parameters are the standard deviations of the parameters across bootstrap

replicates. I similarly estimate the weights hfm at {θ̂b, m̂cb, θ̂adopt,b} for each b, which yields

estimates ĥbfm of these weights for each b. Last, I solve for equilibria at each b and take the

standard deviation of outcomes across replicates b to obtain the standard errors for results from
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counterfactual simulations.
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