How Do Consumers Finance Increased Retirement Savings?

Taha Choukhmane Christopher Palmer

MIT Sloan & NBER

July 2023

Motivation

- Governments around the world are heavily invested in promoting contributions to retirement plans...
 - Forced savings program: e.g., US Social Security contributions
 - Financial incentives: e.g., most OECD countries offer tax advantage for ret. savings
 - Non-financial instruments: e.g., auto-enrollment increasingly mandated
- ... yet we have limited understanding of the impact of \uparrow saving inside retirement accounts on:
 - ... **net** wealth accumulation?
 - $\circ\;$ depends on the crowd-out of outside savings and debt
 - ... aggregate welfare?
 - o little guidance on how to design tax-incentives, income caps, matching formulas

Q: What is the effect of increasing retirement contributions on **saving**, **borrowing**, **consumption** & **welfare**?

Challenge: need comprehensive personal finance data \times retirement plan data

This paper:

- 1 Present a simple conceptual framework to assess welfare
- 2 Introduce new dataset with merged bank and pension account data
- **3** Estimate how UK savers financed an increase in default contribution rate
- **4** Draw some implications for retirement policy design

Literature: does retirement saving crowd-out private savings?

- 1. Effect of Forced Saving Feldstein '74; Attanasio and Brugiavinni '03; Attanasio and Rohwedder '03
- Some evidence of private saving crowd-out
- Chetty et al. '14: limited crowd-out but may not extrapolate to other programs
 ↓ take-home pay is zero (↑ employer contrib.) or small (~\$50/year discontinuity in mandated saving)
- **2. Effect of Saving Nudges** Madrian Shea '01; Choi et al. '04 '06; Blumenstock et al. '18; Cribb and Emmerson '16
- No effect on unsecured debt from AE (Beshears et al. '21) or text-message savings nudge (Medina and Pagel, '22)
- No direct evidence on the spending and liquid savings response to a savings nudges

Outline

1 Conceptual framework

2 Data and Policy Variation

3 Results

4 Policy implications

Decision utility vs Normative utility

Individual *i* chooses consumption (*c_i*), retirement contribution (*ret_i*), and liquid savings/borrowing (*liq_i*) taking γ—the generosity of retirement saving incentives (*s*(.)) and taxes (*τ*(.))—as given:

$$\max_{\substack{c_i, ret_i, liq_i \\ s.t. \quad c_i = y_i - liq_i - ret_i + s(ret_i, \gamma) - \tau_i(\gamma) } u(c_i) + \beta_i V_i(ret_i, \eta, \pi_i)$$

• Social welfare when planner thinks each individual p_i % too impatient (e.g., due to present bias or externality for social safety programs): $W(\gamma) = \int_i \omega_i [u(c_i(\gamma)) + \beta_i(1+p_i)V_i(ret_i(\gamma), liq_i(\gamma))] di + \mu \int_i (\tau(a_i, \gamma) - s(b_i, (\gamma), \gamma)) di$

w

• A small reform increasing the generosity of retirement saving incentives:

• If FOCs hold then consumption response is a sufficient statistic for welfare:

$$\frac{dW(\gamma)/d\gamma}{\mu} = \int_{i} \left\{ g_{i} p_{i} \left[\underbrace{\left(-\frac{dc_{i}}{d\gamma} \right)}_{cons. \ response} + \underbrace{\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma}}_{mechanical \ effect} \right] \right\} di + \int_{i} \underbrace{\left(g_{i} - 1 \right) \left[\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma} \right]}_{redistribution \ effect} di$$
here $g_{i} = \frac{\omega_{i} u'(c_{i})}{\mu}$ is the marginal social welfare weight on i

Abstracting from redistribution motive $(g_i = 1)$ & assuming a budget neutral reform:

$$\frac{dW(\gamma)/d\gamma}{\mu} = \int_{i} \left\{ p_{i} \left[\underbrace{\left(-\frac{dc_{i}}{d\gamma} \right)}_{change in \ behavior} + \underbrace{\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma}}_{mechanical \ effect} \right] \right\} di$$

Abstracting from redistribution motive $(g_i = 1)$ & assuming a budget neutral reform:

$$\frac{dW(\gamma)/d\gamma}{\mu} = \int_{i} \left\{ p_{i} \left[\underbrace{\frac{dret_{i}}{d\gamma} \left(-\frac{dc_{i}}{dret_{i}} \right)}_{change in \ behavior} + \underbrace{\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma}}_{mechanical \ effect} \right] \right\} di$$

• If the planner is not paternalistic $(p_i = 0)$: no welfare effect

- Average Treatment Effect, $E\left(\frac{dret_i}{d\gamma}\right)$, is a poor guide for welfare: what matters are the **covariances** (Alcott and Taubinsky, 2023)
 - Homogeneous bias: target those with larger spending response $cov\left(\frac{dret_i}{d\gamma}, \frac{-dc_i}{dret_i}\right) > 0$
 - Heterogeneous bias:

• Even if zero crowd-out $(\frac{dc_i}{d_{ret_i}} = -1)$, welfare can \downarrow if $cov\left(p_i, \frac{ds_i}{d\gamma} - \frac{d\tau_i}{d\gamma}\right) < 0$

• Even if complete crowd-out $\left(\frac{dc_i}{d_{ret_i}}=0\right)$, policy can \uparrow welfare if $cov\left(p_i, \frac{ds_i}{d\gamma}-\frac{d\tau_i}{d\gamma}\right) > 0$

Abstracting from redistribution motive $(g_i = 1)$ & assuming a budget neutral reform:

$$\frac{dW(\gamma)/d\gamma}{\mu} = \int_{i} \left\{ p_{i} \left[\underbrace{\frac{dret_{i}}{d\gamma} \left(-\frac{dc_{i}}{dret_{i}} \right)}_{change in \ behavior} + \underbrace{\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma}}_{mechanical \ effect} \right] \right\} di$$

- If the planner not paternalistic $(p_i = 0)$: no welfare effect
- Average Treatment Effect, $E\left(\frac{dret_i}{d\gamma}\right)$, is a poor guide for welfare: what matters are the **covariances** (Alcott and Taubinsky, 2023)
- To measure $\frac{dc_i}{dret_i}$ and assess these covariances, we need:
 - \rightarrow Data on c_i and ret_i
 - ightarrow Policy variation that changes saving incentives ($d\gamma$)

Conceptual framework

2 Data and Policy Variation

3 Results

4 Policy implications

New Dataset on Saving, Spending, Borrowing

UK Bank customer data 2012-2019

- Monthly flows:
 - Spending in aggregate categories from checking account and credit cards
 - Employment earnings and other income receipts
- Month-end balances:
 - Checking accounts, savings accounts, credit card balances
 - Mortgage and non-mortgage debt balances
- Annual demographic characteristics (age, gender)

... merged w/ large UK pension provider data

• Monthly pension contributions + balances

- Data only captures what is observed by our partner bank
- Affects debt products especially (loans, CCs with other banks)
 - $\circ~$ Restrict data to those with paycheck deposited in their current account with partner bank \Rightarrow can see outflows and transfers
- Debit card share of UK card spending is 90%

Budget shares line up with representative survey data

(Simplified) Policy Variation

Context: National Auto-Enrollment policy for all UK private sector employees

Variation: min. defaut contribution rate stepped up in April 2018 and April 2019

Effective	Min. total	Min. employer	Employee
date	contribution	default contrib.	default contrib.
Rollout btw. Oct '12 & April '17	2%	1%	1%
Effective April 2018	5%	2%	3%
Effective April 2019	8%	3%	5%

Policy = change in default + large change in incentives

- Employees and firms can choose to contribute > minimum
- But employees lose **all** employer contributions if contribute < minimum
- Policy increases financial returns to participating from 1% to 3% of salary

 \Rightarrow Stronger teeth than typical AE nudge:

 \uparrow default option $+ \uparrow$ financial incentives

Empirical Strategy: below vs above the new default

Distribution of March 2018 Total Contribution Rates by Group

Treated groups' contributions show strong reaction

Average monthly total pension contributions by contribution rate group

Employer contrib. determine group assignment

We have data on split between employee/employer contributions for $\sim 20\%$ of participants

Conceptual framework

2 Data and Policy Variation

3 Results

4 Policy implications

Empirical Approach

Two dimensions of comparison:

- 1 Pre- vs post- policy change: control for time-invariant individual characteristics
- 2 Affected vs not affected: control for time trends

Empirical Approach

Two dimensions of comparison:

- 1 Pre- vs post- policy change: control for time-invariant individual characteristics
- **2** Affected vs not affected: control for time trends

Approach 1: Treatment effect from policy $\left(\frac{\partial c_i}{\partial \gamma}\right)$ using Dynamic Event Study (Sun and Abraham, 2021) relative to AE date E_i

$$Outcome_{it} = \beta \cdot \sum_{\ell} \mu_{\ell} \mathbb{1} \{ t - E_i = \ell \} + \alpha_i + \gamma_t + \varepsilon_{it}$$

Approach 2: Elasticity to changes in contributions $\left(\frac{\partial c_i}{\partial ret_i}\right)$ using 2SLS

 $Outcome_{it} = \beta \cdot PensionContributions_{it} + \alpha_i + \gamma_t + \varepsilon_{it}$ $PensionContributions_{it} = \sum_{s \in \{1,2\}} \sum_{k \in \{2,3,5\}} \pi_{ks} Group_i^k \times Post_t^s + \psi_i + \phi_t + v_{it}$

Result I: \downarrow in take-home pay and total spending

In April 2018 and 2019: \uparrow employee default by 2% and employer default by 1% ...

Result I: \downarrow in take-home pay and total spending

- For every $\pounds 1$ increase in pension contribution:
 - $\circ~2/3$ come from higher employee contrib. and lower take-home pay
 - $\circ~{\sim}1/3$ of this income reduction is financed with reduced spending

Result II: larger \downarrow in discretionary spending

Pension contrib \uparrow by £1 \Rightarrow take-home pay \downarrow 67 cts \Rightarrow total spending \downarrow 23 cts

Result III: \downarrow in checking account balances

Flows: pension \uparrow by £1/month \Rightarrow take-home pay \downarrow 67cts/month

Stocks: avg. checking account balance \downarrow £4.18 and CC balance \uparrow 79cts

Result III: \downarrow in checking account balances

Avg. credit card balance \uparrow (\neq Beshears et al, 21; Medina and Pagel '22)

Result III: \downarrow in checking account balances

Avg. checking account balance \downarrow

Result IV: Heterogeneity in Spending Responses

Pension \uparrow by £1/month \Rightarrow take-home pay \downarrow 67cts/month

Heterogeneity: \downarrow 54cts for low initial deposits vs \downarrow 24cts for high initial deposits

Conceptual framework

(2) Data and Policy Variation

3 Results

4 Policy implications

Policy discussion

Abstracting from redistribution $(g_i = 1)$ and assuming a budget neutral reform:

$$\frac{dW(\gamma)/d\gamma}{\mu} = \int_{i} \left\{ p_{i} \left[\underbrace{\frac{dret_{i}}{d\gamma} \left(-\frac{dc_{i}}{dret_{i}} \right)}_{change in \ behavior} + \underbrace{\frac{ds_{i}}{d\gamma} - \frac{d\tau_{i}}{d\gamma}}_{mechanical \ effect} \right] \right\} di$$

• Tax & match incentives: often poorly targeted:

- Taken up by those with more liquidity (Choukhmane et al, '23) who have ...
- ... smallest spending response and likely less biased $cov\left(rac{dret_i}{d\gamma}, p_i\right) < 0$
- Income/asset caps: can be desirable even absent a redistributive motive
 - $\,\circ\,$ At the top, liquidity constraints do not bind \Rightarrow low efficiency gains
- Illiquidity: new argument against higher withdrawal penalties:
 - May ↑ savings but worsen targeting (i.e., less desirable for low-liquidity individuals) (Briere, Poterba, Szafraz, '22; Mitchell, Utkus, Yang, '07)

Conclusion

What is the welfare effect of an intervention promoting retirement savings?

- Consumption response to the intervention is a sufficient statistics for welfare
- Covariance between contribution response, elasticity of consumption, and bias determines social welfare (≠ Average Treatment Effect)

How do consumers finance increase retirement contributions?

- For every £1 \downarrow in take-home pay, we see £0.35-40 reduction in spending
- The rest is financed out of liquid savings credit card debt
- $\bullet\,$ Stronger spending response for those w/ low initial checking account balances

How to design retirement saving programs?

• Target incentives at more liquidity constrained individuals