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Abstract

We build a general equilibrium production-based asset pricing model with heteroge-
neous firms that jointly accounts for firm-level and aggregate facts emphasized by
the recent macroeconomic literature, and for important asset pricing moments. Using
administrative firm-level data, we establish empirical properties of large negative id-
iosyncratic shocks and their evolution. We then demonstrate that these shocks play an
important role for delivering both macroeconomic and asset pricing predictions. Fi-
nally, we combine our model with data on the universe of U.S. seaborne import since
2007, and establish the importance of supply chain disasters for the cross-section of
asset prices.
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1 Introduction

We build a model that accounts for a variety of aggregate and cross-sectional asset pricing

facts and is jointly consistent with predictions of modern macroeconomic models focused

on firm behavior. Specifically, we combine the main features of production-based asset

pricing models (e.g., Jermann, 1998; Zhang, 2005; Bai, Hou, Kung, Li and Zhang, 2019;

Chen, 2017) with a state-of-the-art heterogeneous firm model with investment frictions and

aggregate uncertainty in general equilibrium (Thomas, 2002; Khan and Thomas, 2008). We

argue that this combination is important as such macroeconomic models have not been

designed to match the asset pricing facts while production-based asset pricing models have

not focused on delivering the detailed cross-sectional and aggregate firm-level implications

that have been at the center of this strand of macroeconomic literature.

The two sides of our model are as follows. On the macroeconomic side, we build a

production economy in the spirit of Khan and Thomas (2008) that features both convex and

non-convex capital adjustment costs, thereby generating a lumpy (Cooper and Haltiwanger,

2006) and right-skewed (Bai, Li, Xue and Zhang, 2022) investment rate distribution. The

model is set in general equilibrium which imposes a higher standard of internal consistency

relative to partial equilibrium frameworks. One important new feature of our model is that

a small share of firms every period experiences a large negative idiosyncratic productivity

shock—a firm-level microeconomic disaster, or a jump. Several important recent papers in

asset pricing literature argue that micro-level jumps play a prominent role. Schmidt (2022)

develops a model with microeconomic disasters on the worker side which matches the level

and dynamics of the equity premium; we, in turn, consider such shocks on the firm side.

McQuade (2018) introduces firm-level jumps to account for empirical default frequencies and

credit spreads. Oh and Wachter (2022) argue that fat-tailed idiosyncratic shocks are needed

to generate the skewed cross-section of stock returns. Recent macroeconomic literature

that analyzes detailed administrative data also documents deviations of productivity and

employment changes from normality (Kehrig, 2015; Salgado, Guvenen and Bloom, 2020). In

particular, shocks are heavy-tailed and exhibit procyclical skewness; that is, in recessions,
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large negative shocks become more likely than large positive ones (Dew-Becker, 2022). One

natural way to account for such features of the data is to introduce jumps with a time-varying

size (Cont and Tankov, 2003; Tsai and Wachter, 2015). We establish detailed characteristics

of firm-level microeconomic disasters using high-quality microdata from U.S. Census Bureau.

These data cover a universe of U.S. businesses from 1976 and thus provide comprehensive

scope and time span that allows us to precisely parameterize these firm-level rare events and

their evolution in the model, which are difficult to estimate with less granular data.

On the asset pricing side, our model is most closely related to Jermann (1998) and Chen

(2017) in the aggregate, and Zhang (2005); Chen (2018); Bai, Hou, Kung, Li and Zhang

(2019) and Ai, Li and Tong (2021) in terms of cross-sectional asset pricing implications. As

McQuade (2018) and Schmidt (2022), we emphasize the role of microeconomic disasters.

We show that our model accounts for important asset pricing moments, both aggregate and

cross-sectional. For instance, the model produces a large and volatile equity premium, a

small and stable risk-free rate and a time-varying risk-premium. We highlight the role that

microeconomic disasters play in accounting for these and other asset pricing implications.

One contribution of our model is that it jointly delivers firm-level empirical facts em-

phasized by macroeconomic literature on heterogeneous firms over the business cycle, as

well as proper cross-sectional and aggregate asset pricing implications emphasized by the

production-based asset pricing finance literature. First, both convex and non-convex capital

adjustment frictions allow the model to generate a lumpy investment rate distribution; these

adjustment frictions are also important both for the aggregate and cross-sectional behavior

of asset prices. Second, jumps with time-varying sizes play two key roles. On one hand,

they yield heavy tails of employment changes which we document in the data. On the other

hand, microeconomic disasters increase volatility of aggregate investment and dividend rates

of productive firms by over 20 percent while having virtually no impact on the least produc-

tive ones; as a result, jumps represent an important determinant of value and investment

premiums. Third, the comprehensiveness of the U.S. Census data allows us to precisely

parameterize the firm-level shock process, in particular its persistence, which is central to
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cross-sectional asset pricing implications. Finally, the general equilibrium setting of our

model ties the time-series evolution of the marginal utility with an endogenous consumption

decision of the household, thereby making the stochastic discount factor internally consistent

(Kogan and Papanikolaou, 2012).

In the second part of the paper, we apply our model to quantitatively study macroe-

conomic and asset pricing implications of supply chain disruptions and disasters.1 Global

pressures on supply chains have increased substantially and are currently at the historically

high levels, as is reflected by virtually all aggregate supply chain indices (e.g., Benigno, di

Giovanni, Groen and Noble, 2022); this is a major concern of policymakers.2 One contri-

bution of our paper is to provide a cross-sectional and aggregate analysis of supply chain

disruptions and disasters using a novel, large-scale data on the universe of seaborne U.S.

import that cover nearly 200 million transactions and span the time period starting from

2007. An important advantage of this dataset is the exceptionally detailed information ac-

companying each shipment; three pieces of information are particularly important. First, we

use the exact identities of consignees (importers) and shippers (suppliers) to measure supply

chain disruptions and disasters at the individual consignee level. Second, we associate each

shipment with the ultimate parent company, and merge these parent-level data with Com-

pustat. We find that supply chain disruptions are associated with a pronounced decline in

sales growth, and that the share of firms that experience supply chain disruptions is sizable

in the bottom part of the sales growth distribution. Third, we use the detailed data on the

exact volume of each shipment (in twenty-foot equivalent units, TEUs) to characterize not

only the occurrence but also the size distribution of supply chain disruptions. In particular,

we are able to measure the prevalence and evolution of both supply chain disruptions and

supply chain disasters. We document that, while supply chain disruptions have indeed be-

come more common in the last 3-4 years, the probability of very large disruptions increased
1In an important early paper Cohen and Frazzini (2008) investigate how asset prices of economically

connected firms co-move through the supplier-customer relationship. In this paper, we focus on how returns
of firms-customers respond to supply shocks. In a more recent study, Jain and Wu (2020) demonstrate that
global sourcing strategies can predict future stock returns.

2See, for example, the recent Biden-Harris plan to secure critical supply chains (White House, 2022).
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even more and nearly doubled over the same time period.

We then quantitatively evaluate the effects of these recent changes that we empirically

document. In the aggregate, the effect of higher supply chain disasters is naturally muted

as they account for only a small share of all firm-level disasters; we find that the equity

premium increases by 0.2pp. However, this effect is highly non-monotonic in the cross-

section; in particular, the expected return of high book-to-market firms increases by 0.5pp

and of low investment firms by 0.3pp. At the same time, the impact on growth stocks

and high investment firms is negligible. We further evaluate the performance of the model

by empirically studying the impact of identified supply chain disruptions on realized stock

returns and show that disruptions, especially large ones, reduce returns of value stocks more

strongly than those of growth stocks. Similarly, identified disruptions reduce returns of low

investment firms by more relative to high investment stocks.

2 Empirical Evidence On Employment Changes

In this section, we draw on the universe of U.S. firms to first show that the distribution of

employment changes in the data exhibits heavy tails: The probability of large changes is

much higher than what is implied by a Gaussian density. Furthermore, we demonstrate that

larger shocks are more transient than smaller shocks; we use this insight to put discipline on

the model developed in the next section.

2.1 Data

We use the Longitudinal Business Database (LBD) housed by the U.S. Census Bureau. The

LBD is an administrative panel dataset that covers the universe of non-farm establishments

in the U.S. private sector. The unit of observation is an establishment, which is defined as a

single physical location where business is conducted. We perform analysis at the firm-level,

which requires rolling up plant-level data to the company-level. See Appendix A.1 for details.
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Table 1: Concentration Statistics of Employment Growth

P (|∆ log n| ∈ S)
S : ≤ 0.05 ≤ 0.10 ≤ 0.20 ≥ 2σ (≈ 0.8) ≥ 3σ (≈ 1.2)

Data 0.444 0.492 0.604 0.059 0.021
N (0, 0.41) 0.097 0.193 0.374 0.046 0.003
Ratio 4.577 2.549 1.615 1.283 7.000

Notes: The empirical distribution used in these calculations is based on U.S. Census LBD for years 2005-
2006. Establishment-level data has been rolled up to the firm-level; see Appendix A.1 for details.

2.2 Heavy-Tailed Distribution of Employment Changes

In the data, the distribution of employment changes exhibits heavy tails. To illustrate this

point, we calculate concentration measures for employment changes of various sizes (see

Table 1). In the data, about 44 percent of firms experience an employment change of less

than 5 percent, whereas if shocks were drawn from a normal distribution with the same

standard deviation as in the data, only about 10 percent of firms would experience such

changes.

Importantly, extreme events are more likely in the data: A typical firm experiences a

change larger than three standard deviations (120 log points) with a probability of 2.1 percent

per annum, whereas this probability is one-seventh that size under a normal distribution.

Overall, the table suggests that modeling idiosyncratic shocks as random draws from a

Gaussian density—a standard assumption in numerous macro-finance models—will fail to

account for rare and large shocks we observe in the data.

2.3 Mean-Reversion of Employment Changes

We now adopt a nonparametric strategy to characterize the nonlinear mean-reversion of

employment shocks of various sizes. We do so by documenting the impulse response functions

of employment changes of different sizes and signs for firms of different sizes. In particular, we

group firms by their employment growth between t− 1 and t, and their size, and then follow

their employment over the next 5 years; our approach follows Guvenen, Karahan, Ozkan

and Song (forthcoming) who studied labor income shocks. We compute employment growth
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Figure 1: Empirical Impulse Response Functions

Notes: Figure 1 consists of three panels. The graphs demonstrate the mean reversion of employment changes
of various size for small (recent size ∈ (P5, P10]), median (recent size ∈ (P45, P55]) and large (recent size
∈ (P90, P95]) firms. The average mean reversion varies across the RS groups because of different employment
histories. Therefore, we normalize employment changes on both the x- and y-axes such that their values
at the median 6th group of nt − nt−1 cross at zero. For additional details, see Section 2.3. Datasource:
Longitudinal Business Database.

rates between t− 1 and t as the log difference, ni
t−ni

t−1, where ni
t = ñi

t− dt,j(i,t),a(i,t) denotes

the log employment (ñi
t) of firm i in year t net of age a(i, t), industry j(i, t) (at NAICS 2-digit

level) and year t fixed effects. We obtain ni
t by regressing ñi

t on a full set of age dummies

separately for each industry-year. The average size of firm i between years t− 5 and t− 1 is

RSi
t =

1
5

∑5
p=1 Ñ

i
t−p, where Ñ i

t denotes employment of firm i in year t. We keep only those

firm-year observations for which we have at least 3 non-missing employment observations in

the preceding 5 years. We control for age, industry and year effects by regressing average

employment on age dummies for each industry-year, and call the residuals as recent size

(RS).

We rank and group individual firms into the following 20 RS percentiles: 15, . . . , 96100.

Next, within each RS group, we group firms by the size of their log employment change

between t − 1 and t into the following 11 categories: ∆ log n ∈ (−∞,−3σ), [−3σ,−2σ),

[−2σ,−σ), [−σ,−0.1), [−0.1,−0.05), [−0.05, 0.05), and so on.3 This way we ensure that

all firms within a group have similar sizes up to t − 1, and experience a similar change in
3In our application, we use the standard deviation of log employment changes based on years 1976-2016

in the LBD, σ = 0.41.
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employment from t−1 to t. For each such group of firms, we then compute the log change of

their average employment from t to t+ k, logE[N i
t+k]− logE[N i

t ], where N i
t is employment

net of age, industry and time effects. Rather than taking the average of log employment

changes, this approach allows us to keep the composition of firms constant for each horizon

k.

Figure 1 shows empirical impulse-response functions (IRFs) for small (RS ∈ (P5, P10]),

median (RS ∈ (P45, P55]) and large (RS ∈ (P90, P95]) firms. Values on the horizontal axis

measure the size of log employment changes from year t− 1 to t, while values on the vertical

axis represent the log change of average employment at horizons of 1, 3, and 5 years. Thus,

the closer the IRF is to the dashed diagonal line, the more transient the shock is. And,

conversely, the closer IRF is to the horizontal solid line, the more persistent the employment

change is.

There are several important observations. First, across the entire firm-size distribution,

small shocks are more persistent than large shocks. In particular, large negative shocks tend

to be more transient for small firms (and mean-revert by about two-thirds over 5 years),

whereas these shocks are somewhat more persistent for median and large firms. At the same

time, smaller shocks do not mean-revert nearly as fast across all three size groups.

Moreover, the sign of employment changes matters for the nature of mean-reversion;

large positive shocks appear to be more persistent than large negative shocks, especially

for small and large firms. Interestingly, large positive shocks for large firms are almost as

persistent as they are for small firms. This feature of the firm-level data is at stark contrast

with labor income dynamics; Guvenen, Karahan, Ozkan and Song (forthcoming) find that

the speed of mean reversion of large positive shocks increases in worker’s income, while our

findings suggest it is not monotonic in firm size. Finally, we note that large firms experience

larger tail shocks, since the average employment change in the first and last groups are more

extreme for large firms relative to small and median ones.

In summary, this section demonstrates a tremendous heterogeneity in mean-reversion

of employment changes depending both on the size of the firm and the size of the shock
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itself. Critically, the data reveal that large shocks are more transient than small employment

changes; we later use our quantitative model to show that this has important cross-sectional

implications (Schmidt, 2022).

3 Model

We build a model of industry dynamics with heterogeneous firms in the spirit of Khan and

Thomas (2008) and Bachmann, Caballero and Engel (2013) on the macro side and Jermann

(1998) and Chen (2017) on the asset pricing side.4 Time in the model is discrete and the

horizon is infinite. The economy is populated by heterogeneous firms and a representative

household. There is a single final good produced by firms which can be either consumed or

invested. Households own shares in firms, supply labor, and consume the final good.

3.1 Environment

Technology Every firm i has access to a Cobb-Douglas production technology with de-

creasing returns to scale:

y(XZ
t , zit, nit, kit) = eX

Z
t ezitkα

itn
ν
it

with α, ν > 0 and α + ν < 1. Every firm produces a homogeneous output yit by combining

capital kit and labor nit with corresponding shares α and ν. The production function is scaled

by an aggregate component XZ
t and idiosyncratic component zit. Aggregate productivity

component XZ
t affects all firms simultaneously; it follows an AR(1) process:

XZ
t+1 = ρZX

Z
t + εZt+1, εZt+1 ∼ N (0, σZ), (1)

4Other related research includes studies of entry dynamics (e.g., Clementi, Khan, Palazzo and Thomas,
2015; Clementi and Palazzo, 2016; Smirnyagin, 2022) and financial frictions (Khan and Thomas, 2013; Khan,
Senga and Thomas, 2014).
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where ρZ ∈ (0, 1). Idiosyncratic component zit follows an AR(1) process with the persistence

parameter ρz ∈ (0, 1):

zit+1 = ρzzit + χ(XZ
t )Jit + εzt+1, (2)

χ(XZ
t ) = −ρ0e

−ρ1XZ
t . (3)

A jump component Jit in Equation (2) is a Poisson random variable with arrival rate λ,

and εzt+1 is drawn from the normal distribution with mean 0 and variance σ2
z . A share λ of

firms experiences a jump downward each period; the size of the jump χ(XZ
t ) is a function of

the aggregate state XZ
t . Assuming strictly positive parameters ρ0 and ρ1, this specification

implies that jumps are non-positive and larger in worse aggregate times, i.e. for low values

of XZ
t . The timing is such that the size of the jump is known to firms at the beginning of

period t.

Labor Labor market is frictionless with the wage rate Wt.

Investment Firms enter period t with some predetermined idiosyncratic level of capital

kit. The capital in period t+1 is determined by depreciation and investment made in period

t. Capital depreciates at a rate δ. Investment is costly, and firms which would like to make

an unconstrained choice of capital for period t + 1 have to pay a cost η ≥ 0 denominated

in units of labor. Firms draw η from some distribution F η independently across time and

space.

Financing There is a representative household which owns all firms; the proceeds from

production net of depreciation and investment are paid out to the household as dividends

dit. We assume no frictions on financial markets, and, thus, place no constraints on the value

of dit.

Households The economy is populated by a unit mass of identical households. Each

household consumes, supplies labor, and saves into firms’ shares. Investment in firms is a
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device households use in order to smooth consumption over time.

3.2 Firm Optimization

Beginning of the Period Let S denote the aggregate state that consists of the distribu-

tion of firms over the idiosyncratic states µ = µ(k, z), as well as the value of an aggregate

shock XZ
t . The firm enters the period with some pre-determined level of capital k. Idiosyn-

cratic productivity z is realized at the beginning of the period. Let v(k, z;S) denote the value

of the firm at the start of the period given the idiosyncratic state (k, z) and the aggregate

state S.

After the production stage takes place, firms learn the cost of capital adjustment η ∼ F η.

Thus, the value of the firm at the start of the period can be written as:

v(k, z;S) = π(k, z;S) +

∫
max{vadj(k, z;S)− ηW (S), vno adj(k, z;S)}dF η, (4)

where firm profits π are defined as:

π(k, z;S) = max
n≥0

eX
Z

ezkαnν −W (S)n. (5)

Objects vadj and vno adj in (4) are values the firm attains in case of unconstrained and con-

strained capital choices, respectively.The profit maximization problem (5) is the static choice

of the labor input.

We assume that the cost of a capital adjustment is distributed uniformly: η ∼ U [0, η̄].

The firm will choose to undertake an unconstrained investment conditional on the realization

of the cost shock η if and only if

vadj(k, z;S)−W (S)η ≥ vno adj(k, z;S).

For each firm indexed by its state (k, z;S), there is a threshold value of η∗(k, z;S) such that

the firm always chooses to make an unconstrained investment if η < η∗(k, z;S), and prefers
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to be constrained if η ≥ η∗(k, z;S). It follows that the threshold is given by

η∗(k, z;S) =
vadj(k, z;S)− vno adj(k, z;S)

W (S)
. (6)

Provided that η has bounded support, we reformulate the definition of the threshold to force

it to lie within the interval [0, η̄]:

η̂(k, z;S) = min{η̄,max{0, η∗(k, z;S)}}. (7)

We, therefore, can rewrite the value of a firm at the start of the period (4) as follows:

v(k, z;S) = π(k, z;S) +

(
η̂(k, z;S)

η̄

)[
vadj(k, z;S)−W (S)

η̂(k, z;S)

2

]
+

+

(
1− η̂(k, z;S)

η̄

)
vno adj(k, z;S). (8)

Value of Adjusting If the firm chooses to adjust (i.e., to make an unconstrained capital

choice), then it solves the following programming problem

vadj(k, z;S) = max
k′≥0

−i− AC(k′, k) + E[M(S,S′)v(k′, z′;S′)], (9)

k′ = (1− δ)k + i, (10)

AC(k′, k) =
φ

2

(
i

k

)2

k, (11)

S′ ∼ Γ(S′|S), (12)

where Γ is the firm’s perceived law of motion of the aggregate state and M(S,S′) is a

stochastic discount factor. Parameter φ governs the extent of quadratic adjustment costs

AC(·) in the economy.

Value of Not Adjusting The value of not adjusting vno adj solves a similar to (9)-(12)

programming problem with the only difference that the firm’s investment rate is bounded
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by some small positive number b: k′ ∈ [(1− δ − b)k, (1− δ + b)k].

3.3 Household Optimization

The representative household maximizes the discounted stream of utilities subject to the

budget constraint. We assume that labor is supplied inelastically, N = 1. The wealth is held

in one-period firm shares, ξ(k, z). The price of current shares is ω0, and the purchase price

of new shares is ω1. The household’s dynamic programming problem is then

H(S) = max
c,ξ′

[U(c) + βEH(S′)] (13)

subject to

c+

∫
ω1(k

′, z′;S)dξ′ ≤ W (S)N +

∫
ω0(k, z;S)dξ. (14)

The right-hand side of (14) represents the resources available to the household; it consists

of firm shares coming from the previous period, as well as labor income. Part of these

resources is consumed, and the rest is reinvested into firm shares.

Utility We consider preferences with external habit formation of the following form:

U =
(Ct −Ht)

1−σ

1− σ
, (15)

where Ht is a habit stock (Campbell and Cochrane, 1999). We define the habit stock Ht

to capture the idea that utility over current consumption is judged relative to the past

consumption. Specifically, we first define the surplus consumption ratio as

St :=
Ct −Ht

Ct

, (16)

and then define the law of motion for St:

St+1 = S̄1−ρHSρH
t

(
Ct+1

Ct

)λH

. (17)
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Let C(S) be the household’s consumption policy function. Also, let Ξ(k′, z′;S) be a

number of shares purchased in firms which start next period with capital k′ and idiosyncratic

productivity component z′. The detailed definition of equilibrium is relegated to Appendix

B.1.

Solution Method It is challenging to solve the model with heterogeneous firms and ag-

gregate uncertainty, since the entire distribution of firms across idiosyncratic states becomes

a part of a state vector. One broadly applied method to deal with this infinitely dimensional

object is to assume that agents only use a finite number of moments of the cross-sectional

distribution to form expectations about the future (Krusell and Smith, 1998). The main

advantage of this method is the accuracy of decision rules with respect to aggregate shocks.

This, however, comes at a cost; the set of moments used in forecasting equations is typically

arbitrary, and the entire method is generally slow.

We take a different approach, and solve the model in two steps. First, we use global meth-

ods to compute the steady-state of the model economy. Specifically, we apply collocation

methods to solve the firm’s functional equations. Subsequently, we perform a second-order

perturbation of the model around the steady-state with respect to an aggregate productivity

shock, preserving the full non-linearity of firm-level decision rules with respect to idiosyn-

cratic states (Reiter, 2009; McKay and Reis, 2016; Winberry, 2018). Further computational

details are in Appendix B.

There are two important aggregate limiting cases of our model: the representative firm

frameworks of Jermann (1998) and Chen (2017).5 As an additional accuracy check of our

algorithm, we turned off cross-sectional heterogeneity in our model by setting both ρz and

σz to 10−4 (along with dropping non-convex capital adjustment costs), and reproduced key

business cycle statistics and asset pricing moments reported in aforementioned studies.
5Another limiting case that we considered is an important paper by Chen (2018) who studied a hetero-

geneous firm model in general equilibrium with only convex adjustment costs.

14



Table 2: Parameter Values

Parameter Description Value Target/Source Data Model
β Discount factor 0.989 90-day Treasury-bill return 0.24 0.20
α Capital share 0.210
ν Labor share 0.640
σ Utility curvature 2 Campbell and Cochrane (1999)
δ Depreciation rate 0.025 E

[
i
k

]
0.10 0.10

ρz Persistence of idiosyncratic AR(1) 0.880 Mean-reversion of emp. changes
σε Std of idiosyncratic AR(1) 0.038 E[P9010(∆ log n)] 0.56 0.62
b Adj. region 0 –
η̄ Upper bound non-convex 0.012 P

[∣∣ i
k

∣∣ > 0.2
]

0.14 0.17
φ Quadratic adj. cost 0.450 σ

[
i
k

]
0.16 0.12

S̄ Steady state surplus consumption 0.100 Mean Sharpe ratio 0.44 0.37
ρH Habit persistence 0.980 Benchmark value
λH Habit sensitivity 1

S̄
− 1 Chen (2017)

ρZ Persistence of aggregate TFP 0.980 Benchmark value
σZ Std of aggregate TFP 0.014 σ(Y ) 1.78 1.82
ρ0 Size of jump 0.303 E[P5010(∆ log n)] 0.26 0.31
ρ1 Sensitivity of jump 4.050 σ[P5010(∆ log n)] 0.03 0.03
λ Jump intensity 0.011 P [∆ log n ≤ −3σ] 0.01 0.01

4 Parameterization and Model Fit

We set the model period to be one quarter. The time preference parameter β is chosen to fit

the mean return on 90-days Treasury bills. We set the labor share ν = 0.64 and choose the

capital share α so that the total returns to scale are 85 percent. Utility curvature is equal

to 2 (Campbell and Cochrane, 1999).

Depreciation rate is δ = 0.025 such that the mean annual investment rate is 10 per-

cent. The persistence ρz for the idiosyncratic productivity process is set such that large

negative employment changes (∆ log ni
t < µ − 3σ) recover by one-half over the course of 5

years among firms with the median recent size, in line with empirical evidence reported in

Section 2. Idiosyncratic volatility σz = 0.038 is set to match the time-series average of the

interdecile range of employment changes in the data. The upper bound of non-convex capi-

tal adjustment costs η̄ = 0.012 is set to match the probability of investment spikes, and the

quadratic adjustment costs parameter φ = 0.45 is chosen to generate the observed dispersion

of investment rates (investment moments are from Zwick and Mahon, 2017).6 We set b = 0,

i.e. in case of a constrained investment decision firms let current capital depreciate. We set
6An investment spike is a situation when the investment rate exceeds 20 percent in absolute value.
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ρZ , the persistence of aggregate TFP, to a benchmark value of 0.98. The standard deviation

of innovations to aggregate TFP σZ = 0.014 is set to match the volatility of GDP.

The size of the jump ρ0 governs the length of the left tail of log employment changes, we

set ρ0 = 0.303 to capture the average value E[P5010(∆ log n)] = 0.26. The sensitivity pa-

rameter ρ1 is set to match a time-varying left tail of log employment changes; thus, volatility

of P5010(∆ log n) is a natural target to identify this parameter.7 Finally, the Poisson arrival

rate λ = 0.011 is chosen such that the probability of large negative events (∆ log n ≤ µ−3σ)

aligns with the data.

Typically, it is assumed that λH is a decreasing function of surplus consumption; this

generates a countercyclical volatility of marginal utility and leads to a time-varying risk

premium. However, we assume that the sensitivity of habit is constant over the business

cycle, and is equal to λH = 1
S̄
− 1. It turns out that production economies accompanied by

precautionary motives endogenously generate countercyclical consumption volatility, thereby

accounting for the smooth risk-free rate and high and volatile equity premium (Chen, 2017).

We set S̄ = 0.10 to match a mean (annual) Sharpe ratio of excess returns of 0.44. Persistence

of habit ρH is set to the benchmark value of 0.98; we present sensitivity analysis of this choice

in Section 5.4. Table 2 summarizes the parameterization of the model.

5 Macroeconomic and Asset Pricing Implications

This section discusses macroeconomic and asset pricing implications of the model developed

in the previous section. We first demonstrate in Section 5.1 that the model generates a

lumpy investment rate distribution and a heavy-tailed distribution of employment changes,

and discuss the role of microeconomic disasters in accounting for these features. We then

show in Section 5.2 that the model successfully accounts both for aggregate asset pricing and

key business cycle statistics. Section 5.3 demonstrates that the time-varying risk premium

in the model gives rise to predictable returns. Furthermore, Sections 5.4 and 5.5 first discuss
7Both the length and volatility of the left tail of log employment changes are sourced from Salgado,

Guvenen and Bloom (2020).
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Figure 2: Distributions of Investment Rates and Employment Changes in
Steady State

(a) Distribution of investment rates (b) Distribution of employment changes
Notes: Figure 2 consists of two panels. Panel (A) plots the p.d.f. of investment rates in the steady state of
the model. The vertical black line marks the mean investment rate in the simulated panel of firms. Panel
(B) plots the distribution of employment log changes, ∆log n. The red line is the normal density with mean
0 and the same standard deviation as the simulated data.

the sensitivity of our results with respect to key structural parameters, and explain how

microeconomic disasters generate high equity premium. We then study implications of the

model for the cross-section of stock returns by showing that the model generates both the

value and investment premiums (Sections 5.6 and 5.7). Finally, we demonstrate that the

degree of mean-reversion of jump shocks is much more important for the cross-section of

stock returns as compared with the persistence of small shocks (Section 5.8).

5.1 Cross-sectional Distributions

Figure 2 displays the model-generated distributions of investment rates (panel (A)) and

employment log changes (panel (B)). Due to the fixed cost of capital adjustments, there is a

considerable mass of observations with close-to-zero investment along with a substantial mass

of observations with large positive investment spikes. It is worth noting that asset pricing

literature made some progress with various types of quadratic costs (e.g., Zhang, 2005; Chen,

2018; Bai, Hou, Kung, Li and Zhang, 2019); however, it is challenging to capture the lumpy

nature of investment without a non-convex component of capital adjustment costs.
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Table 3: Aggregate Asset Pricing and Business Cycle Moments

Moment Data Model
E[rf ] 0.89 0.79
E[re − rf ] 6.36 6.56
σ[rf ] 1.82 2.46
σ[re − rf ] 16.52 18.50
AC1[r

f ] 0.84 0.99
AC1[r

e − rf ] 0.08 0.00
σ(Y ) 1.78 1.81
ρ(C, Y ) 0.91 0.99
ρ(I, Y ) 0.87 0.95
σ(C)/σ(Y ) 0.82 0.52
σ(I)/σ(Y ) 4.64 4.29

Notes: Table 3 reports asset pricing and business cycle statistics in the data and model. The symbols have
the following meaning: rf , risk-free rate, re, return to equity, Y , output, C, consumption, I, investment,
σ(·), standard deviation, AC1(·), autocorrelation, ρ(·), correlation. Only levels of macro aggregates (C, Y,
and I) were log-differenced and HP-filtered with the smoothing parameter of 1600. Business cycle statistics
are quarterly and asset return moments are annualized and reported in percentage terms. Model moments
are the mean across 100 simulations of 500 quarters. We burn 200 first periods to reduce the impact of initial
conditions.

Panel (B) demonstrates a left-skewed and heavy-tailed distribution of employment log

changes; due to the presence of rare microeconomic disasters, the left tail is thicker as

compared with normal density. In particular, the share of observations further than −3σ

from the mean is about 9 times bigger relative to normal distribution; this accords well with

empirical evidence reported in Section 2.

Table D18 in Appendix assesses the role of microeconomic disasters for cross-sectional

distributions of investment rates and employment changes. We find that the distribution

of investment rates is to a large extent invariant to microeconomic disasters; this is not

surprising given that the model features both convex and non-convex capital adjustment costs

which force capital to adjust slowly. However, the model features a frictionless labor market;

thus, labor is more fluid than capital, and we see a significant impact of microeconomic

disasters on the distribution of employment changes. Specifically, we find that jumps both

increase the dispersion of the distribution and raise the share of firms that experience very

large changes. Therefore, jumps play a key role in accounting for heavy tails of employment

shocks observed in the data.
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5.2 Aggregate Implications

The model matches important asset pricing and business cycle moments (Table 3). In

particular, the model is capable of picking up aggregate asset pricing moments; the risk-free

rate is small and stable, and the equity premium is large and volatile.8 While the latter

typically arises in habit models (e.g. Jermann, 1998; Campbell and Cochrane, 1999), the

smoothness of the risk-free rate is achieved due to the countercyclical consumption volatility

that counteracts low intertemporal elasticity of substitution (Chen, 2017). Specifically, the

IES in external habit models is S̄
σ
= 0.05; this incentivizes the household to borrow from the

future during downturns by selling the risk-free asset, thereby pushing up its return. On the

other hand, an increase in consumption volatility in recessions activates the precautionary

savings motive; this stimulates savings and, as a result, stabilizes the dynamics of the risk-

free rate. The model also fits other time-series properties of asset prices: The risk-free rate

is highly persistent, while the excess returns are nearly a random walk.

Furthermore, the model matches standard business cycle statistics. Investment is more

volatile than output and consumption is less volatile than output in both the model and

the data. All macroeconomic aggregates are highly correlated with each other since there is

a single aggregate shock. Provided that jumps are idiosyncratic and rare, the quantitative

impact of microeconomic disasters on aggregate business cycle dynamics is limited (see Ta-

ble D19 in Appendix). Nevertheless, jumps have important quantitative implications in the

cross-section. To demonstrate this, we sort firms into quintiles with respect to idiosyncratic

productivity and re-sort them every four quarters. Table 4 shows that microeconomic disas-

ters have a sizable impact on aggregate investment and dividend rates in the cross-section.

Specifically, we find that, in the absence of jumps, least productive firms have lower invest-

ment and, accordingly, higher dividend rates. At the same time, the time-series volatility of

both rates is monotonically increasing in productivity; the dividend rate of the most pro-

ductive firms is about 10 percent more volatile relative to unproductive firms. Incorporating

8We compute the expected (gross) risk-free rate as E[Rf
t ] = E

[
1

EtM(S,S′)

]
, and the equity return as

Re(S′|S) =
∫
v(k′,z′;S′)dµ′∫

[v(k,z;S)−d(k,z;S)]dµ , where d(k, z;S) = y(k, z;S)−W (S)n(k, z;S)− i(k, z;S)−AC(k, k′).
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Table 4: Aggregate Investment and Dividend Rates by Productivity Quin-
tile

λ = 0 λ = 0.011

Group E
[
I
K

]
σ
[
I
K

]
E
[
D
K

]
σ
[
D
K

]
E
[
I
K

]
σ
[
I
K

]
E
[
D
K

]
σ
[
D
K

]
Low 1.1 1.5 4.1 2.1 0.8 1.5 4.1 2.1
2 2.0 1.7 3.9 2.3 1.8 2.0 4.2 2.8
3 2.5 1.7 3.7 2.3 2.5 2.0 3.9 2.8
4 2.9 1.9 3.6 2.3 3.1 2.2 3.8 2.8
High 3.6 2.3 3.6 2.3 3.9 2.5 3.6 2.8

Notes: Table 4 reports the mean aggregate investment and dividend rates by productivity quintile for two
versions of the model: with jumps (λ = 0.011) and without them (λ = 0). Firms are sorted into quintiles
based on idiosyncratic productivity and are re-sorted every 4 quarters. Model moments are averages across
100 simulations with 500 quarters each; 200 first quarters are discarded to reduce the impact of initial
conditions. Figures are quarterly and in percent.

jumps (λ = 0.011) makes the difference between productive and unproductive firms more

striking. In particular, the standard deviation of the dividend rate in the top quintile is about

30 percent higher than that in the bottom quintile. The entire difference is accounted for

by the higher volatility of more productive firms; Section 5.6 argues that this has important

implications for the cross-section of stock returns.

5.3 Predictability of Dividend Growth and Excess Returns

Table 5 reports regression results of excess equity returns and future dividend growth on

price dividend ratio. The table shows that the model matches key empirical facts about the

time-varying risk premium, since the price dividend ratio has a strong predictive power for

future excess returns.

As per future dividend growth, slope coefficients in the model simulated data have the

right sign and are slightly higher than those in the data; however, the current price dividend

ratio has a strong predictive power for future dividend growth. The reason why our model

exhibits high predictability of the dividend growth emerges due to the (relatively) low vari-

ance of innovations to idiosyncratic productivity σz. We choose this parameter to capture

the interdecile range of log employment changes; the low value of σz which the model needs

to fit that moment results in a relatively low noise in future stream of dividends, making its
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Table 5: Predictability of Excess Returns and Dividend Growth

Dependent Variable∑L
j=1(rm,t+j − rf,t+j)

∑L
j=1 ∆dm,t+j

Model Model
L(years) Data Mean P5 P95 Data Mean P5 P95

1 -0.12 -0.08 -0.18 -0.02 0.00 0.03 0.01 0.06
β̂ 3 -0.27 -0.23 -0.45 -0.08 0.01 0.10 0.03 0.19

5 -0.42 -0.35 -0.71 -0.12 0.04 0.17 0.06 0.33

1 -2.63 -1.85 -3.35 -0.47 0.11 2.22 0.68 3.29
t-stat 3 -3.19 -3.42 -7.21 -0.92 0.19 4.40 2.15 6.27

5 -3.37 -4.49 -9.57 -0.85 0.48 6.20 3.49 9.20

1 0.09 0.07 0.00 0.16 0.00 0.08 0.01 0.15
R2 3 0.19 0.18 0.01 0.47 0.00 0.25 0.07 0.40

5 0.26 0.26 0.01 0.62 0.01 0.39 0.18 0.60
Notes: Table 5 reports the OLS estimates of regressions of the form Y = α+β(pm,t−dm,t)+εt, where the left-
hand side variable Y is either the dividend growth,

∑L
j=1 ∆dm,t+j , or the excess return,

∑L
j=1(rm,t+j−rf,t+j).

The symbols have the following meaning: dm,t, the logarithm of value-weighted dividend, pm,t, the logarithm
of average value, rm,t is the log return weighted by value, rf,t, the risk-free rate. Data moments are from
Beeler and Campbell (2012). Model moments are the mean across 100 simulations of 500 quarters. We
burn 200 first periods to reduce the impact of initial conditions. t-stats are Newey-West with 2(L− 1) lags.
Figures are annual and real.

growth highly predictable. Other asset pricing studies with heterogeneous firms (e.g., Bai,

Hou, Kung, Li and Zhang, 2019) use other moments to inform this model parameter and

typically calibrate σz to a much higher value. We experimented with larger values of this

parameter and found that predictability of the future dividend growth gets reduced (at a

cost of a significantly poorer fit of other cross-sectional moments).

5.4 Sensitivity Analysis

In this subsection, we discuss how sensitive our results are with respect to several key struc-

tural parameters.

A higher persistence of idiosyncratic shocks ρz reduces volatility of individual and, as a

consequence, aggregate investment (σ(I)/σ(Y ) declines); thus, aggregate dividends become

more volatile and the equity premium rises.

Increasing λ, the probability of microdisasters, by 2pp per quarter—from 0 to 0.02—
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Table 6: Sensitivity to Parameter Values

Parameter ρz λ ρ1
Value L(0.850) H(0.920) L(0.000) H(0.020) L(1.000) H(10.000)
E[rf ] 1.00 0.96 1.24 0.28 1.00 0.24
E[re − rf ] 5.08 7.72 4.96 8.28 6.24 7.20
σ(rf ) 4.40 2.32 2.28 2.54 2.52 2.64
σ(re − rf ) 22.36 15.24 15.62 18.24 18.08 19.24
σ(C)/σ(Y ) 0.63 0.50 0.48 0.54 0.50 0.54
σ(I)/σ(Y ) 5.19 4.52 4.36 4.13 4.37 4.10
Parameter ρ0 ρH ρZ
Value L(0.100) H(0.500) L(0.970) H(0.990) L(0.970) H(0.990)
E[rf ] 1.16 -0.24 1.64 -0.72 1.96 -1.24
E[re − rf ] 4.84 6.48 6.00 7.04 5.48 7.96
σ(rf ) 2.76 2.22 2.54 2.42 2.30 2.68
σ(re − rf ) 15.34 14.28 17.42 19.06 15.92 21.26
σ(C)/σ(Y ) 0.51 0.57 0.47 0.59 0.44 0.62
σ(I)/σ(Y ) 4.56 3.85 4.64 3.75 4.74 3.60

Notes: Table 6 reports the mean and standard deviation of the risk-free rate (rf ) and the equity premium
(re − rf ), as well as the relative (to output, Y ) volatilities of consumption C and investment I. Macro
aggregates (C, Y, and I) were log-differenced and HP-filtered with the smoothing parameter of 1600. For
each parameter considered, “L(·)” denotes the lower value, and “H(·)”—the higher value. Asset return
moments are annualized and reported in percentage terms.

decreases the risk-free rate by 1pp and raises the equity premium by more than 3 percentage

points per annum. As the odds of large negative events become higher (we show this more

formally in Section 5.5), equity becomes riskier, and investors choose to save in a risk-free

asset. This drives up its price and, thus, pushes down average returns. Qualitatively similar

effects emerge in case of an increase in the size of the jump ρ0 and the elasticity of the jump

with respect to aggregate TFP, ρ1.

The persistence of habit ρH directly governs the speed with which surplus consumption

converges to the steady-state in the aftermath of an aggregate economic shock. Higher rate

of mean-reversion of external habit increases time-series fluctuations in the marginal utility,

thereby making firms riskier. Thus, the household prefers to save in a risk-free asset, leading

to a lower risk-free return.

Finally, the effect of aggregate persistence ρZ is qualitatively similar to that of idiosyn-

cratic ρz; investment becomes less volatile and the market premium rises. However, the
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Figure 3: Impulse-Response Functions in Models with and without Microe-
conomic Disasters

Notes: Figure 3 plots impulse-response functions to a one standard deviation negative innovation to aggregate
TFP. Model with microdisasters (λ = 0.02) is solid black, model without disasters (λ = 0) is dotted red.

impact of ρZ on the risk-free rate is quantitatively much stronger.

5.5 Microdisasters and Equity Premium

We have shown in Section 5.4 that a modest increase in the probability of a downward jump

by 2pp raises equity premium by more than 3pp per annum. Figure 3 plots impulse-response

functions of aggregate output, consumption, and marginal utility to a one standard deviation

negative innovation to aggregate TFP.

Aggregate output falls by the same percentage upon impact in both models, since the

effect of jumps manifests itself in the productivity only starting from the next period. How-

ever, from the next period onward, the two economies diverge reflecting the persistent effect

of microeconomic disasters. Provided that large negative events limit the production capac-

ity of the economy, aggregate consumption declines stronger in the economy with λ = 0.02.

As a result, the marginal utility becomes more countercyclical. This makes investors care

more about fluctuations in the dividend stream, thereby driving up the premium (Jermann,

1998).
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Table 7: Summary Statistics for 5 B/M Sorted Portfolios

E[Rport] σ[Rport]
Model Model

Portfolio Data λ = 0 λ = 0.011 Data λ = 0 λ = 0.011
Low 7.5 4.8 4.7 18.9 17.5 16.2
2 7.8 4.8 4.7 16.2 17.0 15.5
3 8.5 5.2 5.3 15.8 17.0 15.5
4 9.3 5.8 6.3 18.0 17.0 15.8
High 11.7 6.5 8.6 20.3 17.1 16.5

Notes: Table 7 reports the mean and the standard deviation of returns for 5 value-weighted portfolios using
B/M. Returns are annualized, value-weighted and are computed over the next year. The model counterpart
of B/M is capital divided by the ex-dividend firm market value k/(v(k, z;S) − d(k, z;S)), where dividend
d(k, z;S) is defined as in footnote 8. Model moments are averages across 100 model simulations with 500
quarters each; 200 first quarters were discarded to reduce the impact of initial conditions. Data moments
are from Kenneth French’s website and correspond to 1964-2019; returns have been corrected for inflation.

5.6 Value Premium

This section demonstrates that the model accounts for the cross-section of stock returns.

In particular, the model is capable of generating a value premium of about 4 percent per

year, a number close to that in the data. Table 7 provides summary statistics on quintile

B/M-sorted portfolios. The first three columns demonstrate that, both in the model and in

the data, expected returns are monotonically increasing in B/M. The second column shows

that the value premium (quintile 5-1 return) is about 1.7 percent in the version of the model

without microeconomic disasters. However, the value premium in the model with jumps is

3.9 percent per annum, which is close to 4.2 percent in the data. The last three columns

show that the model tracks the data well in terms of the volatility of returns.

It is instructive to look at the definition of value in the model. Specifically, panel (A) of

Figure 4 shows that value firms (high B/M) predominantly have low productivity and are

stuck with high stocks of (temporarily) unproductive capital. In the model, there are only 2

dimensions of the cross-sectional heterogeneity—capital and (idiosyncratic) productivity—

and the first panel essentially indicates that value and growth firms mainly differ along the

productivity dimension. At the same time, capital is slowly-moving due to the presence of

convex and non-convex capital adjustment costs, and its role in the B/M heterogeneity across

firms is limited. Panel (B) shows that expected returns decline strongly in productivity.
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Figure 4: Firm States, B/M, and Expected Returns

(a) B/M and productivity (b) Expected returns and productivity
Notes: Figure 4 consists of two panels. Panel (A) plots the relationship between B/M and idiosyncratic
productivity for firms with low, medium and high levels of capital kit. Low, medium and high capital
are the 25-, 50-th and 75th percentiles of simulated data. B/M is capital divided by the ex-dividend firm
market value k/(v(k, z;S)− d(k, z;S)), where dividend d(k, z;S) is defined as in footnote 8. Panel (B) plots
the relationship between expected returns (annualized) against idiosyncratic productivity (separately for 3
different levels of capital, like in Panel (A)).

In order to demonstrate why value firms earn higher returns than growth firms, we plot

impulse-response functions of average dividends for productive and unproductive firms to a

negative TFP shock. For the purpose of this exercise, we call a firm productive if its idiosyn-

cratic productivity is above 0.2, and unproductive in case it is lower than -0.2. We chose to

plot average dividends to eliminate the effect of time-varying masses of unproductive and

productive firms in the aftermath of an aggregate shock. Figure 5 demonstrates two things.

First, average dividends of unproductive firms fluctuate much less relative to productive

firms; the cash flow of highly productive firms is strongly countercyclical. Thus, unproduc-

tive firms are riskier, and investors require higher compensation to hold those stocks. This

is the key reason for why value premium emerges in our framework.

Moreover, an increase in λ makes dividends of all firms more countercyclical, but the

impact on unproductive firms is weaker, and their dividend stream becomes nearly acyclical.

This reflects the fact that these firms have very low output and investment, and, thus, lower

aggregate productivity has a limited impact on both of those components. Provided that
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Figure 5: Impulse-Response Functions of Average Dividends for Productive
and Unproductive Firms

Notes: Figure 5 plots impulse-response functions of average dividends for productive and unproductive firms
to a one standard deviation negative innovation to aggregate TFP. Model with microdisasters (λ = 0.011)
is solid black, model without disasters (λ = 0) is dotted red. Productive firms (“pr.”) are those with
idiosyncratic productivity above 0.2, unproductive firms (“unpr.”) have productivity lower than -0.2.

higher values of λ make marginal utility more volatile (see Section 5.5), this generates higher

returns on value (unproductive) firms. At the same time, dividends of productive firms be-

come even more countercyclical as λ rises, since the presence of large negative shocks induces

them to cut their investment stronger. Our simulations reported in Table 7 demonstrate that

average returns of the two bottom B/M quintiles slightly decrease as λ rises. Note how these

results echo an earlier discussion on the cyclical properties of aggregate investment and div-

idend rates in Section 5.2; there we showed that jumps increase the volatility of dividends

for productive firms, while the impact on unproductive firms is muted. In sum, microeco-

nomic disasters increase the value premium both by raising returns of value firms and slightly

reducing returns of growth stocks.

Value vs. Profitability Premium In the data, firms with higher profitability ratios—

defined as the ratio of profits to total assets—tend to earn higher average returns; this
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is often referred to as profitability premium (Novy-Marx, 2013). This phenomenon has

recently received considerable attention in the literature (e.g., Bouchaud, Krueger, Landier

and Thesmar, 2019; Kogan, Li and Zhang, 2022). However, it turns out that it is difficult

for production economies, including the model developed in this paper, to simultaneously

account both for the value and profitability premiums; the key reason is that productive

firms in this class of models are both low B/M (growth) and highly profitable. Thus, it is

problematic to jointly account for low expected returns of growth stocks and high returns of

profitable firms. One way to rationalize both premiums in a production economy setting is

to introduce persistent and transitory shocks to idiosyncratic productivity (Ai, Li and Tong,

2021); the authors show that firms’ market value is more responsive to the former type of

shocks, whereas profitability—to the latter. As a result, this decouples productivity from

B/M and allows the model to generate both types of premiums.

5.7 Investment Premium

Provided that less productive firms earn higher returns than more productive firms, the

model naturally accounts for the investment premium. In the data, stocks of firms with

lower prior investment on average earn higher returns as compared to firms with higher

prior investments (Fama and French, 2015); the quintile 1-5 return is more than 3 percent

per annum (column (1) in Table 8).

In the model, idiosyncratic productivity accounts for the cross-sectional heterogeneity

of firms, and is, thus, tightly linked to investment decisions of firms. For instance, Figure

C7 in Appendix demonstrates that investment decisions of firms are strictly increasing in

productivity at all levels of capital, but especially so for firms with low capital. We have

already shown that expected returns decline strongly in productivity; this leads to a negative

relationship between investment rates and expected returns.

We find that the model without microeconomic disasters (λ = 0) generates a 1-5 quintile

return of 3.4 percent per annum (column (2) in Table 8); this accords well with the investment

premium found in the data. The model with disasters (λ = 0.011) generates an investment
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Table 8: Summary Statistics for 5 Investment Sorted Portfolios

E[Rport] σ[Rport]
Model Model

Portfolio Data λ = 0 λ = 0.011 Data λ = 0 λ = 0.011
Low 10.5 7.3 8.9 18.8 18.6 18.1
2 8.6 6.7 8.5 14.9 17.9 17.3
3 8.0 5.8 6.5 15.8 17.2 16.0
4 8.0 4.9 4.9 17.0 16.7 15.3
High 7.2 3.9 3.8 22.0 16.2 14.7

Notes: Table 8 reports the mean and the standard deviation of returns for 5 value-weighted portfolios using
firm-level capital growth. Returns are annualized, value-weighted and are computed over the next year.
Specifically, portfolios are formed at the start of year t based on the growth rate of capital from the end
of year t − 2 to the end of year t − 1. Model moments are averages across 100 model simulations with 500
quarters each; 200 first quarters were discarded to reduce the impact of initial conditions. Data moments
are from Kenneth French’s website and correspond to 1964-2019; returns have been corrected for inflation.

premium of about 5 percent, and this increase is predominantly driven by a much higher

return on stocks in the first two quintiles (least productive firms). This mirrors the logic

for why an increase in the value premium is driven by the top quintile of B/M firms; in

both cases, microeconomic disasters have a more pronounced impact on the riskiness of

unproductive firms.

5.8 Persistence of Small vs. Large Shocks

As we have documented in Section 2, the extent of mean-reversion of firm-level shocks varies

depending on the size of the shock. In particular, the data reveal that large shocks are more

transitory than small shocks; this result is pervasive and holds across the entire firm-size

distribution. In this section, we explore how persistence of different types of shocks affects

the cross-section of stock returns in our model.

To fix ideas, we refer to realizations of the normal random variable ε in Equation (2) as

“small” shocks; at the same time, the jump component J is referred to as a “big” shock. It is

straightforward to explore the role of persistence of small shocks; one needs to compare the

performance of models with different values of ρz when the jump component is absent, λ = 0.

The first column in Table 9 demonstrates how average returns of B/M sorted portfolios

change when ρz increases from the benchmark value of 0.88 to 0.92 (λ is set equal to 0). We

28



Table 9: Persistence of Idiosyncratic Shocks: Impact on Cross-section of
Stock Returns

B/M Sorted Investment Sorted
Portfolio Small Shocks Big Shocks Small Shocks Big Shocks
Low –1.1 –1.8 +0.5 +2.7
2 –1.2 –0.6 +1.7 +3.2
3 –0.9 +1.0 +0.3 +2.7
4 –0.3 +3.6 –0.9 +0.1
High +1.4 +9.2 –1.6 –0.5

Notes: Table 9 reports the change in average returns for 5 B/M and investment sorted portfolios when
persistence of idiosyncratic shocks increases from the benchmark value of 0.88 to 0.92. The construction
of portfolios follows the same steps as in Tables 7 and 8. “Small shocks” columns report the change in
portfolio returns between models {λ = 0, ρz = 0.92} and {λ = 0, ρz = 0.88}. “Big shocks” columns report
the following double-difference in portfolio returns:

[{λ = 0.011, ρz = 0.92} − {λ = 0.011, ρz = 0.88}]− [{λ = 0, ρz = 0.92} − {λ = 0, ρz = 0.88}] .

Moments are averages across 100 model simulations with 500 quarters each; 200 first quarters were discarded
to reduce the impact of initial conditions.

find that the value premium increases by 2.5pp; average returns of growth stocks decrease,

while returns of value firms rise. We repeat this exercise for investment sorted portfolios is

column (3); the investment premium increases by a comparable amount of 2.1pp.

We now isolate the role of persistence of large shocks by considering a double-difference of

portfolio returns. Specifically, we first compute the difference in returns varying the degree

of persistence in the model with jumps (λ = 0.011) and without jumps (λ = 0) separately.

Intuitively, in the first case we capture the role of higher persistence for both big and small

shocks, whereas in the second case we measure the role of higher persistence for small shocks

only. Subsequently, we take the difference of these two differences—the second difference—

which isolates the effect of higher persistence for the jump component. The second and

fourth columns of Table 9 demonstrate that persistence of the jump component plays a

major role; the value and investment premiums increase by 11 and 3.2pp, respectively. Our

simulations also show that the effect of higher persistence is primarily driven by elevated

returns of the least productive firms, i.e. more risky firms. In general, these results illustrate

that persistence of shocks plays a paramount role for the cross-section of stock returns, and,

thus, it is important to put discipline on mean reversion of shocks of different sizes for the
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quantitative success of asset pricing models.

6 Application: Supply Chain Disruptions and Disas-

ters

This section studies the impact of supply chain disasters on asset prices by combining our

quantitative model developed in Section 3 with a large Bill of Lading data on importing

activity of U.S. firms.

We start with the description of the data in Section 6.1, and discuss how we measure

supply chain disruptions in Section 6.2. In Section 6.3, we document that supply chain

disruptions impair firm-level performance. Finally, we study the impact of supply chain

disasters on asset prices in Section 6.4.

6.1 Data

Background S&P Global Panjiva is a bill of lading (BoL) dataset that covers over a billion

of shipment-level records traded across borders. While Panjiva provides access to shipment-

level data for 14 countries, in this paper we work with U.S. imports; the raw data include

nearly 200mln records and span the period from 2007 to the present time. The U.S. data

only include seaborne import, and, therefore, account for about one half of the overall U.S.

import.9

The data represent bills of lading from U.S. Customs and Border Protection (CBP),

which are freely available under the Freedom of Information Act of 1966 (FOIA). A BoL is a

legal document that serves as a record that a shipment has been transported from its origin

to its final destination. Each BoL requires companies to fill out various fields, including

shipper(exporter)/consignee(importer) name and address, description of the good(s), vessel

name, transport company name, ports of lading (loading) and unlading (unloading), weight,
9Flaaen, Haberkorn, Lewis, Monken, Pierce, Rhodes and Yi (2021) also argue that these data accord

well with U.S. Census Bureau aggregate series. In principle, using the BoL data for Mexico one can account
also for an important proportion of land shipments.
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Figure 6: Characteristics of Seaborne Import by U.S. Firms
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Notes: Figure 6 consists of two panels. Panel (A) plots the distribution of U.S. firms (consignees) by the
number of foreign shippers (gray bars) in 2019. Panel (B) plots the distribution of trade pairs with respect
to transaction frequency in 2019; the sample is restricted to those pairs which traded at least once in 2018.
Black bars show shares of total import by volume (TEUs) that each category accounts for.

quantity, and container information. Panjiva collects, parses and stores raw data in an

accessible way. On top of providing the raw data, Panjiva also imputes several additional

variables, including, for example, shipment volume in twenty-foot equivalent units (TEUs);

the imputation is based on the container information and other shipment characteristics.

Panjiva data are updated several times a week; thus, the timeliness of their release represents

an advantage over the official U.S. trade data. See Appendix A.2 for additional details about

Panjiva.

Sample Selection Throughout the analysis, we work at the level of the ultimate parent

company; to this end, we use the the cross-reference file provided by Panjiva to associate

a head company ID with each consignee ID; this also allows us to link shipment data with

Compustat and study the implications of supply chain disruptions for asset pricing.

We impose several selection criteria to the raw data. First, we account for the redacting

activity of U.S. consignees; the firms may requests that the U.S. Customs and Border Pro-

tection remove their identity in the shipper or consignee field. Specifically, we exclude firms

if the number of unique shippers exceeds the mean ±3 standard deviations at any point of
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time.10 This way, we drop companies which have large spikes (up or down) in the number

of shippers which may be indicative of the redacting activity.

Second, given our interest in measuring supply chain disruptions, we focus on companies

which actively import; thus, firms which do not to make transactions frequently enough (in

at least 50 percent of quarters they are present in the sample) are also excluded. Finally, we

exclude carriers and logistic companies; it turns out that when a carrier handles a shipment

end-to-end, then this logistic company will be recorded as a consignee. To address this issue,

we hand-created a list of the largest 100 logistic companies, and subsequently excluded

observations where these logistic companies/freight forwarders are recorded as consignees.

The remaining sample selection details are relegated to Appendix A.2.3.

Table 10 reports summary statistics for select years. Overall, the data cover approxi-

mately 50,000 ultimate parent firms. In the data, firms are highly right-skewed in terms

of shipments, import volume, and the number of shippers. The average firm makes about

80 transactions per year, which collectively occupy 200 containers (twenty-foot equivalent

units, TEUs). The mean firm has 10 unique shippers per year, while the median one has

only 4. Furthermore, a significant share of firms only have 1 shipper, while consignees in the

top decile import from more than 20 firms.

Figure 6 visualized the nature of the importing activity of firms in our sample. Panel

(A) demonstrates that 80 percent of firms have fewer than 10 unique shippers; these firms

collectively account for about 35 percent of the total import volume. Approximately 10

percent of U.S. consignees trade with more than 20 shippers and they account for almost 60

percent of the overall import volume. Panel (B) shows that about one-third of trade pairs

transact every quarter, and that these pairs are important in the aggregate since 80 percent

of import occurs between frequent trade partners.

A large part of our analysis is focused on a subset of consignees which can be linked with

the universe of Compustat firms. In order to merge Panjiva data with Compustat, we use

the crosswalk sourced from WRDS. The crosswalk contains the starting and ending date for
10The mean and standard deviation are computed individually for each firm.
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Table 10: Summary Statistics, Select Years

Year 2010
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 46946 0.074 0.390 0.002 0.016 0.146
Volume (1000s TEUs) 46946 0.171 1.669 0.001 0.017 0.267
Number of shippers 46946 9.916 24.064 1.000 4.000 21.000

Year 2015
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 51688 0.092 0.622 0.003 0.017 0.168
Volume (1000s TEUs) 51688 0.218 1.937 0.001 0.020 0.330
Number of shippers 51688 10.340 28.983 1.000 4.000 22.000

Year 2020
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 49014 0.084 0.597 0.002 0.015 0.155
Volume (1000s TEUs) 49014 0.205 1.789 0.001 0.019 0.330
Number of shippers 49014 9.418 24.223 1.000 4.000 20.000

Notes: Table 10 reports summary statistics for the underlying sample of U.S. firms for years 2010, 2015 and
2020. The variables have the following interpretation: Shipments, total annual number of shipments (in
1000s), Volume, total annual volume in 1000s TEUs, Number of shippers, total annual number of unique
shippers.

every ultimate parent company ID – GVKEY pair; we use the link which was active in a

given time period. The sample of public firms exhibits broadly the same patterns as the

bigger sample (see Figure C1 in Appendix).

6.2 Supply Chain Disruptions

We now describe how we identify both supply chain disruptions and disasters using our com-

prehensive micro-level data on individual transactions.11 We say that a supply relationship

between consignee i and shipper j is disrupted in quarter t if this pair (i) was active in

each of the preceding 4 quarters, (ii) was inactive in t, and (iii) was active in t + 1. This

choice reflects several considerations. On the one hand, we require trade relationships to be

well-established and frequent (condition (i)). Otherwise, it is difficult to separate an event

of disruption from the infrequent nature of trade activity for a given consignee-shipper pair.
11Measuring supply chain disruptions is not a trivial task because these shocks can occur for multiple

reasons, including natural disasters and weather-related problems (Carvalho, Nirei, Saito and Tahbaz-Salehi,
2021), bankruptcy of the counteragent (Yang, Birge and Parker, 2015), bankruptcy of a carrier (Kwon, 2021),
and many others (see, for example, Hendricks and Singhal, 2005). Our metric is attractive since it allows
us to capture disruptions of different natures.
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On the other hand, we need to ensure that the event of inactivity at time t does not merely

reflect the consignee’s choice whereby it finds a better supplier and terminates import from

a given shipper (condition (iii)). In principle, disruptions may last longer than one quarter;

such events are not classified as disruptions given the baseline definition. We performed

extensive sensitivity analysis in Appendix A.3 where we, for instance, required the trade

relationship to be active for 3 out of 4 quarters between t+1 and t+4. The results are qual-

itatively similar. We chose the first definition as the baseline because it allows us to identify

more disruptions toward the end of the sample period which is of particular importance for

this study.

Furthermore, we chose to measure disruptions at quarterly frequency in order to avoid

potential complications arising from seasonality patterns; these considerations are likely to be

less of a concern at lower frequencies. Additionally, quarterly frequency matches the length

of the time period both in the model and in the firm-level data (Compustat Fundamentals

Quarterly).

Additional Sample Selection and Summary Statistics Given the way we measure

supply chain disruptions, we chose to focus on firms which actively import. As we have

seen earlier, importing activity is heavily concentrated among firms with 20 or more unique

shippers. Thus, we further restrict our sample to firms which on average have at least 20

shippers; we impose this criterion both for the full sample and the sample with public firms.

Table 11 reports summary statistics for year 2019 (statistics for other years are in Appendix

D); the top panel corresponds to all firms, whereas the bottom one is restricted to the

Compustat universe. It is clear that even though we look at very large firms (with average

sales of public firms of over $16bn), the distribution of firms with respect to shipping activity

is highly right skewed. The median firm makes about 250 more transactions than the firm

in the bottom decile, whereas the firm in the 90th percentile makes 1200 more transactions

than the median one (the corresponding numbers for Compustat firms are 500 and 2500,

respectively). Firms are even more skewed in terms of the import volume. On average, firms
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Table 11: Summary Statistics, 2019

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2919 0.684 2.464 0.015 0.275 1.414
Volume (1000s TEUs) 2919 1.533 6.757 0.016 0.359 3.256
Number of shippers 2919 63.0 84.8 6.0 46.0 120.0
Share redacted 2919 0.095 0.194 0.000 0.011 0.321
Number of disruptions 2919 0.565 0.899 0.000 0.250 1.500
Share of import disrupted 2482 0.019 0.049 0.000 0.006 0.046

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 420 1.298 2.091 0.069 0.594 3.046
Volume (1000s TEUs) 420 2.842 5.640 0.072 1.054 7.057
Number of shippers 420 102.6 123.8 19.0 67.0 216.5
Share redacted 420 0.115 0.198 0.000 0.027 0.359
Sales(bn) 424 16.44 37.51 0.49 4.36 37.72
Total assets(bn) 424 44.23 199.30 0.52 4.59 61.13
Quarterly sales growth 410 0.003 0.055 -0.034 0.007 0.040
Number of disruptions 424 0.582 1.101 0.000 0.000 1.750
Share of import disrupted 424 0.005 0.013 0.000 0.000 0.015

Notes: Table 11 reports summary statistics for the underlying sample of U.S. firms for year 2019. The vari-
ables have the following interpretation: Shipments, total annual number of shipments (in 1000s), Volume,
total annual volume in 1000s TEUs, Number of shippers, total annual number of unique shippers, Share
redacted, average quarterly share of observations with missing shipper identifier, Sales, total annual sales,
Total Assets, average quarterly total assets, Quarterly sales growth, average quarterly arc sales growth,
Number of disruptions, average quarterly number of disrupted pairs, Share of import disrupted, av-
erage quarterly share of total import accounted for by disrupted trade pairs. Nominal variables have been
converted to real ones using the Producer Price Index with 2015 being the base year.

have 63 unique shippers in year 2019, with the median number of 46. Firms in the top decile

have more than 120 shippers. Not surprisingly, public firms have more diversified supply

networks (average number of shippers is about 100), and import more. Finally, about 2

percent of import gets disrupted per quarter, this share is four times lower for public firms,

reflecting a larger overall import volume. The average number of trade pairs being disrupted

is about 0.6 per quarter.

Supply Chain Disruptions in U.S. Firms Panel (A) of Figure 7 plots the evolution

of the share of trade pairs being disrupted at quarterly frequency from 2008 to 2021. The

probability of a supply chain disruption varies between 1.5 percent to 3 percent per quarter

during the sample period. There are noticeable spikes, however. The first one is the Great
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Figure 7: Share of Disrupted Trade Pairs
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(b) Compustat sample
Notes: Figure 7 consists of 2 panels. Panel (A) plots shares of trade pairs being disrupted by quarter
according to the definition provided in Section 6.2 for the full sample. See Appendix A.2.3 for details on
sample construction. Panel (B) plots the same object for the Compustat subsample.

Recession episode 2008-2009; these disruptions likely reflect financial hurdles on the side of

exporters and/or importers given the nature of the global recession. Furthermore, we see

a rapid increase in 2011 which can be plausibly attributed to two natural disasters: the

Tohoku earthquake in Japan and the flooding in Thailand. These countries are major auto

and electronics producers; internal shock there had a pronounced effect on global production

chains throughout the world. Finally, a rise in the share of disrupted trade pairs in 2020

may reflect numerous factors, including regulatory constraints and bottlenecks (e.g., in ports

of Los Angeles and Long Beach).12 Our disruption measure is capable of identifying supply

chain disruptions of different natures. Panel (B) exhibits similar patterns for U.S. public

firms.13

Comparison to Other Aggregate Indices We now compare the dynamics of identified

supply chain disruptions against two other aggregate indices of supply chain disruptions.
12These ports account for about one half of the total seaborne U.S. import.
13We also analyzed the dynamics of supply chain disruptions disaggregated to the sector-level; Figure C16

in Appendix plots the share of supply relationships being disrupted for several NAICS 2-digit industries.
While the resulting series are somewhat noisier than the aggregate one (potentially reflecting a relatively
small sample size of public firms), the figure reveals a sufficiently pronounced cross-sectoral heterogeneity in
the dynamics of supply chain disruptions.
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We first consider the Global Supply Chain Pressure Index, hereafter GSCPI (Benigno, di

Giovanni, Groen and Noble, 2022).14 That index is constructed using the principal compo-

nent analysis of 27 time series that are meant to capture factors that put pressure on global

supply chains, both domestically and across borders. For example, the authors use data on

shipping costs of raw materials, container shipping rates, delivery time and backlogs indices

for several major economies. Furthermore, the authors incorporate the demand effect by

regressing underlying series on factors which likely capture the extent of customer demand

for firms’ products (i.e., indices of new orders). Figure C2 in Appendix demonstrates that

the series align well both for the full sample and the Compustat subsample, and that both

metrics broadly capture the same patterns: an increase in disruptions in 2011, an upward

trend between 2015 and 2018, and, finally, a massive spike in 2020-2021.

We also compared our results against the Bloomberg Supply Constraint Indicator, an

aggregate index representing a single common factor extracted from a set of supply-related

indicators.15 The underlying data include information on supplier deliveries, business back-

logs, prices, Commodity Research Bureau BLS raw-industrial spot indices, investment-to-

sales ratio from the Census Bureau, and total unemployed workers from the BLS. While

negative values mean that supply is relatively abundant, positive values are indicative of

constraints. Provided that supply chain disruptions do not manifest themselves immedi-

ately, but rather lead to supply shortages in the future, we consider a one-year lead of the

Bloomberg’s indicator. Figure C3 shows that identified supply chain disruptions and supply

shortages track each other well. We, thus, take this as an additional supporting piece of

evidence that our metric successfully captures supply chain disruptions.

Disaggregating Disruptions The share of supply relationships being disrupted is a broad

measure of supply chain disruptions that ignores both their size and importance for firms.

Our comprehensive data allow us to study not only the incidence but also the severity of

disruptions by analyzing the data on the TEU volume. Figure C4 in Appendix recomputes
14https://www.newyorkfed.org/research/gscpi.html.
15https://www.bloomberg.com/news/terminal/R5MA2CT0AFB8.
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Figure 8: Large Disruptions Have Recently Become More Common
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Notes: Figure 8 plots three lines. The solid line plots the share of trade pairs being disrupted. The dashed
line corresponds to the probability of a disruption that accounts for at least 0.5 percent of the firm-level
trade volume over the preceding 4 quarters. The dotted line does the same but for disruptions exceeding
1.7 percent of firms’ total import volume (corresponds to the average level of disruptions plus 3 standard
deviations of 0.4 percent). Time series have been normalized to 1 in 2014Q1. The series have been lowess
smoothed with a parameter 0.15.

shares of supply disruptions depending on which fraction of firm’s import volume those pairs

accounted for over the preceding 4 quarters. Specifically, we consider two thresholds of 0.5

percent and 1.7 percent of firm import volume; these numbers represent the mean disruption

size and the mean plus 3 standard deviations of 0.4 percent, correspondingly.16 We report

results both for the full sample and the Compustat subsample. Additionally, we overlay the

resulting series with the GSCPI index for comparability. Panels (A) and (C) show that the

two metrics track each other slightly closer when we look at disruptions of 0.5 percent and

larger. At the same time, panels (B) and (D) demonstrate that large disruptions were very

common during the Great Recession and shortly afterwards; our index exceeds 2 standard

deviations from the average level at that time. In general, we see that the two series are

less well aligned in case of large disruptions. In Figure C5, we overlay our series with the

Bloomberg Supply Constraint indicator and find broadly similar patterns.

Figure 8 further illustrates how the probability of disruptions has changed over time since
16The mean and the standard deviation are calculated across firms by pooling all years.
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2014Q1 depending on which fraction of firm import volume that pair accounted for over the

preceding 4 quarters. In particular, we see that all three series exhibit a sharp increase in

2020. Interestingly, however, the probability of large disruptions (those which account for

at least 0.5 percent of trade volume) has increased substantially more than the odds of any

disruption (about 80 percent gain relative to 2014 vs. 45 percent in case of any disruption).

In summary, the probability of very large supply chain disruptions nearly doubled over the

last several years.

6.3 Supply Chain Disruptions and Firm Performance

We next study how supply chain disruptions are associated with firm-level performance. To

this end, we turn to our sample with public firms and estimate the following specification:

∆̃Salesti,t−1 = β1Disruptioni,t
+ λXi,t + εi,t, (18)

where the dependent variable is the arc-growth measure of sales,

∆̃Salesti,t−1 =
Salesi,t − Salesi,t−1

1
2
(Salesi,t + Salesi,t−1)

.

This measure is attractive in that it is bounded between -2 and 2, thereby avoiding arbitrary

winsorization of outliers (Davis, Haltiwanger and Schuh, 1996). The key independent variable

1Disruptioni,t
is a dummy variable which takes the value of 1 if firm i experiences a disruption

of a supply relationship at time t. Coefficient β measures how the average sales growth

differs between firms with and without disruptions. The vector of controls Xi,t includes an

intercept, as well as time (year-quarter) and firm fixed effects. We also control for size effects

by including the logarithm of total assets.

Column (1) of Table 12 shows that firms experiencing a disruption on average grow 0.6pp

slower. Furthermore, in column (2) we add firm fixed effects and, thus, explore the role of

disruptions not between but within firms; the coefficient estimate remains to be significant
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Table 12: Sales Growth and Supply Chain Disruptions

∆̃Salesti,t−1 ∆̃Salest−1
i,t−2 ∆̃Salest+1

i,t−1 ∆̃Salest+2
i,t−1 ∆̃Salest+3

i,t−1

(1) (2) (3) (4) (5) (6) (7)

1Disruptioni,t
-0.0055∗∗ -0.0076∗∗ -0.0022 -0.0118∗∗∗ -0.0096∗∗ -0.0044
(0.003) (0.003) (0.003) (0.004) (0.004) (0.005)

Share disruptedi,t -0.3250∗∗

(0.135)

Year-Quarter FE X X X X X X X
Firm FE — X X X X X X
R2 0.048 0.061 0.061 0.060 0.071 0.102 0.161
N 20595 20593 20593 20240 20181 19773 19356

Notes: Table 12 reports results of OLS estimation of Equation (18). The dependent variable ∆̃Salesti,t−1

is the arc-growth of firm-level sales between quarters t − 1 and t. The independent variable 1Disruptioni,t

is a dummy variable, which takes a value of 1 if firm i experienced any supply chain disruption at time
t. Furthermore, Share disruptedi,t measures the share of total import that disrupted supply relationships
accounted for over the preceding 4 quarters. Standard errors are clustered at the firm level and are reported in
parentheses. *, **, and *** denote significance at the 10 percent, 5 percent, and 1 percent level, respectively.

at 5 percent level and increases up to 0.76pp. Economically, the effect is large: The average

quarterly sales growth in our sample is about 0.5 percent.

The first set of results treated all disruptions on equal footing; however, it is natural to

suspect that firms perform much worse in case of large disruptions. We further regress sales

growth on the share of import that disrupted trade relationships accounted for over the last

4 quarters; this variable is equal to 0 for firms experiencing no disruptions. Column (3)

shows that a 10pp increase in the share of disrupted import is associated with a nearly 3pp

slower sales growth. The effect is quantitatively large and suggests that the average effect

in columns (1)-(2) is driven by rare but massive supply chain disruptions.

So far, we looked at the contemporaneous effect, whereby supply frictions were related

to the sales growth in the same period; the remainder of the table explores the impact of

disruptions on sales growth at various horizons. First, in column (4) we relate the sales

growth from t − 2 to t − 1 with supply chain disruptions taking place in t and find no

statistically significant relationship between the two variables. We take this as suggestive

evidence that our measured supply chain disruptions are to a large extent unexpected by

firms.

Furthermore, columns (5) and (6) demonstrate that the effect of disruptions is not short-
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Table 13: Sales Growth and Probability of Disruption

1Disruptioni,t>0.005 1Disruptioni,t>0.012 1Disruptioni,t>0.017 1Disruptioni,t>0.036

(1) (2) (3) (4)

Sales growth quintile 2 -0.0045 -0.0061 -0.0076 -0.0049
(0.009) (0.007) (0.006) (0.004)

Sales growth quintile 3 -0.0149∗ -0.0135∗ -0.0125∗ -0.0098∗∗

(0.009) (0.007) (0.007) (0.005)

Sales growth quintile 4 -0.0153∗ -0.0137∗ -0.0116∗ -0.0095∗∗

(0.009) (0.007) (0.007) (0.005)

Sales growth quintile 5 -0.0218∗∗∗ -0.0120 -0.0121∗ -0.0082∗

(0.008) (0.008) (0.007) (0.005)

Constant 0.1593∗∗∗ 0.1023∗∗∗ 0.0858∗∗∗ 0.0452∗∗∗

(0.007) (0.006) (0.005) (0.004)

Year-Quarter FE X X X X
Industry FE X X X X
State FE X X X X
R2 0.107 0.063 0.052 0.029
Observations 20493 20493 20493 20493

Notes: Table 13 reports results of OLS estimation of Equation (19). The dependent variable 1Disruptioni,t

is a dummy variable, which takes a value of 1 if firm i experienced any supply chain disruption at time t.
Independent variables {1∆̃Salest+1

i,t−1∈Qq
} are dummy variables and take a value of 1 if the growth rate of a

firm i from t − 1 to t + 1 was in the q-th quintile of the sales growth distribution. Disruption threshold
for column (1) is 0.5% (mean size of disruption in Compustat sample), threshold for column (2) is 1.2%
(mean size of disruption in full sample), threshold for column (3) is 1.7% (mean size of disruption +3σ in
Compustat sample), threshold for column (4) is 3.6% (mean size of disruption +3σ in full sample). Standard
errors are clustered at the firm level and are reported in parentheses. *, **, and *** denote significance at
the 10 percent, 5 percent, and 1 percent level, respectively.

lived but persistent in that the adverse effect is present both in quarters t + 1 and t + 2.

The quantitative magnitude of the estimates in these two columns shows that the impact

of disruptions increases over time and reaches its maximum in the quarter following the

disruption. Finally, column (7) indicates that the effect of a disruption mean-reverts by

quarter t + 3. Thus, the presented evidence displays that supply chain disruptions are

associated with a pronounced decline is sales growth, and that the effect is persistent as it

only dissipates at the horizon of 3 quarters.

Share of Firms with Disruptions by Sales Growth Quintile We have demonstrated

that disruptions are associated with a pronounced decline in sales growth. The richness of

our dataset allows us to more comprehensively analyze the joint behavior of sales growth,
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supply chain disruptions and, in particular, large disruptions. Specifically, we evaluate which

fraction of firms with a given sales growth also experience disruptions of various sizes.

To operationalize this, we draw on the Compustat sample and split observations into 5

quintiles based on the sales growth from t−1 to t+1. We then estimate the following model:

1Disruptioni,t>d̃ =
5∑

q=2

βq1∆̃Salest+1
i,t−1∈Qq

+ λXi,t + εi,t, (19)

where Qq denotes the quintile of sales growth, q ∈ {1, . . . , 5}. The vector of controls Xi,t

includes an intercept, as well as time (year-quarter), industry (at NAICS 4-digit level) and

state fixed effects. A constant in this regression measures the share of firms in the bottom

20 percent of the sales growth distribution that also experience supply chain disruptions;

coefficients {βq}5q=2 then capture how different this share is for firms in other quintiles.

Parameter d̃ determines the size of disruptions.

Table 13 reports the results. Column (1) shows that among firms in the bottom 20 percent

of the distribution, 16 percent of firms also experience disruptions of at least 0.5 percent of

recent import volume; this threshold is the average (quarterly) size of a disruption in our

Compustat subsample. Besides, the share of firms experiencing a disruption of this size

monotonically decreases in quintiles 2-5. Column (2) reports qualitatively similar results for

the threshold of 1.2 percent, the mean size of a disruption in the full sample.

We now explore which fraction of firms with various sales growth also experience very

large supply chain disruptions, i.e. those which exceed the average size of a disruption plus

three standard deviations (1.7% = 0.5% + 3 × 0.4%). Column (3) shows that 8.6 percent

of firms in the bottom quintile experience such supply chain disasters; this share is 1.2pp

smaller among firms in the top quintile.

We have also experimented using the mean and the standard deviation sourced from

the full sample to identify supply chain disasters (column (4)); the corresponding threshold

turns out to be twice as large (3.6 percent of recent import volume). In our Compustat

sample, in which firms are larger than those in the full sample (see summary statistics in
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Table 11), very few firms experience supply chain disruptions that large; we, however, still

see a significant fall in the share of firms experiencing these extreme events as we move from

the bottom to the top quintile of the sales growth distribution.

6.4 Implications of Supply Chain Disruptions

6.4.1 Parameterizing an Increase in SC Disruptions and Disasters in the Model

We start by discussing how we map our empirical findings from Section 6 to the production

economy developed in Section 3.

We let the probability of large negative events λ be comprised of two parts, one is driven

by supply chain disruptions (λSC), whereas the second one captures large negative shocks not

related to supply chains (λother). We assume that the probability of the disaster due to supply

chain disruptions, λSC , is the same as the share of firms experiencing large disruptions in the

bottom quintile of the sales growth distribution (column (3) in Table 13). That is, among

firms in a disastrous state, 8.6 percent of them also experience supply chain disruptions. We

calibrate λSC = 0.00095 (8.6 percent of the baseline value of λ = 0.011).

It is worth emphasizing that this is a fairly conservative way to assess the impact of

supply chain disruptions for several reasons. First, in the data, supply chain disruptions

are affecting many firms, not only those in a catastrophic state. Moreover, we extrapolate

findings from Table 13 across the entire firm-size distribution, thereby allocating the same

percentage of large negative events to supply chain disruptions both for small and large firms.

In reality, this number can be larger, since public firms are not representative of the entire

firm-size distribution in that they are likely to be better shielded against supply chain shocks

due to more diversified networks of suppliers. Finally, we have seen that firms with poorer

performance are more likely to experience supply chain disasters; thus, the corresponding

probability in the very bottom of the sales growth distribution can be higher than the share

in the bottom quintile.

In the model, we capture the increased pressure on supply chains and the elevated prob-
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ability of disruptions by defining a new value of the jump intensity λ′ as follows:

λ′ = λother +∆× λSC ,

where ∆ measures the growth in the probability of supply chain disruptions. That is, we

assume that the probability of catastrophic events not related to supply chains λother has

not changed. Continuing the discussion above, we set λSC = 0.00095 and ∆ = 1.8, reflecting

a near 80% increase in the probability of very large disruptions in the last several years (see

discussion in Section 6.2). While the odds of disruptions of various sizes increased somewhat

differently over the last several years, we found that the value of ∆ anywhere in the range

between 1.75 and 2 leads to broadly similar results.

Thus, the new arrival rate of disaster shocks is λ′ = 0.01176; that is, our model captures

an 80% increase in the probability of supply chain disruptions with a 6.9 percent increase in

the odds of catastrophic events.

6.4.2 Impact on Asset Prices

Aggregate Implications The model with a higher arrival rate of Poisson shocks generates

an equity premium of 6.72 percent and a risk-free rate of 0.72 percent (with the mean Sharpe

ratio of 0.38). Therefore, in the aggregate, our model attributes a 0.16pp increase in the

equity premium and a 0.07pp decline in the risk-free rate to elevated pressures on supply

chains observed in the last 3 years.

Even though the rise in the probability of microeconomic disasters leads to a relatively

modest increase in the equity premium, the effect is significantly non-uniform in the cross-

section. To demonstrate this, we study how value and investment premiums change when λ

increases.

Impact on Value Premium The first two columns of Table 14 report average returns for

both economies (the baseline economy with λ = 0.011, as well as the one with λ′ = 0.01176).

Remarkably, a higher probability of disasters has virtually no effect on 60 percent of stocks.
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Table 14: Summary Statistics for 5 B/M and Investment Sorted Portfolios,
Role of Supply Chain Disruptions

B/M Sorted Investment Sorted
Portfolio λ λ′ ∆ λ λ′ ∆
Low 4.7 4.7 0.0 8.9 9.2 0.3
2 4.7 4.7 0.0 8.5 8.8 0.3
3 5.3 5.3 0.0 6.5 6.7 0.2
4 6.3 6.4 0.1 4.9 5.0 0.1
High 8.6 9.1 0.5 3.8 3.7 -0.1

Notes: Table 14 reports the mean and the standard deviation of returns for 5 value-weighted portfolios using
B/M and investment. Returns are annualized, value-weighted and are computed over the next year. The
model counterpart of B/M is capital divided by the ex-dividend firm market value k/(v(k, z;S)− d(k, z;S)),
where dividend d(k, z;S) is defined as in footnote 8. Numbers are averages across 100 model simulations
with 500 quarters each; 200 first quarters were discarded to reduce the impact of initial conditions.

Specifically, the bottom 3 quintiles of B/M portfolios deliver the same expected returns.

At the same time, value firms in the top B/M quintile now earn 0.5pp higher returns; this

reflects a higher exposure of value firms to large negative shocks.

The higher expected returns for the top book-to-market quintile accord well with the

time-series fluctuations in the aggregate dividend rate; we find that the volatility of dividends

increases up to 2.9 percent for productivity quintiles 2 through 5 (as compared with 2.8

percent reported in Table 4), whereas the impact of a higher λ on the bottom productivity

quintile is essentially zero.

Impact on Investment Premium Naturally, the asymmetric increase in expected re-

turns of unproductive firms relative to productive ones is also reflected in the higher invest-

ment premium. The last three columns in Table 14 demonstrate that a 8.6 percent increase

in λ leads to a 0.3pp higher returns for the first two quintiles of investment-sorted portfolios,

and nearly no impact on firms with high investment rates.
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6.4.3 Supply Chain Disruptions and Realized Returns

We now use the identified supply chain disruptions and disasters to study the impact of these

events on asset prices. Specifically, we estimate the following specification:

ri,t = β0 + β11Highi,t−1
+ β21Disruptioni,t

+ β31Disruptioni,t
1Highi,t−1

+ εi,t, (20)

where the dependent variable ri,t is the return of firm i in quarter t, and 1Disruptioni,t
is a

dummy variable that takes a value of 1 if firm i experienced a supply chain disruption in

quarter t. Furthermore, 1Highi,t−1
indicates whether firm i was in the top quintile in terms

of book-to-market (or investment) in quarter t − 1. Effectively, we re-classify firms with

respect to these characteristics every quarter, and study the link between their returns and

disruptions in the next quarter. We are interested in the differential impact of disruptions

on value vs. growth stocks; thus, we drop observations corresponding to quintiles 2-4.

Table 15 reports the result; the first 3 columns use any disruption, whereas columns (4)-

(6) correspond to disruptions exceeding 1.7 percent of the recent firm-level import volume.

Comparing column (1) with column (4), we see that supply chain disruptions are associated

with a negative impact on realized returns, and the effect is nearly three times stronger

in case of large disruptions. Importantly, supply chain disruptions affect value and low

investment firms stronger than growth and high investment firms, respectively; the effect,

however, is muted in case of all disruptions (the corresponding interaction coefficients have

the expected sign but are statistically insignificant) but becomes pronounced in case of large

disruptions. We see that, on average, supply chain disasters decrease returns of firms in the

top quintile of book-to-market by 3.5pp more relative to stocks in the bottom quintile. At

the same time, firms in the 5th quintile of the total asset growth have 3.4pp higher returns

in the aftermath of a large disruption as compared with firms in the first quintile.

The presented evidence demonstrates that value firms are more exposed to supply chain

disruptions (especially large ones) relative to growth firms. This offers additional empiri-

cal support to the central prediction of the model: a higher probability of microeconomic
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Table 15: Supply Chain Disruptions and Realized Returns

Any Disruption Large Disruption
(1) (2) (3) (4) (5) (6)

Disruption -0.0067∗∗∗ -0.0064∗∗∗ -0.0095∗∗ -0.0180∗∗∗ -0.0104∗∗∗ -0.0084
(0.002) (0.002) (0.005) (0.003) (0.004) (0.006)

High B/M -0.0194∗∗∗ -0.0168∗∗∗

(0.003) (0.003)

High Inv 0.0110∗∗∗ 0.0082∗∗∗

(0.003) (0.003)

High B/M x Disruption -0.0088 -0.0348∗∗∗

(0.006) (0.008)

High Inv x Disruption 0.0015 0.0342∗∗∗

(0.006) (0.008)

Constant 0.0521∗∗∗ 0.0370∗∗∗ 0.0267∗∗∗ 0.0534∗∗∗ 0.0373∗∗∗ 0.0279∗∗∗

(0.006) (0.007) (0.008) (0.006) (0.007) (0.008)

R2 0.34 0.35 0.28 0.34 0.35 0.29
Observations 19545 19545 17252 19545 19545 17252

Notes: Table 15 reports results of OLS estimation of Equation (20). The dependent variable ri,t is the
return of firm i in quarter t. In columns (1)-(3), Disruption is a dummy variable that takes a value of 1
if firm i experienced any supply chain disruption in quarter t; in columns (4)-(6) this dummy corresponds
to disruptions exceeding 1.7 percent of recent import volume. Furthermore, High B/M and High Inv are
also dummy variables and take a value of 1 if firm i was in the top quintile in terms of book-to-market or
investment in quarter t − 1, correspondingly. Investment is the growth in total assets from t − 4 to t − 1.
Observations are value-weighted. Year-quarter fixed effects are included. *, **, and *** denote significance
at the 10 percent, 5 percent, and 1 percent level, respectively.

disasters makes value firms more risky, thereby increasing their expected returns.

7 Conclusion

We developed a general equilibrium production-based asset pricing model which simultane-

ously accounts for the distribution of investment rates, business cycle statistics and asset

pricing moments. One defining feature of the model is the presence of large, idiosyncratic

negative shocks—microeconomic disasters. We highlighted the importance both of the size of

these large shocks as well as of their persistence for aggregate and, especially, cross-sectional

asset pricing implications. As an application of our model, we focused on supply chain dis-

ruptions. To this end, we utilized a large-scale shipment data on the universe of the seaborne
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U.S. import and documented a dramatic increase in probability of very large supply chain

disruptions over the last several years. The model, calibrated to account for this recent

change, leads to 0.5pp and 0.4pp higher value and investment premiums, respectively.
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Appendix A: Empirical Appendix
This appendix provides further details for the empirical part of the paper, including data
background, sample selection and additional empirical results referenced throughout the
main text.

A.1 LBD
The Longitudinal Business Database (LBD) is the comprehensive panel dataset covering the
universe of U.S. businesses and spanning the years 1976-2016. The unit of observation in
the LBD is an establishment, which is defined as a single physical location where business
operations take place. A firm is then defined as a set of establishments that are under
common ownership or control.

The LBD is based on several sources, such as the Business Register (also known as the
Standard Statistical Establishment Listing—SSEL), Economic Censuses, and surveys. The
LBD offers the most reliable and complete data on births, deaths, and age of establishments
operating in the US. There are several data issues potentially leading to measurement errors
in identification of business formation (for example, non-administratively registered estab-
lishments may not be correctly identified, or gaps in the records of establishments). See
Jarmin and Miranda (2002) and Chow et al. (2021) for more details on which efforts have
been undertaken to mitigate these issues in the process of the LBD construction.

A.1.1 Identification of Birth and Death

The unit of observation in the LBD is an establishment, and variable lbdnum—which is
robust to mergers and acquisitions—is used to track establishments over time.

Establishments The age of an establishment is measured as the number of years elapsed
since the first year the establishment appeared in the data. Age cannot be measured for
establishments born prior to 1976—the first year covered by the LBD. For that reason, in
our empirical exercise we exclude the cohort of 1976.

Firms Identification of firm birth and death is associated with the construction of firm link-
ages over time. We follow a standard approach in the literature which is robust to ownership
changes and acquisitions (Haltiwanger, Jarmin and Miranda, 2013). A new firm identifier
emerges in the LBD either because a new firm is born or because an existing businesses
undergoes a change of ownership and control (e.g., merger and acquisition, divestitures).
We register a new firm when all of its establishments are of age 0. Accordingly, when a
new firm identifier arises through a merger of two preexisting firms, it is not treated as a
firm birth; rather, it is assigned the age of the oldest continuing establishment of the newly
combined business. The firms are then allowed to age naturally regardless of mergers and
acquisitions as long as the ownership and control do not change. A firm death occurs when
a firm identifier disappears and all associated establishments cease operations and exit.
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A.1.2 Employment

Establishments Employment (LBD variable emp) is defined as the number of full- and
part-time employees as of March 12th.17

Firms Firms can own a single establishment or many establishments, which may span
multiple geographic areas and industries. Naturally, firm-level employment and payroll are
calculated as the sum of employment and payroll across the establishments constituting that
firm.

A.1.3 Industry

The LBD also includes detailed information on industry classification. The period of anal-
ysis covers the the transition from SIC to NAICS industry classification standards (which
occurred in 1997), which leads to well-known classification issues. We, therefore, use a con-
sistent NAICS 2012 industry classification variable fk_naics12 constructed by Fort and
Klimek (2016).

Firms are frequently comprised of establishments from several industries. For that reason,
to each firm we assign an industry of its largest (in terms of employment) establishment on
the year-by-year basis.

17This measure includes employees who are on paid sick leave, holidays, and vacations. The reported
number also includes salaried officers and executives of corporations, but it excludes sole proprietors and
partners of unincorporated businesses.
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A.2 S&P Global Intelligence: Panjiva
A.2.1 Data Background

S&P Global Panjiva is the bill of lading dataset, which contains over a billion of shipment-
level records of goods traded across borders. The data provide information on shippers
(exporters), consignees (importers), product description, weight in metric tons, volume in
TEUs (twenty-foot equivalent unit), and, in limited cases, estimated values of shipment
transactions (in USD). Panjiva covers trade flows for the following countries: U.S., Brazil,
Chile, Colombia, Ecuador, India, Sri Lanka, Mexico, Panama, Peru, Pakistan, Paraguay,
Uruguay. For each of these countries, data users are able to observe both imports and
exports of goods for all trading partners. In this paper, we work with U.S. imports, which
amounts to nearly 200mln records spanning the time period from 2007 to the present time.
With rare exceptions (e.g., Mexico), the data only covers seaborne imports and exports.
U.S. import data are updated several times per week.

The raw data represents bills of lading (BoL) from U.S. Customs and Border Protection
(CBP), which are freely available under the Freedom of Information Act of 1966 (FOIA).
A BoL is a legal document that serves as a record that a shipment has been transported
from its origin to its final destination. Each BoL requires companies to fill out various fields,
including shipper/consignee name and address, description of the goods, vessel name, trans-
port company name, ports of lading (loading) and unlading (unloading), weight, quantity,
and container information.

Panjiva collects, parses and stores raw data in an accessible way. On top of the raw
data, Panjiva also imputes several additional variable. The list of variables includes volume
(imputed based on existing container information and other shipment characteristics), Har-
monized System (HS) product codes (Panjiva applies text processing algorithms to assign
HS codes to each shipment based on the verbal description of the shipment in the BoL),
estimate of shipment value (in USD). The latter variable is based on publicly-available av-
erage unit values, and is currently unavailable for most transactions. Panjiva also includes
a unique company ID variable that can be used to link transactions of consignees to their
associated companies in other S&P datasets, such as Compustat.

A.2.2 Variables and Additional Features of the Data

Below we list some key variables available in U.S. import data sourced from Panjiva:

- panjivarecordid - unique shipment ID;

- arrivaldate - day of arrival;

- conname - consignee name;

- shpname - shipper name;

- volumeteu - volume of shipment in TEUs;

- weightt - weight of shipment in metric tons;
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- portoflading - port where shipment was loaded on the vessel;

- portofunlading - U.S. port where shipment cleared customs;

- vesselimo - vessel identifier;

- conpanjivaid - consignee ID;

- shppanjivaid - shipper ID;

- hscode - 6-digit HS code;

- companyid - Capital IQ company ID.

Flaaen et al. (2021) provide a comprehensive analysis of key advantages and disadvantages
of the Panjiva dataset, and find that these data accord well with administrate aggregate data
on the containerized vessel import value (U.S. Census Bureau). There are, however, several
limitations. First, the value of shipments is only available for about a half of records, which
invalidates it for our analysis. Furthermore, firms may requests that the U.S. Customs and
Border Protection (CBP) redact their identity in the shipper or consignee field; about 10 to
30 percent of records have missing shppanjivaid and/or conpanjivaid depending on the
year.

According to Flaaen et al. (2021), after a firm requests redaction, this request is fulfilled
for two years before requiring renewal. When a request expires, a firms transactions from
that point forward are no longer redacted. These redaction requests must be made for a
specific firm name, so firms that use multiple names on bills of lading must submit a request
for each entity. Given that one feature Panjiva adds to the raw data is the matching of firm
names (including likely typos) to a corporate entity, this can lead to firms having some but
not all of their shipments represented in the database. We take this limitation into account
when we construct our dataset.

A.2.3 Details on Sample Construction

We follow a sequence of steps to construct the final sample.

1. We start with the universe of shipments imported by U.S. consignees. We drop obser-
vations with the missing firm identifier, conpanjivaid.

2. Furthermore, we use the cross-reference file (also provided by Panjiva), and attempt
to obtain companyid, the S&P identifier of firms, for each conpanjivaid. Not all
consignees can be matched. According to the Panjiva representative: “...there are many
small private companies that are doing import/export around the world, and Panjiva
will assign a unique Panjiva entity ID for all of them. But many times that entity may
be too small for Capital IQ to cover, simply because there is no other information about
that company in order to initiate coverage.” Observations with the missing companyid
are dropped from the sample.
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3. Panjiva provides a concordance file, where each companyid is associated with the
ultimateparentcompanyid. We obtain IDs of the ultimate parent for each firm in the
sample, and drop those for which this ID is missing (very few observations get dropped
at this stage).

4. We next attempt to obtain gvkey, the firm identifier in Compustat, based on the ID of
the ultimate parent. For this purpose, we use the crosswalk which we download from
WRDS.18 The crosswalk contains the starting and ending date for every companyid-
gvkey tuple; we make sure to use the correct concordance depending on the time
period. That is, for each year, we keep those tuples which are active in a given year,
and apply the restricted crosswalk to our sample.

5. We drop observations with the missing shipper identity, shppanjivaid.

6. Provided that our focus is on firms which actively trade, we drop firms if we observe
them making transactions less than 50 percent of the time. About 15 percent of
observations are dropped at this step.

7. As we mentioned in Section A.2.2, firms may redact their identities (or identities of
shippers). We attempt to reduce the impact of this limitation by dropping firms if the
number of unique shippers exceeds the mean plus/minus 3 standard deviations at any
point of time. The mean and standard deviation are computed individually for each
firm. This way, we try to get rid of companies which have big spikes (up or down) in
the number of shippers; this can (plausibly) result from their redacting activity.

A.2.4 Largest U.S. Consignees

Figure C9 plots the top-10 public U.S. consignees by total volume imported (in TEUs),
and shows how their importing activity has been evolving over time. Interestingly, these
firms appear to be stable during the Great Recession in terms of imported volume; however,
most of them exhibit a substantial decline in imports in the last several years. Figure C10
demonstrates that these largest firms tend to have hundreds of unique foreign shippers,
sometimes this number exceeds 400.

18https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/capital-
iq/identifiers/.
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A.3 Alternative Definitions of Supply Chain Disruptions
As we have discussed in Section 6.2, according to the baseline definition, a supply chain
disruption between consignee i and shipper j in quarter t has to satisfy the following 3
criteria:

1. trade pair was active in each of the preceding 4 quarters;

2. trade pair was inactive in t;

3. there was at least one transaction between i and j in t+ 1.

For simplicity, let us refer to this definition as a “4-0-1” rule. The first digit refers to the
number of (consecutive) quarters before t that the trade pair has to be active, the middle
number denotes that the pair does not trade at t, and the last digit means the number of
(consecutive) quarters after t that the pair has to be active.

We considered the following 5 alternative definitions: “6-0-1”, “2-0-1”, “4-0-2”, “4-0-0”,
and “4-0-3/4”. First of all, we found that the requirement of observing trade pair activity
for 4 quarters before t is important; as in evident from Table D14, there is no statistically
significant relationship between sales growth and disruptions defined according to the “2-0-
1” rule. This is also not surprising provided that the time-series of the share of disrupted
trade pairs is much less volatile (see Figure C12). Furthermore, one cannot ignore attrition
considerations (see Section 6.2 for discussion); in particular, there is no link between sales
growth and disruptions in case of the “4-0-0” rule (Table D16).

The remaining rules (“6-0-1”, “4-0-2”, and “4-0-3/4”) deliver qualitatively similar to the
baseline results, which, however, are quantitatively stronger (see Tables D13, D15 and D17).
This is something one could expect provided that these definitions are more likely to capture
disruptions to major, long-lasting trade relationships. They, however, place more stringent
requirements on the data, and reduce both the number of identified supply chain disruptions
and the number of periods when it is feasible to identify those disruptions. The baseline rule
strikes a balance between the aforementioned limitations.
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A.4 Supply Chain Disruptions and Realized Returns in 2020
The model predicts that an increase in supply chain disruptions leads to disproportionately
higher expected returns of value stocks. To test this in the data, in this appendix we chose to
focus on the episode with a dramatic increase in supply chain disruptions in the first quarter
of 2020. We sort firms into two categories (above and below the median) with respect to their
book-to-market ratio in 2019q4, and subsequently evaluate whether supply chain disruptions
are associated with a bigger decline in realized returns for high B/M firms relative to low
B/M stocks. We repeat the same exercise by splitting firms with respect to growth in their
total assets. We estimate the following model:

ri,2020q1 = β0 + β11Above P50i,2019q4 + β21Disruptioni,2020q1
+

+ β31Disruptioni,2020q1
1Above P50i,2019q4 + εi. (A.1)

The dependent variable ri,2020q1 in Equation (20) is the return of firm i in quarter 2020q1.
1Disruption is a dummy variable that takes a value of 1 if firm i experienced any supply chain
disruption in quarter 2020q1. Furthermore, 1Above P50 indicates whether the firm was above
the median in terms of book-to-market (or investment) in quarter 2019q4.

Table A1: Supply Chain Disruptions and Realized Returns

ri,2020q1

(1) (2)

Disruption 0.0094 -0.0684∗∗∗

(0.015) (0.018)

High B/M -0.1691∗∗∗

(0.014)

High Inv 0.0673∗∗∗

(0.013)

High B/M x Disruption -0.0557∗∗

(0.027)

High Inv x Disruption 0.1250∗∗∗

(0.026)

Constant -0.1536∗∗∗ -0.2316∗∗∗

(0.007) (0.010)

R2 0.22 0.10
Observations 857 857

Notes: Table A1 reports results of OLS estimation of Equation (A.1). The dependent variable ri,2020q1 is
the return of firm i in quarter 2020q1. Disruption is a dummy variable, which takes a value of 1 if firm
i experienced any supply chain disruption in quarter 2020q1. Furthermore, High B/M and High Inv are
also dummy variables and take a value of 1 if firm i was above the median in terms of book-to-market or
investment in quarter 2019q4, correspondingly. Investment is equal to (atqi,2019q4 − atqi,2019q1)/atqi,2019q1,
where atq is firm’s total assets. Observations are value-weighted. *, **, and *** denote significance at the
10 percent, 5 percent, and 1 percent level, respectively.

Table A1 reports the result; the first column sorts firms with respect to book-to-market in
2019q4, the second column splits them with respect to asset growth. In both specifications,
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the constant is negative and highly significant, reflecting an overall poor performance of the
stock market in the first quarter of 2020. High book-to-market stocks and low investment
firms had lower returns in 2020q1 (conditional on no disruptions); this is indicative of higher
exposure of these firms to the adverse aggregate shock.

Critically, however, supply chain disruptions had a much bigger impact on value and low
investment stocks. In particular, we find that supply chain disruptions were associated with
a 6pp (13pp) bigger decline in quarterly realized returns on value (low investment) firms
relative to growth (high investment) firms. Thus, the data provide support for the model’s
prediction in that unproductive firms are more exposed to supply chain disruptions, and,
thus earn higher expected returns.
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Appendix B: Model Appendix
The computation of the model can be broadly divided into three parts: (1) simplification of
programming problems by way of combining household’s and firms’ optimization problems,
(2) computation of the model at the steady-state, and (3) solving for the equilibrium of the
model with aggregate fluctuations using perturbation techniques. In what follows, we lay
out the key details of the numerical algorithm. We start with a formal definition of the
recursive competitive equilibrium for the model outlined in Section 3.

B.1 Definition of Equilibrium
The Recursive competitive equilibrium for this economy consists of the following functions:{

v, vadj, vno adj, n, k′,W, η̂, ω0, ω1, H, C,Ξ,M

}
,

such that:

1. H solves the household’s problem (13)—(14), and (C,Ξ) are the associated policy
functions,

2. v, vadj, vno adj solve the firm’s problem, and (k′, n) are the corresponding policy func-
tions,

3. consistency condition satisfies ∀(k, z) ∈ K × Z

Ξ(k′, z′;S) = µ′(k′, z′),

4. threshold value η̂ arises from the associated programming problem (9),

5. labor market clears

1 = N(S) =

∫
n(k, z;S)dµ+

∫
η̂(k, z;S)2

2η̄
dµ,

6. stochastic discount factor satisfies

M(S,S′) = β
U ′
C(C(S′)× S ′)

U ′
C(C(S)× S)

,

7. goods market clears
C(S) = Y (S)− I(S)− AC(S),
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where

Y (S) =

∫
eX

Z

ezkθnνdµ,

I(S) =

∫ {(
η̂(k, z;S)

η̄

)
k′(k, z;S) +

(
1− η̂(k, z;S)

η̄

)
k̄′(k, z;S)− (1− δ)k

}
dµ,

AC(S) =

∫
AC(k′(k, z;S), k)dµ,

where k̄′(k, z;S) = min{(1− δ + b)k,max{(1− δ − b)k, k′(k, z;S)}}.

8. law of motion for the aggregate state vector Γ(·) is consistent with firms’ policy func-
tions.

B.2 Analysis of the Model
The model outlined in Section 3 incorporates optimization problems for a representative
household and heterogeneous firms. This implies that, first, we need to solve two program-
ming problems, and then make sure that the agents’ decisions are consistent with each other
and that markets clear. Fortunately, it is possible to combine the optimality conditions
for the household’s and firms’ Bellman equations, and thereby reduce the computational
complexity of the problem at hand. Using C(S) to denote the market clearing value of
household consumption, it is straightforward to show that market-clearing requires firms’
state-contingent discount factor to be consistent with the household marginal rate of substi-
tution over time:

M(S,S′) = β
U ′
1(C(S′)× S ′)

U ′
1(C(S)× S)

.

Following Khan and Thomas (2008), we compute for the recursive competitive equi-
librium effectively substituting the equilibrium implications of household optimization into
the recursive problems faced by the firms. This means that we scale all value functions by
p(S)—the marginal utility of the household with respect to equilibrium consumption C(S).

Next, we lay out the algorithm which we used to solve for the equilibrium.

B.3 Steady-State
We use collocation methods to solve the firm’s functional equations. In practice, we use
Chebyshev polynomials to approximate value functions.

We set up a grid of collocation nodes K×Z , with Ni nodes in each dimension, i ∈ {K,Z}.
The computation of the stationary state of the model proceeds in the following 4 steps:

1. guess the equilibrium wage rate, W ;

2. solve for individual decision rules k′;

3. given the decision rules, compute stationary histogram (distribution of firms over the
state space);
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4. compute the excess demand on the labor market. If it exceeds some prespecified
tolerance, adjust the wage guess correspondingly and go back to Step 2. Otherwise,
terminate.

B.3.1 Approximation of Value Functions

We approximate four (normalized by the household’s marginal utility) value functions:
V e(·), V cont(·), V adj(·) and V no adj(·). We represent these value functions as weighted sums
of orthogonal polynomials:

V e(k, z) =
∑NKNZ

a,b=1,1 θ
ab
0 T a(k)T b(z)

V cont(k, z) =
∑NK,NZ

a,b=1,1 θ
ab
1 T a(k)T b(z)

V adj(k, z) =
∑NK,NZ

a,b=1,1 θ
ab
2 T a(k)T b(z)

V no adj(k, z) =
∑NK,NZ

a,b=1,1 θ
ab
3 T a(k)T b(z)

where Θ = {θa,b0 , θa,b1 , θa,b2 , θa,b3 } are approximation coefficients, and T i(·) is the Chebyshev
polynomial of order i.

We use a collocation method to simultaneously solve for Θ. Collocation method requires
setting the residual equation to hold exactly at N = NK ×NZ points ; therefore, we essen-
tially solve for 4 × N unknown coefficients. We compute the basis matrices for Chebyshev
polynomials using Miranda and Fackler (2002) Compecon toolbox. Subsequently, we solve
for a vector of unknown coefficients using Newton’s method. A much slower alternative is
to iterate on the value function. Given the current guess of coefficients, we solve for the
optimal policy k′(k, z) using vectorized golden search. After we solve for the policy func-
tion, we recompute decision rules on a finer grid, and, subsequently, compute the stationary
distribution.

B.3.2 Stationary Distribution

When we solve for a stationary distribution, we iterate on a mapping using firms’ decisions
rules:

L′ = Q′L,

where L is a current distribution of firms across the state space. Matrix Q is a transition
matrix, which determines how mass of firms shifts in the (k, z)-space. It is a direct product
of three transition matrices Qk, and Qz:

Q = Qk ⊙Qz,

which govern the shift of mass along k- and z-dimensions, respectively. While Qz is com-
pletely determined by the exogenous stochastic process, matrix Qk is constructed so that
the model generates an unbiased distribution in terms of aggregates.19 More precisely, el-
ement (i, j) of the transition matrix Qk informs which fraction of firms with the current
idiosyncratic state ki will end up having kj tomorrow. Therefore, this entry of the matrix is

19See Young (2010) for more details.

64



computed as:

Qk(i, j) =

[
1k′∈[kj−1,kj ]

k′ − kj
kj − kj−1

+ 1k′∈[kj ,kj+1]
kj+1 − k′

kj+1 − kj

]
.

Tensor product of matrices Qk and Qz is computed using the dprod function from the
Miranda and Fackler (2002) toolkit.

B.4 Model with Aggregate Shocks
We solve the model with aggregate uncertainty using the second-order perturbation around
the non-stochastic steady-state in Dynare following the steps outlined in Winberry (2018).
Provided that the model features rare large drops in productivity, we chose to keep track of
the fine histogram instead of using a parametric family to approximate the distribution.
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Appendix C: Additional Figures

Figure C1: Characteristics of Seaborne Import by U.S. Public Firms
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(a) Distribution of firms by num. of shippers
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(b) Frequency of transactions by trade pair
Notes: Figure C1 consists of two panels. Panel (A) plots the distribution of U.S. public firms (consignees)
by the number of foreign shippers (gray bars) in 2019. Panel (B) plots the distribution of trade pairs with
respect to transaction frequency in 2019; the sample is restricted to those pairs which traded at least once
in 2018. Black bars show shares of total import by volume (TEUs) that each category accounts for.
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Figure C2: Share of Disrupted Trade Pairs vs. GSCPI
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(a) Full sample
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(b) Compustat sample
Notes: Figure C2 consists of 2 panels. Panel (A) compares the share of disrupted trade pairs computed
according to the definition provided in Section 6.2 against the Global Supply Chain Pressure Index (GSCPI).
See Appendix A.2.3 for details on sample construction. Panel (B) plots same object for the Compustat
subsample. All series are represented in terms of standard deviations from the time-series average.

Figure C3: Share of Disrupted Trade Pairs vs. Bloomberg Index
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(a) Full sample
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(b) Compustat sample
Notes: Figure C3 consists of 2 panels. Panel (A) plots the shares of trade pairs being disrupted by quarter
according to the definition provided in Section 6.2 against the one year lead of the Bloomberg Supply
Constraints Indicator. Both series are represented in terms of standard deviations from the time-series
average. Panel (B) repeats the exercise for the Compustat subsample. Datasource: S&P Global Market
Intelligence and Bloomberg.
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Figure C4: Share of Disrupted Trade Pairs by Importance to Firms vs.
GSCPI
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(a) Disruptions (≥ 0.5%), full
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(b) Disruptions (≥ 1.7%), full
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(c) Disruptions (≥ 0.5%), Compustat
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(d) Disruptions (≥ 1.7%), Compustat
Notes: Figure C4 consists of 4 panels. Panels (A) and (C) plot shares of pairs being disrupted by quarter
according to the definition provided in Section 6.2 for the full sample and public firms subsample, corre-
spondingly; disrupted trade pairs that account for at least 0.5 percent of the firm-level import volume over
the last 4 quarters are considered. See Appendix A.2.3 for details on sample construction. Panels (B) and
(D) plot probability of disruptions that account for at least 1.7% (= 0.5% + 3 × 0.4%) of firm-level import
volume for the full sample and public firms subsample, correspondingly. Both series are represented in stan-
dard deviations from the time-series average, and are plotted against the FRB NY Global Supply Chain
Pressure index.
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Figure C5: Share of Disrupted Trade Pairs by Importance to Firms vs.
Bloomberg Index
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(b) Disruptions (≥ 1.7%), full
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(c) Disruptions (≥ 0.5%), Compustat

-2

-1

0

1

2

3

-2.00

-1.00

0.00

1.00

2.00

St
. D

ev
ia

tio
ns

 fr
om

 M
ea

n

2009q1 2012q1 2015q1 2018q1 2021q1
Time

Pairs Disrupted (Left) Bloomberg, Year Lead (Right)

(d) Disruptions (≥ 1.7%), Compustat
Notes: Figure C5 consists of 4 panels. Panels (A) and (C) plot shares of pairs being disrupted by quarter
according to the definition provided in Section 6.2 for the full sample and public firms subsample, corre-
spondingly; disrupted trade pairs that account for at least 0.5 percent of the firm-level import volume over
the last 4 quarters are considered. See Appendix A.2.3 for details on sample construction. Panels (B) and
(D) plot probability of disruptions that account for at least 1.7% (= 0.5% + 3 × 0.4%) of firm-level import
volume for the full sample and public firms subsample, correspondingly. Both series are represented in stan-
dard deviations from the time-series average, and are plotted against the one year lead of the Bloomberg
Supply Constraints Indicator.
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Figure C6: Share of Firms Experiencing a Disruption
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(b) Full sample
Notes: Figure C6 contains two panels, each panel has three lines. The solid line plots the share of firms in
our sample that experience any disruption. The dashed line corresponds to the share of firms that experience
disruption(s) that cumulatively account for at least 0.5 percent (1.2 percent) of the firm-level trade volume
over the preceding 4 quarters. The dotted line does the same but for disruptions exceeding 1.5 percent (3.6
percent) of total import volume. Panel (A) corresponds to the sample of public firms, panel (B) corresponds
to the full sample. Both samples are limited to firms with at least 20 shippers (on average).
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Figure C7: Investment Rate and Idiosyncratic Productivity

Notes: Figure C7 plots investment rate against idiosyncratic productivity in the steady state. Solid, dashed
and dotted lines correspond to low, medium and high levels of idiosyncratic capital, respectively.
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Figure C8: Share of Disrupted Trade Pairs, U.S. Public Firms
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(b) Comparison against GSCP index
Notes: Figure C8 consists of 2 panels. Panel (A) plots the shares of trade pairs being disrupted by quarter
according to the definition provided in Section 6.2. The underlying sample consists of a subset of U.S. public
firms. See Appendix A.2.3 for details on sample construction. Panel (B) compares that series against the
FRB NY Global Supply Chain Pressure index. Both series are represented in terms of standard deviations
from the time-series average.
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Figure C9: Top 10 U.S. Consignees, Total Volume
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Notes: Figure C9 plots the total volume imported (in TEUs) for the top 10 largest U.S. consignees in the
Compustat sample.
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Figure C10: Top 10 U.S. Consignees, Number of Shippers
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Notes: Figure C10 plots the number of shippers for the top 10 largest U.S. consignees in the Compustat
sample.
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Figure C11: Share of Disrupted Trade Pairs, “6-0-1” Rule
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(b) Comparison against GSCP index
Notes: See notes for Figure 7.

Figure C12: Share of Disrupted Trade Pairs, “2-0-1” Rule
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(b) Comparison against GSCP index
Notes: See notes for Figure 7.
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Figure C13: Share of Disrupted Trade Pairs, “4-0-2” Rule
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Figure C14: Share of Disrupted Trade Pairs, “4-0-0” Rule
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Notes: See notes for Figure 7.
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Figure C15: Share of Disrupted Trade Pairs, “4-0-3/4” Rule
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Figure C16: Share of Disrupted Trade Pairs for Selected NAICS 2-digit
Industries
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(d) Information
Notes: Figure C16 plots shares of trade pairs being disrupted by NAICS 2-digit industry. The underlying
sample covers a subset of publicly traded firms, see Appendix A.2.3 for details on sample construction.
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Appendix D: Additional Tables

Table D1: Summary Statistics, 2009

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2895 0.488 1.198 0.016 0.206 1.029
Volume (1000s TEUs) 2895 1.170 5.970 0.012 0.253 2.207
Number of shippers 2895 61.6 77.8 6.0 42.0 126.0
Share redacted 2895 0.009 0.024 0.000 0.001 0.023
Number of disruptions 2895 0.461 0.728 0.000 0.250 1.250
Share of import disrupted 2479 0.020 0.047 0.000 0.007 0.047

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 397 1.044 1.776 0.090 0.410 2.541
Volume (1000s TEUs) 397 2.610 7.705 0.076 0.651 6.365
Number of shippers 397 112.4 129.6 21.0 63.0 270.0
Share redacted 397 0.007 0.012 0.000 0.003 0.019
Sales(bn) 402 13.49 31.53 0.27 2.85 34.04
Total assets(bn) 397 35.02 182.18 0.26 2.66 47.58
Quarterly sales growth 386 0.005 0.082 -0.064 0.003 0.065
Number of disruptions 402 0.679 1.342 0.000 0.000 2.250
Share of import disrupted 402 0.006 0.012 0.000 0.000 0.022

Notes: Table D1 reports summary statistics for the underlying sample of U.S. firms for year 2009. Nominal
variables have been converted to real ones using the Producer Price Index with 2015 being the base year.

Table D2: Summary Statistics, 2010

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2913 0.529 1.431 0.016 0.224 1.068
Volume (1000s TEUs) 2913 1.256 6.191 0.013 0.275 2.326
Number of shippers 2913 60.0 76.0 6.0 41.0 122.0
Share redacted 2913 0.004 0.022 0.000 0.000 0.006
Number of disruptions 2913 0.413 0.672 0.000 0.250 1.000
Share of import disrupted 2496 0.018 0.052 0.000 0.005 0.042

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 405 1.081 1.798 0.079 0.439 2.693
Volume (1000s TEUs) 405 2.644 8.007 0.085 0.694 5.896
Number of shippers 405 103.9 125.3 19.0 60.0 235.0
Share redacted 405 0.002 0.006 0.000 0.000 0.004
Sales(bn) 411 14.21 34.90 0.34 2.69 39.33
Total assets(bn) 410 33.47 173.86 0.25 2.59 44.52
Quarterly sales growth 395 0.011 0.097 -0.027 0.009 0.056
Number of disruptions 411 0.399 0.887 0.000 0.000 1.250
Share of import disrupted 411 0.005 0.014 0.000 0.000 0.014

Notes: Table D2 reports summary statistics for the underlying sample of U.S. firms for year 2010. Nominal
variables have been converted to real ones using the Producer Price Index with 2015 being the base year.
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Table D3: Summary Statistics, 2011

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2881 0.490 1.413 0.013 0.204 1.002
Volume (1000s TEUs) 2881 1.152 6.001 0.010 0.257 2.113
Number of shippers 2881 55.5 68.8 5.0 40.0 115.0
Share redacted 2881 0.004 0.020 0.000 0.000 0.005
Number of disruptions 2881 0.453 0.696 0.000 0.250 1.250
Share of import disrupted 2458 0.021 0.053 0.000 0.006 0.050

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 403 0.976 1.552 0.066 0.421 2.491
Volume (1000s TEUs) 403 2.359 7.182 0.063 0.660 5.525
Number of shippers 403 92.1 106.4 17.0 54.0 215.0
Share redacted 403 0.002 0.007 0.000 0.000 0.003
Sales(bn) 412 14.52 38.09 0.35 2.73 38.99
Total assets(bn) 412 32.41 164.63 0.25 2.56 42.17
Quarterly sales growth 398 -0.002 0.070 -0.042 -0.000 0.046
Number of disruptions 412 0.472 1.075 0.000 0.000 1.500
Share of import disrupted 412 0.005 0.012 0.000 0.000 0.016

Notes: Table D3 reports summary statistics for the underlying sample of U.S. firms for year 2011. Nominal
variables have been converted to real ones using the Producer Price Index with 2015 being the base year.

Table D4: Summary Statistics, 2012

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2982 0.530 1.509 0.031 0.225 1.096
Volume (1000s TEUs) 2982 1.206 5.940 0.024 0.291 2.315
Number of shippers 2982 62.9 76.7 12.0 44.0 124.0
Share redacted 2982 0.011 0.034 0.000 0.000 0.028
Number of disruptions 2982 0.460 0.833 0.000 0.250 1.250
Share of import disrupted 2390 0.021 0.051 0.000 0.007 0.050

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 415 1.100 1.608 0.098 0.513 2.473
Volume (1000s TEUs) 415 2.621 8.459 0.102 0.955 6.172
Number of shippers 415 111.1 119.5 27.0 67.0 249.0
Share redacted 415 0.018 0.049 0.000 0.002 0.041
Sales(bn) 419 14.48 37.62 0.32 3.09 37.97
Total assets(bn) 415 35.50 171.05 0.26 2.84 50.28
Quarterly sales growth 401 0.007 0.071 -0.035 0.009 0.053
Number of disruptions 419 0.415 0.939 0.000 0.000 1.250
Share of import disrupted 419 0.005 0.015 0.000 0.000 0.016

Notes: Table D4 reports summary statistics for the underlying sample of U.S. firms for year 2012. Nominal
variables have been converted to real ones using the Producer Price Index with 2015 being the base year.
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Table D5: Summary Statistics, 2013

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2972 0.696 2.016 0.023 0.279 1.379
Volume (1000s TEUs) 2972 1.541 6.530 0.021 0.355 2.875
Number of shippers 2972 67.1 87.1 8.0 48.0 129.0
Share redacted 2972 0.063 0.155 0.000 0.003 0.189
Number of disruptions 2972 0.517 0.795 0.000 0.250 1.250
Share of import disrupted 2620 0.016 0.041 0.000 0.005 0.039

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 417 1.618 3.355 0.113 0.683 3.654
Volume (1000s TEUs) 417 3.807 11.113 0.116 1.122 8.506
Number of shippers 417 118.6 136.3 26.0 76.0 260.0
Share redacted 417 0.063 0.140 0.000 0.011 0.168
Sales(bn) 421 14.45 36.85 0.38 3.11 35.79
Total assets(bn) 420 36.10 173.61 0.29 2.91 51.10
Quarterly sales growth 406 0.003 0.083 -0.023 0.011 0.052
Number of disruptions 421 0.566 1.107 0.000 0.000 1.500
Share of import disrupted 421 0.005 0.012 0.000 0.000 0.013

Notes: Table D5 reports summary statistics for the underlying sample of U.S. firms for year 2013. Nominal
variables have been converted to real ones using the Producer Price Index with 2015 being the base year.

Table D6: Summary Statistics, 2014

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2997 0.766 2.445 0.024 0.290 1.523
Volume (1000s TEUs) 2997 1.691 7.116 0.021 0.382 3.269
Number of shippers 2997 69.8 96.2 9.0 48.0 136.0
Share redacted 2997 0.055 0.149 0.000 0.002 0.147
Number of disruptions 2997 0.608 0.961 0.000 0.250 1.500
Share of import disrupted 2629 0.018 0.038 0.000 0.007 0.046

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 418 1.920 4.501 0.116 0.706 4.290
Volume (1000s TEUs) 418 4.523 13.126 0.139 1.140 9.735
Number of shippers 418 130.4 171.3 26.0 75.0 280.0
Share redacted 418 0.053 0.139 0.000 0.008 0.122
Sales(bn) 420 14.28 35.12 0.36 3.15 34.50
Total assets(bn) 417 36.33 177.05 0.30 3.10 50.37
Quarterly sales growth 408 0.004 0.084 -0.040 0.012 0.049
Number of disruptions 420 0.660 1.265 0.000 0.250 2.000
Share of import disrupted 420 0.005 0.010 0.000 0.000 0.014

Notes: Table D6 reports summary statistics for the underlying sample of U.S. firms for year 2014. Nominal
variables have been converted to real ones using the Producer Price Index with 2015 being the base year.
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Table D7: Summary Statistics, 2015

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2992 0.773 2.425 0.028 0.299 1.547
Volume (1000s TEUs) 2992 1.782 7.401 0.023 0.411 3.364
Number of shippers 2992 70.3 98.8 9.0 50.0 131.0
Share redacted 2992 0.050 0.141 0.000 0.002 0.127
Number of disruptions 2992 0.627 1.030 0.000 0.250 1.500
Share of import disrupted 2623 0.019 0.046 0.000 0.007 0.045

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 417 1.798 3.939 0.123 0.708 4.002
Volume (1000s TEUs) 417 4.211 9.534 0.162 1.189 10.161
Number of shippers 417 128.6 187.2 28.0 73.0 275.0
Share redacted 417 0.048 0.125 0.000 0.008 0.123
Sales(bn) 421 13.98 29.86 0.42 3.52 35.96
Total assets(bn) 420 39.57 188.02 0.36 3.47 57.06
Quarterly sales growth 411 0.012 0.074 -0.044 0.017 0.064
Number of disruptions 421 0.795 1.479 0.000 0.250 2.500
Share of import disrupted 421 0.006 0.014 0.000 0.000 0.018

Notes: Table D7 reports summary statistics for the underlying sample of U.S. firms for year 2015. Nominal
variables have been converted to real ones using the Producer Price Index with 2015 being the base year.

Table D8: Summary Statistics, 2016

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2993 0.723 2.244 0.020 0.282 1.459
Volume (1000s TEUs) 2993 1.655 7.152 0.019 0.381 3.243
Number of shippers 2993 68.2 100.2 8.0 48.0 126.0
Share redacted 2993 0.077 0.169 0.000 0.007 0.248
Number of disruptions 2993 0.604 1.046 0.000 0.250 1.500
Share of import disrupted 2614 0.017 0.041 0.000 0.007 0.040

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 414 1.615 3.461 0.103 0.655 3.359
Volume (1000s TEUs) 414 3.646 7.621 0.115 1.167 8.119
Number of shippers 414 120.5 181.0 24.0 74.0 260.0
Share redacted 414 0.088 0.161 0.000 0.023 0.225
Sales(bn) 417 14.42 30.08 0.46 3.76 34.38
Total assets(bn) 416 42.63 199.80 0.43 3.69 65.12
Quarterly sales growth 407 -0.007 0.100 -0.058 0.002 0.043
Number of disruptions 417 0.777 1.660 0.000 0.250 2.250
Share of import disrupted 417 0.007 0.016 0.000 0.000 0.019

Notes: Table D8 reports summary statistics for the underlying sample of U.S. firms for year 2016. Nominal
variables have been converted to real ones using the Producer Price Index with 2015 being the base year.
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Table D9: Summary Statistics, 2017

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2953 0.693 2.139 0.016 0.272 1.440
Volume (1000s TEUs) 2953 1.563 6.872 0.014 0.373 3.080
Number of shippers 2953 65.7 93.7 6.0 47.0 123.0
Share redacted 2953 0.096 0.193 0.000 0.011 0.314
Number of disruptions 2953 0.577 0.902 0.000 0.250 1.500
Share of import disrupted 2562 0.018 0.041 0.000 0.006 0.044

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 416 1.435 2.934 0.083 0.629 3.184
Volume (1000s TEUs) 416 3.156 6.619 0.096 1.000 7.192
Number of shippers 416 109.9 165.7 19.0 66.0 241.0
Share redacted 416 0.099 0.162 0.000 0.035 0.272
Sales(bn) 420 15.10 32.93 0.48 3.87 36.00
Total assets(bn) 420 42.61 196.65 0.44 3.87 67.99
Quarterly sales growth 406 0.013 0.057 -0.020 0.008 0.060
Number of disruptions 420 0.605 1.150 0.000 0.000 2.000
Share of import disrupted 420 0.006 0.012 0.000 0.000 0.017

Notes: Table D9 reports summary statistics for the underlying sample of U.S. firms for year 2017. Nominal
variables have been converted to real ones using the Producer Price Index with 2015 being the base year.

Table D10: Summary Statistics, 2018

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2945 0.715 2.260 0.017 0.284 1.511
Volume (1000s TEUs) 2945 1.613 7.155 0.017 0.383 3.189
Number of shippers 2945 66.7 92.0 7.0 48.0 128.0
Share redacted 2945 0.094 0.191 0.000 0.010 0.323
Number of disruptions 2945 0.592 0.923 0.000 0.250 1.500
Share of import disrupted 2512 0.018 0.035 0.000 0.007 0.047

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 421 1.435 2.583 0.070 0.620 3.431
Volume (1000s TEUs) 421 3.351 8.403 0.082 1.111 7.852
Number of shippers 421 108.9 148.9 17.0 70.0 239.0
Share redacted 421 0.110 0.184 0.000 0.024 0.335
Sales(bn) 424 15.80 36.63 0.48 4.16 36.95
Total assets(bn) 421 41.95 191.49 0.47 4.30 65.96
Quarterly sales growth 408 0.008 0.116 -0.035 0.003 0.048
Number of disruptions 424 0.596 1.094 0.000 0.000 2.000
Share of import disrupted 424 0.006 0.015 0.000 0.000 0.017

Notes: Table D10 reports summary statistics for the underlying sample of U.S. firms for year 2018. Nominal
variables have been converted to real ones using the Producer Price Index with 2015 being the base year.
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Table D11: Summary Statistics, 2020

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2858 0.650 2.340 0.010 0.246 1.389
Volume (1000s TEUs) 2858 1.510 6.891 0.011 0.334 3.155
Number of shippers 2858 59.5 81.0 4.0 43.0 117.0
Share redacted 2858 0.079 0.178 0.000 0.009 0.224
Number of disruptions 2858 0.617 1.010 0.000 0.250 1.500
Share of import disrupted 2398 0.022 0.050 0.000 0.008 0.054

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 412 1.140 1.758 0.059 0.540 2.736
Volume (1000s TEUs) 412 2.528 4.495 0.063 0.898 6.212
Number of shippers 412 97.1 125.2 15.0 65.0 204.0
Share redacted 412 0.082 0.164 0.000 0.019 0.212
Sales(bn) 418 15.73 36.18 0.47 4.29 36.49
Total assets(bn) 418 49.83 233.84 0.54 5.28 64.51
Quarterly sales growth 410 -0.000 0.097 -0.070 0.007 0.069
Number of disruptions 418 0.695 1.342 0.000 0.000 2.250
Share of import disrupted 418 0.006 0.013 0.000 0.000 0.019

Notes: Table D11 reports summary statistics for the underlying sample of U.S. firms for year 2020. Nominal
variables have been converted to real ones using the Producer Price Index with 2015 being the base year.

Table D12: Summary Statistics, 2021

Full Sample
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 2827 0.729 2.809 0.013 0.272 1.522
Volume (1000s TEUs) 2827 1.663 7.764 0.014 0.394 3.416
Number of shippers 2827 62.6 83.1 5.0 45.0 123.0
Share redacted 2827 0.091 0.183 0.000 0.017 0.267
Number of disruptions 2827 0.598 1.007 0.000 0.250 1.500
Share of import disrupted 2376 0.021 0.044 0.000 0.008 0.053

Compustat
Variable Number of Firms Mean Std. Dev. P10 P50 P90
Shipments (1000s) 403 1.291 2.038 0.054 0.576 3.089
Volume (1000s TEUs) 403 3.025 6.925 0.082 0.969 6.715
Number of shippers 403 101.9 133.1 15.0 66.0 208.0
Share redacted 403 0.094 0.164 0.000 0.026 0.286
Sales(bn) 408 14.31 34.77 0.46 3.55 32.44
Total assets(bn) 408 47.46 224.00 0.52 4.99 62.18
Quarterly sales growth 400 -0.032 0.147 -0.108 -0.026 0.067
Number of disruptions 408 0.583 1.068 0.000 0.000 2.000
Share of import disrupted 408 0.007 0.016 0.000 0.000 0.019

Notes: Table D12 reports summary statistics for the underlying sample of U.S. firms for year 2021. Nominal
variables have been converted to real ones using the Producer Price Index with 2015 being the base year.
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Table D13: Sales Growth and Supply Chain Disruptions, “6-0-1” Rule

∆̃Salesti,t−1 ∆̃Salest−1
i,t−2 ∆̃Salest+1

i,t−1 ∆̃Salest+2
i,t−1 ∆̃Salest+3

i,t−1

(1) (2) (3) (4) (5) (6) (7)

1Disruptioni,t
-0.0127∗∗∗ -0.0154∗∗∗ 0.0053 -0.0240∗∗∗ -0.0141∗∗ -0.0026

(0.003) (0.004) (0.004) (0.005) (0.006) (0.005)

Share disruptedi,t -0.4525∗∗∗

(0.143)

Year-Quarter FE X X X X X X X
Firm FE — X X X X X X
R2 0.049 0.062 0.062 0.060 0.071 0.102 0.161
N 20595 20593 20593 20240 20181 19773 19356

Notes: See notes for Table 12.

Table D14: Sales Growth and Supply Chain Disruptions, “2-0-1” Rule

∆̃Salesti,t−1 ∆̃Salest−1
i,t−2 ∆̃Salest+1

i,t−1 ∆̃Salest+2
i,t−1 ∆̃Salest+3

i,t−1

(1) (2) (3) (4) (5) (6) (7)

1Disruptioni,t
-0.0022 -0.0036 -0.0024 -0.0053 -0.0019 0.0001
(0.002) (0.003) (0.003) (0.004) (0.004) (0.004)

Share disruptedi,t -0.0989
(0.065)

Year-Quarter FE X X X X X X X
Firm FE — X X X X X X
R2 0.048 0.061 0.061 0.060 0.071 0.102 0.161
N 20595 20593 20593 20240 20181 19773 19356

Notes: See notes for Table 12.

Table D15: Sales Growth and Supply Chain Disruptions, “4-0-2” Rule

∆̃Salesti,t−1 ∆̃Salest−1
i,t−2 ∆̃Salest+1

i,t−1 ∆̃Salest+2
i,t−1 ∆̃Salest+3

i,t−1

(1) (2) (3) (4) (5) (6) (7)

1Disruptioni,t
-0.0090∗∗∗ -0.0115∗∗∗ 0.0026 -0.0204∗∗∗ -0.0183∗∗∗ -0.0088∗

(0.003) (0.004) (0.004) (0.005) (0.005) (0.005)

Share disruptedi,t -0.5245∗∗∗

(0.175)

Year-Quarter FE X X X X X X X
Firm FE — X X X X X X
R2 0.048 0.061 0.062 0.060 0.071 0.102 0.161
N 20595 20593 20593 20240 20181 19773 19356

Notes: See notes for Table 12.
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Table D16: Sales Growth and Supply Chain Disruptions, “4-0-0” Rule

∆̃Salesti,t−1 ∆̃Salest−1
i,t−2 ∆̃Salest+1

i,t−1 ∆̃Salest+2
i,t−1 ∆̃Salest+3

i,t−1

(1) (2) (3) (4) (5) (6) (7)

1Disruptioni,t
-0.0031 -0.0038 0.0012 -0.0040 -0.0077 -0.0066
(0.002) (0.003) (0.003) (0.004) (0.005) (0.005)

Share disruptedi,t -0.0351
(0.025)

Year-Quarter FE X X X X X X X
Firm FE — X X X X X X
R2 0.048 0.061 0.061 0.060 0.071 0.102 0.161
N 20595 20593 20593 20240 20181 19773 19356

Notes: See notes for Table 12.

Table D17: Sales Growth and Supply Chain Disruptions, “4-0-3/4” Rule

∆̃Salesti,t−1 ∆̃Salest−1
i,t−2 ∆̃Salest+1

i,t−1 ∆̃Salest+2
i,t−1 ∆̃Salest+3

i,t−1

(1) (2) (3) (4) (5) (6) (7)

1Disruptioni,t
-0.0052 -0.0071∗ 0.0046 -0.0140∗∗∗ -0.0101∗ 0.0048
(0.003) (0.004) (0.004) (0.005) (0.005) (0.005)

Share disruptedi,t -0.3248∗∗

(0.151)

Year-Quarter FE X X X X X X X
Firm FE — X X X X X X
R2 0.048 0.061 0.061 0.060 0.071 0.102 0.161
N 20595 20593 20593 20240 20181 19773 19356

Notes: See notes for Table 12.
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Table D18: Microeconomic Disasters and Cross-sectional Distributions

Investment Rates, i
k

E
[
i
k

]
σ
[
i
k

]
P
[∣∣ i

k

∣∣ > 0.2
]

P
[
0 < i

k
≤ 0.2

]
Data 0.10 0.16 0.14 0.86
Model λ = 0 0.10 0.11 0.17 0.79
Model λ = 0.011 0.10 0.12 0.17 0.78

Log Employment Changes, ∆ log n

P5010(∆ log n) σ(∆ log n) P [∆ log n ≤ −3σ] P [∆ log n ≥ 3σ]

Data 0.26 0.41 0.01 0.01
Model λ = 0 0.28 0.22 0.00 0.00
Model λ = 0.011 0.31 0.27 0.01 0.01

Notes: Table D18 characterizes the distribution of investment rates and employment changes in the steady-
state of the model. Two versions of the model are considered: the one with jumps (λ = 0.011), and the one
without (λ = 0). All figures are annual.

Table D19: Microeconomic Disasters and Business Cycle Statistics

σ(Y ) σ(C)/σ(Y ) σ(I)/σ(Y ) σ(∆C)

Data 1.78 0.82 4.64 0.50
Model λ = 0 1.81 0.48 4.31 0.67
Model λ = 0.011 1.81 0.51 4.14 0.71

σ(∆Y ) σ(∆I) AC1(∆C) AC1(∆I)

Data 1.00 2.63 0.34 0.41
Model λ = 0 1.40 5.99 0.04 0.01
Model λ = 0.011 1.40 5.72 0.04 0.02

Notes: Table D19 reports business cycle statistics for two versions of the model: the one with jumps
(λ = 0.011), and the one without (λ = 0). The symbols have the following meaning: Y , output, C,
consumption, I, investment, σ(·), standard deviation, AC1(·), autocorrelation, ρ(·), correlation. Macro
aggregates (C, Y, and I) were log-differenced and HP-filtered with the smoothing parameter of 1600. Business
cycle statistics are quarterly. Model moments are the mean across 100 simulations of 500 quarters. We burn
200 first periods to reduce the impact of initial conditions.
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