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Abstract

We develop a framework to quantify the vulnerability of mutual funds to fire-sale spillover

losses. We account for the first-mover incentive that results from the mismatch between the

liquidity offered to redeeming investors and the liquidity of assets held by the funds. In our

framework, the negative feedback loop between investors’ redemptions and price impact from

asset sales leads to an aggregate change in funds’ NAV, which is determined as a fixed point

of a nonlinear mapping. We show that a higher concentration of first movers increases the

aggregate vulnerability of the system, as measured by the ratio between endogenous losses due

to fund redemptions and exogenous losses due to initial price shocks only. When calibrated

to U.S. mutual funds, our model shows that, in stressed market scenarios, spillover losses are

significantly amplified through a nonlinear response to initial shocks that results from the first-

mover incentive. Higher spillover losses provide a stronger incentive to redeem early, further

increasing fire-sale losses and the transmission of shocks through overlapping portfolio holdings.

Key words: mutual funds, liquidity mismatch, fire-sale externalities, first-mover incentive, sys-

temic risk.
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1 Introduction

The mutual fund industry has experienced strong growth in the past decade and holds an increas-

ingly large portion of financial assets. As such, the possibility of a threat to financial stability from

the mutual fund sector has become a prominent concern for regulators. In particular, the liquidity

transformation provided by open-end funds has been identified as a potential source of vulnerabil-

ity: investors may redeem their fund shares at the end-of-day net asset value (NAV), even if the

fund holds illiquid assets that can only be liquidated over multiple days and at distressed prices.

Referring to funds that hold less liquid assets, former Bank of England Governor Mark Carney
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famously stated in June 2019 that “these funds are built on a lie, which is that you can have daily

liquidity for assets that fundamentally aren’t liquid.”

Mutual funds have been implicated in the “taper tantrum” of 2013 and in the disruption of bond

markets early in the Covid-19 period. The liquidity mismatch between shareholder claims and fund

holdings has resulted in the collapse of individual funds (prominent examples include the Third

Avenue Focused Credit fund and the Woodford Equity Income Fund), leading to concerns for the

broader impact on financial stability. The mutual fund structure creates a first-mover advantage

among investors, because investors who withdraw early are shielded from the adverse impact of

asset liquidation. This first-mover advantage can produce a run on a fund that amplifies fire-sale

losses to other investors.

The objective of our study is to build a framework to quantify ex ante the vulnerability of mutual

funds to fire sales, accounting for the first-mover incentive created by the liquidity mismatch. Our

model reflects the fact that investors’ redemptions are paid at an NAV that has not yet accounted

for the cost of subsequent asset liquidations incurred to meet redemption requests. Furthermore,

building on Capponi et al. (2020), we posit that some investors redeem fund shares in anticipation

of the impact that their (and other investors’) redemptions have on future fund performance,

instead of responding only to realized shocks. We refer to these investors as first movers, and their

inclusion is the key feature that distinguishes our analysis from prior work on the financial stability

implications of the mutual fund structure. Funds that hold illiquid assets are more sensitive to

the impact of fire sales, and their investors have a stronger incentive to exit the fund early. Early

redemptions in turn increase the cost of remaining invested in the fund, and prompt additional

redemptions. This creates a downward spiral of investor withdrawals, price impact, and investment

losses that can substantially amplify an initial price shock.

We apply the framework to quantify the vulnerability of mutual funds in the United States

to spillover losses. We take institutional investors as a proxy for first movers — the investors

that exploit the liquidity mismatch. This premise is in keeping with the Security and Exchange

Commission’s (SEC) regulatory treatment of retail and institutional money market funds (MMFs).1

We measure the aggregate vulnerability of mutual funds using the Spillover Loss Ratio (SLR),

defined as the ratio between spillover losses and the initial losses due to an exogenous shock. We

show that the first-mover incentive creates a nonlinear dependence of spillover losses on exogenous

asset shocks, and this nonlinear relation has a compounding effect on losses. In more detail, we

construct a systemicness matrix to quantify the relation between an exogenous shock and the drop

in value of fund shares due to ensuing redemptions. If the spectral radius of this matrix is well

1As stated in the SEC Release No. IC-34441, “institutional investors frequently scrutinize liquidity levels in money
market funds [...] facilitating rapid redemptions when a fund’s liquidity begins to decline.” Since 2014, institutional
prime and municipal MMFs “are required to use a floating NAV because their investors have historically made the
heaviest redemptions in times of market stress and are more likely to act on the incentive to redeem if a fund’s stable
price per share is higher than its market-based value”. The SEC proposed rule “Money Market Fund Reforms”,
released in December 2021, suggests that these institutional funds may also be required to adopt swing pricing, a
provision aimed at mitigating the first-mover advantage, because institutional investors are more likely to exploit this
advantage.
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below unity, then the first-mover incentive is immaterial; as the spectral radius approaches one, the

first-mover incentive becomes stronger, and spillover losses become increasingly large compared to

a system with no first movers.

The nonlinearity stemming from the first-mover advantage has implications for financial stabil-

ity. First, a concentration of first movers in fewer funds increases the system’s vulnerability. As

a consequence, fund liquidity management measures that unintentionally alter the distribution of

first movers across funds, e.g., by prompting them to migrate and concentrate into fewer funds,

might increase the fragility of the system. For example, patchy adoption of swing pricing (a tool to

remove the first-mover incentive) may inadvertently reduce the system’s ability to withstand shocks,

instead of strengthening it. Second, because spillover losses do not scale linearly with model in-

puts, small changes in asset liquidity or investor base can substantially alter the vulnerability of

the financial system. This implies that historical evidence on mutual fund resilience may severely

underestimate or fail to predict future fragility. The same asset shock may cause spillover losses of

different magnitudes in different market environments. Third, the nonlinearity reinforces fire-sale

contagion across mutual funds and asset classes. Forced liquidations can spread losses across funds

and assets through overlapping portfolios. As the prospects of widespread contagion increase, so

does the incentive to redeem early.

Our work provides a new framework to design macroprudential stress tests and measure vulner-

ability. Prior studies have analyzed the mechanism that renders mutual funds vulnerable to runs

(Allen et al. (2009) and Gennaioli et al. (2013)), and provided empirical evidence for this fragility

(e.g., Chen et al. (2010), Goldstein et al. (2017), Jiang et al. (2022)). The empirical study of John-

son (2004) shows that short-term fund shareholders pay for less liquidity than they demand, and

thus impose liquidity costs on the long-term shareholders because of the liquidity mismatch. Our

work differs from most prior studies because its focus is on measuring the impact of the first-mover

incentive created by the mutual fund structure.

Our paper is related to models of fire sales caused by propagation of shocks across balance sheets

of constrained banks (see Greenwood et al. (2015), Duarte and Eisenbach (2021), and Capponi and

Larsson (2015)). In these models, banks liquidate part of their holdings in response to an exogenous

shock to satisfy leverage requirements. The spillover losses due to deviation of market prices from

fundamentals are a measure of the banking sector’s vulnerability to fire sales.

The studies of Fricke and Fricke (2021) and Cetorelli et al. (2016) adapt the banking fire-sales

model of Greenwood et al. (2015) to mutual funds. They conclude that vulnerability to spillover

losses is significantly lower for mutual funds. These studies recognize that poor fund performance

leads to forced sales and depressed prices, but they do not account for the amplifying effect of

funds’ liquidity mismatch — the mismatch between the liquidity promised to the funds’ investors

and the liquidity of the funds’ assets. This liquidity mismatch can create greater fire-sale losses

through mutual fund ownership than would be incurred if investors held the funds’ assets directly.

From the perspective of financial stability, it is the key feature that differentiates mutual fund

investing from direct ownership of the fund’s assets. Hence, macroprudential frameworks that
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do not incorporate the first-mover advantage, such as those discussed above, may underestimate

mutual fund vulnerability.

Choi et al. (2020) study the impact of fire sales caused by fund flows in the corporate bond

market. They conclude that the impact of fire sales is low because corporate bond funds maintain

significant liquidity buffers to manage redemptions. The bond liquidity measure of Chernenko and

Sunderam (2020) is also based on the observation that cash buffers can counterbalance low market

liquidity. Cash buffers can help mitigate costly liquidations, but funds still sell non-negligible

amounts of illiquid assets — for every 1% of outflows, corporate bond holdings decrease by 0.84%2

— and cash buffers are eventually depleted. As explained above and emphasized later, we cannot

extrapolate from the historically low impact of fire sales triggered by fund flows because the first-

mover advantage is highly nonlinear in periods of market stress and low liquidity.

Ma et al. (2022) find that selling pressure from mutual funds was a major determinant of the

increase in Treasury yields early in the Covid-19 period. Fixed-income funds holding illiquid assets

experienced larger outflows and were forced to sell some of their liquid assets, which depressed

prices of Treasury securities.

Schmidt et al. (2016) compare flow patterns in money market mutual funds around the collapse

of Lehman Brothers in September 2008. They provide evidence that large and more sophisticated

institutional investors had a stronger reaction to negative shocks than retail investors. Their study

lends support to our identification of first movers as institutional investors. It also supports our

conclusion that a higher proportion of first movers reinforces strategic complementarities in mutual

fund redemptions.

Capponi et al. (2020) characterize the optimal swing pricing charge to first movers, in a model

that accounts for the feedback loop between asset illiquidity, mutual fund performance, and re-

demption flow. We build on that framework here, extending it to multiple assets and multiple

funds, studying the resulting fixed-point problem, and analyzing the effect of the distribution of

first-movers across funds. An empirical study by Jin et al. (2022) analyzes how swing pricing

can mitigate mutual fund vulnerability. Our study complements theirs by showing that an uneven

adoption of swing pricing may lead to a higher concentration of first-mover investors in fewer funds,

and thus weaken financial stability.

The rest of the paper is organized as follows. In Section 2, we use municipal bond fund data to

motivate our use of institutional investors as a proxy for first movers. In Section 3, we develop our

framework and specify the measure of mutual fund vulnerability. In Section 4, we apply the model

to a dataset of mutual fund portfolio holdings. We conclude in Section 5. Additional results are

relegated to the Appendix.

2Li et al. (2020) conduct a similar investigation to Choi et al. (2020), but on municipal bonds. They conclude
that fire sales due to fund outflows have a significant impact on prices. During the Covid-19 period, bonds held by
municipal funds fell more than bonds held primarily by retail investors. Yield spreads between the two types of bonds
persisted even after market conditions reverted to normal, suggesting the presence of a fire-sale premium for bonds
held by mutual funds.
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Figure 2.1: Aggregate daily flows (left panel) and average daily return (right panel) for institutional
and retail fund share classes in U.S. open-end municipal bond funds during Q1 2020. We source
data from the Morningstar database. Municipal bond funds posted positive returns after the
Fed announced that the Money Market Mutual Fund Liquidity Facility would accept certain U.S.
municipal bonds as eligible collateral on March 20, 2020.

2 Evidence from Municipal Bond Funds

As motivation for our framework, we use municipal bond funds data to test the hypothesis that

institutional investors react faster to a drop in bond prices than retail investors. Municipal bonds

are less liquid than many other assets held by funds, and therefore the effect of funds’ liquidity

transformation is stronger. This evidence lends support to our choice of using institutional investors

as a proxy for first-mover investors.

As the Covid-19 shock hit financial markets in March 2020, municipal bond funds experienced a

spike in outflows. While average returns for institutional and retail fund share classes were virtually

indistinguishable, institutional investors were significantly more likely to run for the exit (see Figure

2.1). Institutional investors are arguably more active in monitoring market conditions and have

the technical skills to anticipate how selling pressure exacerbates the impact of a market shock on

prices. As a result, we expect them to be more likely to withdraw funds early.

We run the following panel regression using daily data on U.S. open-end municipal bond funds

from the Morningstar database for Q1 2020, a period that covers the Covid-19 market shock:

Flowi,t = α+ β1Returni,t−1 + β2Returni,t−1 × I{Returni,t−1<0}

+ β3I{Returni,t−1<0} + γControlsi,t + εi,t.

Here, Flowi,t is the flow for fund share class i on day t, as reported in the Morningstar database.

The Controlsi,t variables are the lagged flow (the flow over day t−1) and Log(TNA) (the logarithm

of total net assets held by the fund on day t). Summary statistics for the fund share classes in

our sample are reported in Table A.1. This specification is adapted from the one in Goldstein

et al. (2017), with the main difference that we use returns rather than excess returns over a sector

benchmark. We use returns because our focus is on the systemic implications of mutual fund

flows, and in particular on the impact of outflows for an entire sector of funds, rather than just of
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outflows from underperforming funds. Returns are computed after accounting for paid fees. Flows

and returns are measured in percent.

We run the regression separately for institutional and retail share classes. The regression results

in Table 2.1 show that negative returns are associated with outflows that are nearly 50% larger

for institutional investors (compare 0.106 = −0.011 + 0.117 for institutional share classes with

0.073 = −0.013 + 0.086 for retail fund share classes). These findings support our hypothesis that

institutional investors are more reactive to negative market shocks. In Appendix A, we show that

our results are robust to the observation frequency, i.e., they remain qualitatively the same if we

use quarterly data from the CRSP database.3 Our results are also consistent with Schmidt et al.

(2016), who show that outflows from institutional investors are stronger than those from retail

investors. Their study focuses on money market funds during 2008.

Table 2.1: Results from regressing flows on previous day returns for municipal bond funds. We use daily
data from Morningstar for institutional fund share classes (left column) and for retail fund share classes
(right column) during Q1 2020. The dependent variable is the proportional flow of fund share classes on day
t. The return variable is the daily return on day t− 1. Lagged Flow is the flow on day t− 1. Log(TNA) is
the natural logarithm of total net assets on day t− 1. Flows are winsorized at the 1st and 99th percentiles.

Institutional Retail

Constant 0.058*** 0.019***
(0.01) (0.00)

Return -0.011** -0.013***
(0.01) (0.00)

Return×I{Return<0} 0.117*** 0.086***

(0.01) (0.01)
I{ Return<0} -0.075*** -0.052***

(0.01) (0.01)
Lagged Flow 0.216*** 0.166***

(0.01) (0.00)
Log(TNA) -0.001*** -0.001

(0.00) (0.00)

N 26,260 49,259
Adj. R2 0.098 0.057

***p < 0.01, **p < 0.05, *p < 0.1

3 Framework

We begin with the design of a reference model that does not account for the first-mover incentive.

The sequence of events is as follows: (1) Asset prices are subject to an exogenous initial shock;

(2) investors redeem shares in response to funds’ (negative) returns; (3) funds liquidate assets to

repay redeeming investors; (4) forced sales drive down market prices; (5) further fund redemptions

3Unlike Morningstar, the CRSP database does not include daily mutual fund flow data.
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and asset sales are triggered, i.e., steps (2)–(4) are repeated. This reference framework is related

to that proposed by Cetorelli et al. (2016) and Fricke and Fricke (2021) for mutual funds based on

the banking model of Greenwood et al. (2015). Our reference model differs primarily in accounting

for multiple rounds of share redemptions and asset sales.

We then extend the reference model to the full model, which accounts for the liquidity mismatch

in the mutual fund structure. The full model differs from the reference model in two crucial aspects:

some investors are fast and redeem before the fund liquidates assets, and thus get repaid at an NAV

that does not yet account for liquidation costs; and those investors respond not only to realized

returns but also to anticipated liquidation costs that will result from further redemptions by other

investors.

We assume that a fund liquidates assets in proportion to its holdings. This is the most commonly

adopted liquidation strategy in the fire sales literature (e.g., Greenwood et al. (2015), Duarte and

Eisenbach (2021)), and the one implicitly assumed by the SEC in its Proposed Rule “Money Market

Fund Reforms”.4 Jiang et al. (2021) also find that funds tend to liquidate proportionally in stressed

scenarios, in order to prevent the liquidity level of their portfolio from deteriorating excessively.

Furthermore, funds often have mandates that restrict them from deviating widely from a target

mix of assets.

We use lowercase letters to denote quantities for individual funds or assets, and uppercase letters

to denote vectors or matrices that summarize quantities for multiple funds or assets. The system

consists of N mutual funds, indexed by i ∈ {1, . . . , N}, and K assets, indexed by k ∈ {1, . . . ,K}.
We use ai to denote the dollar value of fund i’s asset holdings, and A to denote the N ×N diagonal

matrix with entries Aii = ai. The weight of asset k in fund i’s portfolio, mik, is the ratio of the

dollar value of fund i’s holdings in asset k and ai, and M is the N ×K matrix of portfolio weights.

The asset holdings of each fund i are divided into q0
i identical portfolio units. One portfolio unit

comprises a pro rata amount of each security, i.e., a portfolio unit of fund i consists of mik shares of

each asset k. We normalize the initial price of a share of each asset to $1. Hence, by construction,

the initial value p0
i of a unit of fund i’s portfolio is equal to $1. For each fund i, there are n0

i

outstanding shares. The initial value of a share of fund i, s0
i , is also normalized to $1. Therefore,

ai = n0
i = q0

i .

3.1 Reference Model without First Movers

We outline the sequence of events and actions in the reference model of mutual funds where no first

mover is present. Throughout the paper, we use > to denote the transpose of a matrix.

1. Exogenous shock and investors’ redemptions. The assets are hit by negative shocks ∆F 0 :=

(∆f0
1 , . . . ,∆f

0
K)>. The magnitude of shock ∆f0

k is smaller than the price of asset k, so asset prices

4The swing factor in the Proposed Rule is to be computed as the cost of liquidating a pro rata amount of each
security in the fund’s portfolio.
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remain positive. The value of a portfolio unit of fund i decreases by

∆p0
i =

K∑
k=1

mik∆f
0
k . (1)

Therefore, the change in value of each fund’s portfolio is given by the vector ∆P 0 = M∆F 0. The

change in value of a share of fund i is

∆s0
i =

q0
i

n0
i

∆p0
i = ∆p0

i . (2)

Let U be the N ×N diagonal matrix with Uii =
q0i
n0
i
. In vector form, the change in fund share value

is ∆S0 = U∆P 0 = UM∆F 0. Because n0
i = q0

i , U is the identity matrix5.

We assume a linear relation between fund performance and net fund flow. Let bi be the flow-

to-performance sensitivity of fund i, i.e., following a change in fund i’s share value ∆s0
i , investors

redeem

∆w0
i := −ai · bi ·∆s0

i (3)

shares of the fund. B is the N×N diagonal matrix with Bii = bi. In vector form, ∆W 0 = −AB∆S0

is the number of redeemed shares per fund.

2. Asset liquidation. Funds liquidate assets to raise cash to repay redeeming investors. We

assume that funds sell their holdings proportionately to their portfolio weights. In other words,

each fund sells some number of its portfolio units. This pro rata liquidation strategy is the most

commonly adopted assumption in the fire-sale literature;6 it posits that funds aim to hold the

same portfolio mix before and after asset liquidation. In Appendix C, we discuss the model with a

pecking order liquidation strategy.

Each fund i sells ∆q0
i units of its portfolio to meet ∆w0

i redemptions, with ∆q0
i determined by

∆q0
i · (p0

i + ∆p0
i ) = ∆w0

i · (s0
i + ∆s0

i );

the expression on the left is the cash raised through the sale, and the expression on the right is

the cash required. Because p0
i = s0

i and ∆p0
i = ∆s0

i , it follows that ∆q0
i = ∆w0

i . Since fund i

sells mik∆q
0
i shares of asset k, the total number of shares of asset k liquidated across funds is∑N

j=1mjk∆q
0
j . In vector form, ∆Q0 is the number of sold portfolio units per fund, and M>∆Q0 is

the number of sold shares per asset across all funds.

3. Price impact. Asset liquidation has a linear impact on asset prices. After a sale of ∆h shares

of asset k, the price of asset k declines by lk ·∆h. L is the K×K diagonal matrix with price impact

5In the full model, the number of portfolio units and that of fund shares may instead deviate, and it is therefore
more convenient to express quantities using the matrix U .

6Greenwood et al. (2015), Duarte and Eisenbach (2021), Fricke and Fricke (2021) make this assumption.
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coefficients Lkk = lk.

The number of shares of asset k sold by all funds is
∑N

j=1mjk∆q
0
j , so the price of asset k declines

by lk
∑N

j=1mjk∆q
0
j . The change in value of a portfolio unit of fund i due to liquidation costs is

then

∆p1
i = −

K∑
k=1

miklk

N∑
j=1

mjk∆q
0
j .

In vector form, ∆P 1 = −MLM>∆Q0. Hence, the change in value of fund i’s share due to liquida-

tion costs is

∆s1
i =

(q0
i −∆q0

i )(p
0
i + ∆p0

i + ∆p1
i )

n0
i −∆w0

i

− s0
i −∆s0

i .

Since p0
i = s0

i , ∆p0
i = ∆s0

i , q
0
i = n0

i and ∆q0
i = ∆w0

i , we obtain that ∆s1
i =

q0i
n0
i
∆p1

i .
7 Hence, in

vector form, ∆S1 = UMLM>UAB∆S0.

4. Further rounds of redemptions and asset liquidation. The change in funds’ share values

due to the price impact of fire sales triggers further redemptions. Investors redeem an amount

∆W 1 = −AB∆S1 of additional fund shares, funds liquidate ∆Q1 = −UAB∆S1 portfolio units,

which in turn drives down the value of each portfolio unit by ∆P 2 = MLM>UAB∆S1, and

results in the fund share change in value ∆S2 = UMLM>UAB∆S1. The total fund share value

change due to both fire sales and the initial exogenous shock is ∆S∞ :=
∑∞

n=0 ∆Sn, where ∆Sn =

(UMLM>UAB)n∆S0 is the change in value after the n-th round of redemptions. (Recall that in

the reference model, U is the identity matrix. We have included it here in preparation for the full

model.)

3.2 Full Model

In this section, we describe the steps and actions in the full model, which accounts for the presence

of first movers in the funds. We refer to all other investors as second movers. Recall that B is the

N ×N diagonal matrix with Bii = bi, where bi is fund i’s flow-to-performance sensitivity, and L is

the K ×K diagonal matrix with price impact coefficients Lkk = lk.

1. First movers’ redemptions. Following the initial negative shock ∆F 0 = (∆f0
1 , . . . ,∆f

0
K)> to

asset prices, the value of fund i’s portfolio unit declines by ∆p0
i in (1), and the funds’s NAV also

declines by ∆s0
i in (2). We write ∆s∞i for the total change in fund i’s NAV due both to the initial

exogenous shock and subsequent fire sales. We do not yet know ∆s∞i ; it will be determined as a

fixed point as we iteratively update the funds’ NAVs through subsequent rounds of redemptions

and liquidations. We write ∆s∗i for an initial guess of the total NAV change ∆s∞i .

The proportion of first movers among fund i’s investors is πi, and Π is the N×N diagonal matrix

with Πii = πi. Fund i’s first movers withdraw their investments in response to the anticipated (as

7In the reference model,
q0i
n0
i

= 1. We include this coefficient for notational consistency with the full model.
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yet unrealized) NAV change ∆s∗i and redeem

∆wfmi := −ai · πi · bi ·∆s∗i (4)

fund shares. In vector form, ∆W fm = −AΠB∆S∗ is the number of shares redeemed by first

movers. Equation (4) captures the key feature of first movers: they anticipate that liquidation

costs will drive down the fund’s NAV, and they redeem shares in anticipation of this decline. In

contrast, the redemption orders in (3) respond only to the realized decline ∆s0
i .

2. Asset liquidation to repay first movers. When mutual fund investors redeem shares, they

receive a price per share equal to the NAV at the end of the day that they submitted their redemp-

tion orders. As the fund sells assets to meet these redemptions, it incurs liquidation costs that are

borne by investors who remain in the fund. In particular, first movers do not bear the liquidation

costs they impose on the fund. Each share of fund i redeemed by first movers is repaid at the price

s0
i +∆s0

i , and fund i sells ∆qfmi units of its portfolio to meet first movers’ redemptions. Since funds

sell assets in proportion to their initial allocations, the total amount of shares of asset k liquidated

across all funds is
∑N

j=1mjk∆q
fm
j , and the price of a share of asset k declines by lk

∑N
j=1mjk∆q

fm
j .

The cash raised by each fund i from asset sales is ∆qfmi · (p0
i + ∆pfmi ), where

∆pfmi = ∆p0
i −

K∑
k=1

miklk

N∑
j=1

mjk∆q
fm
j (5)

is the change in value of fund i’s portfolio unit due to both the exogenous shock (reflected in ∆p0
i )

and asset liquidation (reflected in the double sum in (5)). In vector form, ∆Qfm is the number of

portfolio units sold to repay first movers, and ∆P fm = ∆P 0−MLM>∆Qfm is the resulting price

change. In order to meet first movers’ redemptions, the number of portfolio units ∆qfmi sold by

fund i must satisfy

∆qfmi · (p0
i + ∆pfmi ) = ∆wfmi · (s0

i + ∆s0
i ). (6)

The expression on the left is the cash raised through the sale, and the expression on the right is the

cash required to redeem ∆wfmi fund shares. Hence, the vector ∆Qfm is the solution to the system

Diag[∆Qfm](P 0 + ∆P fm) = Diag[∆W fm](S0 + ∆S0), (7)

where Diag[x] is the diagonal matrix whose j-diagonal entry is xj . Recall that ∆W fm and, as a

consequence, ∆Qfm and ∆P fm are functions of the (as yet unknown) total NAV change ∆S∗.8

3. NAV change due to first movers’ redemptions. The share price s0
i + ∆s0

i received by first

8In our numerical calculations, we truncate (5) and (6) so that prices never become negative and funds never sell
more assets than they own. In our theoretical analysis in Appendix B, we show that these caps are unnecessary for
sufficiently small price impact coefficients (lk)k.
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movers does not incorporate the liquidation costs they generate because s0
i + ∆s0

i = p0
i + ∆p0

i >

p0
i + ∆pfmi , and therefore ∆qfmi > ∆wfmi in (6). As a result,

nfmi := n0
i −∆wfmi ≥ q0

i −∆qfmi =: qfmi . (8)

Here, nfmi is the number of fund shares remaining after the first-mover redemptions, and qfmi is the

number of portfolio units remaining after the asset sales used to meet these redemptions. Fund i’s

NAV after first movers’ redemptions is sfmi =
qfmi

nfm
i

(p0
i +∆pfmi ), which is the ratio of the fund’s assets

to the number of fund shares outstanding. The change in NAV observed by remaining investors is

∆sfmi = sfmi − s0
i . Let Ufm be the N ×N diagonal matrix with diagonal entries

Ufmi =
qfmi

nfmi
. (9)

The NAV change due to both the exogenous shock and first movers’ redemptions is

∆Sfm = Ufm(P 0 + ∆P fm)− S0, (10)

where the vectors P 0 and S0 are, respectively, the initial value of a portfolio unit and of a fund

share. The NAV change ∆Sfm is a function of ∆S∗.

4. Second movers’ redemptions. The remaining iterations mirror the reference model. Fund

i’s second movers observe the NAV change ∆sfmi and redeem ∆w0,sm
i = −ai(1 − πi)bi∆sfmi fund

shares, which parallels (3). In vector form, ∆W 0,sm = −A(1−Π)B∆Sfm. Following the same steps

as in the reference model, redemptions force funds to sell assets, further depressing asset prices and

fund NAVs. More precisely, the impact of second movers’ redemptions on each fund’s NAV is

∆S1,sm = UfmMLM>UfmA(I −Π)B∆Sfm.

This NAV change triggers further rounds of redemptions by second movers. The total change in

each fund’s NAV is

∆S∞ =

∞∑
n=0

∆Sn,sm (11)

where ∆Sn,sm = (UfmMLM>UfmA(I −Π)B)n∆Sfm.

5. Total NAV change. The total NAV change ∆S∞(∆S∗) =
∑∞

n=0 ∆Sn,sm computed in the

previous steps depends on the initial guess ∆S∗ through ∆Sfm. But recall that we assume that first

movers correctly anticipate the full NAV impact of the initial shock and subsequent liquidations.

This holds when ∆S∗ = ∆S∞(∆S∗); that is, when the anticipated NAV impact is a fixed point of

the mapping defined by (11). The next proposition establishes the existence of such a fixed point.

Proposition 1. Assume that M has nonnegative entries, each price impact coefficient lk is suffi-
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ciently small, bi < 1 for each i, and ∆si0 > −si0 for each i.9 Then there exists a fixed point of the

mapping ∆S∗ → ∆S∞(∆S∗) defined in step 5 of the above procedure.

3.3 Aggregate Vulnerability Measure

We measure the aggregate vulnerability of the mutual fund sector as the total amplification of

losses through the sector. We measure this amplification through the ratio between the endogenous

losses, due to fund redemptions and fire sales, and the exogenous losses caused by the initial shock

only. Formally, we define the Spillover Loss Ratio as

SLR :=

∑
i ai∆s

sl
i∑

i ai∆s
0
i

,

where the sum is over funds, ai is fund i’s asset value, and ∆ssli := ∆s∞i −∆s0
i is the NAV change

due exclusively to the feedback loop between fund redemptions and fire sales of assets needed to

meet these redemptions.

We impose a cap on both the number of portfolio units that each fund can sell and the price

impact imposed on each asset. A fund cannot sell more portfolio units than it owns, so the total

number of liquidated portfolio units ∆qi is capped at ai. A fund fails if it liquidates all of its assets.

Furthermore, asset prices cannot become negative as a result of price impact from sales.

3.4 First Mover Concentration and NAV Change

We quantify analytically how the distribution of first movers across funds impacts the total change

in NAV. In Proposition 2, we show that a higher concentration exacerbates the feedback loop

between fund redemptions and asset sales, and imposes a higher downward impact on the NAV.

Technical details about the mathematical set-up and the proof of the proposition are relegated to

Appendix D.

Proposition 2. Consider two funds holding identical portfolios, both subject to an initial negative

shock ∆s0. Let π̄
2 ∈ (0, 1

2 ] be the proportion of first movers in the system, and let π ∈
(
π̄
2 , π̄

)
be the proportion of first movers in the first fund. The proportion of first movers in the second

fund is π̄ − π. If the price impact is sufficiently small, then for all π there exists a fixed point

∆S∗(π) = (∆s∗1(π),∆s∗2(π))> of the mapping ∆S∗ → ∆S∞(∆S∗) such that ∆s∗1(π) + ∆s∗2(π) is

decreasing in π. Since ∆s0 < 0, this implies that the spillover loss ratio is increasing in π.

As stated in the proposition, the aggregate exposure of the funds to redemption and fire sales is

minimized if first movers are evenly distributed between the two funds. This result has implications

for policies aimed at mitigating first-mover externalities. It warns that a regulatory intervention

that unintentionally alters the distribution of first movers across funds could adversely affect finan-

cial stability. Consider, for example, the use of swing pricing, in which a fund’s NAV is adjusted so

9An initial shock ∆si0 = −si0 implies that fund i’s asset holdings become worthless, and its fire sales are inconse-
quential. Hence, the fixed point of the system can be computed without including fund i.
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that redeeming or purchasing investors bear the trading costs that result from their transactions.

In a mutual fund system where only half of the funds implement swing pricing, first movers might

migrate to similar funds that do not implement it, and as a result make the system more fragile,

based on Proposition 2. This suggests that while swing pricing reduces fire-sale losses at the indi-

vidual fund level and — if widely adopted — also for the whole system, it may be less effective or

even damaging if it is only implemented by a small group of funds.

4 Mutual Fund Aggregate Vulnerability

In this section, we apply the model to the system of U.S. mutual funds and estimate the system’s

Spillover Loss Ratio from data.

4.1 Data Description

We use quarterly mutual fund holding data from the CRSP Survivor-Bias-Free US Mutual Fund

Database spanning the period Q1 2010 through Q4 2020. For each date, we remove from the

database ETFs, funds with missing information, and funds with less than $5 million in total net

assets. The database includes total net asset value of each fund, and groups each fund’s holdings

into the twelve asset classes listed in Table 4.1. We divide funds into nine types, according to

their CRSP Style Code. The types are equity domestic (ED), equity foreign (EF), fixed income

municipal (IU), fixed income corporate (IC), fixed income government (IG), fixed income foreign

(IF), other fixed income (I), mixed fixed income and equity (M), and other (O). For each type,

we work with the 100 largest funds, and we combine the holdings for the remaining funds into a

single aggregate fund.10 Hence, for each quarter the system consists of at most 909 funds, and we

use these funds to construct the matrices A and M from the CRSP data.

We use price impact parameters estimated under stressed trading conditions by Bouveret and

Yu (2021).11 To account for time varying liquidity, we construct a price impact matrix Lt that

depends on time t. The parameters in Table 4.2 pin down the matrix Lt = L∗ at the initial date of

our analysis (the benchmark date), which is Q1 2010. The price impact matrix is then renormalized

by the size of the financial sector on subsequent dates to capture the idea that the pool of potential

buyers of fund assets varies over time. For this calculation, we follow a similar approach to Duarte

and Eisenbach (2021). As a proxy for the wealth wt of potential buyers of liquidated assets, we

take the value of assets held by the U.S. financial sector and U.S. households minus the value of

mutual fund shares they hold. We source this data from the “Financial Accounts of the United

10We have verified that aggregating funds at different levels of granularity does not significantly affect our re-
sults. Aggregation may even understate vulnerability, because it removes the first-mover heterogeneity within each
aggregated fund.

11Greenwood et al. (2015) assume that a net trade of 10 billion euros leads to a price change of 10 basis points,
regardless of the liquidated asset. Duarte and Eisenbach (2021) consider heterogeneous price impact parameters
implied by the Net Stable Funding Ratio of the Basel III regulatory framework.
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States”.12 The price impact matrix at date t is Lt = w∗

wt
L∗, where w∗ is the value of wt at the

benchmark date.

The CRSP database classifies every fund share class as either institutional or retail. We measure

the proportion of first-mover investors πi in fund i as the proportion of total net assets held by

institutional share classes within fund i. This identification is supported by the empirical evidence

and discussion in Section 2. We will also investigate the effect of varying the proportion of first

movers. Observe that our measure πi depends on the quarter t.

Prior research has studied the relationship between fund flows and performance. For example,

Franzoni and Schmalz (2017) find that the sensitivity of flow to performance strongly depends on

the state of the market and can range from 20% to around 70%. These estimates cannot disentangle

the direct response measured by the coefficient b in our model from the combined effect of first- and

second-mover redemptions. We will therefore examine the impact of different values of b, holding

this parameter constant across funds.

We apply shocks of different magnitudes to different asset classes, based on their relative volatil-

ities. For example, to translate a 10% drop in stock prices to an equally severe shock to municipal

bonds, we would use a drop of 3.981%, based on the relative volatilities in Table 4.2. To calculate

the relative volatilities, we use daily returns during Q1 2020 (the Covid-19 shock) on representative

ETFs for each asset class. We use the Vanguard Total Stock Market ETF (VTI) for common

and preferred stocks and other equities; the iShares Convertible Bond ETF (ICTV) for convertible

bonds; the Vanguard Total Bond Market Index Fund ETF (BND) for corporate bonds and other

fixed-income securities; the iShares National Municipal Bond ETF (MUB) for municipal bonds;

the iShares US Treasury Bond ETF (GOVT) for government bonds; and the iShares MBS ETF

(MBB) for mortgage-backed securities and asset-backed securities. No shock is applied to the

“Other Securities” class.

4.2 Mutual Fund Vulnerability in the Reference Model

We begin by measuring spillover losses in the reference model without first movers and then measure

the impact of accounting for first movers. Through portfolio overlap, as reflected in M , fire sales

can spread from one asset to another. We refer to the matrix MLM>AB as the systemicness

matrix. The total change in each fund’s share value is then given by the vector

∞∑
n=0

(MLM>AB)n∆S0,

At each round of redemptions, the vector of shocks is multiplied by the systemicness matrix. If

its spectral radius is smaller than 1, then the spillover losses of each round are smaller than losses

from the previous round of redemptions. If instead the spectral radius is larger than 1, the vector

12The corresponding codes are FL794090005 (Domestic financial sectors; total financial assets), FL154090005
(Households and nonprofit organizations; total financial assets), FL793064205 (Domestic financial sectors; mutual
fund shares; asset), FL153064205 (Households and nonprofit organizations; mutual fund shares; asset).

14



Domestic Foreign FI FI FI
Equity Equity Corporate Foreign Government

Total assets ($ billions) 6,372 2,189 152 273 242
Institutional investors (percent) 37.51 46.72 36.16 53.24 47.76

Portfolio shares (percent):
Cash 1.95 1.90 1.86 4.62 1.63
Common Stocks 87.39 84.66 0.37 0.10 0.03
Preferred Stocks 0.18 0.97 0.40 0.05 0.01
Convertible Bonds 0.13 0.04 0.65 0.09 0.00
Corporate Bonds 1.55 0.88 55.11 21.56 5.14
Municipal Bonds 0.05 0.03 3.09 1.65 0.30
Government Bonds 2.61 1.57 18.99 63.20 74.44
Asset-Backed Securities 0.26 0.06 4.41 1.53 5.85
Mortgage-Backed Securities 0.57 0.13 10.32 1.73 9.84
Other Equities 1.95 7.12 0.09 0.07 0.00
Other Fixed-Income Securities 0.32 0.12 2.45 1.48 1.51
Other Securities 3.03 2.52 2.25 3.92 1.25

FI FI Mixed FI Other
Muni Other & Equity

Total assets ($ billions) 605 1,912 1,746 351
Institutional investors (percent) 23.29 50.49 25.95 49.65

Portfolio shares (percent):
Cash 1.25 2.15 2.67 5.96
Common Stocks 0.04 0.47 51.29 4.94
Preferred Stocks 0.02 0.29 0.62 0.10
Convertible Bonds 0 0.29 1.46 0.34
Corporate Bonds 0.17 41.67 14.74 13.07
Municipal Bonds 97.40 1.53 0.64 0.44
Government Bonds 0.10 23.00 13.30 8.48
Asset-Backed Securities 0.02 7.75 1.70 11.38
Mortgage-Backed Securities 0.02 15.29 4.43 26.23
Other Equities 0.01 0.17 2.40 0.27
Other Fixed-Income Securities 0.40 4.64 1.98 22.22
Other Securities 0.56 2.75 4.78 6.55

Table 4.1: Summary of the balance sheet data used to compute aggregate vulnerability. The table shows
average total net assets, proportion of assets held by institutional fund share classes, and aggregate portfolio
composition for each fund type over the period from Q1 2010 to Q4 2020.
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Asset Class Price Impact Relative Volatility

Cash 0 0

Common Stocks 2.8×10−13 1

Preferred Stocks 2.8×10−13 1

Convertible Bonds 7.7×10−13 0.8710

Corporate Bonds 7.7×10−13 0.3169

Municipal Bonds 14.5×10−13 0.3981

Government Bonds 0.3 ×10−13 0.1905

Asset-Backed Securities 0.5×10−13 0.1829

Mortgage-Backed Securities 0.5×10−13 0.1829

Other Equities 2.8 ×10−13 1

Other Fixed-Income Securities 0.3 ×10−13 0.3169

Other Securities 0 0

Table 4.2: A price impact of 10−13 indicates that a $10 billion net trade leads to a price decline of 10 basis
point. The second column is the relative daily volatility, over Q1 2020, of an ETF representative of each
asset class compared to that of equity.

of NAV shocks ∆S0 can get amplified in each iteration. The spectral radius of the systemicness

matrix is therefore a measure of aggregate fund exposure to fire sales caused by redemptions.

The systemicness matrix can be decomposed into three factors, analogously to the decomposi-

tion of aggregate vulnerability in Duarte and Eisenbach (2021): MLM> is the illiquidity concen-

tration, A is the size of the system, B is the flow-to-performance sensitivity. The (i, j) entry of the

illiquidity concentration matrix MLM>,
∑K

k=1 lkmikmjk, is the liquidity-weighted portfolio overlap

of funds i and j. Recall that the entries of the diagonal matrices A and B are, respectively, the

net total assets and flow-to-performance sensitivity of each fund. The spectral radius is therefore

larger, and the system more vulnerable, if large funds with high flow-to-performance sensitivity

have significant portfolio overlap on illiquid assets.

The magnitude of the Spillover Loss Ratio is directly related to the value of the spectral radius.

In the right panel of Figure 4.1, we compute the SLR for an initial exogenous shock of −5%

multiplied by the relative volatilities in Table 4.2 for each asset class. Spillover losses dwarf initial

losses if the spectral radius is close to 1 or larger.13 Moreover, in recent years, the spectral radius

has exceeded 1 for large, yet plausible, values of flow-to-performance sensitivity.

Investors that hold their assets directly, rather than through a mutual fund, may also liquidate

them if their portfolios are subject to a negative shock. As a result, they would drive down asset

prices. If holding a portfolio directly or through a fund does not affect investors’ sensitivity to

performance, the spillover losses quantified using the reference model would remain in the absence

of mutual fund intermediation. However, as we demonstrate in the next section, spillover losses

would be greater if the assets are intermediated by the fund, after accounting for the first-mover

advantage.

13Observe that spillover losses are finite because of the imposed caps discussed in Section 3.3.
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Figure 4.1: Flow-to-performance sensitivity is assumed constant across funds, data refer to the
first quarter of each year. The left panel shows the spectral radius of the systemicness matrix for
different values of flow-to-performance sensitivity and different years. The right panel shows the
Spillover Loss Ratio for different values of flow-to-performance sensitivity and different years.

4.3 Impact of First-Mover Advantage

We now quantify the share of spillover losses that can be attributed to funds’ liquidity mismatch

and the resulting first-mover advantage.

4.3.1 Spillover Loss Ratio over Time

The presence of first-mover investors exacerbates the vulnerability of a fragile system but has

minimal impact on a resilient one. In fact, first movers have limited incentive to exit a fund

early, if asset liquidation costs are low, i.e., when the spectral radius of the systemicness matrix

is significantly below 1. However, the first-mover advantage has a strong destabilizing effect on a

system that is already vulnerable: if first movers expect funds to face significant spillover losses,

then they benefit from redeeming their fund shares early, accelerating a systemic fire-sale spiral. In

Figure 4.2, we compute the SLR with and without first movers for an initial price change of −5%

multiplied by the relative volatilities in Table 4.2 for each asset. If in the absence of first movers the

system would be resilient to spillover losses, e.g., if flow-to-performance sensitivity is low, then the

impact of first movers is negligible. However, the fragility of a system that is moderately vulnerable

without first movers may deteriorate significantly when accounting for the first-mover advantage.

As shown in Figure 4.2, after the year 2017 and assuming a flow-to-performance sensitivity of 45%,

the SLR in the full model is often at least twice as large as in the reference model.

4.3.2 Contributing Factors to Spillover Losses

The vulnerability of the mutual fund system is sensitive to several factors (see Figure 4.3). The

first factor is the size of the U.S. mutual fund industry relative to the whole U.S. financial sector.
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Figure 4.2: The left panel shows the Spillover Loss Ratio over time for different values of flow-
to-performance sensitivity with/without first movers. The right panel shows the proportion of
Spillover Loss Ratio due to the presence of first movers.

Over time, funds have accounted for an increasingly large share of the whole financial market. To

see this, compare the first quarter of 2010 when assets held by mutual funds accounted for less than

12% of all financial assets, with the last quarter of 2019 when this proportion grew to more than

16%.

A second factor is the concentration of fund holdings in illiquid assets. Let am be the aggregate

asset value held by mutual funds and atot the total value of assets in the whole financial system.

The matrix C := atot

am ·MLM>A quantifies the impact that portfolio overlap in illiquid assets has on

each fund. Notice that this matrix is independent of the size of the system: the entries of A
am are the

weights of each fund in the system, and the entries of atotL are (approximately) a size-independent

measure of each asset’s illiquidity. (Recall that our specification of price impact is such that assets

are more liquid as the size of the whole financial system increases.) We measure the amplification

effect due to portfolio concentration in illiquid assets using the spectral radius of the matrix C:

it is the largest asset price change triggered by any vector of initial NAV shocks of a specified

size. Notice that accounting only for the impact of C on the initial vector of shocks ∆S0 does not

capture vulnerability due to portfolio commonality. This is because we consider multiple rounds of

redemptions and fire sales and, in each round, the vector of realized shocks across asset classes may

be different compared to the previous round. As seen from the top right panel of Figure 4.3, the

impact of illiquidity concentration on the system’s vulnerability has increased steadily since 2013.

A third factor is the propensity of investors to redeem fund shares in response to a decline in

fund NAV. The stronger the reaction of investors to negative NAV shocks, the more vulnerable

the system to asset fire sales. As shown in Goldstein et al. (2017), funds that hold more illiquid

assets have a higher sensitivity of outflows to bad performance. Even if our analysis assumes that

the flow-to-performance sensitivity bi is the same across funds, a fund holding illiquid assets is

subject to more redemptions after a negative initial shock than a fund holding liquid assets because

18



Figure 4.3: The left panel plots the size of the U.S. mutual fund industry relative to the whole U.S.
financial sector over time. The right panel plots the spectral radius of the matrix C = atot

am ·MLM>A
over time. The bottom panel plots the proportion of assets held by institutional fund share classes
(our proxy for first movers) over time. The systemicness matrix is defined as am

atotCB. Therefore,
differences in the magnitudes of the spectral radius of C and that of the systemicness matrix are
due to the relative size of the mutual fund industry am

atot and to the flow-to-performance sensitivity
matrix B (set as a multiple of the identity matrix in all examples in the paper).

first movers anticipate the higher spillover losses and therefore have a stronger incentive to redeem

early.14 Hence our findings are consistent with those in Goldstein et al. (2017).

The fourth factor is the proportion of institutional investors among holders of fund shares. Early

redemptions by first movers increase asset liquidation pressure and, hence, spillover losses. The

presence of more first movers creates additional feedback effects, as other first movers account for

their withdrawals and hence redeem additional fund shares. It can be seen from the bottom graph

of Figure 4.3 that the fraction of assets held in institutional fund share classes, our proxy for the

proportion of first movers, has increased to nearly 50% in the year 2020. Even though we presented

14Even in the absence of first movers, redemptions would be higher for illiquid funds because of the feedback
loop between price declines and redemptions. The presence of first-movers significantly amplifies the feedback loop
between spillover losses and number of redemptions.
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Figure 4.4: Spillover losses when first movers are concentrated in half of the funds (solid line)
and when first movers are evenly distributed across funds (dashed line). In the left panel, the
exogenous shock applied to each asset equal is equal to a price change of -5% multiplied by its
relative volatility specified in Table 4.2. In the right panel, flow-to-performance sensitivity is set
to 45% and the exogenous shock to each asset is obtained by multiplying the price change on the
x-axis by each asset’s relative volatility. We use fund holdings data from Q1 2020.

the proportion of first movers as a separate factor that affects the system’s vulnerability, we cannot

disentangle the impact of illiquidity concentration from that of first movers. This is because we

consider a system with first mover heterogeneity: fragility is magnified if funds holding concentrated

portfolios have a higher proportion of first movers. Even in an otherwise homogeneous system, if

first movers are concentrated in fewer funds, the system would be more fragile (as discussed in

Section 4.3.3).

4.3.3 Nonlinearity of Spillover Losses due to First Movers

We demonstrate how the nonlinearity introduced by first-mover incentives exacerbates the impact

of first-mover concentration and initial shocks on spillover losses.

To analyze the impact of first-mover distribution across funds, we split every fund into two

identical funds, each holding half of the assets of the original fund. We compare two system

configurations for the distribution of first-mover investors. In the first configuration, we set the

proportion of first movers in every fund equal to 50%. In the second configuration, for each pair

of identical funds, the first fund’s shares are entirely owned by first movers, and the second fund’s

shares are owned only by second movers. Hence, the total number of first movers is the same across

the two configurations, but in the second configuration first movers are concentrated in just half of

the funds in the system.

Figure 4.4 illustrates the spillover losses for each of these two configurations using fund holdings

data from Q1 2020. The system in which first movers are highly concentrated on fewer funds is

more fragile than the system in which first movers are evenly distributed across funds, consistent

with Proposition 2. The higher fragility is explained by the nonlinearity in spillover losses created
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by the first-mover advantage: the feedback between fire sales and fund redemptions is stronger in

funds with a high proportion of first movers, and the resulting downward pressures imposed on

asset prices may also hit funds without first movers. The difference in vulnerability between the

system with first mover concentration and the system in which first movers are evenly spread across

funds is small in the market scenarios where the flow sensitivity to performance is low. In these

market scenarios, the incentive to run is small, and thus fire-sale losses are not impacted much by

the distribution of first movers in the system.

We next study the amplification of initial shocks created by redeeming first movers. In the

reference model, given the linear assumptions on price impact and flow sensitivity to performance,

spillover losses scale linearly with the size of the initial exogenous shock; the SLR increases in

proportion to the initial shock. But the reference model fails to capture the incentive to run

observed with first movers. Figure 4.5 shows that spillover losses grow faster and nonlinearly in

the size of the initial exogenous market shock once we account for the first-mover advantage.

In Figure 4.5, assets are subject to initial shocks ranging from −2.5% to −15% times their

corresponding relative volatilities in Table 4.2. Consider, first, the results using parameters for

2020. As we increase the the exogenous shock from 7.5% to 12.5%, the SLR for the reference model

increases linearly, as expected. Over the same range, the SLR accounting for first movers grows far

more, with an inflection in the growth rate at a 7.5% shock. The SLR growth plateaus at larger

initial shocks because of the caps we impose on price impact and on the quantity of assets that

funds can sell.

For the years 2012 and 2016, we observe little impact of first movers on spillover losses in Figure

4.5. This can be explained by the measures plotted in Figure 4.3, where it can be seen that mutual

funds accounted for a smaller percentage of the U.S. financial sector, had smaller portfolio overlap

in illiquid assets, and had a lower proportion of first movers. This comparison shows that simply

extrapolating from the environment in 2012 and 2016 would miss the greater vulnerability of the

system in 2020.

This is the main takeaway from Figure 4.5. In a sufficiently fragile system, there is a critical

size for the initial shock that triggers a wave of redemptions that magnify spillover losses substan-

tially. As a consequence, spillover losses in ordinary times are not a good gauge of the aggregate

vulnerability of the system or of the magnitude of potential spillover losses in a heavily stressed

economy.

4.3.4 Portfolio Commonality, First Movers, and Asset Price Contagion

Price shocks can spread across mutual funds and asset classes through portfolio commonality. A

fire sale by one fund drives down the share price of other funds holding the same assets; and a price

drop in one asset class may force a fund to liquidate other assets, driving down their prices, in

order to meet redemptions. These contagion effects and selling by first movers can reinforce each

other.

To study the joint impact of portfolio commonality and first movers on financial fragility, for
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Figure 4.5: Spillover losses (in trillions of dollars) for different initial exogenous shocks
with/without first movers. Flow-to-performance sensitivity is set equal to 45%.

each fund type i15 we consider a benchmark system in which funds of type i are not connected to

other funds in the system. In such a system, asset liquidation by funds of type i do not impact others

in the system, and vice versa. We then compare the benchmark with the original interconnected

system, both with and without first movers.

The figure shows that isolating a fund type from the rest of the system can significantly reduce

the total spillover losses, either because it shields some large funds from fire-sale externalities, or

because it reduces the spread of the shock across asset classes. The left plot of the figure uses

asset holdings data from the end of Q1 2020, when prices were already severely depressed by the

Covid-19 shock, and it shows that the impact of first movers would be modest if the economy were

subject to an additional exogenous shock. By contrast, for Q4 2020, spillover losses due to portfolio

commonality are significantly higher in the presence of first movers. It is the first-mover advantage

that, in this case, fuels the spread of shocks through the system via the contagion channel stemming

from portfolio commonality. Portfolio commonality and first movers have compounding effects.

We next study how shocks spread across asset classes through the portfolio commonality chan-

nel. We consider a scenario in which a few assets are subject to a large initial shock, and we

aggregate funds within each of the nine types. Figure 4.7 shows the total returns including fire-sale

losses for all nine aggregate funds, after applying a shock to convertible, corporate and municipal

bonds equal to a price change of 20% multiplied by the corresponding realized volatilities of these

assets.

For low levels of flow-to-performance sensitivity, spillover losses are inconsequential and the

shock does not spread across the system. In fact, the fund sectors that are most impacted are those

holding the assets subject to the initial shock. This is not the case if investors react more strongly

to fund performance. Large redemptions at funds that hold both fixed income assets — affected

15The fund types are equity domestic (ED), equity foreign (EF), fixed income municipal (IU), fixed income corporate
(IC), fixed income government (IG), fixed income foreign (IF), other fixed income (I), mixed fixed income and equity
(M), and other (O).
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Figure 4.6: Change in spillover losses when each fund type is isolated from other fund types, with
and without first movers. For each fund type, the bar with horizontal lines shows the increase in
spillover losses due to first movers if funds of this type are isolated from others. The bar with
diagonal lines and the dotted one show the increase in spillover losses if these funds are connected
to the rest of the system — respectively with and without first movers — relative to the case in
which they have no portfolio commonality with other funds and there are no first movers in the
system. We set the flow-to-performance sensitivity to 45%. We apply initial shocks of −5% times
the corresponding realized assets’ relative volatilities. We consider portfolio holdings in the first
quarter (left plot) and fourth quarter (right plot) of 2020.

by the exogenous shock — and equity assets may lead to sell-offs in asset classes not hit by the

initial shock, and cause widespread spillover losses through the system. As the flow-to-performance

sensitivity increases, equity funds become the most vulnerable to spillover losses, even though we

applied the initial shock exclusively to fixed income assets. This is because the initial shock spills

over to the equity asset class via the portfolio overlap of mixed funds.

5 Conclusion

We have developed a framework to quantify the vulnerability of the mutual fund sector to fire sales

triggered by fund redemptions. The distinguishing feature of our framework is that it accounts for

the liquidity mismatch that arises when mutual funds hold illiquid assets but provide same-day

liquidity to their investors. We have constructed measures that quantify the mutual fund sector’s

vulnerability and its sensitivity to key parameters such as the distribution of first movers, shock size,

and flow-to-performance sensitivity. We have evaluated these measures using mutual fund holdings

data during stressed market conditions. Our framework can serve as a tool to test the impact of

policies aimed at reducing spillover losses due to fund runs and common portfolio holdings.

We have shown that the first-mover incentive introduces a nonlinear dependence between

spillover losses and the size of initial asset shocks. This nonlinearity can severely exacerbate the

aggregate vulnerability of the system for large, yet plausible, sizes of initial shocks if first movers

are concentrated in fewer funds or if the investor base of illiquid funds includes a high proportion

of first movers.
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Figure 4.7: Fund returns for different values of fund-to-performance sensitivity for an exogenous
shock to convertible, corporate and municipal bonds, equal to a price change of -20% multiplied by
the realized volatility of each asset. We use asset holdings data from Q1 2020.

A Cross-Sectional Regression of Municipal Bond Fund Flows

To check the robustness of the results in Section 2, we run the following cross-sectional regression

using data in the CRSP database for Q1 2020:

Flowi = α+ βinstInstReturni + βretailRetailReturni + γControlsi + εi,

where Flowi is the flow for fund i, defined as
TNAend

i −TNAi(1+Returni)
TNAi

, where TNAendi is the total

net asset value of fund share class i at the end of the quarter, TNAi is the total net asset value

at the beginning of the quarter, and Returni is the fund share class’s return. For institutional

fund share classes, InstReturn is the fund share class’s return, and RetailReturn is set to 0. For

retail fund share classes, RetailReturn is the fund share class’s return, and we set InstReturn to

0. We control for lagged flow (the flow over the previous quarter), Log(TNA) (the logarithm of

total net assets held by the fund at the beginning of the quarter), and Log(age) (the logarithm

of the fund’s age at the beginning of the quarter, expressed in years). We regress flows against

contemporaneous returns (after fees), and not against returns over the previous quarter. Our

specification is designed to capture the relation between the Covid-19 market shock and flows

within the same quarter. In Table A.2, we report the summary statistics for the fund share classes

in our sample. Table A.3 reports the results of the regression. The relation between flows and

returns is statistically significant at the 1% level for both institutional and retail fund share classes.

Returns are associated with outflows that are larger for institutional fund share classes (0.620)

compared to retail fund share classes (0.381), consistent with the view that institutional investors

react more strongly to negative returns than retail investors. The difference is on the borderline
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of the conventional standard for significance: an F -test of the hypothesis that βinst = βretail has a

p-value of 0.060.

Table A.1: Summary statistics for characteristics of fund share classes in the sample for the panel regression
in Section 2. We report the mean, median, standard deviation, 5th percentile (P5), 95th percentile (P95)
and total number of observations (N).

Institutional Fund Share Classes

Mean Median Std dev P5 P95 N

Flow -0.0105 0.0051 0.4716 -0.6846 0.5479 26,260
Return -0.0219 0.0100 0.8984 -1.5800 0.6300 26,260

Log(TNA) 4.0762 4.4238 2.6682 -1.3934 7.6502 26,260

Retail Fund Share Classes

Mean Median Std dev P5 P95 N

Flow -0.0176 -0.0009 0.4112 -0.5647 0.4318 49,259
Return -0.0246 0.0100 0.9437 -1.6600 0.6600 49,259

Log(TNA) 3.8453 4.0842 2.5314 -0.4805 7.4571 49,259

Table A.2: Summary statistics of fund share classes’ characteristics in our sample, used for the cross-
sectional regression in Appendix A. We report the mean, median, standard deviation, 5th percentile (P5),
95th percentile (P95) and total number of observations (N).

Mean Median Std dev P5 P95 N

Flow -0.0089 -0.0144 0.0747 -0.1114 0.1155 1436
InstReturn -0.0238 -0.0182 0.0213 -0.0711 -0.0001 544

RetailReturn -0.0238 -0.0191 0.0199 -0.0702 -0.0016 892
Lagged Flow 0.0340 0.0217 0.0858 -0.0810 0.1902 1436
Log(TNA) 4.7140 4.6250 1.7058 2.1604 7.6902 1436
Log(age) 2.5697 2.8396 0.8726 0.8823 3.5440 1436

B Existence of a Fixed Point

In this section, we show that the procedure described in Section 3.2 has a fixed point. Before

stating the main result, we state and prove a technical lemma which will be used in the proof of

Proposition 1.

Lemma B.1. Suppose that f(x, y) is continuous in (x, y) ∈ X × Y , and strictly monotone in x

for each y, where X ⊂ R and Y ⊂ Rd are compact. Then for any sequence (xn, yn) ∈ X × Y with

limn→∞ yn = y0 and f(xn, yn) = 0 for all n, there is an x0 ∈ X for which

lim
n→∞

xn = x0, f(x0, y0) = 0.
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Table A.3: Relation between flows and returns in municipal bond funds. We source data from the CRSP
database for Q1 2020. Flow is the proportional fund share class flow over Q1 2020. InstReturn is the return
over Q1 2020 if the fund share class is institutional and 0 otherwise. RetailReturn is the return over Q1
2020 if the fund share class is retail and 0 otherwise. Lagged Flow is the flow over Q4 2019. Log(TNA) is
the natural logarithm of total net assets at the beginning of Q1 2020. Log(age) is the natural logarithm of
the fund share class age (expressed in years) at the beginning of Q1 2020. We removed index funds, ETFs,
ETNs, fund share classes with TNA lower than 5 million dollars, and fund share classes less than one year
old. Flows are winsorized at the 1st and 99th percentiles.

Dependent
Variable:

Flow

Constant 0.041***
(0.01)

InstReturn 0.620***
(0.12)

RetailReturn 0.381***
(0.10)

Lagged Flow 0.270***
(0.02)

Log(TNA) -0.001
(0.00)

Log(age) -0.016***
(0.00)

N 1436
Adj. R2 0.170

***p < 0.01, **p < 0.05, *p < 0.1
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Proof. Since X is compact, the sequence xn has at least one limit point, and any limit point must

be in X. Let x0 ∈ X be a limit point and let xnk
be a subsequence through which xnk

→ x0. Then

(xnk
, ynk

)→ (x0, y0), and the continuity of f implies that

0 = lim
k→∞

f(xnk
, ynk

) = f(x0, y0).

Since f(x, y) is strictly monotone in x for each y, x0 is uniquely determined by y0. Thus, xn has

just one limit point x0, and we conclude that xn → x0.

Proof of Proposition 1. Using first the expressions for nfmi and qfmi in (8) and then the expression

for ∆wfmi in (4), the ratios Ufmi = qfmi /nfmi in (9) become

Ufmi =
q0
i −∆qfmi

n0
i −∆wfmi

=
q0
i −∆qfmi

n0
i + ai · πi · bi ·∆s∗i

. (B.1)

The denominator is strictly positive because n0
i = ai, bi < 1 by hypothesis, πi ≤ 1, and ∆s∗i ∈

[−1, 0]. Substituting (B.1) into (10) and also substituting the expression for ∆pfmi in (5) into (10),

we find that the NAV change of fund i due to the exogenous shock and first movers’ redemptions

is given by

∆sfmi =
n0
i −∆qfmi

n0
i + ai · πi · bi ·∆s∗i

·

p0
i + ∆p0

i −
K∑
k=1

N∑
j=1

miklkmjk∆q
fm
j

− s0
i , (B.2)

for i = 1, . . . , N . We can similarly use (4) and (5) to write (6) as

∆qfmi ·

p0
i + ∆p0

i −
K∑
k=1

N∑
j=1

miklkmjk∆q
fm
j

 = ∆wfmi · (s0
i + ∆s0

i )

= −ai · πi · bi ·∆s∗i · (s0
i + ∆s0

i ). (B.3)

We will use (B.2) and (B.3) in showing the existence of a fixed point of the mapping ∆S∗ 7→
∆S∞(∆S∗) defined by (11). We will analyze the mapping from (∆s∗1, . . . ,∆s

∗
N ) to (∆qfm1 , . . . ,∆qfmN )

implicitly defined by (B.3), and then use that mapping in the mapping from (∆s∗1, . . . ,∆s
∗
N ) to

(∆sfm1 , . . . ,∆sfmN ) defined by (B.2).

We will apply Brouwer’s fixed point theorem to show the existence of a fixed point of the map-

ping ∆S∗ 7→ ∆S∞(∆S∗) defined by (11). This boils down to proving the following two statements:

(i) The function in (11) is continuous w.r.t. the input ∆S∗ ∈ [−1, 0]N .

(ii) For each input ∆S∗ ∈ [−1, 0]N , the output of the function in (11) is also in [−1, 0]N .

We next state and prove the following claim:
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Claim: For sufficiently small l1, . . . , lK , there exists a continuous mapping

Φ : [−1, 0]N → [0, n0
1]× · · · × [0, n0

N ]

Φ(∆s∗1,∆s
∗
2, . . . ,∆s

∗
N ) = (∆qfm1 ,∆qfm2 , . . . ,∆qfmN )>,

such that (∆qfm1 ,∆qfm2 , . . . ,∆qfmN )> solves (B.3).

Proof of the Claim. The system (B.3) can be regarded as a system of N quadratic equations, which

can be solved sequentially.

Fix ∆s∗1 ∈ [−1, 0] and (∆q2, . . . ,∆qN ) ∈ [0, n0
2]× · · · × [0, n0

N ]. Then, for i = 1, equation (B.3)

is a quadratic equation in the variable ∆qfm1 . One solution of this equation is given by

∆qfm1 = ∆qfm1 (∆s∗1,∆q2, . . . ,∆qN ) =
−β1 +

√
β2

1 − 4α1γ1

2α1
, (B.4)

where

α1 = −
K∑
k=1

m1klkm1k, β1 = ∆p0
1 + p0

1 −
K∑
k=1

N∑
j=2

m1klkmjk∆qj ,

and

γ1 = a1 · π1 · b1 ·∆s∗1 · (s0
1 + ∆s0

1).

Notice that, for sufficiently small (lk)
K
k=1, the quantity β2

1−4α1γ1 is strictly positive, and hence the

function ∆qfm1 (·) as defined in (B.4) takes only real values. Moreover, it is positive because both

the numerator and denominator of ∆qfm1 (·) are negative quantities. We claim that ∆qfm1 ∈ [0, n0
1].

To see why, evaluate (B.3) at the endpoints of this interval. At ∆qfm1 = 0, the left side of (B.3) is

zero and thus less than or equal to the right side of (B.3), which is nonnegative because ∆s∗i ≤ 0

and ∆s0
i > −s0

i . At ∆qfm1 = n0
1, the left side of (B.3) satisfies

n0
1 ·
(

∆p0
1 + p0

1 −
K∑
k=1

m1klkm1kn
0
1 −

K∑
k=1

N∑
j=2

m1klkmjk∆qj

)

≥ n0
1 ·
(

∆p0
1 + p0

1 −
K∑
k=1

N∑
j=1

m1klkmjkn
0
j

)
≥ a1 · π1 · b1 · (s0

1 + ∆s0
1)

≥ −a1 · π1 · b1 ·∆s∗1 · (s0
1 + ∆s0

1),

where the first inequality holds because ∆qj ≤ n0
j . The second inequality holds for sufficiently small

(lk)k’s because n0
1 = a1, π1 ≤ 1, b1 < 1. The last inequality follows from ∆s∗1 ∈ [−1, 0]. Hence,

by the intermediate value theorem, one of the two roots of (B.3) belongs to the interval [0, n0
1].

Because the root
−β1−

√
β2
1−4α1γ1

2α1
can be arbitrarily large for sufficiently small (lk)

K
k=1, we conclude
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that ∆qfm1 (·) as defined in (B.4) takes values in [0, n0
1] .

Next, we show that there exists a constant P1, independent of l1, . . . , lK , such that the following

uniform bound holds:

P1 ≥ sup
∆s∗1∈[−1,0],∆q2∈[0,n0

2],...,∆qN∈[0,n0
N ]

max

{∣∣∣∣∣∂∆qfm1

∂∆s∗1

∣∣∣∣∣ ,
∣∣∣∣∣∂∆qfm1

∂∆q2

∣∣∣∣∣ , . . . ,
∣∣∣∣∣∂∆qfm1

∂∆qN

∣∣∣∣∣
}
. (B.5)

To see this, set i = 1 in (B.3), and rewrite the corresponding equation by treating ∆qfm1 as a

function of (∆s∗1,∆q2, . . . ,∆qN ). This yields

∆qfm1 (∆s∗1,∆q2, . . . ,∆qN ) ·
(

∆p0
1 + p0

1 −
K∑
k=1

m1klkm1k∆q
fm
1 (∆s∗1,∆q2, . . . ,∆qN )

−
K∑
k=1

N∑
j=2

m1klkmjk∆qj

)
= −a1 · π1 · b1 ·∆s∗1 · (s0

1 + ∆s0
1).

Differentiating the expression above with respect to ∆q2 on both sides leads to

∂∆qfm1

∂∆q2
·
(

∆p0
1 + p0

1 − 2

K∑
k=1

m1klkm1k∆q
fm
1 −

K∑
k=1

N∑
j=2

m1klkmjk∆qj

)
−∆qfm1

K∑
k=1

m1klkm2k = 0.

Because we have previously shown that ∆qfm1 takes values in [0, n0
1], the equality above implies

that
∂∆qfm1
∂∆q2

is uniformly bounded for sufficiently small l1, . . . , lK as assumed in this proposition.

The other derivatives appearing on the right-hand side of (B.5) can be estimated similarly, and we

can thus conclude the existence of a uniform bound P1 in (B.5).

Next, set i = 2 in (B.3). We want to show that, for any (∆s∗1,∆s
∗
2,∆q3, . . . ,∆qN ) ∈ [−1, 0]2 ×

[0, n0
3]× · · · × [0, n0

N ], there exists a function ∆qfm2 (∆s∗1,∆s
∗
2,∆q3, . . . ,∆qN ) in the interval [0, n0

2].

Rewriting equation (B.3) for i = 2, we get

∆qfm2 ·
(

∆p0
2 + p0

2 −
K∑
k=1

m2klkm1k∆q
fm
1 (∆s∗1,∆q

fm
2 ,∆q3, . . . ,∆qN )−

K∑
k=1

m2klkm2k∆q
fm
2

−
K∑
k=1

N∑
j=3

m2klkmjk∆qj

)
= −a2 · π2 · b2 ·∆s∗2 · (s0

2 + ∆s0
2). (B.6)

We will show that ∆qfm2 ∈ [0, n0
2] by considering the values at the endpoints of this interval. If

we set ∆qfm2 = 0 on the left side of (B.6), then the left side evaluates to zero, and it is less than

or equal to the right side which is nonnegative. If we set ∆qfm2 = n0
2 on the left side, then using
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similar arguments as for the case ∆qfm1 = n0
1, we obtain

n0
2 ·
(

∆p0
2 + p0

2 −
K∑
k=1

m2klkm1k∆q
fm
1 (∆s∗1, n

0
2,∆q3, . . . ,∆qN )−

K∑
k=1

m2klkm2kn
0
2

−
K∑
k=1

N∑
j=3

m2klkmjk∆qj

)

≥ n0
2 ·
(

∆p0
2 + p0

2 −
K∑
k=1

N∑
j=1

m2klkmjkn
0
j

)
≥ a2 · π2 · b2 · (s0

2 + ∆s0
2)

≥ −a2 · π2 · b2 ·∆s∗2 · (s0
2 + ∆s0

2),

where in the first inequality we have used the previously established fact that ∆qfm1 ∈ [0, n0
1], and

for the second inequality we have used that a2 = n0
2, π2 ≤ 1, and b2 < 1.

Next, we show that the left side of equation (B.3) is an increasing function of ∆qfm2 by showing

that its derivative with respect to ∆qfm2 is positive. Using the chain rule of differentiation, we find

that the derivative of the left side of (B.3) with respect to ∆qfm2 is given by

∆p0
2 + p0

2 −
K∑
k=1

2∑
j=1

m2klkmjk∆q
fm
j −

K∑
k=1

N∑
j=3

m2klkmjk∆qj

−∆qfm2 ·
( K∑
k=1

m2klkm1k
∂∆qfm1

∂∆qfm2

+

K∑
k=1

m2klkm2k

)

≥
(

∆p0
2 + p0

2 −
K∑
k=1

N∑
j=1

m2klkmjkn
0
j

)
− n0

2 ·
( K∑
k=1

m2klkm1kP1 +
K∑
k=1

m2klkm2k

)
> 0,

where the first inequality holds because we have shown that the functions ∆qfm1 and ∆qfm2 satisfy

∆qfm1 ∈ [0, n0
1] and ∆qfm2 ∈ [0, n0

2], and because each input variable ∆qj is in the interval [0, n0
j ],

for j ≥ 3. The last inequality holds for sufficiently small (lk)k. Since we have shown that the left

side of (B.3) is strictly increasing in ∆qfm2 (with ∆s∗1 fixed), it follows that (B.3) defines a unique

implicit function ∆qfm2 = ∆qfm2 (∆s∗1,∆s
∗
2,∆q3, . . . ,∆qN ) ∈ [0, n0

2].

The continuity of the function ∆qfm2 (∆s∗1,∆s
∗
2,∆q3, . . . ,∆qN ) follows by applying Lemma B.1

with x = ∆qfm2 (∆s∗1,∆s
∗
2,∆q3, . . . ,∆qN ), y = (∆s∗1,∆s

∗
2,∆q3, . . . ,∆qN ), and f(x, y) as the dif-

ference between the left and right sides of (B.6). By replacing the input ∆q2 of ∆qfm1 with the

function ∆qfm2 , we can write

∆q1 = ∆qfm1 (∆s∗1,∆q
fm
2 (∆s∗1,∆s

∗
2,∆q3, . . . ,∆qN ),∆q3, . . . ,∆qN ),

∆q2 = ∆qfm2 (∆s∗1,∆s
∗
2,∆q3, . . . ,∆qN ).

Then equation (B.3) holds for i = 1, 2 simultaneously. Using the boundedness of ∆qfm1 and ∆qfm2
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together with the bound (B.5) (which is needed to bound the derivatives appearing in the chain

rule of differentiation), we can show the existence of a uniform bound P2 such that

P2 ≥ sup
∆s∗1,∆s

∗
2∈[−1,0],∆q3∈[0,n0

2],...,∆qN∈[0,n0
N ]

max

{∣∣∣∣∣∂∆qfm2

∂∆s∗1

∣∣∣∣∣ ,
∣∣∣∣∣∂∆qfm2

∂∆s∗2

∣∣∣∣∣ ,
∣∣∣∣∣∂∆qfm2

∂∆q3

∣∣∣∣∣ , . . . ,
∣∣∣∣∣∂∆qfm2

∂∆qN

∣∣∣∣∣
}
,

(B.7)

using a similar method to that used to show the existence of P1 in (B.5), and under the assumption

that l1, . . . , lK are sufficiently small.

Repeating the steps above for i = 3, . . . , N , and again assuming l1, . . . , lK are sufficiently

small, we obtain N continuous functions

∆qfm1 (∆s∗1,∆q2, . . . ,∆qN ) : [−1, 0]× [0, n0
2]× · · · × [0, n0

N ]→ [0, n0
1];

∆qfm2 (∆s∗1,∆s
∗
2,∆q3, . . . ,∆qN ) : [−1, 0]2 × [0, n0

3]× · · · × [0, n0
N ]→ [0, n0

2];

...

∆qfmN−1(∆s∗1,∆s
∗
2, . . . ,∆s

∗
N−1,∆qN ) : [−1, 0]N−1 × [0, n0

N ]→ [0, n0
N−1];

∆qfmN (∆s∗1,∆s
∗
2, , . . . ,∆s

∗
N ) : [−1, 0]N → [0, n0

N ].

If we replace each input variable ∆qj with the function ∆qfmj , all of these functions become functions

of ∆s∗1, . . . ,∆s
∗
N . We have thus constructed a function Φ : [−1, 0]N → [0, n0

1] × · · · × [0, n0
N ] for

which

Φ(∆s∗1,∆s
∗
2, . . . ,∆s

∗
N ) = (∆qfm1 ,∆qfm2 , . . . ,∆qfmN )>

solves (B.3). This ends the proof of the claim.

Next, we show that for each input ∆S∗ ∈ [−1, 0]N , the corresponding output given by (11) is

still in [−1, 0]N . Towards this goal, we will bound Ufm, and we begin by showing that

−ai · πi · bi ·∆s∗i ≤ ∆qfmi . (B.8)

Since ∆qfmj ≤ n0
j , we have

p0
i + ∆p0

i −
K∑
k=1

N∑
j=1

miklkmjk∆q
fm
j ≥ p0

i + ∆p0
i −

K∑
k=1

N∑
j=1

miklkmjk∆n
0
j > 0,

where the last inequality holds for sufficiently small (lk)k. Hence, if ∆s∗i = 0, then ∆qfmi = 0 and
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(B.8) is satisfied. Assume now that ∆s∗i < 0. Then (B.3) yields

−ai · πi · bi ·∆s∗i · (s0
i + ∆s0

i ) = ∆qfmi ·

p0
i + ∆p0

i −
K∑
k=1

N∑
j=1

miklkmjk∆q
fm
j


≤ ∆qfmi ·

(
p0
i + ∆p0

i

)
.

Hence, using s0
i + ∆s0

i = p0
i + ∆p0

i > 0 we find that (B.8) is again satisfied.

Applying (B.8) in (B.1) shows that Ufmi ≤ 1. In view of the definition in (9), we have that

Ufmi ≥ 0. If Ufmi = 0, it follows from (B.2) that ∆sfmi = −s0
i < 0. If 0 < Ufmi ≤ 1, then combining

(B.1) and (B.2) yields

∆sfmi =
n0
i −∆qfmi

n0
i + ai · πi · bi ·∆s∗i

·

p0
i + ∆p0

i −
K∑
k=1

N∑
j=1

miklkmjk∆q
fm
j

− s0
i (B.9)

≤ p0
i + ∆p0

i −
K∑
k=1

N∑
j=1

miklkmjk∆q
fm
j − s0

i

= ∆p0
i −

K∑
k=1

N∑
j=1

miklkmjk∆q
fm
j ≤ 0,

where the last inequality follows from the fact that ∆p0
i < 0 and ∆qfmj ∈ [0, n0

j ]. Hence,

‖∆Sfm‖∞ ≤ max
i=1,...,K

−∆p0
i +

K∑
k=1

N∑
j=1

miklkmjkn
0
j

 .

Since ‖Ufm‖∞ ≤ 1,

‖UfmMLM>UfmA(I −Π)B‖∞ ≤ ‖MM>A(I −Π)B‖∞ ·max
k

lk.

Then (11) yields∥∥∥∥∥
∞∑
n=0

∆Sn,sm

∥∥∥∥∥
∞

≤ ‖∆Sfm‖∞
1− ‖UfmMLM>UfmA(I −Π)B‖∞

(B.10)

≤ max
i=1,...,K

−∆p0
i +

K∑
k=1

N∑
j=1

miklkmjkn
0
j


/(

1− ‖MM>A(I −Π)B‖∞ ·max
k

lk

)
≤ 1,

where the last inequality holds if maxk lk is sufficiently small.
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We know from (B.9) that ∆sfmi ≤ 0. Moreover, for each n ≥ 1,(
UfmMLM>UfmA(I −Π)B

)n
(B.11)

is the product of matrices with nonnegative entries and therefore has nonnegative entries. Hence,

∆Sn,sm =
(
UfmMLM>UfmA(I −Π)B

)n
∆Sfm ∈ (−∞, 0]N ,

and thus
∑∞

n=0 ∆Sn,sm ∈ [−∞, 0]N . Together with (B.10), we obtain that
∑∞

n=0 ∆Sn,sm ∈ [−1, 0]N .

To establish the existence of a fixed point of (11) using Brouwer’s fixed point theorem, it

remains to show that the output in (11) is continuous in ∆S∗. In the Claim above, we established

(∆qfm1 ,∆qfm2 , . . . ,∆qfmN ) is a continuous function of ∆S∗. Let ∆S∗(k) ∈ [−1, 0]N be such that

lim
k→+∞

∆S∗(k) = ∆S∗.

For ∆S∗(k), k = 1, 2, . . ., denote by Ufm(k) , ∆Sfm(k) the corresponding terms in (11). Because of the

continuous dependence of (∆qfm1 ,∆qfm2 , . . . ,∆qfmN ) on ∆S∗, it holds that

lim
k→+∞

Ufm(k) = Ufm, lim
k→+∞

∆Sfm(k) = ∆Sfm.

To see why limk→+∞ U
fm
(k) = Ufm, recall that Ufm(k),i =

qfm
(k),i

nfm
(k),i

. Moreover, observe that

lim
k→+∞

nfm(k),i = n0
i + ai · πi · bi · lim

k→+∞
∆s∗(k),i = n0

i + ai · πi · bi ·∆s∗i > 0.

Because the output (∆qfm1 ,∆qfm2 , . . . ,∆qfmN ) depends continuously on the input ∆S∗, we have

lim
k→+∞

qfm(k),i = q0
i − lim

k→+∞
∆qfm(k),i = q0

i −∆qfmi = qfmi .

By combining the two limits above, we confirm that limk→+∞ U
fm
(k) = Ufm.

Notice also that∥∥∥(Ufm(k) MLM>Ufm(k) A(I −Π)B
)n∥∥∥

∞
≤
(
‖MM>A(I −Π)B‖∞ ·max

k
lk

)n
Therefore the dominated convergence theorem implies that

lim
k→+∞

+∞∑
n=0

(
Ufm(k) MLM>Ufm(k) A(I −Π)B

)n
∆Sfm(k) =

+∞∑
n=0

(
UfmMLM>UfmA(I −Π)B

)n
∆Sfm,

which shows the continuity of the output of (11) with respect to the input ∆S∗.

In sum, the mapping (11) is continuous, and it maps [−1, 0]N into itself. According to Brouwer’s
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Figure C.1: The figure shows the Spillover Loss Ratio for different values of flow-to-performance
ratio when funds follow a pecking order liquidation strategy both in the absence of first movers
(dashed line) and if all investors are first movers (solid line). For each asset, we apply a shock equal
to −5% price change times its relative volatility. We use asset holdings data from Q1 2020.

theorem, it follows that the mapping has a fixed point.

C Spillover Losses and Pecking Order of Liquidation

In this section, we quantify the dependence of aggregate vulnerability to flow-to-performance sen-

sitivity and first movers under a different asset liquidation strategy followed by funds. Specifically,

we assume that funds follow a pecking order of liquidation, meaning that they sequentially liquidate

assets in increasing order of price impact parameters. First, funds use cash, then they liquidate

government bonds, and then sequentially the other assets. We assume that the assets labeled as

“Other Securities,” “Other Equities,” and “Other Fixed-Income Securities” are the last ones to be

liquidated because we do not have granular information on those assets.16

If all funds follow the pecking order liquidation strategy and the flow-to-performance sensitiv-

ity is low, aggregate spillover losses are significantly lower compared to the case of proportional

liquidation. This is due to two compounding effects. First, the use of cash and the sale of liq-

uid assets to repay redeeming investors reduces the downward impact on asset prices caused by

redemptions and asset liquidation. Second, fire sales are concentrated in fewer (and more liquid)

assets, which reduces asset price contagion. However, if the sensitivity of flow to performance is

large, the first-mover advantage substantially increases the aggregate vulnerability of the mutual

fund system. In Figure C.1, we compare the SLR in the two polar cases with no first movers, or all

first-mover investors. Spillover losses are orders of magnitude larger in the system with only first

16For computational reasons, we aggregate funds within each of the nine types. Unlike the proportion liquidation
strategy, we cannot use matrix algebra to compute the quantities needed to estimate the SLR.
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movers compared to the system without first movers. The reason is that all funds first liquidate

the same assets, severely impacting their prices and precipitating the spiral of redemptions and fire

sales. This scenario is reminiscent of the disruption of Treasury markets during the Covid-19 crisis:

as discussed in Ma et al. (2022), concentrated sales of their most liquid assets by fixed-income

mutual funds led to a significant increase in Treasury yields.

D Analytical Results on First Mover Concentration

Consider a system with two funds holding identical portfolios. Let π̄
2 be the proportion of first

movers in the whole system, and let π ∈
(
π̄
2 , π̄

)
be the proportion of first movers in the first fund.

The proportion of first movers in the second fund is π̄ − π. Let ` :=
∑K

k=1m
2
iklk. Both funds are

subject to an initial identical portfolio shock ∆s0. Let ∆Qfm = x = (x1, x2) be the number of

portfolio units each fund sells to repay first movers, and let ∆S∗ = y = (y1, y2) be the aggregate

shock to each fund’s NAV. The amounts x1 and x2 are the solutions to the system

x1(s0 + ∆s0 − `(x1 + x2)) = −ab(s0 + ∆s0)πy1,

x2(s0 + ∆s0 − `(x1 + x2)) = −ab(s0 + ∆s0)(π̄ − π)y2,

where we assume without loss of generality that p0 = s0. More explicitly,

x1 = fx,1(y1, y2) := πy1
s0 + ∆s0 −

√
(s0 + ∆s0)(s0 + ∆s0 + 4ab`(πy1 + (π̄ − π)y2))

2`(πy1 + (π̄ − π)y2)
,

x2 = fx,2(y1, y2) := (π̄ − π)y2
s0 + ∆s0 −

√
(s0 + ∆s0)(s0 + ∆s0 + 4ab`(πy1 + (π̄ − π)y2))

2`(πy1 + (π̄ − π)y2)
,

where we have chosen the smallest roots, i.e., the ones corresponding to the least amount of assets

funds would have to liquidate to meet first movers’ redemptions. The NAV change of fund 1

observed by second movers is

∆sfm1 =
a− x1

a+ abπy1
(s0 + ∆s0 − `(x1 + x2))− s0.

We may rewrite the above expression, and obtain that each fund’s NAV change observed by second

movers is equal to

∆Sfm = (∆s0 − `(x1 + x2))

(
1

1

)
− (s0 + ∆s0 − `(x1 + x2))

(
x1+abπy1
a+abπy1

x2+ab(π̄−π)y2
a+ab(π̄−π)y2

)
.

Define v1 := a−x1
a+abπy1

, v2 := a−x2
a+ab(π̄−π)y2

. The matrix Ufm defined in Section 3.2 is then given

by

Ufm =

(
v1 0

0 v2

)
,
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and in each round of second movers’ redemptions the NAV change is multiplied by the matrix

T := UfmMLM>UfmA(I −Π)B. An explicit calculation yields

T = ab`

(
(1− π)v2

1 (1− (π̄ − π))v1v2

(1− π)v1v2 (1− (π̄ − π))v2
2

)
.

For sufficiently small `, the matrix I−T is invertible and the aggregate impact on each fund’s NAV

is then given by (
y1

y2

)
=

(
fy,1(x, y)

fy,2(x, y)

)
:=

∞∑
n=0

Tn∆Sfm = (I − T )−1∆Sfm. (D.12)

Therefore, to find the aggregate NAV change we need to solve the fixed point of the system x = fx(y)

and y = fy(x, y). The component y = (y1, y2) gives the aggregate NAV changes for funds 1 and 2,

respectively.

Next, we restate Proposition 2 using the notation introduced in this section. In particular, the

fixed point y∗ plays the role of ∆S∗ in Proposition 2. We make the dependence of the functions fx

and fy on π explicit by writing fπx and fπy .

Proposition 2’. Assume ∆s0 ∈ (−1, 0) and b ·∆s0 ∈ (−1, 0). For sufficiently small `, there exists

a fixed point y∗(π) for fπy (fπx (y), y), where π ∈ ( π̄2 , π̄) is the proportion of first movers in the first

fund. Define g(π) := lim`↓0
1
` (y
∗
1(π) + y∗2(π) − 2∆s0), i.e., y∗1(π) + y∗2(π) = 2∆s0 + ` · g(π) + o(`).

The function g(π) is decreasing in π.

Proof. Fix π ∈ ( π̄2 , π̄) and let yπ := y∗(π) be the vector of aggregate NAV changes if the proportion

of first movers for each fund is, respectively, π and π̄ − π. For ` = 0, asset liquidation does not

move prices, and therefore yπ = (∆s0,∆s0). By continuity, a fixed point yπ exists for sufficiently

small `. Assume yπ = (∆s0,∆s0) + ` · yπ,1 + o(`2), where yπ,1 is independent of `. The first order

expansion of (x1, x2) = fπx (yπ) yields

x1 = −abπ∆s0 + `abπ
abπ̄(∆s0)2 − yπ,11 (s0 + ∆s0)

s0 + ∆s0
+ o(`),

x2 = −ab(π̄ − π)∆s0 + `ab(π̄ − π)
abπ̄(∆s0)2 − yπ,12 (s0 + ∆s0)

s0 + ∆s0
+ o(`).

After plugging the expansion for (x1, x2) into the right-hand side in equation (D.12), we obtain

(I − T )−1∆Sfm = ∆s0 + ` ·

(
ab∆s0(2+bπ∆s0(2−π̄))

1+bπ∆s0
ab∆s0(2+b(π̄−π)∆s0(2−π̄))

1+b(π̄−π)∆s0

)
+ o(`).
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Hence, by comparing the terms of order ` in equation (D.12), we get

yπ,11 = ab∆s0 2 + bπ∆s0(2− π̄)

1 + bπ∆s0
,

yπ,12 = ab∆s0 2 + b(π̄ − π)∆s0(2− π̄)

1 + b(π̄ − π)∆s0
.

In particular, yπ1 + yπ2 = 2∆s0 + ` · g(π) + o(`), where

g(π) = ab∆s0

[
2 + bπ∆s0(2− π̄)

1 + bπ∆s0
+

2 + b(π̄ − π)∆s0(2− π̄)

1 + b(π̄ − π)∆s0

]
.

The first derivative of g(π) is

ab3(∆s0)3π̄
(2π − π̄)(2 + bπ̄∆s0)

(1 + bπ∆s0)2(1 + b(π̄ − π)∆s0)2
,

which is negative because 2π > π̄, ∆s0 < 0, and b ·∆s0 > −1. This concludes the proof.

An increase in first mover concentration has a twofold effect on each fund’s NAV. First, addi-

tional first-mover redemptions at the first fund negatively impact its NAV (and, conversely, fewer

first mover redemptions at the second fund increase its NAV). This effect is symmetric across the

two funds. Second, an increase in the proportion of first movers reduces the number of investors

that bear the cost of first movers’ redemptions, while this externality is spread over more investors

for the fund with fewer first movers. This effect is asymmetric, because it exacerbates the impact

of first movers on the first fund’s NAV and reduces the benefit of having fewer first movers. Hence,

the aggregate effect of first mover concentration on the system is negative.
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