School-Based Support for Children's Mental Health: Evidence from North Carolina

Sarah Komisarow, Ph.D.
Sanford School of Public Policy, Duke University
NBER SI, Children's Program

Friday, July 28, 2023

PRELIMINARY: PLEASE DO NOT CITE/PUBLICIZE/CIRCULATE WITHOUT PERMISSION

Motivation

- 50 percent of young people experience at least one mental health condition by early adulthood (National Academies of Science and Engineering, 2019)
- Examples: attention deficit/hyperactivity disorder (8.2-9.8\%), anxiety (7.8-9.4\%), behavior and conduct disorders (7.0-8.9\%), and depression (3.4-5.8\%) (Bitsko et al., 2022)
- Onset of conditions most common during childhood or adolescence (National Academies of Science and Engineering, 2019)

Motivation

- 50 percent of young people experience at least one mental health condition by early adulthood (National Academies of Science and Engineering, 2019)
- Examples: attention deficit/hyperactivity disorder (8.2-9.8\%), anxiety (7.8-9.4\%), behavior and conduct disorders (7.0-8.9\%), and depression (3.4-5.8\%) (Bitsko et al., 2022)
- Onset of conditions most common during childhood or adolescence (National Academies of Science and Engineering, 2019)
- Suggests need for interventions that have potential to reach children across range of circumstances and ages
- Specialized instructional support personnel (Every Student Succeeds Act, 2015) in K-12 schools offer the potential to deliver on this objective

Background

- This paper studies introduction of Child and Family Support Teams into 43 public elementary schools in North Carolina in 2006-07
- Two-person teams: nationally certified school nurse and licensed school social worker (Troop and Tyson, 2008) - large and unexpected shock to school staffing levels
- State-funded positions connected to local public health, social services, and other state agencies (Gifford et al., 2010)
- Child- and family-centered approach to case management - meet with children and families outside of school day and off campus to facilitate connections to appropriate services
- Multi-faceted mission, but case management data indicated most common primary unmet need was child mental health

Map: Treatment and Comparison

Data

- Source: Administrative staff- and student-level data from North Carolina Education Research Data Center (NCERDC)
- Sample: Children in elementary school (grades 3-5), 2003-04 to 2009-10 school years
- Treatment and Comparison: 43 CFST schools versus comparison (elementary schools in districts that applied but did not receive program)

Empirical Strategy: School-Level Outcomes (First-Stage)

Event-Study

$$
Y_{s t}=\sum_{\substack{k=-3 \\ k \neq-1}}^{3} \pi_{k} \times C F S T_{s} \times 1\left\{t-T_{s}^{*}=k\right\}+Z_{s t} \gamma+\alpha_{s}+\phi_{t}+\nu_{s t}
$$

Difference-in-Differences

$$
Y_{s t}=\alpha+\beta \times C F S T_{s t}+Z_{s t} \gamma+\alpha_{s}+\phi_{t}+\nu_{s t}
$$

$Y_{s t}$: staffing outcome for school s in year t α_{s} and ϕ_{t} : two-way fixed effects (school and year)
$Z_{\text {st }}$: time-varying school characteristics (shares by race/ethnicity, sex, and economic disadvantage; log enroll)
SEs clustered at school-level

First-Stage Effects on School Staffing: Event-Study

Social Workers (FTE)

School Nurses (FTE)

First-Stage Effects on School Staffing: Event-Study

First-Stage Effects on School Staffing: Difference-in-Differences

			Other Staff	
	(1)	(2)	(3)	(4)
	Social	School	Guidance	School
Outcome $=$ All Funded Positions (FTE)	Workers	Nurses	Counselors	Psychologists
Obs.	$0.634^{* * *}$	$0.337^{* * *}$	-0.025	-0.008
Baseline Mean	(0.080)	(0.082)	(0.045)	(0.037)
	1,379	1,379	1,379	1,379
	0.279	0.121	1.094	0.166

- Social Workers \uparrow by 0.63 FTEs (225\%)
- School Nurses \uparrow by 0.34 FTEs (283\%)

First-Stage Effects on School Staffing: Difference-in-Differences

	(1) Social Workers	(2) School Nurses	Other Staff	
			(3) Guidance Counselors	(4) School Psychologists
Outcome $=$ All Funded Positions (FTE)	$\begin{gathered} 0.634^{* * *} \\ (0.080) \end{gathered}$	$\begin{gathered} 0.337^{* * *} \\ (0.082) \end{gathered}$	$\begin{gathered} \hline-0.025 \\ (0.045) \end{gathered}$	$\begin{gathered} -0.008 \\ (0.037) \end{gathered}$
Obs.	1,379	1,379	1,379	1,379
Baseline Mean	0.279	0.121	1.094	0.166
Outcome $=$ CFST Funded Positions (FTE)	$\begin{gathered} 0.791^{* * *} \\ (0.056) \end{gathered}$	$\begin{gathered} 0.460^{* * *} \\ (0.067) \end{gathered}$		
Obs.	1,379	1,379		
Baseline Mean	0.000	0.000		
Outcome $=$ Fed $/$ State $/$ Local-Funded Positions (FTE)	$\begin{gathered} -0.157^{* *} \\ (0.062) \end{gathered}$	$\begin{gathered} -0.117^{* * *} \\ (0.045) \end{gathered}$		
Obs.	1,379	1,379		
Baseline Mean	0.279	0.121		
School FE	X	X	X	X
Year FE	X	X	X	X

- Social Workers \uparrow by 0.63 FTEs (225\%)
- School Nurses \uparrow by 0.34 FTEs (283\%)

Empirical Strategy: Student-Level Outcomes

Difference-in-Differences

$$
Y_{i s t}=\alpha+\beta \times \text { CFST }_{s t}+X_{i t} \gamma+\alpha_{s}+\phi_{t}+\varepsilon_{i s t}
$$

$Y_{i s t}$: outcome for student i in school s in year t
α_{s} and ϕ_{t} : two-way fixed effects (school and year)
$X_{i t}$: student gender, race/ethnicity, economic disadvantage
SEs clustered at school-level

Allow treatment effect to vary by predicted risk of chronic absence (0/1)

Results: Directly Treated Students

	Days Absent				Chronic. Abs. (0/1)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
CFST X Post	$\begin{gathered} -0.376^{* *} \\ (0.178) \end{gathered}$	$\begin{aligned} & -0.297 \\ & (0.180) \end{aligned}$	$\begin{aligned} & -0.300^{*} \\ & (0.180) \end{aligned}$		$\begin{aligned} & -0.008^{* *} \\ & (0.004) \end{aligned}$	$\begin{aligned} & -0.006 \\ & (0.004) \end{aligned}$	$\begin{gathered} -0.006 \\ (0.004) \end{gathered}$	
Observations	328,765	328,765	328,765	328,765	328,765	328,765	328,765	328,765
Baseline Mean p-value: $\mathrm{High}=$ Low	6.766	6.766	6.766	$\begin{aligned} & 6.766 \\ & 0.000 \end{aligned}$	0.056	0.056	0.056	$\begin{aligned} & 0.056 \\ & 0.000 \end{aligned}$
School FE	X	X	X	X	X	X	X	X
Student Covariates		X	X	X		X	X	X
Year FE	X	X			X	X		
Grade FE		X				X		
Grade X Year FE			X	X			X	X

Event-Study Plots

Results: Directly Treated Students

	Days Absent				Chronic. Abs. (0/1)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
CFST X Post	$\begin{gathered} -0.376^{* *} \\ (0.178) \end{gathered}$	$\begin{aligned} & -0.297 \\ & (0.180) \end{aligned}$	$\begin{aligned} & -0.300^{*} \\ & (0.180) \end{aligned}$		$\begin{gathered} -0.008^{* *} \\ (0.004) \end{gathered}$	$\begin{aligned} & -0.006 \\ & (0.004) \end{aligned}$	$\begin{gathered} -0.006 \\ (0.004) \end{gathered}$	
CFST X Post X High Risk				$\begin{gathered} -0.409^{* *} \\ (0.181) \end{gathered}$				$\begin{gathered} -0.009^{* *} \\ (0.004) \end{gathered}$
CFST X Post X Low Risk				$\begin{gathered} 0.142 \\ (0.221) \end{gathered}$				$\begin{gathered} 0.006 \\ (0.005) \end{gathered}$
Observations	328,765	328,765	328,765	328,765	328,765	328,765	328,765	328,765
Baseline Mean p-value: High = Low	6.766	6.766	6.766	6.766	0.056	0.056	0.056	0.056
p-value: $\mathrm{High}=$ Low				0.000				0.000
School FE	X	X	X	X	X	X	X	X
Student Covariates		X	X	X		X	X	X
Year FE	X	X			X	X		
Grade FE		X				X		
Grade X Year FE			x	x			X	x

Event-Study Plots

Summary of Main Results

- School Staffing: CFST led to large increases in specialized instructional support personnel
- Social Workers \uparrow by 0.63 FTEs (225\%)
- School Nurses \uparrow by 0.34 FTEs (283\%)
- Student Outcomes: Mean impacts driven by high-risk students
- Number of days absent \downarrow by 0.41 days (6%)
- Likelihood of chronic absence \downarrow by 0.9 pp (16\%)
- Effects on high-risk students consistent with program objectives - CFST mission targets most disadvantaged students in the school

Long-Run Effects

	(1)	(2)	(3)	(4)
	Days Absent	Chron. Abs. (0/1)	Reading (SDs)	Math (SDs)
CFST X Post	-0.153	-0.002	-0.012	$0.051 * *$
	(0.246)	(0.006)	(0.019)	(0.020)
Obs.	1462988	1462988	1414685	1417337

- Differences in treatment intensity: (1) treated vs untreated schools and (2) number of expected years in elementary school after CFST introduction
- Fifth grade cohorts between 2001-2009 (outcomes measured in 8th grade)

Additional Results: Indirectly Treated Students

- Indirectly Treated Schools: Examine effects on students enrolled in schools that did not receive treatment but located in a CFST-receiving district (comparison schools are the same)
- School Staffing: CFST led to smaller increases in specialized instructional support personnel
- Social Workers \uparrow by 0.12 FTEs (52\%)
- School Nurses \uparrow by 0.05 FTEs (50\%)
- Student Outcomes: No statistically significant differences between highand low-risk students
- Number of days absent \downarrow by 0.20 days (3\%)
- No detectable effects on likelihood of chronic absence

Conclusion

- Contribution to existing literature on the effects of specialized instructional support personnel (i.e., school support staff)
- Child and Family Support Teams are example of intervention with potential to reach children where they are
- Effectively identify and serve most disadvantaged students within disadvantaged K-12 public schools

Thank you

Questions and Comments sarah.komisarow@duke.edu

APPENDIX SLIDES

Map of Treatment and Comparison School Districts

School Staffing, Raw Plots

Empirical Strategy: Student-Level Event-Study

$$
Y_{i s t}=\sum_{\substack{k=-3 \\ k \neq-1}}^{3} \pi_{k} \times C F S T_{s} \times \mathbf{1}\left\{t-T_{s}^{*}=k\right\}+X_{i t} \gamma+\alpha_{s}+\phi_{t}+\varepsilon_{i s t}
$$

- $Y_{i s t}$: outcome for student i in school s in year t
- α_{s} and ϕ_{t} : two-way fixed effects (school and year)
- $X_{i t}$: student gender, race/ethnicity, economic disadvantage
- Standard errors clustered at school-level

Student-Level Results: Event-Study Plots

Days Absent

Chronic Abs. (0/1)

Student-Level Results

	Days Absent				Chronic. Abs. (0/1)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Panel A. Directly Treated Schools								
CFST X Post	$\begin{gathered} -0.376^{* *} \\ (0.178) \end{gathered}$	$\begin{gathered} -0.297 \\ (0.180) \end{gathered}$	$\begin{aligned} & -0.300^{*} \\ & (0.180) \end{aligned}$		$\begin{gathered} -0.008^{* *} \\ (0.004) \end{gathered}$	$\begin{gathered} -0.006 \\ (0.004) \end{gathered}$	$\begin{gathered} -0.006 \\ (0.004) \end{gathered}$	
CFST X Post \times High Risk				$\begin{gathered} -0.409^{* *} \\ (0.181) \end{gathered}$				$\begin{gathered} -0.009 * * \\ (0.004) \end{gathered}$
CFST X Post \times Low Risk				$\begin{gathered} 0.142 \\ (0.221) \end{gathered}$				$\begin{gathered} 0.006 \\ (0.005) \end{gathered}$
Observations	328,765	328,765	328,765	328,765	328,765	328,765	328,765	328,765
Baseline Mean	6.766	6.766	6.766	6.766	0.056	0.056	0.056	0.056
p-value: High = Low				0.000				0.000
Panel B. Indirectly Treated Schools								
CFST District X Post	$\begin{gathered} -0.219^{* *} \\ (0.097) \end{gathered}$	$\begin{gathered} -0.205 * * \\ (0.095) \end{gathered}$	$\begin{gathered} -0.203^{* *} \\ (0.095) \end{gathered}$		$\begin{gathered} -0.003 \\ (0.002) \end{gathered}$	$\begin{gathered} -0.003 \\ (0.002) \end{gathered}$	$\begin{gathered} -0.003 \\ (0.002) \end{gathered}$	
CFST District \times Post \times High Risk				$\begin{gathered} -0.222^{* *} \\ (0.112) \end{gathered}$				$\begin{gathered} -0.003 \\ (0.002) \end{gathered}$
CFST District X Post X Low Risk				$\begin{gathered} -0.184^{* *} \\ (0.091) \end{gathered}$				$\begin{gathered} -0.003 \\ (0.002) \end{gathered}$
Observations	542,263	542,263	542,263	542,263	542,263	542,263	542,263	542,263
Baseline Mean	6.479	6.479	6.479	6.479	0.047	0.047	0.047	0.047
p-value: High = Low				0.600				0.909
School FE	X	X	X	X	X	X	X	X
Student Covariates		X	X	X		X	X	X
Year FE	X	X			X	X		
Grade FE		X				X		
Grade X Year FE			X	X			X	X

Empirical Strategy: Long-Run Effects

$$
Y_{i c s}=\beta_{0}+\beta_{1}\left(\text { CFST }_{s}+F_{r a c_{c}}\right)+\lambda_{1} X_{i c s}+\lambda_{2} Z_{c s}+\alpha_{s}+\phi_{c}+\varepsilon_{i c s}
$$

- $Y_{i} c s$: eighth grade outcome for student i enrolled in school s in fifth grade in cohort c
- CFST $_{s}$: school s received CFST
- $F r a c_{c}$: share of years between fifth grade and expected eighth grade year that CFST was active
- X_{i} cs: characteristics of student i in fifth grade (in cohort c and fifth grade school s)
- $Z_{C} s$: cohort by school FE
- α_{s} : school FE
- ϕ_{c} : cohort FE
- $\varepsilon_{i} C S$: error term

