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Abstract

Many environmental hazards produce health effects that take years to arise, but

quasi-experimental studies typically measure outcomes and treatment over short time

periods. We develop a new approach to overcome this challenge and use it to gauge

the effect of exposure to sulfur dioxide on US life expectancy. Using changes in wind

direction as an instrument for daily air pollution levels, we first characterize the short-

run mortality effects of acute exposure during the time period 1972–1988. Exposure

causes two distinct mortality patterns: a short-run mortality displacement effect, and

a persistent accelerated aging effect. We then incorporate our estimates into a health

production model to quantify the lifelong effects of chronic air pollution exposure for

a cohort born in 1972. Model calculations of the effect of chronic exposure on life

expectancy are 7–8 times larger than the effect implied by simple extrapolation of our

short-run empirical estimates. Ninety percent of the survival benefits accrue after the

first fifty years of life, implying that most of the 1970 Clean Air Act’s health benefits

have yet to emerge for cohorts born after its passage.
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1 Introduction

Environmental hazards such as air pollution, extreme temperatures, and water pollution are

important causes of human morbidity and mortality. For example, The Lancet Commission

on Pollution and Health estimates that air pollution caused 6.5 million premature deaths in

2015, amounting to about 12 percent of all deaths worldwide (Landrigan et al., 2018). Such

assessments are generally based on observational studies, which are prone to estimation

bias.1 Although quasi-experimental studies can address this bias, they typically measure

health outcomes and treatment exposure over short time periods that span one year or

less, thereby overlooking effects that may emerge years or decades later. This limitation is

challenging to overcome because quasi-experimental variation in chronic (long-run) treatment

exposure is difficult to find, data that track individuals over long time periods are rare, and

endogenous responses such as migration complicate the interpretation of estimates. However,

optimal health and environmental policies require an accurate estimate of the lifelong health

consequences of permanent changes in exposure.

We propose a novel approach to address this limitation when the outcome is mortality.

The approach combines well-identified short-run estimates with a versatile model of survival

that can accommodate a number of different mortality dynamics (Lleras-Muney and Moreau,

2022). Once calibrated to match our empirical estimates, the model can fully characterize the

short- and long-run survival effects of both acute and chronic changes in treatment exposure.

The calibrated model can be validated by comparing its short-run predictions to empirical

estimates of outcomes that are measured over different time windows or using different ages

than those used for calibration.

We use our approach to estimate the short- and long-run effects of exposure to air pollu-

tion on US population mortality. We assemble a new, comprehensive dataset that combines

17 years of administrative death records covering the period 1972–1988 with daily data on

1See Englert (2004) and Dominici, Greenstone and Sunstein (2014) for a review and discussion of obser-
vational studies of air pollution.
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air pollution and weather. We focus on the mortality effects of sulfur dioxide (SO2), the most

widely measured air pollutant during this time period, and incorporate other air pollutants

such as particulate matter into a secondary analysis that uses a subset of our sample. In the

first part of our paper, we investigate the causal effect of acute (1-day) air pollution expo-

sure on county-level mortality by instrumenting for observed changes in SO2 with changes in

local wind direction. We estimate that a 1-unit (≈10 percent) increase in SO2 raises 1-day

mortality by 0.08 deaths per million (0.33 percent).

The cumulative mortality effect of this 1-day exposure more than doubles when we extend

the outcome window from one day to one month (28 days), demonstrating that air pollution

continues to have lethal effects weeks after exposure has ended. While statistical power

limits our quasi-experimental estimates to a one-month outcome window, the trend suggests

the cumulative mortality effect would continue increasing beyond this window, albeit at

a decreasing rate. These results are consistent with findings from the medical literature

suggesting that air pollution causes “accelerated aging” by, for example, hardening arteries

and increasing the risk of heart disease (Rajagopalan and Landrigan, 2021).

We document striking differences in mortality dynamics across different causes of death.

Our 1-day mortality estimate is driven roughly equally by deaths related to three groups

of causes: cardiovascular disease, cancer, and “other diseases,” a residual category that in-

cludes chronic lower respiratory illness and diabetes. Lengthening the outcome window to

one month, however, causes the estimates for cardiovascular and other diseases to increase

by a factor of 3–4, while the estimate for cancer falls by 70 percent and becomes statistically

insignificant. This fall in the magnitude of the cancer-related mortality estimate over time

implies that the cancer-related deaths caused by acute exposure were deaths of frail individ-

uals who had short (less than one month) counterfactual life expectancies—a phenomenon

often referred to as “mortality displacement.” Altogether, we conclude that acute exposure

to air pollution produces two distinct mortality patterns: mortality displacement in a sub-

population of frail individuals, where the cumulative mortality effect quickly dissipates, and
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accelerated aging in a subpopulation of healthier individuals, where the cumulative effect

grows slowly over time. On net, the accelerated aging effect dominates.

Our short-run analysis has two important limitations common to quasi-experimental

studies of air pollution: treatment is limited to acute (1-day) exposure, and the outcome

window is limited to one month following exposure. In the second part of our paper, we

quantify the effect of chronic (lifetime) exposure on long-run survival by adapting a dynamic

production model of health to our daily mortality setting (Lleras-Muney and Moreau, 2022).

While there are many ways to model survival, this model is particularly well-suited to our

needs because it can accommodate both the accelerated aging and mortality displacement

patterns present in our setting. We first calibrate the model’s baseline parameters using

a 1972 US life table. We then use our 1-day cancer mortality estimates to calibrate the

effect of pollution exposure on the model parameter governing mortality displacement and

use the 1-day non-cancer mortality estimates to calibrate the effect of exposure on the aging

parameter.

To validate the model, we compare its age-specific mortality predictions in the month

following acute exposure to IV estimates not used for calibration. The overwhelming major-

ity of model predictions lie inside the 95% confidence intervals of the IV estimates. These

predictions depend meaningfully on the estimated fraction of deaths that are due to mortal-

ity displacement: alternatively assuming that acute exposure produces either 0% or 100%

mortality displacement yields predictions that lie far outside the 95% confidence intervals

of the IV estimates. These results demonstrate that while all-cause mortality estimates are

insufficient for drawing reliable conclusions about longer-term survival, researchers can over-

come this problem by appropriately incorporating information about cause of death into a

survival model.

We then use our model to quantify the effect of a chronic (permanent), 1-ppb decrease

in SO2 exposure on life expectancy. The model predicts that, all else equal, such a decrease

improves life expectancy at birth by 1.2–1.3 years, which is 7–8 times larger than a naive
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estimate that extrapolates our acute exposure IV estimates of the monthly mortality effect

to the whole life cycle. Although the decrease in chronic exposure begins at birth, ninety

percent of the improvements in life expectancy occur after age 50 and over three-quarters

occur after age 65, suggesting that the vast majority of the survival benefits of the drastic

reductions in air pollution in the United States over the past fifty years have yet to emerge

for cohorts born after the passage of the 1970 Clean Air Act. Because the model holds

behavior fixed, its forecasts can be interpreted as the gross benefits associated with pollution

reduction, uncontaminated by longer-run behavioral responses such as migration (Graff Zivin

and Neidell, 2012; Currie et al., 2014).

The main contribution of our study is the development and application of a new frame-

work for estimating the long-run survival effects of chronic exposure to environmental haz-

ards. The standard approach focuses on acute exposure and quantifies long-run survival

effects using population life tables (e.g., Deschênes and Greenstone, 2011), and recent work

has improved the accuracy of this method by incorporating individual-level predictions of

counterfactual life expectancy (Deryugina et al., 2019). However, that approach remains

prone to bias if unobserved characteristics are correlated with both life expectancy and the

probability of dying from exposure, and it cannot quantify the effects of chronic exposure.

Our study takes a different approach, combining short-run estimates of acute exposure with a

dynamic model of health production. This method leverages demographic knowledge about

life-cycle mortality patterns to project long-run survival effects and is similar in spirit to

Athey, Chetty and Imbens (2020), who combine experimental and observational data to

infer the long-run effects of a short-run experimental treatment. The approach comple-

ments efforts to estimate the long-run survival effects of pollution directly. Direct estimation

requires identifying quasi-experimental variation in long-run exposure and accounting for

behavioral responses, such as migration. Ignoring these responses leads to an underestimate

of the health costs of air pollution (Graff Zivin and Neidell, 2012; Currie et al., 2014), and is

a possibility that cannot be ruled out among the few studies measuring mortality over mul-
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tiple years (Chen et al., 2013; Ebenstein et al., 2017; Barreca, Neidell and Sanders, 2021).2

By contrast, our approach employs quasi-experimental variation at the daily level, which

alleviates concerns about many forms of avoidance behavior.

Previous studies of temporary pollution spikes such as London’s Great Smog of 1952 have

found that mortality effects can linger for weeks after the pollution event ends (Logan, 1953).

Our study shows that this lingering effect persists even at moderate levels of pollution, and to

our knowledge we are the first to show that pollution exposure causes two distinct mortality

patterns: mortality displacement, where cumulative mortality quickly falls to zero, and

accelerated aging, where the mortality effect grows with time. Our findings underscore that

great care must be taken when inferring longer-run mortality effects from short-run estimates.

Although lengthening the outcome window to multiple years helps address this challenge,

studies with short outcome windows of one year or less make up the vast majority of papers

employing quasi-experimental variation in air pollution.3 Our methodology of incorporating

detailed short-run mortality estimates into a calibrated survival model provides a way to

form long-run forecasts that appropriately accounts for both mortality displacement and

accelerated aging effects.

Our short-run analysis also makes important contributions to the literature on the health

effects of acute exposure to air pollution. A key advantage of our empirical approach is that

it harnesses variation across a large geographic area (the continental United States) and over

a long time period (nearly two decades) for the majority of the US population. Our paper is

thus the largest quasi-experimental study of acute pollution exposure on mortality, encom-

passing 18 million deaths and enabling us to decompose mortality effects with precision.4

2For example, Barreca, Neidell and Sanders (2021) utilize repeated cross-section mortality data at the
county-year level, and are thus unable to control for any migration response to changes in pollution levels.

3See, for example, Currie and Neidell (2005); Knittel, Miller and Sanders (2016); Schlenker and
Walker (2016); Deschênes, Greenstone and Shapiro (2017); Hollingsworth, Konisky and Zirogiannis (2021);
Hollingsworth and Rudik (2021); and Heo, Ito and Kotamarthi (2023). A handful of papers study the effect
of early-life air pollution exposure on later-life outcomes (e.g., Isen, Rossin-Slater and Walker, 2017; Voorheis,
2017; Colmer and Voorheis, 2020), including one study that considers mortality before age 55 (Arenberg and
Neller, 2023). These studies do not consider chronic exposure, however.

4Deryugina et al. (2019) use a similar empirical approach, but focus on fine particulate matter (PM2.5)
rather than SO2, consider a shorter and more recent time period (1999–2013), and are limited to a sample
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Finally, ours is one of the first quasi-experimental studies to estimate the mortality effect of

acute exposure to SO2, a pollutant that has declined substantially in the US over the past

fifty years but which remains elevated in lower-income countries such as China and India.

The rest of the paper is organized as follows. Section 2 provides background on air pol-

lution and describes our data. Section 3 describes our short-run empirical strategy. Section

4 presents estimates of the short-run mortality effects of acute air pollution exposure. Sec-

tion 5 presents the dynamic production of health, calibrates it, and quantifies the long-run

survival effects of chronic exposure. Section 6 concludes.

2 Background and data

2.1 Air pollution

Sulfur dioxide can harm human health through two main channels. First, direct exposure to

SO2 in controlled clinical trials impairs respiratory function, especially in people with asthma

(Agency for Toxic Substances and Disease Registry, 1998). Animal experiments have also

demonstrated that SO2 inhalation can cause brain damage (Sang et al., 2010; Yao et al.,

2015) and contribute to cardiac and mitochondrial dysfunction (Qin et al., 2016). Second,

SO2 transforms rapidly into sulfate, on the order of several percent per hour (Luria et al.,

2001). Sulfates are a primary component of fine particulate matter (PM2.5), a catch-all

term for particles whose diameter is 2.5 micrometers (µm) or less. PM2.5 is thought to be

particularly harmful to health because of its ability to cross the blood-alveolar and blood-

brain barriers. Prior quasi-experimental research has found causal links between short-run

exposure to PM2.5 and a number of adverse health outcomes, such as short-run elderly

mortality and hospitalizations (Deryugina et al., 2019).

While research on the exact pathophysiological mechanisms underlying these health ef-

fects continues, medical studies have documented significant associations between air pollu-

population over age 65.
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tion and hypertension, diabetes, coronary artery calcification, and the progression of chronic

kidney disease, all of which are risk factors for cardiovascular disease (Rajagopalan and Lan-

drigan, 2021). Air pollution has also been linked to the initiation, promotion, and progression

phases of lung cancer (Turner et al., 2020; Hill et al., 2023). Once initiated, lung cancer typ-

ically grows for over 10 years before it is diagnosed (Nadler and Zurbenko, 2014). Thus,

while the quasi-experimental literature has consistently found significant adverse effects of

exposure on short-run health, long-run health effects are likely to be even larger.

We measure air pollution using the EPA’s Air Quality System database, which provides

hourly data at the pollution monitor level for criteria pollutants regulated by the EPA. The

extent of spatial and temporal coverage varies by pollutant. Our analysis focuses on sulfur

dioxide (SO2), the most widely monitored air pollutant during our time frame. In robustness

checks, we also examine four other air pollutants that have been monitored since the 1970s

or the 1980s: nitrogen dioxide (NO2), total suspended particulates (TSP), ozone (O3), and

carbon monoxide (CO). TSP comprises all particulates with diameters less than 100 µm,

thus including PM2.5. Since PM2.5 was not consistently monitored until the late 1990s, we

cannot include it directly in our analysis.

Figure A.2 displays the population-weighted concentrations and the number of monitored

counties over time for each pollutant. Except for ozone, the population-weighted mean for

all pollutants declines substantially during our sample period. CO data are readily available

since the mid-1970’s and maintain consistent coverage of approximately 225 counties per

year, while ozone data are unavailable prior to 1980. Data on SO2 and NO2 are available

for a larger number of counties than CO, although this spatial coverage declines beginning

in 1976. Each year during our sample period, at least 400 counties monitor sulfur dioxide

concentrations, and about 50 percent of US individuals live in a county that monitors SO2.

Panel A of Table 1 shows county-level summary statistics for daily ambient pollution

concentrations during 1972–1988. The average SO2 concentration during our sample period

is 9.0 parts per billion, with a standard deviation of 12.6. The average levels of nitrogen
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dioxide and ozone are higher, at about 21 and 26 parts per billion, respectively. The most

prevalent pollutant is carbon monoxide, with an average concentration of 1.64 parts per

million (1,640 parts per billion). We are more than twice as likely to observe SO2 levels than

any of the other four pollutants, which is one of the reasons we focus our analysis on SO2.

2.2 Mortality

We obtain death counts from the National Vital Statistics. These data are based on death

certificate records and include information on the cause of death and the county of occur-

rence. We focus our analysis on the years 1972–1988 because those years include information

on the exact date of death.5 We calculate death rates by dividing death counts by annual

population estimates provided by the Surveillance, Epidemiology, and End Results (SEER)

Program.

Figure A.3 reports death rates by age group and cause of death during our sample time

period 1972–1988. The infant mortality rate steadily declines over time, and nearly equals

the average death rate of the population by the end of our sample period. Panel B of Table

1 summarizes daily mortality rates for various subgroups over this time period. The all-age

daily death rate is about 25 per million. The rate is higher for infants (33 deaths per million),

and much higher for those over age 85 (443 deaths per million).

We classify causes of death into four categories: cardiovascular, cancer, external, and

other. Panel B of Table 1 reports that cardiovascular disease is the leading cause of death

during our time period, accounting for nearly half of all deaths in our sample (12 daily deaths

per million). Cancer deaths make up slightly more than twenty percent of overall mortality

(5 deaths per million). External causes of deaths are responsible for about eight percent of

all deaths and include car accidents, poisonings, suicides, and other causes not originating in

the body. We group the remaining twenty percent of deaths into the “other” category. The

two largest components of this category are chronic lower respiratory illnesses and diabetes.

5The exact date of death is unavailable prior to 1972, and is available after 1988 only in the Research
Data Center of the National Center of Health Statistics.
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2.3 Wind and weather

Our empirical strategy is motivated by the observation that wind currents can carry air

pollution over long distances. For example, Figure A.4 shows the fraction of PM2.5 and

sulfates—for which SO2 is a precursor—that can be attributed to local versus regional sources

for thirteen large US cities, as calculated by Environmental Protection Agency (2004). Re-

gional contributions to air pollution substantially exceed local contributions in nearly every

case.

It is theoretically possible to explicitly model the wind transport of pollutants and then

use the model’s prediction as an instrument for changes in local pollution levels. But doing

so is computationally intensive at the daily level and requires comprehensive data on emis-

sions, which are largely not available during our study period. Instead, we follow Deryugina

et al. (2019) and instrument for changes in SO2 using changes in wind direction. Our key

identifying assumption is that, conditional on other climatic variables and comprehensive

fixed effects, wind direction affects mortality only through its effects on air pollution.

We obtain wind speed and wind direction data from a 6-hour reanalysis dataset published

by the Japan Meteorological Agency (JMA).6 These data are available starting in 1958. They

consist of vector pairs, one for the East-West wind direction (u-component) and one for the

North-South wind direction (v-component), reported in 6-hour intervals on a grid with a

resolution of 1.25 degrees (≈86 miles). We first interpolate between the grid points to

calculate the 6-hour u- and v-components at the centroid of each county. We then average

the u- and v- components within a county-day to match the frequency of our mortality data.

Finally, we use trigonometry to convert the average u- and v- components into daily wind

direction and wind speed.

We obtain daily temperature and precipitation data from Schlenker and Roberts (2009).

Combining gridded monthly climate data from the PRISM Climate Group with daily data

from weather stations, Schlenker and Roberts (2009) construct a gridded weather dataset

6Available from http://rda.ucar.edu/datasets/ds628.0/.
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at the daily level. The final dataset spans the years 1972–1988 and includes total daily

precipitation and daily maximum and daily minimum temperatures for each point on a

2.5-by-2.5 mile grid covering the contiguous US.7

3 Empirical strategy

Our first objective is to estimate the causal effect of acute (1-day) exposure to sulfur dioxide

on short-run mortality. We model this relationship using the following regression:

Y k
cd = βkSO2cd +Xk

cd

′
δ + αcm + αmy + εcd (1)

where Y k
cd is cumulative mortality rate in county c in the k days following exposure on day

d (including same-day mortality). The parameter of interest is βk, the coefficient on daily

SO2 levels. Similar to Deryugina et al. (2019), the controls Xk
cd include contemporaneous

and k − 1 leads of our weather variables (described below) in order to ensure that βk is

not capturing the effects of weather conditions during the outcome window. To minimize

concerns about autocorrelation, we also control for two leads and two lags of the instruments.

Equation (1) includes county-by-month (αcm) and month-by-year (αmy) fixed effects. The

county-by-month fixed effects control for geographic and seasonal differences in mortality

and air pollution. The month-by-year fixed effects control for common time-varying shocks,

such as those induced by environmental policy changes during our study period. Standard

errors are clustered by county, and the regression is weighted by the relevant county-year

population.

Our main specification controls for daily maximum temperature, precipitation, and wind

speed. We control for maximum temperature using a set of indicators based on county-

specific percentiles in our sample. The literature on temperature and mortality generally

7See http://www.prism.oregonstate.edu/ for the original PRISM dataset and http://www.

wolfram-schlenker.com/ for the daily data.
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finds that it is extreme temperatures that matter for the mortality rate (e.g. Barreca et al.,

2016) and that the average climate of a county determines which temperatures are extreme

in this sense (e.g. Heutel, Miller and Molitor, 2021). We therefore generate nine indicators

for maximum temperatures falling into intervals whose minimum is defined by the following

county-specific percentile cutoffs: 0, 1, 5, 10, 25, 75, 90, 95, and 99.

Guided by the principle of controlling for extremes, we control for daily precipitation by

including four indicators for whether precipitation is below the 75th percentile for that county

(which in most counties corresponds to very little or no precipitation), between the 75th and

95th percentiles, between the 95th and 99th percentiles, or above the 99th percentile. We

control for daily average wind speed with six indicators whose minimum is defined by the

following county-specific percentile cutoffs: 0, 25, 75, 90, 95, and 99. Finally, we also control

for the set of all possible interactions of these atmospheric controls, yielding 203 different

temperature-precipitation-wind-speed combinations.8

OLS estimates of Equation (1) are susceptible to bias because exposure to SO2 may not

be randomly assigned and is measured with error. We therefore instrument for SO2 using

daily wind direction in the county, allowing the effect of wind on SO2 to vary by geographic

group g. The regression specification for our first stage is:

SO2cd =
50∑
g=1

f g(θcd) +Xk
cd

′
δ + αcm + αmy + εcd (2)

where:

f g(θcd) = γ1g1[Gc = g]× sin (θcd) + γ2g1[Gc = g]× sin (θcd/2)

The indicator function 1[Gc = g] is equal to 1 if county c is a member of group g and 0

otherwise. The variable θcd is the local wind direction, measured in radians. The excluded

instruments are the 100 regressors formed by the interaction of group indicators, 1[Gc = g]

with sin (θcd) and sin (θcd) /2. As we demonstrate in Section 4.3, our results are robust to

8The number of combinations is theoretically higher, but we do not observe all of them in our data.
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alternative ways of parameterizing f g(θcd).

Equation (2) requires the relationship between wind direction and air pollution to be

constant within the geographic group g, which encompasses multiple counties. We define

these groups using a k -means clustering algorithm that classifies all SO2 pollution monitors

into 50 spatial groups based on monitor location.9

3.1 Discussion

Air pollution sources can be local or distant. For example, air pollution exposure varies with

the amount of vehicle exhaust emitted by nearby automobiles and with the amount of smoke

emitted by fires and power plants located many hundreds of miles away. We designed the

first stage, Equation (2), to exploit variation in pollution emitted by distant sources and to

ignore variation emitted by local (within-county) sources. While air pollution emitted by

distant sources will have an approximately uniform effect on the pollution levels of counties

far from those sources, pollution from local sources within the county will disperse unevenly,

affecting some parts of the county and not affecting other parts. Because pollution is sparsely

monitored at the county level, it is thus important to avoid employing local variation in

pollution transport when estimating the effects of average county-level pollution exposure

on health. Failing to do so may result in significant measurement error, which will produce

bias in estimated effects of air pollution.10

Figure 1 illustrates the variation we use to estimate the causal effects of acute sulfur

dioxide exposure, using the Greater Philadelphia and Southern California areas as exam-

ples. The black dots on the maps show the locations of the SO2 monitors in these two

9The inputs into the k-means clustering algorithm are monitor latitude and longitude and the desired
number of groups (50). If monitors in the same county are assigned to more than one group, we assign
the larger integer group number to the county, which is effectively random assignment. The locations of
in-sample SO2 monitors and monitor groups are displayed in Figure A.1. On average, each monitor group
encompasses 57 monitors with SO2 readings and 12 counties.

10Consider a county with one pollution monitor that is placed due west of a major power plant. Suppose
that this power plant is the only source of pollution and is located in the center of the county. The monitor
will register high pollution readings when the wind blows from the east, and low levels when it blows from
the west. However, wind direction in this example actually has no effect on average pollution levels in the
county.
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geographic groups. The plots on the right show the group-specific relationships between

daily average wind direction and SO2.
11 Each specification controls for maximum tempera-

ture, precipitation, wind speed, and county-by-month and month-by-year fixed effects in the

same way we control for them in our main specification.

Figure 1 reveals a strong first-stage relationship between wind direction and SO2 levels.

In the Greater Philadelphia area, pollution levels are highest when the wind blows from

the west-southwest direction, and lowest when the wind is blowing from the east-southeast

direction, where the Atlantic Ocean lies. This pattern differs in the Southern California area,

where SO2 levels are highest when the wind is blowing from the east, a densely populated

area, and lowest when the wind is blowing from the south-southwest direction, where the

Pacific Ocean lies. Figure 1 shows that a change in wind direction can increase SO2 levels

by 3–4 ppb, equal to 30–40 percent of the national mean during this time period (Table 1).

Figure A.5 shows the geographic distribution of the strength of the first stage, as measured

by the difference in SO2 levels between the most and least polluting wind directions.12 The

areas with the largest variation (4+ ppb) are located primarily in the Midwest and the

Northeast, although there are fairly strong compliers (variation of 2–4 ppb) throughout the

country. The weakest compliers have variation of <1 ppb and thus contribute relatively little

to our main estimates.

In Table A.1, we test for differences among these complier areas by regressing county

characteristics obtained from the Regional Economic Information System (REIS) dataset on

the size of the first stage. The unit of observation is a county-year, and we control for year

fixed effects. The size of the first stage is not significantly correlated with population or the

percent of residents over age 65. Counties with stronger first stages have a smaller share of

residents who are Black, have higher per-capita income, receive higher per-capita transfers,

and have a lower employment rate, but the magnitudes of these coefficients are in most cases

11Figure A.11 shows corresponding plots for all 50 geographic groups.
12For each monitor group g, we calculate γ̂1g sin (θ) + γ̂2g sin (θ/2) for θ ∈ [0, 2π) and take the difference

between the maximum and minimum values.
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economically small (e.g., a $90 difference in per-capita income for each 1 ppb difference in

the first stage). Overall, the complier group appears to be fairly representative of the US

population.

Our empirical approach permits us to instrument for multiple pollutants simultaneously

because the relationship between wind direction and pollution levels within and across re-

gions is pollution-specific.13 In a later analysis, we investigate the sensitivity of our main

estimate to controlling for the four other pollutants measured during our sample time period:

nitrogen dioxide, carbon monoxide, ozone, and total suspended particulates. Including these

additional controls causes our sample size to fall by 90 percent or more because these other

pollutants are monitored much less frequently than SO2 during this time period (Table 1).

We therefore do not include them in our primary specification.

4 Short-run empirical results

4.1 Mortality by age and cause

Table 2 presents OLS and IV estimates of Equation (1). Column (1) reports that a 1-

ppb increase in daily SO2 is associated with a same-day mortality increase of 0.008 deaths

per million, about ten times smaller than the corresponding IV estimate of 0.08 deaths

per million reported in Column (2). This downward bias for OLS is common in quasi-

experimental studies of air pollution, and is often hypothesized to be at least partly due to

measurement error in pollution exposure (Deryugina et al., 2019; Alexander and Schwandt,

2022).

Figure 2 shows the IV estimates of the effects of a 1-day, 1-ppb increase in SO2 levels on

mortality in the month following exposure. The first blue point depicts the estimate from

Column (2) of Table 2. If short-term mortality displacement were the predominant driver

of this 1-day mortality effect, we would expect the estimated mortality effects to decline

13For example, automobile emissions are a major contributor to ozone, but not to SO2.
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over time, potentially all the way to zero. Instead, the estimated effect increases steadily to

0.10 deaths per million in the week following exposure and to 0.18 deaths per million in the

month following exposure.

Figure 3 shows how the 1-day mortality effect varies by age group. Panel (a) shows

the absolute magnitude of the effect (in deaths per million), while panel (b) reports it as

a percent of the average 1-day mortality for that age group. We fail to detect significant

mortality increases for the two youngest age groups (covering ages 0–19). For older ages,

our estimates are statistically significant and range from 0.017 deaths per million for 20–44-

year-olds to 2.3 deaths per million for 85+ year-olds (Figure 3a). When expressed in relative

terms, estimates vary little with age. The smallest relative effect (0.16 percent of daily

mortality) is found among 55-59 year olds, while the largest relative effect (0.51 percent of

daily mortality) is found among 85+ year olds. However, we cannot reject that the relative

effects are equal to each other for most age group pairs.

In relative terms, our estimates for older age groups are similar to corresponding esti-

mates reported in Deryugina et al. (2019), who investigate the effect of acute exposure to

fine particulate matter on 3-day mortality. To the best of our knowledge, no prior quasi-

experimental estimates exist for the effect of air pollution on short-run mortality for ages

1–64. For infant mortality, the two most comparable studies are Currie and Neidell (2005)

and Knittel, Miller and Sanders (2016), who estimate the effect of PM10 (coarse particulate

matter) on weekly infant mortality. Our statistically insignificant infant mortality estimate

aligns with estimates from Currie and Neidell (2005) but is smaller than those from Knittel,

Miller and Sanders (2016).

Table A.4 reports estimates by age for different outcome windows. For ages 60 and over,

the monthly estimates are at least twice as large as the 1-day estimates, suggesting that

any short-run mortality displacement among these groups of individuals are more than off-

set by delayed effects of acute exposure. For those between ages 20 and 59, however, the

monthly estimates are much smaller than the 1-day estimates and are statistically insignifi-
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cant, suggesting that acute pollution exposure among young and middle-aged adults has an

immediate mortality impact only on those individuals who are very frail. By contrast, older

adults who are killed by acute air pollution exposure have longer counterfactual lifespans.

Figure 4 shows how our estimates vary by cause of death as reported on death certificates.

The increase in 1-day mortality is split roughly equally among cardiovascular disease, cancer,

and “other” diseases. As we consider longer time horizons, however, the estimated effect on

cancer-related mortality falls, implying that these individuals were already quite ill and would

have died anyway in the days or weeks that followed exposure. After one month, the cancer

estimate becomes small and statistically insignificant, which means that we cannot reject

the null hypothesis that all cancer-related deaths would have occurred within one month

even absent the pollution shock. By contrast, deaths from cardiovascular and other diseases

increase with the time horizon—more than doubling over one month—implying that acute

SO2 exposure continues to have lethal effects even after exposure has ended.

We find a small but statistically significant increase in same-day external deaths (0.005

deaths per million), but this estimates becomes statistically insignificant when measured

over longer time horizons. While we lack detailed data to probe this result further, it could

be due to negative effects of pollution on cognitive function (Crüts et al., 2008; Fonken et al.,

2011; Bishop, Ketcham and Kuminoff, 2023); for example, recent work has suggested this

pollution-induced cognitive effect causes vehicle fatalities (Burton and Roach, 2023).

Figure A.12 shows estimates of the effect of SO2 over time for 30 different causes of

death. All subcategories of cardiovascular disease except for “other” and hypertension show

significant same-day and monthly mortality increases. We also find both simultaneous and

lagged effects for deaths from chronic obstructive pulmonary disease (COPD), pneumonia,

and influenza, all of which are plausibly related to air pollution exposure. By contrast,

we find no significant monthly effects for most conditions that have not been linked to air

pollution exposure, such as stomach ulcers, cholelithiasis, appendicitis, and chronic liver
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diseases.14 These patterns further support our identification strategy.

4.2 Other air pollutants

So far we have interpreted our estimates as the causal effects of SO2 on mortality. It is

possible, however, that other harmful air pollutants are co-transported with SO2. A second,

related issue is that SO2 transforms rapidly into sulfate at a rate of several percent per hour

(see Section 2.1), raising the possibility that it is exposure to this component of PM2.5 rather

than its precursor, SO2, that drives our mortality estimate.

Because different air pollutants are produced by a variety of different sources in different

geographic locations, are carried differently by the wind, and exhibit different atmospheric

chemistry patterns, our empirical strategy allows us to instrument separately for multi-

ple pollutants in a single regression. The main challenge is that other pollutants are not

consistently measured during our time period, and including all of them in our regression

significantly reduces our sample size. We therefore create two different subsamples. The first

one is the smallest and includes measures of TSP, NO2, ozone, and CO in addition to SO2.

The second is larger but includes only SO2 and TSP (our best proxy for PM2.5).

Table 3 reports estimates from these two subsamples, using 1-day all-cause mortality as

the outcome. Column (1) in Panel A reports that a 1-ppb increase in SO2 increases 1-day

mortality by 0.084 deaths per million in this sample. This coefficient’s 95% confidence in-

terval, [0.0614, 0.107], includes all the other estimates except for two presented in Columns

(2) and (5), which fall just outside of the interval. The estimated mortality effects of nitro-

gen dioxide and carbon monoxide are never significant. The coefficient on ozone is negative

and marginally significant, possibly because ozone is negatively correlated with other, un-

monitored pollutants that matter for mortality.15 The estimated effect of SO2, however, is

14Interestingly, we find a lagged effect on deaths from meningitis. Although not obviously pollution-related,
there is suggestive evidence that air pollution can negatively affect the local immunity of the pharynx, leading
to increased susceptibility to meningitis (e.g., Michele et al., 2006; Jusot et al., 2017; Shears et al., 2020).

15Ground-level ozone forms when oxides of nitrogen NO2 react with volatile organic compounds (VOCs)
on hot summer days. Many different chemicals are classified as VOCs, and car exhaust is a major source of
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insensitive to the inclusion of ozone, suggesting that these unobserved pollutants are not bi-

asing our SO2 estimates. The inclusion of TSP possibly affects the SO2 coefficient, reducing

it by 20-30 percent, consistent with the notion that the SO2 measured by pollution monitors

is accompanied by sulfates, which are not measured directly but included in measures of

TSP.

Panel B shows the effect of controlling for TSP in a larger sample that only conditions

on observing both SO2 and TSP. Comparing Column (2) to Column (1) shows that the

coefficient on SO2 is 55 percent lower after controlling for TSP.16 This difference is statisti-

cally significant, suggesting that some of the SO2 mortality effect we estimate is driven by

particulate matter that was either co-transported with or formed by SO2.

To investigate this possibility more directly, we use simulations from the Intervention

Model for Air Pollution (InMAP), which models how emissions of SO2, PM2.5, and NO2 are

transported across the US.17 Importantly, InMAP simulates the conversion of SO2 and NO2

into particulate matter, allowing us to gauge both the co-transport of SO2 and PM2.5 and the

importance of SO2 conversion. We use the 1990 National Emissions Inventory to determine

emissions, the earliest year for which appropriate data are available.18 We focus on emissions

from coal-fired power plants, the largest source of SO2 emissions in the NEI, although we

also report results from all-source emissions. Given emissions information, InMAP outputs

a spatial distribution of: (1) ambient SO2; (2) primary PM2.5 (fine particulate matter that

is directly emitted by the source); and (3) secondary pollutants (e.g., sulfate created as a

result of atmospheric conversion of SO2, and PM2.5 derived from NO2 transport).

them. NOx emissions come from a variety of vehicles and industrial sources. Higher ozone levels may mean
there are fewer precursor chemicals in the ambient air, although testing this explicitly is beyond the scope
of this paper.

16For completeness, Table A.6 shows results when restricting the sample to observations that have pollution
readings for SO2, NO2, O3, and CO, which yields almost four times the number of observations as Panel
A of Table 3. The ozone coefficients cease to be statistically significant, and the estimated effects of SO2

remain stable across the different sets of included pollutants.
17Available from https://github.com/spatialmodel/inmap/releases/tag/v1.9.6. Evaluation data

for the simulations are from Tessum et al. (2019).
18Available from https://gaftp.epa.gov/air/nei/nei_criteria_summaries/

1990criteriasummaryfiles/.
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Using the results of the InMAP simulation, we calculate the ratio of total PM2.5 for each

part per billion of ambient SO2.
19 Using coal-fired power plants emissions only, the ratio

is approximately 2.3, indicating that each transported ppb of SO2 is accompanied by 2.3

µg/m3 of PM2.5. The vast majority (>99%) of this PM2.5 consists of secondary pollutants.

The all-source ratio is slightly higher (approximately 3.0). Because pollution sources that are

not coal-fired power plants emit a lot more PM2.5 relative to SO2, the proportion of primary

to secondary PM2.5 is substantially higher: about 40% of this PM2.5 is primary particulate

matter. These ratios suggest that a natural way to bound our projections of long-run effects

is to assume that 100% of the mortality is due to fine particulate matter and divide by 3 to

get an estimate of the mortality effects of one µg/m3 of PM2.5. The fact that most of the

PM2.5 accompanying SO2 is secondary underscores the policy relevance of our estimates, as

reducing SO2 emissions necessarily reduces relevant secondary pollutants as well.

4.3 Robustness

Our key identifying assumption is that changes in wind direction are unrelated to mor-

tality except through their effects on pollution levels. This identifying assumption is vio-

lated if wind direction is correlated with unobserved weather patterns that cause mortality.

While this identifying assumption is impossible to test directly, we can probe it indirectly

by assessing the sensitivity of our estimates to different ways of controlling for temperature,

precipitation, and wind speed.

Columns (2)–(5) of Table 2 shows the estimated effect of SO2 on same-day all-age all-cause

mortality for different sets of weather controls. Column (2) reports our baseline estimate. In

Column (3), we also include bins of minimum temperature—with thresholds defined as for

maximum temperature—in our weather interaction indicators. In Column (4), we control

for all possible interactions of minimum temperatures (specified as indicators for minimum

temperatures falling into 3-degree Celsius bins, with outer bins defined by temperatures

19InMAP reports all pollutants in µg/m3. At standard temperature (15 degrees Celsius), one ppb of SO2

corresponds to about 2.62 µg/m3.

19



below -15 Celsius or above 30 Celsius); maximum temperatures (specified in the same way);

ten deciles of wind speed; and ten deciles of precipitation. This flexible definition of weather

follows Deryugina et al. (2019) and gives us 28,899 possible weather conditions (17 × 17 ×

10×10−1), although only about one-third of these combinations exists in our data. Column

(5) reports estimates for a specification with no weather controls at all. Regardless of the

specification, our estimates remain similar.

In Table A.7, we vary the fixed effects. Column (1) reproduces our baseline estimate,

while columns (2)-(6) present specifications with alternative fixed effects, such as county,

year, and month (column (2)), county and state-by-month-by-year (column (3)), and county-

year and state-month fixed effects (column (4)). None of the variations has a meaningful

effect on our results.20 Thus, we are not concerned that omitted variables along these

dimensions are biasing our IV estimates.

While acute exposure produces a growing effect on all-cause mortality, Figure 4 shows

short-term mortality displacement for deaths where cancer is the underlying cause of death.

This disparity in trends raises concerns about composition bias, as cancer-related deaths

that occur weeks after exposure could potentially be misattributed to other causes like car-

diovascular disease. To address this possibility, we estimate the effect of acute exposure on

all deaths where cancer was listed as the underlying or secondary (contributing) causes of

death. Those estimates, shown in Figure A.6, are very similar to our main estimates and do

not change our conclusions.

The remaining robustness checks are relegated to the Online Appendix and demonstrate

the insensitivity of our results to varying the number of included instrument leads and lags

(Table A.8); to alternative ways of specifying the instruments (Table A.9); and to using

LIML instead of 2SLS (Table A.10). Finally, we generate random wind directions to see if

the way we construct our instruments is susceptible to spurious correlation. We leave the

other controls as in Equation (1) and use these placebo wind directions as instruments for

20We have also estimated specifications that include only county and year fixed effects and a few other
variations. These produce very similar results and are not shown for the sake of brevity.
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SO2. The resulting first-stage F-statistics are very low, demonstrating that our strong first

stage is not spurious (Table A.11).

5 Long-run survival

5.1 Framework

Our framework for quantifying the long-run survival effects of chronic exposure to SO2

is based on a dynamic production model of health originally developed by Lleras-Muney

and Moreau (2022). Let Hit denote the health capital of individual i ∈ {1, ..., N} at time

t ∈ {0, ..., T}. At birth, an individual is endowed with a stock of initial health, H∗i0, which is

drawn randomly from a normal distribution. This health stock evolves over the individual’s

lifetime according to the following formula:

Hit = Hi,t−1 − d(t) + I + εit (3)

where:

Hi0 = H∗i0 ∼ N(µH , σH),

d(t) = δtα,

εit ∼ N(0, σε)

The health stock depreciates at a rate, d(t), which increases with the age of the individual.

It is replenished at a constant rate, I, which captures time-invariant factors such as early-

life parental investment, and varies with an iid health shock, εit. Death occurs when the

individual’s health stock falls below a critical threshold, H, and is denoted by the indicator
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variable Dit, where:

Di0 = 1 [Hi0 < H] ,

Dit = 1
[
Hit < H

∣∣Di,t−1 = 0
]
, t > 0

The model is fully characterized by seven parameters: {α, δ, I, µH , σH , σe,H}.21

Cohort mortality and survival can be calculated to an arbitrary degree of precision by

simulating the model given by Equation (3) for a sufficiently large number of individuals,

N . The mortality rate at time t, Mt, is equal to the number of individuals in the simulation

who died in period t divided by the number of individuals alive at the beginning of period

t. Survival can then be calculated from mortality:

S1 = 1−M0,

St = St−1 (1−Mt−1) , t > 1

This parsimonious model is well-suited to our long-run survival analysis. Our objective is

to forecast long-run survival, and Lleras-Muney and Moreau (2022) demonstrate that their

model’s fit across a diverse set of population survival curves is on par with the best models

employed by demographers. In addition, the model can separately capture the mortality

displacement and accelerated aging effects we observed in our empirical analysis (Figure 4).

As we show below, these two effects have very different implications for long-run survival.

The health effects of pollution exposure can be modeled as temporary or permanent

changes to one or more model parameters. We focus on changes to the death threshold,

H, which produces mortality displacement, and the depreciation rate parameters, α and δ,

which govern the aging process. Depreciation, d(t) = δtα, is a power function; changes to

21The model can be extended to incorporate external death factors such as car accidents by including
two additional parameters specifying the age of onset and the severity of these external mortality causes
(Lleras-Muney and Moreau, 2022). However, this extension is unnecessary for our analysis, which focuses
on deaths from direct biological (internal) causes.
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depreciation parameters will result in larger mortality effects among older individuals than

younger ones, consistent with the patterns from our empirical analysis (Figure 3). While

exposure could in principle change the level of investment, I, this effect would result in high

and persistent mortality increases for both old and young. Because the mortality effects we

observe for younger individuals appear to consist solely of short-run displacement, we rule

out I as a possibility.22

A temporary elevation in the death threshold leads to increased mortality among frail

individuals who are closest to death, but has no effect on the health of those still alive. When

the threshold reverts to its initial value, mortality rates decline due to the lack of surviving

individuals with health capital values near the newly lowered threshold. Consequently, a

temporary rise in the death threshold leads to short-run mortality displacement without any

longer-lasting effects.

In contrast, depreciation affects the health capital of all individuals—both healthy and

ill—leading to persistent changes in mortality. For instance, consider a temporary increase

in the depreciation rate, d(t). This event causes an immediate rise in mortality rates among

frail individuals whose health capital values fall below the death threshold as a result of

increased depreciation. However, because the health capital of the entire population has

been reduced, mortality rates remain elevated even after d(t) reverts to its original path.

Our main structural assumption is that the effect of pollution exposure on model param-

eters depends only on current exposure. This assumption implies that exposure alters the

death threshold and depreciation rate parameters by the same amount for the old and the

young, and that those changes are independent of exposure history. Thus, observed differ-

ences in the mortality effects of exposure are driven by differences in pre-existing stocks of

health capital and by the functional form of d(t). A key feature of this assumption is that

it allows us to calibrate the effect of exposure on model parameters using IV estimates from

22Exposure could also alter the variance of the iid health shock, εit. We rule out this possibility because
it implausibly implies that an increase in pollution exposure would produce health benefits for half of the
population.
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any age group. It also yields the testable implication that calibrated parameter values from

one age group should yield accurate mortality predictions for any other age group.

Our structural assumption is based on research suggesting that, while the health conse-

quences of pollution exposure may vary from person to person, the biological mechanisms

are similar at a molecular level. For example, ambient air pollution exposure has been found

to increase oxidative stress and have a number of other pathophysiological effects (see Brook

et al. (2010) for a review). In a double-blind experiment, Li et al. (2017) exposed healthy

young adults to either filtered air or real-world PM2.5 concentrations. Higher PM2.5 expo-

sure led to increased levels of stress hormones, inflammatory markers, and blood pressure,

supporting our assumption of common biological processes. Viewed through the lens of the

depreciation parameter, a uniform increase in δ across the age distribution would reduce the

health stock more for older individuals than for younger individuals, and would largely raise

contemporaneous and near-term mortality only among those individuals who are frail.

Equation (3) ignores optimization behavior, which is consistent with our use of daily-

level IV estimates to calibrate the effect of air pollution exposure on model parameters:

behavioral adjustments such as buying an air purifier or relocating are unlikely responses

to daily changes in air pollution levels. The absence of endogenous responses to exposure

means that our survival forecasts should be interpreted as holding behavior fixed, which is

the relevant comparison for quantifying the total benefits associated with pollution reduction

(Graff Zivin and Neidell, 2013; Currie et al., 2014). In a scenario involving optimal behavioral

change, the realized health benefit would be lower than the model’s forecast due to risk

compensation.

Our long-run survival analysis proceeds as follows. First, we calibrate the baseline model

parameters using a period life table from the beginning of our sample time period (1972).

Second, we solve for the change in parameter values required to match our IV estimates of

the effect of acute pollution exposure on 1-day mortality. We assess the performance of the

model by comparing its short-run (up to one month) predictions to IV estimates not used for
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the calibration. Finally, we use the model to predict the long-run effects of chronic changes

in pollution exposure on survival.

5.2 Calibration

5.2.1 Baseline parameters

The dynamic production model of health given by Equation (3) depends on seven parameters:

{α, δ, I, σe, µH , σH ,H}. To achieve identification (i.e., to ensure a unique solution), we follow

Lleras-Muney and Moreau (2022) and normalize two parameters: H = 0 and σH = 1. We

calibrate the five remaining parameters using simulated method of moments. Specifically, we

use the Nelder-Meader method to solve numerically for the parameter values that minimize

the squared distance between the model’s predicted age-specific survival and US population

survival in 1972, the first year of our sample period.

Our daily-level IV estimates average about 0.1 deaths per million for a 1-unit change in

SO2 (e.g., Table 2). To measure changes in mortality at that level of granularity, the model

must include many millions of individuals. However, calibrating the baseline parameters is

computationally infeasible at the daily level when N is very large.23 We therefore proceed

in three steps.

First, we calibrate the baseline model using annual survival data and N = 1, 000, 000

agents. Second, we recalibrate the baseline model using daily survival data and N = 100, 000

agents, employing (scaled) estimates from the annual calibration as our starting values.24

Third, we simulate the recalibrated baseline model for a population of N = 20, 000, 000 indi-

23If the maximum lifespan is 110 years, then the number of periods is T = 110 × 365 = 40, 150 days.
Simulating a population of N = 10, 000, 000 individuals thus produces 401.5 billion health capital values (3.2
terabytes, if each value is an 8-byte number). Simulating a single population of this size on a large server
requires several hours of runtime, and the Nelder-Mead method requires simulating the population hundreds
of times to converge to a solution.

24We obtain the starting values by dividing the annual estimates of I and δ by 365, and of σe by
√

365.
We do not rescale µH or α. While these starting values provide a good guess for the solution, the model’s
(nonlinear) dependence on t causes the guess to be suboptimal, hence the need for recalibration. In the
special case where α = 1, one can show that if a year is partitioned into P periods, then the optimal value
for δ in the partitioned model approaches 1/P times the optimal value from the annual model.
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viduals, using parameter estimates from the second (daily-level) calibration. This third step

provides the high-resolution model estimates of population health capital that we combine

with our IV estimates to calibrate the effect of exposure on model parameters.

Figure A.7 illustrates the results of our baseline calibration. The solid blue line shows

the survival curve for the US 1972 life table. The red dashed line reports the survival curve

produced by our calibrated health model. There are some small deviations between the

model’s prediction and the observed data in infancy, but otherwise the two curves track each

other closely and produce life expectancy estimates that differ by only 0.1 years, indicating

a successful model fit. The model’s parameter values are reported in Column (2) of Table

A.13.

5.2.2 Pollution exposure parameters

Our IV estimates from Section 4 identify the effect of a 1-day, 1-ppb increase in SO2 exposure

on mortality in the following month. In the context of our health production model, we

assume that exposure can raise the value of the death threshold parameter, H, and can

increase depreciation by raising the values of δ or α. A 1-day increase in the death threshold

will produce short-run mortality displacement that increases current mortality but then

reduces near-future mortality by about the same amount, while an increase in depreciation

will increase both current and future mortality. Changes in δ and α produce near-identical

mortality effects in the short run, so we do not distinguish between them until we turn

to our long-run forecasts.25 For expositional purposes, here we consider changes to δ only.

Employing α instead of δ in our validation exercises produces indistinguishable results.

In line with the patterns shown in Figure 4, we assume that cancer-related deaths reflect

mortality displacement while other deaths are due to accelerated aging (depreciation). Let

β̂ka,c denote the IV estimate of the effect of acute exposure on cumulative mortality for age

25The marginal effects of δ and α on depreciation, d(t) = δtα, vary over time so in theory one could identify
which parameter is a better fit for pollution exposure by using variation in mortality by age group. In practice,
a 1-day exposure event provides far too little variation for us to separately identify these parameters.
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group a from cause of death c in the k days following exposure. Consider a specific daily age,

t, that lies inside the age interval spanned by age group a. We first use the high-resolution

model estimates described above to solve numerically for a new death threshold, H̃a, such

that elevating the baseline threshold to H̃a for a single day at age t yields a mortality increase

equal to the 1-day estimate for cancer-related deaths, β̂1
a,cancer. We then solve for the value

of δ̃a that further increases mortality at age t to match the all-cause (total) estimate, β̂1
a,all.

Calibrating the parameters {H̃a, δ̃a} can be done using IV estimates for any age group a.

To maximize efficiency, we perform the calibration using several age groups, and then use

the simple average across ages when predicting long-run survival. Because we need death

rate magnitudes to be large enough to match the granularity of our model, we only include

age groups over 65.26 The specific IV estimates used for these calibrations are reported in

Table A.12.

We use the approximate midpoint of each age bin when solving for the one-day change

{H̃a, δ̃a}. Because health capital depends on an iid health shock, using only a single day

for this calibration produces noisy solutions. To improve precision, we solve for the 1-day

changes using 50 different days around the midpoint and take the average. For example,

for the 65–69 age group, we solve for the changes using ages 68y1d, 68y2d, ..., 68y50d.27

Appendix A.2 provides additional details. The final result is a set of parameters for each age

group, {H̃a, δ̃a}, capturing the effect of an increase in exposure of 1 ppb. The parameter H̃a

captures the mortality displacement effect, and the parameter δ̃a captures the accelerating

aging effect.

To account for econometric uncertainty in the IV estimates, we use a resampling-based

methodology. We randomly draw an estimate of the effect of acute pollution exposure on

26Our model includes includes N = 20 million individuals, so a daily death rate of 1 per million corresponds
to at most 20 deaths. As explained in the appendix, we improve our precision by repeating our calibration
using 50 different points; however, that is insufficient for calibrating to the 1-day death rates for the younger
age groups, all of which are less than 0.1 deaths per million.

27The optimal strategy would employ all 365× 5 = 1825 days in the 5-year age bin, giving more weight to
the ages near the midpoint. However, doing so is computationally burdensome and unnecessary for achieving
sufficient accuracy.
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1-day mortality from a normal distribution with a mean and standard deviation set equal

to the mean and standard error of β̂1
a,c in Equation (1), and then calibrate the change in

model parameters to match the mortality change draw. We repeat this exercise 100 times

and report the 5th and 95th percentiles of the resulting distribution of model parameter

estimates.

Our age-specific estimates of changes in the mortality threshold and one of the depreci-

ation parameters, {H̃a, δ̃a}, expressed as deviations from the baseline parameter values, are

shown in Figure A.8. For completeness, we show estimates for α̃a as well. Estimates are

generally similar across ages, with most values falling inside the 90 percent confidence inter-

vals of other estimates, which is consistent with our assumption that the effects of exposure

on model parameters are constant over the life cycle.

5.3 Validation

We validate the model by comparing its predictions of the mortality effect of acute exposure

to IV estimates that were not used in the calibration. Because calibration for age group a

employs only the 1-day IV estimate for that age group, our first validation test focuses on

model predictions for longer-run (>1 day) outcomes. Figure 5 provides an example using the

65–69 age group. The solid blue line reports the IV estimates, and the green dot-dashed line

reports “own-age” predictions, which come from a model that was calibrated using β̂1
65,cancer

and β̂1
65,all. By construction, the own-age model prediction matches the IV estimate for

the same-day effect. To assess model performance, we compare the own-age predictions of

longer-run mortality changes to the corresponding IV estimates. All of these predictions lie

within the 95% confidence intervals of the IV estimates.

Our second, more demanding, validation test involves computing mortality predictions

for a given age group using the average of the calibrated parameters from other age groups.

For example, instead of using the calibrated parameters {H̃65, δ̃65} as we did for the own-age

predictions, we predict mortality for the 65–69 age group using the average of the calibrated
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values from the 70–74, 75–79, 80–84, and 85+ age groups: {1
4

∑
a>65 H̃a,

1
4

∑
a>65 δ̃a}. Here,

the 1-day mortality prediction also serves as a validation test, since β̂1
65 was not used to form

this “leave-one-out” prediction. The thick red dashed line in Figure 5 shows that all of these

leave-one-out predictions lie inside the 95% confidence intervals of the IV estimates. One

compelling feature of this validation exercise is that it produces good predictions despite its

reliance on IV estimates that are nearly one order of magnitude larger in size than the 65–69

predictions (Figure 3a).

For purposes of comparison, we also plot predictions from a model specification that

assumes none of the 1-day exposure deaths are due to changes in the death threshold (“no

displacement”) and one that assumes all of the deaths are due to changes in the death thresh-

old (“all displacement”). In the all-displacement scenario, depicted by the black dashed line

in Figure 5, the cumulative mortality effect falls rapidly to zero, reflecting complete short-

run mortality displacement. In the no-displacement scenario, depicted by the orange dashed

line, the mortality predictions increase much more rapidly than either the own-age or leave-

one-out predictions. Notably, the predictions from these two extreme specifications lie well

outside the 95% confidence intervals of our IV estimates, demonstrating that the latter

are precise enough to rule out a range of model predictions. The wide gap between the

all-displacement and no-displacement predictions underscores the importance of accurately

identifying the fraction of deaths that are attributable to mortality displacement rather than

accelerated aging.

Figure A.10 shows corresponding leave-one-out predictions for the other age groups.

Overall, 26/30 (87%) of the model predictions lie inside the 95% confidence intervals of the

IV estimates. The close concordance between these predictions and the IV estimates suggests

that our dynamic production model of health accurately captures important determinants

of mortality, at least for 1-day shocks with a one-month follow-up window. It also supports

our assumption that the effect of acute exposure on model parameters is the same across

different ages.
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5.4 Long-run predictions

Finally, we use the methodology outlined in Section 5.2.2 to quantify the effects on life

expectancy of a permanent, 1-unit decrease in SO2 exposure. For each age group a, we first

solve for the parameter values {H̃a, δ̃a} that yield the 1-day mortality change implied by the

IV estimate for that age group. We then predict survival using the average value for the

five age groups 65 and over: {1
5

∑
a≥65 H̃a,

1
5

∑
a≥65 δ̃a}. Rather than quantifying the survival

effects of a 1-day change in parameter values, however, here we quantify the effect of a

permanent, lifetime change beginning at birth (t = 0). Because we are quantifying long-run

effects, the difference between changing the depreciation parameters δ and α is no longer

negligible, so we show both sets of estimates. For purposes of comparison, we also quantify

the implied life expectancy effect of extrapolating our age-specific monthly IV estimates to

the entire life cycle.28

Figure 6 illustrates our results. The baseline life expectancy in our model—which was

calibrated using a 1972 period life table—is 71.32 years. The two model-based calculations

imply that a permanent, 1-ppb decrease in SO2 improves life expectancy for this cohort by

1.18–1.32 years (1.65–1.85%).29 By contrast, extrapolating our IV estimates to the life cycle

yields a life expectancy improvement of about 0.16 years (0.22%), which is 7–8 times smaller

than the model-based estimates. The IV extrapolation is biased downwards because it is

limited by the one-month regression window and does not account for the latent effects of

pollution on people’s health capital over longer time periods.

Even though decreased SO2 exposure begins at birth, Figure 6 indicates that survival

gains are concentrated among older individuals: more than 90% of the life expectancy im-

28These IV estimates are reported in the last row of Table A.4. This naive calculation assumes that daily
mortality rates increase at every age by the monthly IV point estimate for the corresponding age group,
including point estimates that are statistically insignificant. We assume the estimates in Table A.4 apply to
the midpoint of each age bin, and interpolate to calculate the rest of the values.

29Table A.14 reports results for the survival effects of chronic exposure changes up to 3 ppb. The relation-
ship between survival improvements and permanent changes in SO2 is roughly linear, although we caution
against generalizing from these results, since they rely heavily on the assumed linear relationship between
SO2 and mortality in Equation (1).
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provement occurs after age 50 and more than 75% occurs after the age of 65. Intuitively, this

is because additional health capital at younger ages translates into negligible mortality im-

provements, as overall health is high and most individuals are decades away from dying. As

people age and their health capital approaches the death threshold, however, health capital

accrued at younger ages becomes increasingly important for determining longevity.

Interpreting the life expectancy improvements requires some care, as the nature of our

pollution data means that some unobserved PM2.5 accompanies every unit of observed SO2.

Due to lack of monitoring data during our study period, we cannot measure this ratio

directly. However, our simulations in Section 4.2 indicated that, on average, 1 ppb of SO2

is accompanied by 3 µg/m3 of PM2.5 or less. If we were to make the extreme assumption

that all of our estimated mortality effects of SO2 were in fact operating through PM2.5, then

our estimates imply that a permanent 1-µg/m3 decrease in PM2.5 improves life expectancy

by 0.39–0.43 years. We note that even under this extreme assumption, our main estimates

remain policy relevant because the vast majority of co-transported PM2.5 in our sample likely

comes from the conversion of SO2 to PM2.5 (see Section 4.2).

6 Conclusion

Accurate estimates of the long-run effect of chronic pollution exposure on health and mor-

tality are vital for making informed policy decisions. Yet, reliable causal estimates remain

scarce. We address this gap by proposing a novel two-step approach that combines well-

identified short-run estimates of the mortality effect of pollution with a dynamic production

model of health. Our approach can simulate a variety of exposure counterfactuals, including

the long-run mortality effect of chronic exposure. Although we focus on air pollution, our

method can be applied to a number of other health hazards, provided that the researcher

can estimate short-run mortality effects and credibly identify the relevant model parameters

affected by the hazard.
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To obtain well-identified estimates for our model, we assemble a new, comprehensive

dataset of daily US mortality and weather, and then instrument for changes in SO2 levels

using changes in wind direction. We show that the short-run mortality effects of acute SO2

exposure can be decomposed into two distinct phenomena: mortality displacement, where

exposure kills frail individuals with short counterfactual life expectancies, and accelerated

aging, where mortality continues to increase even after exposure has ceased. In our setting,

the aging effect dominates, causing net mortality to rise significantly in the month following

a 1-day increase in SO2.

We integrate these short-run mortality estimates into the model of survival by separately

calibrating its parameters to our mortality displacement and accelerated aging estimates. We

then calculate that a permanent, 1 ppb decrease in SO2 exposure improves life expectancy by

1.2–1.3 years. This increase is almost an order of magnitude larger than a naive extrapolation

of the monthly IV estimates, demonstrating the importance of accounting for latent health

changes caused by pollution exposure.

While our projections of the effect of pollution exposure on life expectancy help inform the

benefits of air pollution regulations, these estimates should not be interpreted as predictions

of how US life expectancy will change, for two reasons. First, we do not account for other

phenomena that matter greatly for life expectancy, such as the opioid epidemic and medical

innovation. Second, the model explicitly ignores endogenous responses to air pollution, such

as migration. The estimates are thus best interpreted as the benefits of reducing air pollution

exposure holding longer-run behavior fixed. To understand whether it is more cost-effective

to reduce pollution exposure through private action or through public policy, one could

compare the costs of these two options per unit of exposure. Regardless of which option is

more cost-effective, our estimates help quantify the benefits of such actions.
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Figure 1: The relationship between wind direction and SO2 concentration, Greater Philadelphia and Southern California areas
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Notes: Sulfur dioxide (SO2) pollution monitors are depicted as black dots on the two maps. The graphs on the right plot the relationship between SO2 levels and
windward direction in each area. Windward direction describes where the wind is blowing from, with “N” indicating North, “NE” indicating Northeast, etc. The
36 blue points report coefficient estimates from a non-parametric regression of SO2 on wind direction measured in 10-degree angle bins. The blue shaded area shows
the corresponding 95% confidence intervals. The red dashed lines report coefficient estimates from the parametric sine specification given by fg(θ) in Equation
(2). Regressions include county-by-month and month-by-year fixed effects, and flexible weather controls. Standard errors are robust to heteroskedasticity.
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Figure 2: IV estimates of effect of acute (1-day) SO2 exposure on cumulative mortality
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Notes: Each point reports an IV estimate from Equation (1) of the effect of acute (1-day), 1-ppb sulfur dioxide (SO2) exposure on mortality, where mortality
is measured as cumulative deaths per million over a time window ranging from 1 to 28 days, as indicated by the x-axis. Shaded area depicts 95% confidence
intervals. Estimates are also reported in Column (2) of Table A.2. All regressions include county-by-month and month-by-year fixed effects, as well as flexible
controls for maximum temperature, precipitation, and wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are
weighted by the county population. Standard errors are clustered by county.
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Figure 3: IV estimates of effect of acute (1-day) SO2 exposure on 1-day mortality, by age group
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Notes: Each bar represents an IV estimate from Equation (1) of the 1-day mortality rate on a 1-day change in SO2 for the age
group specified. Error bars report 95% confidence intervals. Estimates are also reported in Table A.3. All regressions include
county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, and
wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by the
county population. Standard errors are clustered by county.
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Figure 4: IV estimates of effect of acute (1-day) SO2 exposure on cumulative mortality, by cause of death
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Notes: Each point reports an IV estimate from Equation (1) of the effect of acute (1-day) sulfur dioxide (SO2) exposure on mortality (deaths per million), for four
different causes of death: cardiovascular disease, cancer, other diseases, and external causes of death. Mortality is measured with a time window ranging from 1
to 28 days, as indicated by the x-axis. Shaded areas correspond to 95% confidence intervals. Estimates are also reported in Table A.5. All regressions include
county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, and wind speed; leads of these weather
controls; and two leads and two lags of the instruments. Estimates are weighted by the county population. Standard errors are clustered by county.
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Figure 5: Model predictions of effect of acute (1-day) SO2 exposure on one-month survival, ages 65–69
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Notes: The solid blue line reports IV estimates from Equation (1) of the effect of acute (1-day) sulfur dioxide (SO2) exposure on cumulative mortality for the
65–69 age group, with 95% confidence intervals given by the blue shaded area. The thick red and thick green dashed lines reports corresponding predictions from
the dynamic production model of health described by equation (3). The “age-specific calibration” model, depicted by the thick red dashed line, is calibrated so
that its 1-day prediction matches the 1-day IV estimate (first blue point), and it attributes the cancer-related portion of the 1-day IV estimate to the frailest
individuals with the lowest levels of health capital. The “leave-one-out” model, depicted by the thick green dashed line, employs the average of the calibrated
values for all of the other older age groups, i.e., ages 70–74, 75–79, 80–84, and 85+. The orange dashed line (“no displacement”) reports model predictions under
the extreme assumption that none of the 1-day mortality effect is mortality displacement, while the green dashed line (“all displacement”) reports predictions
under the alternative extreme assumption that all of the 1-day effect is mortality displacement. Figure A.10 shows plots for all age groups 60 and over.
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Figure 6: Predicted effect of a permanent 1-unit decrease in SO2 on survival for cohort born in 1972
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Notes: This figure shows the cumulative effect of a permanent, 1-unit decrease in sulfur dioxide (SO2) on life expectancy over the life cycle. These projections
are produced by the dynamic production model of health (3), which was calibrated using our 1-day IV estimates from Equation (1). The solid blue line (aging
model 1) shows projections under the assumption that non-cancer-related pollution deaths are governed by changes in the model parameter α, and the dashed
red line (aging model 2) assumes they are governed instead by the parameter δ. The cumulative effect at age 110 equals the total effect on life expectancy for the
“Parameter average” reported in Table A.14.
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Table 1: Summary statistics, 1972–1988

(1) (2) (3)

Mean Std. Dev. Observations

A. Pollution outcomes

SO2, ppb 8.96 12.62 2,032,338
NO2, ppb 21.25 15.60 792,784
CO, ppm 1.64 1.37 848,067
Ozone, ppb 25.53 13.69 669,261
TSP, µg/m3 63.11 40.19 628,932

B. One-day mortality rate outcomes

All-cause mortality, deaths per million 24.70 24.32 2,032,338
Cardiovascular 12.21 16.04 2,032,338
Cancer 5.15 9.16 2,032,338
Other 5.45 10.02 2,032,338
External 1.89 7.99 2,032,338

All-cause mortality by age group, deaths per million
Age 1 and under 33.34 166.40 2,032,338
Age 1–19 1.51 11.52 2,032,338
Age 20–44 4.41 18.44 2,032,338
Age 45–59 20.61 48.61 2,032,338
Age 60–64 46.92 129.10 2,032,338
Age 65–69 70.11 170.41 2,032,338
Age 70–74 105.29 241.93 2,032,338
Age 75–79 157.60 360.18 2,032,338
Age 80–84 242.33 575.20 2,032,338
Age 85+ 442.67 923.63 2,032,338

Notes: Unit of observation is a county-day. Statistics are unweighted. Sample is restricted to observations where both
mortality and sulfur dioxide (SO2) are non-missing. Mortality is calculated as the number of daily deaths per million
individuals. Pollution data are from the Environmental Protection Agency, mortality counts are from the National Vital
Statistics, and population estimates are from the Surveillance, Epidemiology, and End Results (SEER) Program.
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Table 2: OLS and IV estimates of effect of SO2 on 1-day mortality

OLS IV

(1) (2) (3) (4) (5)

SO2, ppb 0.0077* 0.084** 0.084** 0.085** 0.098**
(0.0031) (0.013) (0.013) (0.012) (0.014)

First-stage F -statistic 42 68 33 32
Mean outcome 25 25 25 25 25
Sample size 2,023,456 2,032,338 2,032,272 2,031,752 2,032,340

Weather controls
Baseline weather variables X X X X
Minimum temperature variables X X
More granular bins X

Notes: Dependent variable is number of deaths per million people on the day of exposure. All regressions include county-by-
month and month-by-year fixed effects, as well as two leads and two lags of the instruments. Baseline weather variables include
bins for maximum temperature, precipitation, and wind speed. The specification in Column (3) additionally includes controls
for minimum temperature. The specification in Column (4) increases the number of bins and matches the specification used
in Deryugina et al. (2019). Estimates are weighted by the county population. Standard errors, clustered by county, are
reported in parentheses. A */** indicates significance at the 5%/1% level.
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Table 3: IV estimates of effect of SO2 on 1-day mortality, controlling for other pollutants

(1) (2) (3) (4) (5) (6)

A. All-pollutant sample

SO2, ppb 0.084** 0.060** 0.065** 0.066** 0.059** 0.064**
(0.012) (0.013) (0.014) (0.012) (0.012) (0.014)

TSP, µg/m3 0.012** 0.014** 0.014** 0.013** 0.015**
(0.0036) (0.0037) (0.0033) (0.0040) (0.0035)

NO2, ppb –0.014 0.0023
(0.013) (0.017)

Ozone, ppb –0.044* –0.046*
(0.021) (0.022)

CO, ppm –0.20 –0.24
(0.17) (0.20)

First-stage F -statistic 81 21 17 11 20 10
Mean outcome 27 27 27 27 27 27
Sample size 78,946 78,946 78,946 78,946 78,946 78,946

B. SO2/TSP sample

SO2, ppb 0.079** 0.035*
(0.014) (0.015)

TSP, µg/m3 0.019**
(0.0045)

First-stage F -statistic 96 50
Mean outcome 25 25
Sample size 627,304 627,304

Notes: Dependent variable is number of deaths per million people on the day of exposure. All regressions include county-
by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, and wind
speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by the county
population. Standard errors, clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1%
level. Table A.6 presents estimates using a third sample that includes all pollutants except for TSP.
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A Supplementary information and analysis

A.1 Data

Monitor-level data for sulfur dioxide (SO2), total suspended particulates (TSP), nitrogen dioxide (NO2),

ozone, and carbon monoxide (CO) for the years 1972–1988 were obtained by email request from the

US Environmental Protection Agency (EPA). Each SO2 observation provided a sample measure, usually

recorded over a period of one hour. We dropped SO2 observations that had a sample duration greater than

24 hours, or that reported an SO2 measurement above 1000 parts per billion (ppb) or below –2 ppb.1 We

dropped CO, NO2, and ozone observations with negative values. All TSP observations had non-negative

values. We then aggregated all pollutants to the the monitor-day level, weighting by the time duration of

each measure. Finally, data were aggregated to the county-day level by averaging over all monitors within

a county.

There were 4,740 active SO2 pollution monitors during our 1972–1988 sample period, covering 1,041

counties (Figure A.1). Figure A.2 shows trends in air pollution levels over time for different pollutants,

and in the fraction of the population living in a county with at least one monitor for that pollutant.

A.2 Model calibration

The dynamic production model of health given by Equation (3) depends on seven parameters:

{α, δ, I, σe, µH , σH ,H}. To achieve identification, we normalize two parameters: H∗ = 0 and σ∗H = 1. We

calibrate the baseline values for the five remaining parameters using a 1972 period life table, as described

in Section 5.2. Let {α∗, δ∗, I∗, σ∗e , µ∗H} denote those calibrated values.

We calculate the life expectancy effects of chronic air pollution exposure for two different scenarios.

In the first scenario, we assume that pollution exposure only affects the parameters δ and H, and denote

their post-exposure values as {δ̃, H̃}. In the second scenario, we assume that exposure affects α rather

than δ. Below, we describe how we solve for {δ̃, H̃}. It is straightforward to solve for α̃ instead of δ̃ using

the methodology described below.

Consider a population of N individuals whose health capital evolves according to Equation (3). Let

Θ∗ = {α∗, I∗, µ∗H , σ∗H , σ∗e} represent the five baseline calibrated parameters that are unaffected by air

pollution exposure. Let S be a random-number seed that fixes the initial stock of health capital, Hi0,

1According to the AQS Data Coding Manual version 2.38 (February 2, 2010), the maximum allowable sample value for
SO2 is 1000 ppb. The EPA informed us by email that small negative values can arise due to noise and should be included in
sample averages to avoid bias. We chose –2 as the bottom cutoff because it appeared to be the minimum allowable sample
value.



and the evolution of the iid shock, εit, for all individuals. Then we can define Mt

(
δ∗,H∗

∣∣∣Θ∗, N, S) as the

deterministic mortality rate at time t ≥ 0 for a cohort born in 1972, as computed by the model using the

baseline parameters.

Let β̂ka,c denote the IV estimate of the effect of acute exposure on cumulative mortality for age group

a from cause of death c in the k days following exposure. Let [t0a, t
1
a] define the age interval spanned by

age group a, measured in days. Consider a specific age, t ∈ [t0a, t
1
a]. To quantify the effect of exposure on

model parameters, we first solve for the new mortality threshold, H̃at, which is defined implicitly by the

following equation:

β̂ka,cancer = Mt

(
δ∗, H̃at

∣∣∣Θ∗, N, S)−Mt

(
δ∗,H∗

∣∣∣Θ∗, N, S) (A.1)

We then solve for δ̃, which is defined implicitly by:

β̂ka,all = Mt

(
δ̃at, H̃at

∣∣∣Θ∗, N, S)−Mt

(
δ∗, H̃at

∣∣∣Θ∗, N, S) (A.2)

Health capital is strictly decreasing in δ for all individuals (see Equation 3), and death occurs when an

individual’s health stock falls below H. Thus, the mortality rate, Mt(·), is monotonically increasing in both

δ and H. Consequently, the solutions {δ̃at, H̃at} to Equations (A.1) and (A.2) exist and are unique.2 The

solutions can be computed using standard root-finding algorithms.

We can solve for {δ̃at, H̃at} for any t ∈ [t0a, t
1
a]. We use the approximate integer midpoint of each age

bin, t = round [(t0a + t1a)/2].3 Because health capital depends on an iid health shock, using only a single

day for this calibration produces noisy solutions. To improve precision, we solve Equations (A.1) and (A.2)

using 50 different days around the midpoint and take the average. For example, for a = 65 (the 65–69 age

group), we solve for {δ̃65,t, H̃65,t} using ages t = 68y1d, t = 68y2d, ..., t = 68y50d.4 Figure A.9 shows the

cumulative mortality effects of acute (1-day) exposure to air pollution for 50 separate daily ages from the

65–69 age group, as predicted by the model using the values of {δ̃65,t, H̃65,t} for each age t. The effect for

the first day of each plot is equal to the 1-day IV estimate for the 65–69 age group (see first row of Column

(6) in Table A.4). The subsequent estimates show the longer-run effects up to 30 days later. Each value

reports mortality in the counterfactual relative to mortality in the baseline case (no exposure). A decrease

in the cumulative value indicates mortality displacement. The “own-age prediction” in Figure 5 reports

the average of these 50 plots.

2Alternatively, one could solve first for δ̃ and then for H̃. That would yield estimates that are numerically very close but
not identical to the ones resulting from this method. We solve for H̃ first because it is more efficient: when solving for α̃, we
do not need to separately solve for H̃ again as it was already computed when solving for δ̃.

3For the 85+ age group, we use a midpoint of 90, which is the average age of death in that group during our sample
period.

4The optimal strategy would employ all 365 × 5 = 1825 days in the 5-year age bin, giving more weight to the ages near
the midpoint. However, doing so is computationally burdensome and unnecessary for achieving sufficient accuracy.
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We compute the age-specific parameter solutions {H̃a, δ̃a} as the averages of these 50 solutions:

H̃a =
1

50

∑
t

H̃at

δ̃a =
1

50

∑
t

δ̃at

Figure A.8 reports {H̃a, δ̃a} for the five age groups over 65, expressed as deviations from the baseline

calibrated values (i.e., H̃a − H∗ = H̃a and δ̃a − δ∗). The parameters used to predict the long-run survival

effects of air pollution are computed as the average across these five age groups:

H̃ =
1

5

∑
a

H̃a

δ̃ =
1

5

∑
a

δ̃a

To account for econometric uncertainty in the IV estimates, we use a resampling-based methodology.

We randomly draw an estimate of the effect of acute pollution exposure on 1-day mortality from a normal

distribution with a mean and standard deviation set equal to the mean and standard error of β̂1
a,c in

Equation (1), and then calibrate the change in model parameters to match the mortality change draw.

We repeat this exercise 100 times and report the 5th and 95th percentiles of the resulting distribution of

model parameter estimates. To reduce the computational burden, we use 20 different days rather than 50

when computing {H̃a, δ̃a} during the resampling.
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Figure A.1: Locations of the 50 geographic groups and SO2 monitors

Notes: This map shows the 50 geographic groups included in our main estimation sample. Each group is shaded in a different color. The black dots represent
the locations of the SO2 monitors. Unshaded (white) counties have no SO2 monitors and are not included in our sample. The Southern California and Greater
Philadelphia groups are shown in detail in Figure 1.
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Figure A.2: Air pollution means and population coverage levels, 1972–2014
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Notes: The solid blue line reports population-weighted pollution levels for all US counties with a monitor for the pollutant
that operated for at least one day. The dashed red line reports the percentage of the US population residing in a county with
a monitor for the pollutant that operated for at least one day. The dashed vertical line indicates 1988, the end of the sample
period used in this study. Data are obtained from the EPA Air Quality database. SO2, CO, NO2, and O3 are measured in
parts per billion (ppb). Total suspended particulates (TSP) is measured in micrograms per cubic meter (µg/m3).

A-4



Figure A.3: Trends in United States mortality rates, 1972–1988

(a) By age group
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(b) By cause of death
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Notes: These two figures report annual mortality rates for the US population. These rates are calculated using mortality
data from the National Vital Statistics and population data from SEER. Annual mortality rates are approximately 365 times
larger than the daily mortality rates used in the analysis.
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Figure A.4: A lot of air pollution originates from distant sources, especially in the East

(a) PM2.5 (b) Sulfates

Notes: This figure, reproduced from EPA (2004), shows that a large fraction of measured PM2.5 and sulfates does not originate
from local sources. Sulfates, which are an important component of PM2.5, are formed from the atmospheric transformation
of sulfur dioxide.
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Figure A.5: Size of first stage by location

No data 0−1 1−2 2−3 3−4 4+

Notes: This map shows the size of the first stage for each of the 50 geographic groups included in our main estimation sample. The size of the first stage is

calculated as the difference in SO2 changes (in parts per billion) between the most and least polluting wind directions, as determined by γ̂1g sin (θ) + γ̂2g sin (θ/2),
estimated using Equation (2), for θ ∈ [0, 2π). Unshaded (white) counties have no SO2 monitors and are not included in our sample.
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Figure A.6: IV estimates of effect of acute (1-day) SO2 exposure on cancer-related mortality
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Notes: Each point reports an IV estimate from Equation (1) of the effect of acute (1-day) sulfur dioxide (SO2) exposure on cancer-related mortality (deaths per
million). “Cancer (underlying)”, which replicates the cancer estimates shown in Figure 4, includes only deaths where cancer is listed as the underlying cause
of death on the death certificate. “Cancer (underlying or secondary)” includes deaths where cancer is listed as the underlying cause of death or as one of the
secondary causes. Mortality is measured with a time window ranging from 1 to 28 days, as indicated by the x-axis. Shaded areas correspond to 95% confidence
intervals. Estimates are also reported in Table A.5. All regressions include county-by-month and month-by-year fixed effects, as well as flexible controls for
maximum temperature, precipitation, and wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by
the county population. Standard errors are clustered by county.
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Figure A.7: Baseline calibration of the dynamic production model of health
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Notes: The solid blue line depicts the survival curve derived from the 1972 period life table for the United States. The dashed red line reports the predicted
survival from our dynamic production model of health (3), which was calibrated using these 1972 data. The calibrated model parameters are reported in Column
(2) of Table A.13.
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Figure A.8: The effect of acute (1-day) SO2 exposure on model parameters

(a) Increase in α (α̃a − α∗)
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Notes: Panel (a) reports the effect of acute (1-day) pollution exposure on the change in the value of the parameter α from the
health model (3), under the assumption that all non-cancer-related deaths operate through changes in α and all other deaths
operate through changes in H. Panel (b) reports estimates under the alternative assumption that all non-cancer-related
deaths operate through changes in the aging parameter δ rather than α. Panel (c) reports the effect on the change in the
value of the parameter H, which governs mortality displacement and is calibrated using cancer-related deaths. The vertical
lines report the 5th and 95th percentiles from a set of 100 bootstrap replications. The bootstrap replications account for
econometric uncertainty in the IV estimation of β in (1) and for model uncertainty produced by the error term in the health
model (3). Baseline values for all model parameters are reported in Table A.13.
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Figure A.9: Predicted effects of acute (1-day) SO2 exposure on cumulative mortality, for selected ages
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Notes: Each plot corresponds to a different age (68 years 1 day, 68 years 2 days, etc.) from the dynamic production model of health (3). Plots show the predicted
effect of acute exposure on cumulative mortality (deaths per million) up to 30 days following exposure, using the calibration methodology described in Section 5.
The first point of each plot (x = 1 day) is equal to the 1-day IV estimate for the 65–69 age group (Figure 3a). The subsequent values are model predictions. The
average of these 50 plots corresponds to the thick red dashed line (“age-specific calibration”) shown in Figure 5.
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Figure A.10: Comparison of model predictions to IV estimates, by age bin
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(b) Ages 70–74
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(c) Ages 75–79
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(d) Ages 80–84
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(e) Ages 85+
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Notes: The red dashed line in panel (b) (ages 65–69), which is reproduced in Figure 5, reports the cumulative average of the
50 plots from Figure A.9.
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Figure A.11: The relationship between wind direction and SO2 concentrations by monitor group
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Notes: The graphs plot group-specific non-parametric coefficients (blue points) and 95% confidence intervals (blue shaded
area) from a first-stage regression of SO2 on wind direction measured in 10-degree angle bins. The red dashed lines report
the parametric sine fit from Equation (2). The x-axis on the graphs reports direction from which the wind is blowing
(“N” = North, “NE” = Northeast, etc.). The y-axis reports the corresponding relative changes in SO2 (parts per billion).
Regressions include county-by-month and month-by-year fixed effects and flexible weather controls. Standard errors are robust
to heteroskedasticity. The plots for “Los Angeles, CA” and “Baltimore, MD” are reproduced as “Greater Philadelphia area”
and “Southern California area” in Figure 1.
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Figure A.12: IV estimates of effect of acute (1-day) SO2 exposure on mortality, by detailed cause of death
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Notes: Each point reports an IV estimate from Equation 1 of the effect of acute (1-day) sulfur dioxide (SO2) exposure
on mortality (deaths per million), for thirty different causes of death. Mortality is measured with a time window ranging
from 1 to 28 days as indicated by the x-axis. Shaded areas correspond to 95% confidence intervals. All regressions include
county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, and
wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by the
county population. Standard errors are clustered by county.
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Table A.1: Correlations between county-level characteristics and the size of the first stage

Population Percent
65+

Percent
Black

Per-capita
income

(dollars)

Per-capita
transfers
(dollars)

Employment
rate

Mean SO2

(ppb)

(1) (2) (3) (4) (5) (6) (7)

First stage size 4,884 0.048 –1.4** 90** 32** –0.55** 1.4**
(8,728) (0.053) (0.15) (28) (4.4) (0.17) (0.087)

Mean outcome 240,068 11 9.2 8,857 1,117 47 7.3
Sample size 9,714 9,714 9,613 9,573 9,573 9,573 9,714
R-squared 0.0094 0.060 0.069 0.77 0.78 0.045 0.30

Notes: Dependent variable shown above each column. Indepedent variable is the difference in SO2 changes between the most
and least polluting wind direction for the monitor group to which the county belongs, measured in parts per billion. All
regressions include year fixed effects. County characteristics are obtained from the Regional Economic Information System
(REIS) dataset published by the Bureau of Economic Analysis (BEA). Standard errors, clustered by county, are reported in
parentheses. A */** indicates significance at the 5%/1% level.
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Table A.2: OLS and IV estimates of effect of SO2 on mortality, for different outcome windows

(1) (2)

Outcome window OLS IV

1 day 0.0077* 0.084**
(0.0031) (0.013)

3 days 0.021* 0.10**
(0.0091) (0.013)

5 days 0.029 0.099**
(0.015) (0.016)

7 days 0.031 0.11**
(0.020) (0.017)

10 days 0.035 0.12**
(0.028) (0.019)

14 days 0.042 0.13**
(0.039) (0.024)

21 days 0.049 0.16**
(0.056) (0.035)

28 days 0.046 0.19**
(0.073) (0.039)

Notes: Dependent variable is number of deaths per million people during the outcome window. Each estimate comes from
a separate regression. IV estimates in Column (2) are shown in Figure 2. All regressions include county-by-month and
month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, and wind speed; leads of
these weather controls; and two leads and two lags of the instruments. Estimates are weighted by the county population.
Standard errors, clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1% level.
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Table A.3: IV estimates of effect of SO2 on mortality, for different age groups

(1) (2)

Age group Absolute effect, deaths per million Relative effect, percent

0–1 0.066 0.20
(0.061) (0.18)

1–19 0.0028 0.19
(0.0022) (0.14)

20–44 0.017** 0.38**
(0.0054) (0.12)

45–59 0.044** 0.22**
(0.011) (0.054)

60–64 0.099** 0.21**
(0.034) (0.073)

65–69 0.31** 0.44**
(0.046) (0.066)

70–74 0.23** 0.22**
(0.070) (0.066)

75–79 0.48** 0.31**
(0.097) (0.062)

80–84 1.1** 0.44**
(0.17) (0.070)

85+ 2.3** 0.51**
(0.44) (0.10)

Notes: Dependent variable is number of deaths per million people in the given age group on the day of exposure. Each
estimate comes from a separate regression. Relative effect is calculated as the percent of the age group’s mean one-day
mortality rate. Estimates are also reported in Figure 3. All regressions include county-by-month and month-by-year fixed
effects, as well as flexible controls for maximum temperature, precipitation, and wind speed; leads of these weather controls;
and two leads and two lags of the instruments. Estimates are weighted by the county population. Standard errors, clustered
by county, are reported in parentheses. A */** indicates significance at the 5%/1% level.
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Table A.4: IV estimates of effect of SO2 on mortality, for different age groups and outcome windows

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Outcome window 0–1 1–19 20–44 45–59 60–64 65–69 70–74 75–79 80–84 85+

1 day 0.066 0.0028 0.017** 0.044** 0.099** 0.31** 0.23** 0.48** 1.1** 2.3**
(0.061) (0.0022) (0.0054) (0.011) (0.034) (0.046) (0.070) (0.097) (0.17) (0.44)

3 days 0.21** 0.00049 0.020** 0.038* 0.13** 0.22** 0.36** 0.64** 1.4** 3.2**
(0.080) (0.0033) (0.0063) (0.016) (0.043) (0.065) (0.089) (0.12) (0.25) (0.56)

7 days 0.32* –0.0047 0.023** 0.0010 0.12 0.31** 0.55** 1.0** 1.4** 3.3**
(0.15) (0.0061) (0.0077) (0.021) (0.073) (0.098) (0.11) (0.18) (0.35) (0.64)

14 days 0.27 –0.0076 0.0082 –0.0050 0.098 0.54** 0.78** 1.3** 2.3** 4.4**
(0.27) (0.0073) (0.010) (0.036) (0.098) (0.15) (0.18) (0.26) (0.54) (1.1)

28 days 0.53 0.012 0.0056 –0.0040 0.36* 0.85** 1.4** 1.9** 2.9** 6.5**
(0.43) (0.011) (0.019) (0.048) (0.14) (0.25) (0.24) (0.50) (0.73) (1.7)

Notes: Dependent variable is number of deaths per million people in the given age group over the given number of days
following exposure. Each estimate comes from a separate regression. These estimates are used to calibrate the dynamic
production model of health. All regressions include county-by-month and month-by-year fixed effects, as well as flexible
controls for maximum temperature, precipitation, and wind speed; leads of these weather controls; and two leads and two
lags of the instruments. Estimates are weighted by the county population. Standard errors, clustered by county, are reported
in parentheses. A */** indicates significance at the 5%/1% level.
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Table A.5: IV estimates of effect of SO2 on mortality, for different causes of death and outcome windows

(1) (2) (3) (4)

Outcome window Cardio Cancer Other External

1 day 0.029** 0.027** 0.023** 0.0050**
(0.0045) (0.0044) (0.0045) (0.0016)

3 days 0.041** 0.024** 0.030** 0.0070*
(0.0054) (0.0039) (0.0046) (0.0030)

5 days 0.046** 0.015** 0.035** 0.0041
(0.0079) (0.0043) (0.0071) (0.0033)

7 days 0.054** 0.012** 0.037** 0.0034
(0.0089) (0.0046) (0.0078) (0.0037)

10 days 0.060** 0.016** 0.045** 0.0031
(0.011) (0.0055) (0.0097) (0.0041)

14 days 0.070** 0.0085 0.052** 0.000064
(0.015) (0.0068) (0.011) (0.0054)

21 days 0.079** 0.0047 0.066** 0.0069
(0.019) (0.0086) (0.016) (0.0074)

28 days 0.097** 0.0082 0.077** 0.0074
(0.020) (0.011) (0.019) (0.0086)

Notes: Dependent variable is number of deaths per million people from the given cause of death over the given number
of days following exposure. Each estimate comes from a separate regression. Estimates are also reported in Figure 4. All
regressions include county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature,
precipitation, and wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates
are weighted by the county population. Standard errors, clustered by county, are reported in parentheses. A */** indicates
significance at the 5%/1% level.
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Table A.6: IV estimates of effect of SO2 on 1-day mortality, controlling for all pollutants except TSP

(1) (2) (3) (4) (5) (6) (7)

SO2, ppb 0.085** 0.077** 0.086** 0.082** 0.077** 0.084** 0.078**
(0.0085) (0.012) (0.010) (0.0091) (0.012) (0.011) (0.013)

NO2, ppb 0.010 0.011 0.013
(0.010) (0.015) (0.015)

Ozone, ppb –0.0059 –0.0052 –0.0093
(0.020) (0.020) (0.020)

CO, ppm 0.097 –0.012 0.094 –0.039
(0.14) (0.20) (0.14) (0.20)

First-stage F -statistic 225 72 34 91 41 34 30
Mean outcome 26 26 26 26 26 26 26
Sample size 275,690 275,690 275,690 275,690 275,690 275,690 275,690

Notes: Dependent variable is number of deaths per million people on the day of exposure. All regressions include county-
by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, and wind
speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by the county
population. Standard errors, clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1%
level.
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Table A.7: IV estimates of effect of SO2 on mortality, using different fixed effects

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.084** 0.076** 0.079** 0.081** 0.080** 0.078**
(0.013) (0.0093) (0.0089) (0.0095) (0.0094) (0.0093)

Fixed effects county-
month,

month-year

county, year,
month

county, state-
year-month

county-year,
state-month

county, year,
state-month

county,
month-year,
state-month

First-stage F -statistic 42 32 25 24 34 34
Mean outcome 25 25 25 25 25 25
Sample size 2,032,338 2,032,367 2,032,343 2,032,348 2,032,367 2,032,367

Notes: Dependent variable is number of deaths per million people on the day of exposure. All regressions include county-
by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, and wind
speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by the county
population. Standard errors, clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1%
level.
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Table A.8: IV estimates of effect of SO2 on mortality, using different numbers of instrument leads and lags

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.084** 0.087** 0.090** 0.084** 0.083** 0.083**
(0.013) (0.013) (0.014) (0.013) (0.013) (0.013)

# of instrument leads 2 0 1 4 4 6
# of instrument lags 2 0 1 4 6 6
First-stage F -statistic 48 30 53 55 55 49
Mean outcome 25 25 25 25 25 25
Sample size 2,023,456 2,028,921 2,025,000 2,020,429 2,017,485 2,017,485

Notes: Dependent variable is number of deaths per million people on the day of exposure. All regressions include county-
by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, and wind
speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by the county
population. Standard errors, clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1%
level.
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Table A.9: IV estimates of effect of SO2 on mortality, using different instrument specifications

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.084** 0.098** 0.074** 0.080** 0.081** 0.078**
(0.013) (0.014) (0.012) (0.016) (0.014) (0.015)

# of monitor groups 50 25 100 50 50 50
Wind angle spec sines sines sines 10-degree

bins
40-degree

bins
60-degree

bins
First-stage F -statistic 42 16 306 30 143 95
Mean outcome 25 25 25 25 25 25
Sample size 2,032,338 2,032,338 2,032,338 2,032,338 2,032,338 2,032,338

Notes: Dependent variable is number of deaths per million people on the day of exposure. All regressions include county-
by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature, precipitation, and wind
speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates are weighted by the county
population. Standard errors, clustered by county, are reported in parentheses. A */** indicates significance at the 5%/1%
level.
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Table A.10: 2SLS and LIML estimates of effect of SO2 on mortality, for different outcome windows

(1) (2) (3) (4) (5) (6)

SO2, ppb 0.084** 0.084** 0.11** 0.10** 0.19** 0.20**
(0.013) (0.013) (0.017) (0.013) (0.039) (0.028)

IV method 2SLS LIML 2SLS LIML 2SLS LIML
Outcome window (days) 1 1 7 7 28 28
First-stage F -statistic 48 26 73 28 65 28
Mean outcome 25 25 173 25 691 25
Sample size 2,023,456 2,022,134 2,023,435 2,022,113 2,023,369 2,022,046

Notes: Dependent variable is number of deaths per million people over the time window specified in each column. All
regressions include county-by-month and month-by-year fixed effects, as well as flexible controls for maximum temperature,
precipitation, and wind speed; leads of these weather controls; and two leads and two lags of the instruments. Estimates
are weighted by the county population. Standard errors, clustered by county, are reported in parentheses. A */** indicates
significance at the 5%/1% level.
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Table A.11: Placebo and falsification tests of the effect of SO2 on mortality

(1) (2) (3) (4)

SO2, ppb –0.079 0.18 –0.041
(0.062) (0.23) (0.49)

SO2 on day t+ 1, ppb –0.0036
(0.0048)

First-stage F -statistic 2.0 1.9 1.9 28
Outcome window, days 1 7 28 1
Mean outcome 25 173 691 25
Sample size 2,023,456 2,023,435 2,023,369 2,031,165

Notes: Dependent variable is number of deaths per million people over a window of 1, 7, or 28 days. Columns (1)–(3) report
placebo tests, where wind direction is randomly generated. Column (4) reports a falsification test of the effect of SO2 on the
previous day’s mortality rate. All regressions include county-by-month and month-by-year fixed effects, as well as flexible
controls for maximum temperature, precipitation, and wind speed; leads of these weather controls; and two leads and two
lags of the instruments. Estimates are weighted by the county population. Standard errors, clustered by county, are reported
in parentheses. A */** indicates significance at the 5%/1% level.
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Table A.12: IV estimates of effect of SO2 on all-cause and cancer-related 1-day mortality, ages 65 and over

(1) (2)

Age group All causes Cancer-related causes

65–69 0.31** 0.17**
(0.046) (0.028)

70–74 0.23** 0.14**
(0.070) (0.034)

75–79 0.48** 0.13**
(0.097) (0.040)

80–84 1.1** 0.18**
(0.17) (0.065)

85+ 2.3** 0.17*
(0.44) (0.084)

Notes: These estimates are used by the survival model to calibrate the effect of air pollution exposure on mortality. Dependent
variable is number of deaths per million people in the given age group on the day of pollution exposure. Each estimate comes
from a separate regression. All regressions include county-by-month and month-by-year fixed effects, as well as flexible
controls for maximum temperature, precipitation, and wind speed; leads of these weather controls; and two leads and two
lags of the instruments. Estimates are weighted by the county population. Standard errors, clustered by county, are reported
in parentheses. A */** indicates significance at the 5%/1% level.

Table A.13: Baseline parameter values for the dynamic production model of health

(1) (2)

Parameter Annual data Daily data

I 0.74773 0.0020521
α 1.53762 1.537619
ln δ –5.83878 –11.74124
µH 10.39737 11.43803
σe 2.25247 0.1178985

N 1,000,000 100,000
SSE 57.80479 20880.82

Notes: This table reports baseline parameter values for the dynamic production model of health (3). Column (1) reports
parameter estimates when the model is fitted to annual survival data from a 1972 period life table. Column (2) reports
corresponding estimates for daily data. The parameters H and σH are normalized to 0 and 1, respectively. N is the number
of individuals in the simulation, and SSE is the sum of squared errors. The resulting fit for Column (2) is shown in Figure
A.7. The mortality data underlying the life table are counts, not samples. Because there is no sampling error, we do not
report standard errors for these parameter estimates.
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Table A.14: Effect of permanent change in SO2 on life expectancy (years)

(1) (2) (3)

IV extrapolation Aging model 1 (α) Aging model 2 (δ)

1-ppb decrease 0.16 1.18 1.32
[–0.03, 0.35] [0.33, 2.21] [0.36, 2.51]

2-ppb decrease 0.31 2.41 2.67
[–0.06, 0.70] [0.55, 4.90] [0.60, 5.57]

3-ppb decrease 0.47 3.74 4.10
[–0.10, 1.06] [0.94, 7.56] [1.02, 8.54]

1-ppb increase –0.16 –1.05 –1.20
[–0.34, 0.03] [–1.99, –0.30] [–2.33, –0.33]

2-ppb increase –0.31 –2.15 –2.46
[–0.68, 0.07] [–3.78, –0.54] [–4.43, –0.60]

3-ppb increase –0.46 –3.09 –3.55
[–1.01, 0.10] [–5.34, –0.90] [–6.28, –1.00]

Notes: Each value in this table reports the estimated change in life expectancy (years) caused by a permanent, lifetime change
in SO2 of up to 3 part per billion (ppb) for individuals born in 1972. Baseline life expectancy in 1972 is 71.32 years. Confidence
intervals for the 5th and 95th percentiles are reported in brackets. Estimates in Column (1), “IV extrapolation”, are calculated
by applying interpolated, age-specific 28-day IV estimates to the whole life-cycle. Estimates in Columns (2) and (3) assume
that changes in daily mortality are governed by the dynamic production model of health (3). Those estimates assume that the
effect of pollution on cancer-related deaths are governed by changes in H, which produces mortality displacement, and that
all remaining deaths are governed by changes in health capital. Columns (2)–(3) report estimates under different assumptions
about which aging parameter drives the changes in health capital. Figure 6 shows how the 1-unit decrease estimates are
distributed across the life cycle.
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