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How bad is air pollution for adult health?
• Air pollution harms health in both the short and long run

• But, themagnitude of the effect remains uncertain
- Observational estimates are prone to bias
- Quasi-experimental studies focus on short-run effects

• Identifying the long-run effect of chronic exposure is hard
- Limited data on long-run outcomes
- Variation in long-run exposure hard to find



How dowe address these challenges?
1 Use variation in wind direction as instrument for daily pollution

- Trace out mortality patterns up to onemonth following acute exposure
- Limited to short-run effects of acute exposure

2 Integrate empirical estimates into dynamic productionmodel of health
- Can be internally validated using quasi-experimental estimates

Treatment exposure Short-run outcomes Long-run outcomes
Acute Empirical estimates Model
Chronic - Model
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Research questions
• Setting: United States population, 1972–1988
• Pollutant: sulfur dioxide (SO2)

1 What is the short-run causal effect of acute (one-day) exposure to SO2?
- Instrumental variables research design
- Main outcome: monthly (28-day) mortality

2 What is the long-run effect of chronic exposure to SO2?
- Productionmodel of health from Lleras-Muney andMoreau (2022)
- Main outcome: life expectancy



Main results
• A 1-day, 10% increase in SO2 increases same-daymortality by 0.3 percent

• In themonth following exposure:
- Cumulative effect for cancer deaths falls to zero ("mortality displacement")
- Cumulative effect for other diseases more than triples ("accelerated aging")
- On net, cumulativemortality more than doubles

• Benefit of reducing lifetime SO2 exposure by 10% is 1.2 years of extra life
- 90% of benefits occur after age 50



Contributions to the literature

• Framework for estimating long-run survival effects of chronic exposure
- Model calculations differ from IV extrapolation
- Approach is similar in spirit to Athey, Chetty, and Imbens (2020)

• Health effects of air pollution (Chay and Greenstone 2003; Currie andNeidell 2005; Schlenker and
Walker 2016; Hollingsworth and Rudik 2021; Alexander and Schwandt 2022; Heo, Ito, and Kotamarthi 2023)
- We are the largest quasi-experimental study (17 years, 18million deaths)
- We focus onmortality dynamics



Background andData



EPA regulates six air pollutants
• Carbonmonoxide (CO)
• Ozone (O3)
• Nitrogen dioxide (NO2)
• Lead
• Particulate matter (PM)
• Sulfur dioxide (SO2)

• We focus on SO2, which is well-measured during our 1972–1988 time period
- Regulated at the daily and annual levels



SO2 has immediate and delayed effects

• Direct exposure to SO2 impairs respiratory function

• SO2 leads to formation of sulfates, a component of PM2.5 (fine particulates)
- Acute exposure to PM2.5 causes premature death

• Chronic exposure to air pollution associated with “accelerated aging”
- Risk factors for cardiovascular disease (eg, coronary artery calcification)
- Initiation and promotion of lung cancer



Daily environmental data
• Data on SO2 obtained from EPA site monitors

- Not available for all counties→ limiting factor in the final size of our sample

• Temperature and precipitation obtained from Schlenker and Roberts (2009)

• Wind direction andwind speed obtained from JapanMeteorological Agency

• All data are aggregated to the county-day level



Daily mortality data

• National Vital Statistics, 1972–1988
- Exact date of death
- County of occurrence
- Cause of death
- Age, sex, and race of decedent

• Mergewith environmental data at the county-day level
- Main specification includes 2.03million county-day observations



SO2 levels are declining during our sample period
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Summary statistics
(1) (2) (3)
Mean Std. Dev. Observations

A. Pollution outcomes
SO2, ppb 8.96 12.62 2,032,338
NO2, ppb 21.25 15.60 792,784
CO, ppm 1.64 1.37 848,067
Ozone, ppb 25.53 13.69 669,261
TSP, µg/m3 63.11 40.19 628,932
B. One-daymortality rate outcomes
All-causemortality, deaths per million 24.70 24.32 2,032,338
Cardiovascular 12.21 16.04 2,032,338
Cancer 5.15 9.16 2,032,338
Other 5.45 10.02 2,032,338
External 1.89 7.99 2,032,338
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Empirical Analysis
Short-run effects of acute exposure



Empirical strategy: instrumental variables (2SLS)

• Wind carries pollutants over long distances

• Key insight: no need to isolate the pollution source! (Deryugina et al. 2019)
- Maximizes the size of our estimation sample

• Identifying assumption:
- Wind direction unrelated to health except through pollution



How dowe construct our instruments?

• Use clustering algorithm to assign pollutionmonitors to 50 regional groups

• First stage is group-specific relationship betweenwind direction and pollution

• Allow pollution transport patterns to vary across groups
- Wind blowing fromwest has different effect in California than inMassachusetts



Black dots are SO2monitors



Wind direction and SO2 in Southern California area
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Wind direction and SO2 in Greater Philadelphia area
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First stage: excluded instrument is wind direction
SO2cd =

50∑
g=1

fg(θcd)+Xk
cd

′
δ + αcm + αmy + εcd

• Dependent variable is level of SO2 in county c on day d

• Effect of wind direction, θcd, varies across 50 geographic groups, g

• Consider two functional forms for fg(θcd)

- Non-parametric 10-degree bins (1750 instruments)
- Parametric sin function (100 instruments, preferred specification) Example



Second-stage regression
Y k
cd = β

kŜO2cd +Xk
cd

′
δ + αcm + αmy + εcd

• Estimate effect of 1-day exposure on k-daymortality rate (up to k = 28)

• Control for county-by-month (αcm) andmonth-by-year (αmy) fixed effects

• Flexibly control for max temperature, precipitation, andwind speed

• Cluster standard errors at the county level, weight by county population



Cumulativemortality effect grows over time
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Divergent patterns by cause of death
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1-daymortality by age group (deaths per million)
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1-daymortality by age group (relative effect)
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Alternative specifications and robustness checks
• Accounting for other air pollutants Table

• Sensitivity check: alternative weather controls Table

• Falsification test: SO2 on day t has no effect onmortality on day t− 1 Table

• Placebo test: randomwind direction produce weak first stage (F ≤ 2) Table



Long-run Survival



Model: Lleras-Muney andMoreau (2022)
Health capital for individual i at age t:

Hit = Hi,t−1 − δtα︸︷︷︸
depreciation

+I + εit

where:

Hi0 = H∗i0 ∼ N(µH, 1)

εit ∼ N(0, σ2ε)



Model: Lleras-Muney andMoreau (2022)
Hit = Hi,t−1 − δtα + I + εit

• Death occurs when health capital falls below threshold H = 0:
Di0 = 1 [Hi0 < H] ,
Dit = 1

[
Hit < H ∣∣Di,t−1 = 0

]
, t > 0

• Simulatemodel forN agents→ survival curve

• Model captures a variety of real-world mortality dynamics
- Mortality displacement
- Accelerated aging



Calibrate baseline parameters using 1972 period life table
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Key structural assumption for incorporating IV estimates

• Effect of pollution onmodel parameters depends only on current exposure
- Effect on parameters is same for old and young
- Effect on parameters is independent of exposure history

• Thus, we can calibrate the effect of exposure using any age group

• Testable implication: calibration from one age predicts survival for other ages



Calibrate using 1-day IV estimates
Hit = Hi,t−1 − δtα + I + εit

Dit = 1
[
Hit < H ∣∣Di,t−1 = 0

]
, t > 0

Acute exposure affects mortality through two channels:
1 Raises depreciation for 1 day, δ → δ̃

- accelerated aging effect
- calibrate using 1-day non-cancer IV estimate

2 Raises death threshold for 1 day, H→ H̃
- mortality displacement
- calibrate using 1-day cancer IV estimate



Calibration steps for age group a

1 Solve for H̃a such that 1-daymortality increases by β̂1
a,cancer

2 Solve for δ̃a such that 1-daymortality effect of {H̃a, δ̃a} equals β̂1
a,all

Do calibration for older age groups only (65 and over)

Any pair {H̃a, δ̃a} can be used for predictions
→ Preferred estimate uses average of all older age groups



Example: ages 65–69
(1) (2)

Age group All causes Cancer-related causes
65–69 0.31** 0.17**

(0.046) (0.028)
70–74 0.23** 0.14**

(0.070) (0.034)
75–79 0.48** 0.13**

(0.097) (0.040)
80–84 1.1** 0.18**

(0.17) (0.065)
85+ 2.3** 0.17*

(0.44) (0.084)
Notes: Dependent variable is deaths per million on the day of exposure.
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Example: ages 65–69
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“Leave-one-out” validation: calibrate using other ages
(1) (2)

Age group All causes Cancer-related causes
65–69 0.31** 0.17**

(0.046) (0.028)
70–74 0.23** 0.14**

(0.070) (0.034)
75–79 0.48** 0.13**

(0.097) (0.040)
80–84 1.1** 0.18**

(0.17) (0.065)
85+ 2.3** 0.17*

(0.44) (0.084)
Notes: Dependent variable is deaths per million on the day of exposure.
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(a) Ages 70–74
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Survival benefit of 1-unit reduction in chronic exposure
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Interpreting long-run survival estimates

• Uncertainty in IV estimates produces uncertainty in long-run estimates
- 5th and 95th percentiles from bootstrap yield range of [0.3, 2.2] years

• SO2 estimates may also include effects from particulate matter

• Survival model holds behavior fixed
- We interpret estimates as gross benefits (Graff Zivin andNeidell 2012; Currie et al. 2014)



Conclusion

• Air pollution causesmortality displacement and accelerating aging

• Permanent, 10% reduction in exposure improves life expectancy by 1.2 yrs
- 7 times larger than extrapolation of short-run estimate
- Benefits concentrated in ages 50+



The End



First stage: parametric sin fit for Greater Philadelphia area
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Sensitivity check: alternative weather controls
(1) (2) (3) (4)

SO2, parts per billion 0.098** 0.084** 0.084** 0.085**
(0.014) (0.013) (0.013) (0.012)

First-stage F -statistic 32 42 68 33
Mean outcome 25 25 25 25
Sample size 2,032,340 2,032,338 2,032,272 2,031,752
Weather controls
Baseline weather variables X X X
Minimum temperature variables X X
More granular bins X
Notes: Dependent variable is 1-daymortality (deaths per million).

Return



IV estimates: accounting for multiple air pollutants (1/2)
(1) (2) (3) (4) (5) (6)

SO2, ppb 0.084** 0.060** 0.065** 0.066** 0.059** 0.064**
(0.012) (0.013) (0.014) (0.012) (0.012) (0.014)

TSP, µg/m3 0.012** 0.014** 0.014** 0.013** 0.015**
(0.0036) (0.0037) (0.0033) (0.0040) (0.0035)

NO2, ppb –0.014 0.0023
(0.013) (0.017)

Ozone, ppb –0.044* –0.046*
(0.021) (0.022)

CO, ppm –0.20 –0.24
(0.17) (0.20)

First-stage F -statistic 81 21 17 11 20 10
Mean outcome 27 27 27 27 27 27
Sample size 78,946 78,946 78,946 78,946 78,946 78,946
Notes: Dependent variable is 1-daymortality (deaths per million).



IV estimates: accounting for multiple air pollutants (2/2)
(1) (2)

SO2, ppb 0.079** 0.035*
(0.014) (0.015)

TSP, µg/m3 0.019**
(0.0045)

First-stage F -statistic 96 50
Mean outcome 25 25
Sample size 627,304 627,304
Notes: Dependent variable is 1-day mortality (deaths per million). A */** indicates significance at
the 5%/1% level. “TSP” is total suspended particulates.
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Placebo and falsification tests
(1) (2) (3) (4)

SO2, ppb –0.079 0.18 –0.041
(0.062) (0.23) (0.49)

SO2 on day t+ 1, ppb –0.0036
(0.0048)

Outcomewindow, days 1 7 28 1
First-stage F -statistic 2.0 1.9 1.9 28
Mean outcome 25 173 691 25
Sample size 2,023,456 2,023,435 2,023,369 2,031,165
Placebo test X X X
Falsification test X
Notes: Dependent variable is number of deaths permillion people over awindowof 1, 7, or 28 days.
Return


	Background and data
	Empirical analysis
	Long-run Survival
	Conclusion
	Appendix

