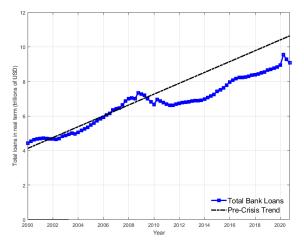
Expectations and Credit Slumps

Antonio Falato Federal Reserve Board Jasmine Xiao University of Notre Dame

July 11, 2023


NBER Summer Institute Impulse and Propagation Mechanisms

Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System.

Extensions

Question

• Why was bank lending so slow to recover after the 2008-09 financial crisis?

Sources: H.8 Assets and Liabilities of Commercial Banks in the U.S.

alternative

Our Explanation

- · Banks over-extrapolate the past: they remained over-pessimistic long after 2009
- And persistent pessimism was a drag on their lending

Our Explanation

- Banks over-extrapolate the past: they remained over-pessimistic long after 2009
- And persistent pessimism was a drag on their lending

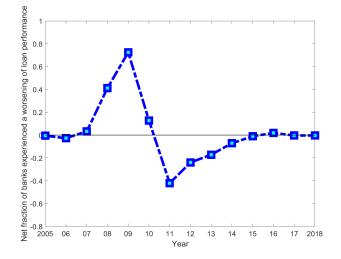
This Paper

Uses new survey data to measure individual banks' expectations

Expectations & Real Outcomes: Greenwood and Schleifer (2014), Coibion and Gorodnichenko (2015), Angeletos et al. (2020), Bordalo et al. (2020), Rozsypal and Schlafmann (2020), Kohlhas and Walther (2021), Giglio et al. (2021), Ma et al. (2021), Farmer et al. (2022)

Our Explanation

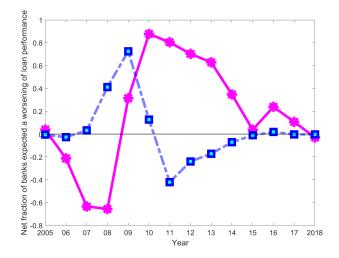
- Banks over-extrapolate the past: they remained over-pessimistic long after 2009
- And persistent pessimism was a drag on their lending


This Paper

- Uses new survey data to measure individual banks' expectations
- Constructs a model to quantify the macroeconomic consequences of distorted bank expectations

Expectations & Real Outcomes: Greenwood and Schleifer (2014), Coibion and Gorodnichenko (2015), Angeletos et al. (2020), Bordalo et al. (2020), Rozsypal and Schlafmann (2020), Kohlhas and Walther (2021), Giglio et al. (2021), Ma et al. (2021), Farmer et al. (2022)

Expectations in Credit & Business Cycles: Krishnamurthy and Li (2020), Bordalo et al. (2021), Bianchi et al. (2021), L'Huillier et al. (2021), Maxted (2022)


Loan performance recovered quickly after the Great Recession

Source: Call Reports, Federal Reserve Board

Extensions

Expected loan performance took long to recover after the Great Recession

Source: Senior Loan Officer Opinion Survey (SLOOS) on Bank Lending Practices, Federal Reserve Board

Bank Expectations: Senior Loan Officer Opinion Survey of Bank Lending Practices

- Since early 1990s: Inquiring banks about changes in their lending standards & changes in demand for loans (Bassett et al. (2014))
- Since 2004: Inquiring banks' expectations on changes in delinquencies & charge-offs in the coming year

Bank Expectations: Senior Loan Officer Opinion Survey of Bank Lending Practices

- Since early 1990s: Inquiring banks about changes in their lending standards & changes in demand for loans (Bassett et al. (2014))
- Since 2004: Inquiring banks' expectations on changes in delinquencies & charge-offs in the coming year

Assuming that economic activity progresses in line with consensus forecasts, what is your outlook for delinquencies and charge-offs on your bank's type X loans in the coming year?

 1=improve substantially; 2=improve somewhat; 3=remain around current levels; 4=deteriorate somewhat; 5=deteriorate substantially

Model

Bank Expectations: Senior Loan Officer Opinion Survey of Bank Lending Practices

 $E_{it}[I_{i,t+1}^{k}] = \begin{cases} 1 & \text{if bank } i \text{ at } t \text{ expects an improvement in type-}k \text{ loan performance in } t+1 \\ 0 & \text{if bank } i \text{ at } t \text{ expects no change in type-}k \text{ loan performance in } t+1 \\ -1 & \text{if bank } i \text{ at } t \text{ expects a worsening in type-}k \text{ loan performance in } t+1 \end{cases}$

$$E_{it}[I_{i,t+1}] = \sum_{k} \omega_{it}^{k} \times E_{it}[I_{i,t+1}^{k}]$$

 ω_{it}^k : fraction of category-k loans outstanding in bank i's core loan portfolio.

Model

Bank Expectations: Senior Loan Officer Opinion Survey of Bank Lending Practices

 $E_{it}[I_{i,t+1}^{k}] = \begin{cases} 1 & \text{if bank } i \text{ at } t \text{ expects an improvement in type-}k \text{ loan performance in } t+1 \\ 0 & \text{if bank } i \text{ at } t \text{ expects no change in type-}k \text{ loan performance in } t+1 \\ -1 & \text{if bank } i \text{ at } t \text{ expects a worsening in type-}k \text{ loan performance in } t+1 \end{cases}$

$$E_{it}[I_{i,t+1}] = \sum_{k} \omega_{it}^{k} \times E_{it}[I_{i,t+1}^{k}]$$

 ω_{it}^k fraction of category-k loans outstanding in bank i's core loan portfolio.

Loan Performance: Call Reports

 $I_{it}^{k} = \begin{cases} 1 & \text{if bank } i \text{ experiences an improvement in type-} k \text{ loan performance in year } t \\ 0 & \text{if bank } i \text{ experiences no change in type-} k \text{ loan performance in year } t \\ -1 & \text{if bank } i \text{ experiences a worsening in type-} k \text{ loan performance in year } t \end{cases}$

$$I_{it} = \sum_{k} \omega_{i,t-1}^{k} \times I_{it}^{k}$$

Motivation

Data

Model

Dynamics of Bank Forecast Errors

$$R_{it}^{FE} = \alpha_t + \sum_{k=1}^{K} \beta_k R_{it-k}^{FE} + \sum_{k=1}^{K} g_k X_{it-k} + u_{it}$$

	k=1 year	k=2 year	k=3 year
β _k	0.233***	0.153***	0.024
[t]	[5.57]	[4.33]	[0.68]

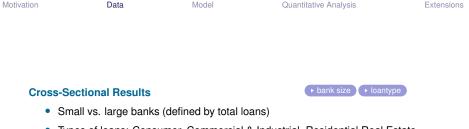
- Forecast errors $R_{it}^{FE} = E_{it}[I_{i,t+1}] I_{i,t+1}$ (< 0 over-pessimistic)
- Sample period: 2010-2020

Fact 1: Forecast errors are persistent & positively predictable by lagged forecast errors \implies Pessimism in the past two years breeds pessimism today

▶ pseudo

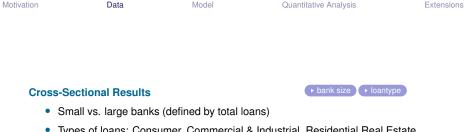
Motivation

Data


Model

Bank Expectations and Lending Dynamics

$\Delta Loans_{it} = \alpha_t + \sum_{k=1}^{K} \beta_k R_{it-k}^{FE} + \sum_{k=1}^{K} g_k X_{it-k} + u_{it}$						
	k=1 year	k=2 year	k=3 year			
β _k [t]	-0.071 [-0.52]	0.239*** [2.96]	0.048 [0.55]			


- Forecast errors $R_{it}^{FE} = E_{it}[I_{i,t+1}] I_{i,t+1}$ (< 0 over-pessimistic)
- $\Delta Loans_{it}$: log change in loans relative to the pre-crisis (2004-2006) level
- Controlling for alternative hypotheses for slow recovery
- Sample period: 2010-2020

Fact 2: Past forecast errors robustly predict future loan growth

 Types of loans: Consumer, Commercial & Industrial, Residential Real Estate, Consumer Real Estate

Fact 3: The behavioral bias matters more for large banks and real estate loans

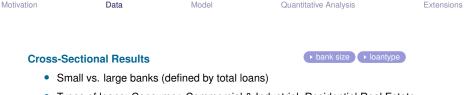
 Types of loans: Consumer, Commercial & Industrial, Residential Real Estate, Consumer Real Estate

Fact 3: The behavioral bias matters more for large banks and real estate loans

Nature of Bias

Persistence of expected vs. actual loan performance

Model


Dynamics of Expected vs. Realized Loan Performance

$$y_{it} = \alpha_t + \sum_{k=1}^{K} \beta_k y_{it-k} + \sum_{k=1}^{K} g_k X_{it-k} + u_{it}$$

	Expec	ted Loan Perforr	mance	Actual Loan Performance		
	$y_{it} = E_{it}[I_{i,t+1}]$			$y_{it} = I_{it}$		
	k=1 year	k=2 year	k=3 year	k=1 year	k=2 year	k=3 year
β _k	0.168***	0.111***	0.056	0.064	-0.070**	-0.086***
[t]	[5.04]	[3.13]	[1.27]	[0.70]	[-2.16]	[-3.36]
R^2		0.58			0.42	

• Sample period: 2010-2020

Fact 4: Banks over-extrapolate; beliefs follow AR(2)

• Types of loans: Consumer, Commercial & Industrial, Residential Real Estate, Consumer Real Estate

Fact 3: The behavioral bias matters more for large banks and real estate loans

Nature of Bias

- Persistence of expected vs. actual loan performance \Rightarrow overextrapolation
- Impact of realized outcome on beliefs \Rightarrow delayed over-reaction in recovery

Fact 4: Banks over-extrapolate; beliefs follow AR(2)

▶ delayedOE

Motivation	Data	Model	Quantitative Analysis	Extensions

Goal

• Quantify the impact of behavioral bias on the slow recovery in lending after 2008

Goal

• Quantify the impact of behavioral bias on the slow recovery in lending after 2008

Agents

- A continuum of heterogeneous banks
 - Each finances a large number of risky projects (loans)
 - Loan defaults if the collateral value falls below a threshold
- A representative investor owns all banks & prices all loans (Gomes et al (2018))
 - Epstein-Zin preferences
 - For now: exogenous process for consumption

Model

Extensions

Uncertainty

• x_{t+1}: Bernoulli random variable

$$\mathsf{Prob}(x_{t+1}=1)=p_t$$

• p_t : aggregate shock \Rightarrow "disaster risk" (Barro (2006), Gourio (2012, 2013))

$$\log p_{t+1} = (1 - \rho_p) \log \tilde{p} + \rho_p \log p_t + \varepsilon_{p,t+1}$$

• *ω_{it}*: bank-specific shock

 $\omega_{i,t+1} = \rho_{\omega}\omega_{it} + \varepsilon_{\omega i,t+1}$

Model

Uncertainty

• x_{t+1}: Bernoulli random variable

$$\mathsf{Prob}(x_{t+1}=1)=p_t$$

• p_t : aggregate shock \Rightarrow "disaster risk" (Barro (2006), Gourio (2012, 2013))

$$\log p_{t+1} = (1 - \rho_p) \log \tilde{p} + \rho_p \log p_t + \varepsilon_{p,t+1}$$

• *ω_{it}*: bank-specific shock

$$\omega_{i,t+1} = \rho_{\omega}\omega_{it} + \varepsilon_{\omega i,t+1}$$

Expectations

- All agents have full information, but are not fully rational
- All agents over-extrapolate

$$\begin{aligned} & \operatorname{Prob}^{\mathcal{P}}(x_{t+1}=1) = p_t^{\chi} p_{t-1}^{1-\chi} \\ & \log p_{t+1} = (1 - \hat{\rho}_{1p} - \hat{\rho}_{2p}) \log \tilde{p} + \hat{\rho}_{1p} \log p_t + \hat{\rho}_{2p} \log p_{t-1} + \varepsilon_{p,t+1} \\ & \omega_{i,t+1} = \hat{\rho}_{1\omega} \omega_{it} + \hat{\rho}_{2\omega} \omega_{i,t-1} + \varepsilon_{\omega,i,t+1} \end{aligned}$$

		on

Model

Quantitative Analysis

Extensions

Bank's Problem

• Finance loans (L) by equity (E) and deposits (D)

$$V^{C}(L_{i,t-1}, D_{i,t-1}, E_{i,t-1}, \mathbf{s}_{i,t}) = \max_{Div_{it}, L_{it}} \left\{ Div_{it} + \Lambda(Div_{it}) + \mathbf{E}_{t}^{\mathcal{P}} \left[M_{t,t+1} \max \left[V^{C}(L_{it}, D_{it}, E_{it}, \mathbf{s}_{i,t+1}), \mathbf{0} \right] \middle| \mathbf{s}_{it} \right] \right\}$$

subject to: $L_{it} = E_{it} + D_{it}$ $E_{it} = E_{it-1} - Div_{it} + r^{L}(\mathbf{s}_{it}, x_{t+1}, \omega_{i,t+1})L_{it} - rD_{it}$ $\frac{L_{it}}{E_{it}} \le \lambda$ $\mathbf{s}_{it} = \{p_{t}, \omega_{it}, p_{t-1}, \omega_{i,t-1}\}$

Motivation

Data

Model

Quantitative Analysis

Extensions

Bank's Problem

- Finance loans (L) by equity (E) and deposits (D)
- Accumulate equity through retained earnings

$$V^{C}(L_{i,t-1}, D_{i,t-1}, E_{i,t-1}, \mathbf{s}_{i,t}) = \max_{Div_{it}, L_{it}} \left\{ Div_{it} + \Lambda(Div_{it}) + \mathbf{E}_{t}^{\mathcal{P}} \left[M_{t,t+1} \max \left[V^{C}(L_{it}, D_{it}, E_{it}, \mathbf{s}_{i,t+1}), \mathbf{0} \right] \middle| \mathbf{s}_{it} \right] \right\}$$

subject to:

$$L_{it} = E_{it} + D_{it}$$

$$E_{it} = E_{it-1} - Div_{it} + r^{L}(\mathbf{s}_{it}, x_{t+1}, \omega_{i,t+1})L_{it} - rD_{it}$$

$$\frac{L_{it}}{E_{it}} \le \lambda$$

$$\mathbf{s}_{it} = \{p_t, \omega_{it}, p_{t-1}, \omega_{i,t-1}\}$$

$$\Rightarrow \text{ portfolio} \Rightarrow \text{SDF}$$

Model

Extensions

Bank's Problem

- Finance loans (L) by equity (E) and deposits (D)
- Accumulate equity through retained earnings
- Face a capital requirement constraint

$$V^{C}(L_{i,t-1}, D_{i,t-1}, E_{i,t-1}, \mathbf{s}_{it}) = \max_{Div_{it}, L_{it}} \left\{ Div_{it} + \Lambda(Div_{it}) + \mathbf{E}_{t}^{\mathcal{P}} \left[M_{t,t+1} \max \left[V^{C}(L_{it}, D_{it}, E_{it}, \mathbf{s}_{i,t+1}), \mathbf{0} \right] \middle| \mathbf{s}_{it} \right] \right\}$$

subject to: $L_{it} = E_{it} + D_{it}$ $E_{it} = E_{it-1} - Div_{it} + r^{L}(\mathbf{s}_{it}, x_{t+1}, \omega_{i,t+1})L_{it} - rD_{it}$ $\frac{L_{it}}{E_{it}} \le \lambda$ $\mathbf{s}_{it} = \{p_t, \omega_{it}, p_{t-1}, \omega_{i,t-1}\}$

Model

Extensions

Bank's Problem

- Finance loans (L) by equity (E) and deposits (D)
- Accumulate equity through retained earnings
- · Face a capital requirement constraint
- Default if the continuation value becomes too low

$$V^{C}(L_{i,t-1}, D_{i,t-1}, E_{i,t-1}, \mathbf{s}_{it}) = \max_{Div_{it}, L_{it}} \left\{ Div_{it} + \Lambda(Div_{it}) + \mathbf{E}_{t}^{\mathcal{P}} \left[M_{t,t+1} \max \left[V^{C}(L_{it}, D_{it}, E_{it}, \mathbf{s}_{i,t+1}), \mathbf{0} \right] \middle| \mathbf{s}_{it} \right] \right\}$$

subject to: $L_{it} = E_{it} + D_{it}$ $E_{it} = E_{it-1} - Div_{it} + r^{L}(\mathbf{s}_{it}, x_{t+1}, \omega_{i,t+1})L_{it} - rD_{it}$ $\frac{L_{it}}{E_{it}} \le \lambda$ $\mathbf{s}_{it} = \{p_{t}, \omega_{it}, p_{t-1}, \omega_{i,t-1}\}$ $\Rightarrow \text{ portfolion}$

SDF

Model

Bank's Problem

- Finance loans (L) by equity (E) and deposits (D)
- Accumulate equity through retained earnings
- Face a capital requirement constraint
- · Default if the continuation value becomes too low
- Biased beliefs affect the return on loans and expected continuation value

$$V^{C}(L_{i,t-1}, D_{i,t-1}, E_{i,t-1}, \mathbf{s}_{i,t}) = \max_{Div_{it}, L_{it}} \left\{ Div_{it} + \Lambda(Div_{it}) + \mathbf{E}_{t}^{\mathcal{P}} \left[M_{t,t+1} \max \left[V^{C}(L_{it}, D_{it}, E_{it}, \mathbf{s}_{i,t+1}), \mathbf{0} \right] \mathbf{s}_{it} \right] \right\}$$

subject to: $L_{it} = E_{it} + D_{it}$ $E_{it} = E_{it-1} - Div_{it} + r^{L}(\mathbf{s}_{it}, \mathbf{x}_{t+1}, \omega_{i,t+1})L_{it} - rD_{it}$ $\frac{L_{it}}{E_{it}} \le \lambda$ $\mathbf{s}_{it} = \{p_{t}, \omega_{it}, p_{t-1}, \omega_{i,t-1}\}$

► SDF

Model

Calibration

- Goal: Quantify the impact of behavioral bias on the slow recovery after '08
- Calibrate two variants of the model at an annual frequency: OE and RE
- All shocks are determined according to their true processes
- Targeted moments: leverage, profit-to-equity, bank default rate, dynamics of bank forecast errors ⇒ AR(2)

Model

Model Fit

- Untargeted moments: business cycle correlations + autocorrelations of
 - Loan growth
 - Change in expected loan performance
 - Loan rate growth

Mo		

Model Fit

Untargeted Moments

	Data	OE	RE
Annual loan growth			
$Corr(\Delta L_t, \Delta GDP_{t-1})$	0.239	0.135	-0.015
$Corr(\Delta L_t, \Delta GDP_{t-2})$	0.218	0.056	-0.136
$\operatorname{Corr}(\Delta L_t, \Delta I_{t-1})$	0.207	0.597	0.123
$\operatorname{Corr}(\Delta L_t, \Delta I_{t-2})$	0.118	0.160	-0.036
Annual change in expected loan performance			
$Corr(\Delta E_t[LoanDefault_{t+1}], \Delta GDP_{t-1})$	-0.023	-0.077	0.192
$Corr(\Delta E_t[LoanDefault_{t+1}], \Delta GDP_{t-2})$	0.295	0.230	0.134
$Corr(\Delta E_t[LoanDefault_{t+1}], \Delta E_{t-1}[LoanDefault_t])$	0.465	0.197	-0.152
$Corr\big(\Delta \mathrm{E}_t[LoanDefault_{t+1}], \Delta \mathrm{E}_{t-2}[LoanDefault_{t-1}]\big)$	0.153	0.082	-0.094
Annual loan rate growth			
$\operatorname{Corr}(\Delta r_t^L, \Delta \operatorname{GDP}_{t-1})$	0.071	0.110	-0.301
$\operatorname{Corr}(\Delta r_t^L, \Delta \operatorname{GDP}_{t-2})$	0.022	0.009	-0.270
$\operatorname{Corr}(\Delta r_t^L, \Delta r_{t-1}^L)$	0.017	0.177	-0.141
$\operatorname{Corr}(\Delta r_t^L, \Delta r_{t-2}^L)$	-0.013	-0.072	-0.109

Model

Model Fit

- Untargeted moments: business cycle correlations + autocorrelations of
 - Loan growth
 - Change in expected loan performance
 - Loan rate growth
- Model-implied regressions:
 - Serial correlations of forecast errors
 - Impact of forecast errors on future lending

Model

Model Fit

Dynamics of Bank Forecast Errors

$$R_{it}^{FE} = \alpha_t + \sum_{k=1}^{K} \beta_k R_{it-k}^{FE} + \sum_{k=1}^{K} g_k X_{it-k} + u_{it}$$

	Data		OEI	OE Model		Model
	k=1 year	k=2 year	k=1 year	k=2 year	k=1 year	k=2 year
	(1)	(2)	(3)	(4)	(5)	(6)
β _k [t]	0.233*** [5.57]	0.153*** [4.33]	0.243** [2.42]	0.169* [2.16]	0.060 [1.22]	-0.031 [-0.73]

- RE: forecast errors unpredictable
- OE: serially correlated forecast errors

Model

Model Fit

Bank Expectations and Lending Dynamics

$$\Delta Loans_{it} = \alpha_t + \sum_{k=1}^{K} \beta_k R_{it-k}^{FE} + \sum_{k=1}^{K} g_k X_{it-k} + u_{it}$$

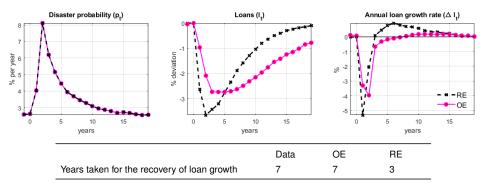
	Data		OE Model		RE Model	
	k=1 year	k=2 year	k=1 year	k=2 year	k=1 year	k=2 year
	(1)	(2)	(3)	(4)	(5)	(6)
β_k	-0.071	0.239***	0.218**	0.187*	0.021	-0.082
[t]	[-0.52]	[2.96]	[2.79]	[2.10]	[0.55]	[-0.43]

- RE: no predictability
- OE: forecast errors predict future loan growth

Model

Main Exercise

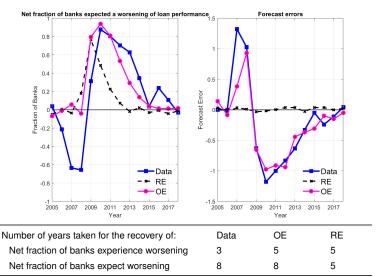
- Model the 2008-09 financial crisis as two consecutive positive shocks to the disaster probability
- Look at the responses of aggregate loan growth, bank value, expectations
- Look at the counterfactual exercise (under rational expectations) to understand the impact of overextrapolation


Model

Quantitative Analysis

Extensions

Main Exercise


IRF to a Temporary Increase in Disaster Probability

Main Exercise

IRF to a Temporary Increase in Disaster Probability

Motivation

Data

Model

Quantitative Analysis

Extensions

Mechanism

$$L(L_{i,t-1}, E_{i,t-1}, p_t, \omega_{it}, p_{t-1}, \omega_{i,t-1})$$

- Bias: Lending is decreasing in p_t as well as p_{t-1}
 - Even when the disaster probability starts to decrease, bank lending continues to decline

Motivation

Data

Model

Mechanism

$$L(L_{i,t-1}, \boldsymbol{E}_{i,t-1}, \boldsymbol{p}_t, \omega_{it}, \boldsymbol{p}_{t-1}, \omega_{i,t-1})$$

- Bias: Lending is decreasing in p_t as well as p_{t-1}
 - Even when the disaster probability starts to decrease, bank lending continues to decline
- Bias + balance sheet constraint: Realized loan return (*r_{it}*) increases more slowly as disaster probability decreases
 - Profit & equity recover more slowly
 - Lending increases more slowly

► AR(1) vs AR(2)

Extension (1/2): General Equilibrium

- Do endogeneous movements in the deposit rate dampen the impact of bias?
- Households choose consumption C_t & savings D_t^h , subject to:

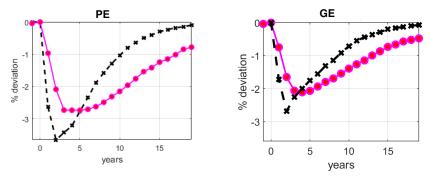
$$C_t + D_t^h = (1 + r_{t-1}^D)D_{t-1}^h + \int \Pi_{it} d\mu_t$$

- Deposit market clearing: $\int (L_{it} E_{it}) d\mu_t = D_t^h$
- Evolution of the aggregate equilibrium:

$$MU_t = \Gamma_u(p_t, p_{t-1}, \mu_t)$$
$$\mu_{t+1} = \Gamma_\mu(p_t, p_{t-1}, \mu_t)$$

• Krusell-Smith algorithm: approximate μ_t by current aggregate lending

Data


Model

Quantitative Analysis

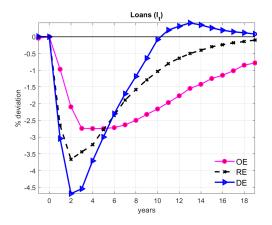
Extensions

Extension (1/2): General Equilibrium

· Real impact of behavioral bias remains significant

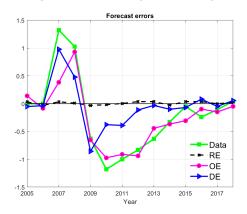
Extension (2/2): Comparison to Diagnostic Expectations

• OE:
$$\mathbf{s}_{it} = \{p_t, \omega_{it}, p_{t-1}, \omega_{i,t-1}\}$$


$$\log p_{t+1} = (1 - \hat{\rho}_{1p} - \hat{\rho}_{2p}) \log \tilde{p} + \hat{\rho}_{1p} \log p_t + \hat{\rho}_{2p} \log p_{t-1} + \varepsilon_{p,t+1}$$
$$\omega_{i,t+1} = \hat{\rho}_{1\omega} \omega_{it} + \hat{\rho}_{2\omega} \omega_{i,t-1} + \varepsilon_{\omega i,t+1}$$

• DE:
$$\mathbf{s}_{it} = \{ p_t, \omega_{it}, \varepsilon_{pt}, \varepsilon_{\omega it} \}$$
 (Bordalo et al. (2021))

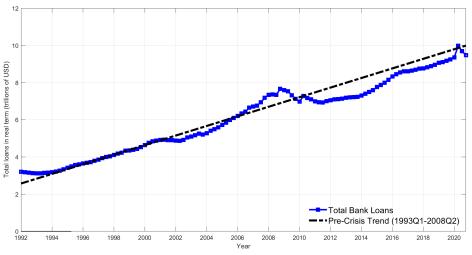
$$\log p_{t+1} = (1 - \rho_p) \log \tilde{p} + \rho_p \log p_t + \theta \varepsilon_{pt} + \varepsilon_{p,t+1}$$
$$\omega_{i,t+1} = \rho_\omega \omega_{it} + \theta \varepsilon_{\omega it} + \varepsilon_{\omega i,t+1}$$


Extensions

Extension (2/2): Comparison to Diagnostic Expectations

- DE: overreaction SR; strong reversal LR
- OE AR(2): underreaction SR; overreaction LR

Extension (2/2): Comparison to Diagnostic Expectations


	Data		OE Model		DE Model	
	k=1 year	k=2 year	k=1 year	k=2 year	k=1 year	k=2 year
β_k	0.233***	0.153***	0.243**	0.169*	0.217*	-0.328*
[t]	[5.57]	[4.33]	[2.42]	[2.16]	[1.90]	[-2.02]

Data

Model

To Conclude

- Bank expectations are distorted lasting pessimism
- And they matter for lending decisions contribute to lending slumps
- Lasting bank pessimism hampers the effectiveness of balance-sheet policies

Figure: Total Loans in the US: Alternative Trend

▶ Back

Table: Dynamics of Bank Forecast Errors

κ

κ

	$\boldsymbol{R}_{it}^{FE} = \alpha_t + \sum_{k=1}^{K} \beta_k \boldsymbol{R}_{it-k}^{FE} + \sum_{k=1}^{K} \boldsymbol{g}_k \boldsymbol{X}_{it-k} + \boldsymbol{u}_{it}$								
	Randon	n Beliefs	Discretized Random	Beliefs with Pseudo Beliefs					
-	k=1 year	k=2 year	k=1 year	k=2 year					
	(1)	(2)	(3)	(4)					
β_k	0.002	-0.001	-0.006	-0.006					
[t]	[0.12]	[-0.05]	[-0.38]	[-0.33]					

Pseudo Forecast Errors

- Randomly draw FE from a normal distribution
 - Not predictable (as under rational expectations)
- Discretize FE: below/within/above 1SD from the median
 - Not predictable & similar estimates

$$\Delta Loans_{it} = \alpha_t + \sum_{k=1}^{K} \beta_k R_{it-k}^{FE} + \sum_{k=1}^{K} g_k X_{it-k} + u_{it}$$

	Forecast Errors				Loan Performance		
_	k=1 year	k=2 year	k=3 year	k=1 year	k=2 year	k=3 year	
	(1)	(2)	(3)	(4)	(5)	(6)	
β _k	-0.071	0.239***	0.048				
[t]	[-0.52]	[2.96]	[0.55]				
g _k				-0.161	-0.199***	-0.170**	
[t]				[-0.89]	[-2.49]	[-3.03]	
R ²				0.14			

Back

$$\Delta Loans_{it} = \alpha_t + \sum_{k=1}^{K} \beta_k R_{it-k}^{FE} + \sum_{k=1}^{K} g_k X_{it-k} + u_{it}$$

	Random Beliefs		Discretized Random Beliefs with Pseudo Belie	
_	k=1 year	k=2 year	k=1 year	k=2 year
	(1)	(2)	(3)	(4)
β_k	0.006	0.017	-0.006	-0.021
[t]	[0.37]	[1.64]	[0.27]	[0.99]

Pseudo Forecast Errors

- Randomly draw FE from a normal distribution
 - Do not predict future lending
- Discretize FE: below/within/above 1SD from the median
 - Do not predict future lending

Back

$$\Delta Loans_{it} = \alpha_t + \sum_{k=1}^{K} \beta_k R_{it-k}^{FE} + \sum_{k=1}^{K} g_k X_{it-k} + u_{it}$$

	Loan Demand			Crisis Loan Performance		
-	k=1 year	k=2 year	k=3 year	k=1 year	k=3 year	
	(1)	(2)	(3)	(4)	(5)	(6)
β_k	-0.141	0.220***	0.053	-0.169	0.236**	0.039
[t]	[-0.97]	[2.64]	[0.58]	[-0.95]	[2.36]	[0.45]
Control _k	0.053	0.092	0.120**	-0.200	0.465*	-0.187
[t]	[0.60]	[1.39]	[2.42]	[-0.95]	[1.93]	[-0.62]
		Bank Capital			Bank Liquidity	
_	k=1 year	k=2 year	k=3 year	k=1 year	k=2 year	k=3 year
	(1)	(2)	(3)	(4)	(5)	(6)
β_k	-0.067	0.239***	0.048	-0.075	0.245***	0.043
[t]	[-0.48]	[2.96]	[0.55]	[-0.52]	[2.87]	[0.46]
Control _k	0.114	-0.182	-0.053	0.116**	-0.085**	-0.041
[t]	[0.77]	[-1.48]	[-0.49]	[2.07]	[-2.09]	[-0.57]

▶ Back

$$\Delta Loans_{it} = \alpha_t + \sum_{k=1}^{K} \beta_k R_{it-k}^{FE} + \sum_{k=1}^{K} g_k X_{it-k} + u_{it}$$

	Excl	ude Largest B	anks		Securitization	
-	k=1 year	k=2 year	k=3 year	k=1 year	k=2 year	k=3 year
	(1)	(2)	(3)	(4)	(5)	(6)
β _k	-0.086	0.217**	0.049	-0.028	0.256***	0.049
[t]	[-0.65]	[2.46]	[0.79]	[-0.26]	[3.06]	[0.72]
<i>Control_k</i> [t]				-0.057 [-0.97]	-0.023 [-0.85]	0.021* [1.74]
	Pre	-Crisis 2003-2	005	Pre	-Crisis 2002-2	004
-	k=1 year	k=2 year	k=3 year	k=1 year	k=2 year	k=3 year
	(1)	(2)	(3)	(4)	(5)	(6)
β _k	-0.038	0.239***	0.018	-0.042	0.223***	0.001
[t]	[-0.30]	[2.87]	[0.24]	[-0.34]	[2.64]	[0.02]

Table: Bank Heterogeneity

$$\boldsymbol{R}_{it}^{FE} = \alpha_t + \sum_{k=1}^{K} \beta_k \boldsymbol{R}_{it-k}^{FE} + \sum_{k=1}^{K} \boldsymbol{g}_k \boldsymbol{X}_{it-k} + \boldsymbol{u}_{it}$$

	Small Banks			Large Banks		
	k=1 year	k=2 year	k=3 year	k=1 year	k=2 year	k=3 year
	(1)	(2)	(3)	(4)	(5)	(6)
β_k	0.254**	0.121*	0.107	0.308**	0.138**	-0.046
[t]	[2.15]	[1.73]	[1.28]	[4.64]	[2.14]	[-0.70]

Table: Bank Heterogeneity

$$\Delta \textit{Loans}_{\textit{it}} = \alpha_t + \sum_{k=1}^{K} \beta_k \textit{R}_{\textit{it-k}}^{\textit{FE}} + \sum_{k=1}^{K} g_k \textit{X}_{\textit{it-k}} + u_{\textit{it}}$$

	Small banks (bottom quartile by total loans)						
	k=1 year k=2 year k=3 year						
β_k	0.021	0.258*	-0.079				
[t]	[0.15]	[1.81]	[-0.86]				
	Large ban	ks (top quartile b	y total loans)				
	k=1 year	k=2 year	k=3 year				
β_k	0.246	0.313**	0.121				
[t]	[1.46]	[2.36]	[0.82]				

Back

		C&I Loans			RRE Loans	
-	k=1 year	k=2 year	k=3 year	k=1 year	k=2 year	k=3 year
β_{k}^{own}	0.023	0.025*	0.032	-0.021	0.092**	-0.045
[t]	[1.48]	[1.88]	[1.52]	[-0.30]	[2.37]	[-0.39]
β_k^{other}	0.021	0.015	0.021	0.050	0.036	0.037
[t]	[0.89]	[0.64]	[1.17]	[0.35]	[0.50]	[0.39]
		CRE Loans		Consumer Loans		
-	k=1 year	k=2 year	k=3 year	k=1 year	k=2 year	k=3 year
β_k^{own}	0.091	0.111*	0.121	-0.212	0.005	0.125
[t]	[1.47]	[2.59]	[1.40]	[-1.25]	[0.03]	[-0.65]
β_k^{other}	-0.121	0.065	-0.010	0.042	0.215	0.142
[t]	[1.27]	[0.83]	[-0.14]	[0.29]	[1.40]	[1.15]

Table: Loan Heterogeneity

Table: Additional Evidence on Bank Expectations

$$y_{it} = \alpha_t + \sum_{k=1}^{K} \beta_k I_{i,t-k} + \sum_{k=1}^{K} g_k X_{it-k} + u_{it}$$

	Expected loar	n performance	Forecas	st errors		
	$y_{it} = E$	$I_{it}[I_{i,t+1}]$	$y_{it} = E_{it}[I_{i,i}]$	$[t_{t+1}] - I_{i,t+1}$		
	k=0 year	k=1 year	k=0 year	k=1 year	_	
	(1)	(2)	(3)	(4)		
β_{k}	-0.114*	-0.058*	-0.200***	0.147**		
[t]	[-2.95]	[-1.94]	[-3.60]	[2.37]		

Back

Endowment & Preferences

· Baseline model: exogenous process for consumption

$$C_{t+1} = C_t e^{\mu_c + \sigma_c \varepsilon_{c,t+1} + \xi x_{t+1}}$$

• Stochastic discount factor (Epstein-Zin preferences)

$$M_{t,t+1} = \beta^{\theta} \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma} \left(\frac{S_{t+1}+1}{S_t}\right)^{-1+\theta}, \quad \theta = \frac{1-\gamma}{1-1/\psi}$$

• Consumption-wealth ratio S_t

$$\mathbf{E}_{t}^{\mathcal{P}}\left[\beta^{\theta}\left(\frac{C_{t+1}}{C_{t}}\right)^{1-\gamma}\left(S_{t+1}+1\right)^{\theta}\right]=S_{t}^{\theta}$$

	В	

Loan Portfolio (Gomes et al. (2020))

- · Each bank holds an equal-weighted portfolio of a large number of loans
- Borrower *j* defaults on bank *i* at time *t* if $W_{ijt} < \kappa$. The bank can recover a fraction $1 \mathcal{L}$ of the collateral value
- Payoff, price and return of loan portfolio:

$$\pi_{i,t+1}^{L}(x_{t+1},\omega_{i,t+1}) = \underbrace{\kappa \operatorname{Prob}\left(W_{ij,t+1} \ge \kappa \left| x_{t+1},\omega_{i,t+1} \right.\right)}_{\operatorname{Repay}} \\ + \underbrace{(1-\mathcal{L})\operatorname{E}\left[W_{ij,t+1} \,\mathbb{I} \, w_{ij,t+1} < \kappa \left| x_{t+1},\omega_{i,t+1} \right.\right]}_{\operatorname{Default}} \\ P_{it}^{L}(\mathbf{s}_{it}) = \operatorname{E}_{t}^{\mathcal{P}}\left[M_{t,t+1} \pi_{i,t+1}^{L}(x_{t+1},\omega_{i,t+1})\right]. \\ r_{i,t+1}^{L}(\mathbf{s}_{it}, x_{t+1}, \omega_{i,t+1}) = \frac{\pi_{i,t+1}^{L}(x_{t+1},\omega_{i,t+1})}{P_{it}^{L}(\mathbf{s}_{it})} - 1$$

sit: exogenous states (depend on belief process)

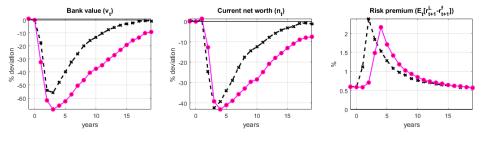

Back

Table: Targeted Moments

Description	Data	OE	RE
Leverage (mean)	8.50	8.72	8.69
Leverage (std)	2.95	3.10	2.50
Profit-to-equity (mean)	0.169	0.137	0.149
Bank default rate (mean)	0.041	0.062	0.053
Dynamics of bank forecast errors			
1-year	0.233	0.243	_
2-year	0.153	0.169	_

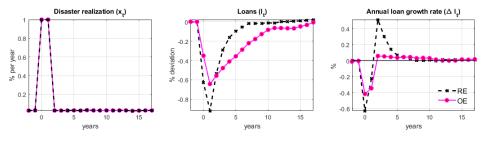


Figure: IRF to a Temporary Increase in Disaster Probability

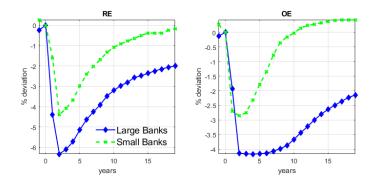

► Back

Figure: Disaster in the Model

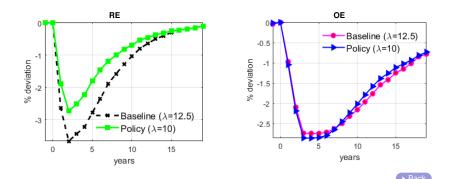

▶ Back

Figure: IRF of Lending to a Temporary Increase in Disaster Probability (Large vs. Small Banks)

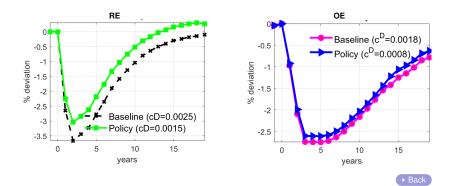
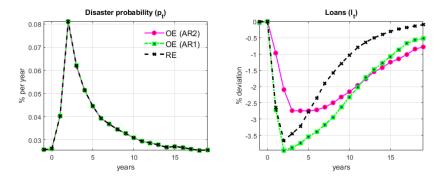


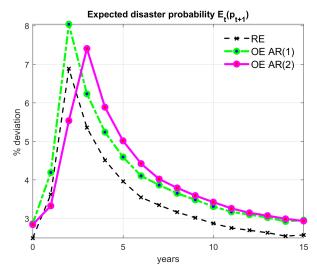
Figure: IRF to a Temporary Increase in Disaster Probability (Higher Capital Requirement $8\% \rightarrow 10\%$)

Antonio Falato & Jasmine Xiao

Figure: IRF to a Temporary Increase in Disaster Probability (Lower Bank Funding Cost by 10 b.p.)



OE: AR(2) or AR(1) with higher persistence?


Let $P_t \equiv \log p_t$:

$$P_{t+1} = (1 - \hat{\rho}_{1\rho} - \hat{\rho}_{2\rho})\tilde{P} + \hat{\rho}_{1\rho}P_t + \hat{\rho}_{2\rho}P_{t-1} + \varepsilon_{\rho,t+1}$$
$$= (1 - \hat{\rho}_{1\rho} - \hat{\rho}_{2\rho})\tilde{P} + (\hat{\rho}_{1\rho} + \hat{\rho}_{2\rho})P_t - \hat{\rho}_{2\rho}\Delta P_t + \varepsilon_{\rho,t+1}$$
$$= (1 - \tilde{\rho}_{\rho})\tilde{P} + \tilde{\rho}_{\rho}P_t \underbrace{-\hat{\rho}_{2\rho}\Delta P_t}_{\text{momentum}} + \varepsilon_{\rho,t+1}$$

- AR(1): only current state of the economy (*P_t*) matters for expectation formation, regardless of whether ρ_ρ is the true coefficient
- AR(2): captures an asymmetry, depending on where the economy has been

Figure: IRF to a Temporary Increase in Disaster Probability

• $\Delta P_t > 0 \Longrightarrow E_t^{AR(1)}(P_{t+1}) > E_t^{RE}(P_{t+1}) > E_t^{AR(2)}(P_{t+1})$ • $\Delta P_t < 0 \Longrightarrow E_t^{AR(2)}(P_{t+1}) > E_t^{AR(1)}(P_{t+1}) > E_t^{RE}(P_{t+1})$

Antonio Falato & Jasmine Xiao