Human Capital Strategies for Big Shocks The Case of the Fall of the Ming

Carol H. Shiue and Wolfgang Keller U Colorado and NBER

> NBER DAE Summer Institute Cambridge, MA, July 2023

Ming-Qing Transition in China & in Sample

36 million deaths, 16% of pop'n

7 Clans, Tongcheng county, Anhui

Big Shocks: Temporary or Persistent Effects?

 Work typically compares regions with and without shock using cross-sectional approach

 Including Dell '10, Nunn-Wantchekon '11, Feigenbaum- Lee-Mezzanotti '22

We complement regional focus with longitudinal micro data on 7 linked generations

- Did families hit by shock behave differently in short- & long-run?
- Intergenerational analysis
 - Outside intergenerational mobility includes Bleakley-Ferrie '16, Lowes- Nunn- Robinson- Weigel '17, Becker- Grosfeld- Grosjean-Voigtlaender- Zhuravskaya '18, Ager- Boustan- Eriksson '21

Data: Genealogies - family histories

Goal: Representative sample

- Calibrate to national data
 - 70% commoners, 3% high status
 - Limit to 7 genealogies
 - All males are recorded, no matter their wealth

▷ Info on: Vitals of men, wives, children; human capital (HC); status; residence, ...

 HC: Skills for civil service exam 0/1

Exploiting clan heterogeneity:

 \triangleright No wealth bias in sample

Treatment: First Generation and Descendants

- Lived in heavily impacted region during Fall of Ming
- Based on mortality in region

 \triangleright 90% of regions treated

Treatment label of first gen applied to all descendants

Pre-Shock Analysis: No Differential Pre-Trends

	Control N = 54	Treatment $N = 436$	Difference	p-value	
Tests of Equality of Means					
Generation (-1)					
Father Human Capital	0.31	0.32	-0.01	0.93	
Generation (-2)					
Grandfather Human	0.46	0.38	0.08	0.23	
Capital					

Notes: Figures for first generation (male born 1590-1644).

Summary Statistics: Intergenerationally Linked Sample

_	Male			_	Female			
Gen- eration	N	Human Capital	Migration	Sons	_	First Wife	Sons	Dau- ghters
1	1,667	0.259	0.198	3.272		0.104	2.998	1.298
2	1,661	0.264	0.276	3.667		0.092	3.517	1.704
3	1,632	0.200	0.229	3.322		0.071	3.222	1.539
4	1,609	0.145	0.147	3.391		0.049	3.275	1.363
5	1,515	0.106	0.104	2.224		0.096	1.929	0.977
All	8,084	0.196	0.189	3.193		0.083	3.005	1.383

 \triangleright Sample range 1542 to 1886; link rate over 5 generations: 91% (1,515/1,667)

OLS Specification Stacked over 5 Generations

Human capital hc_{ic(p)g} of individual *i* in couple *c* of gen *g*

 $hc_{ic(p)g} = \beta_g \left[I[t = g] \times d_p \right] + \beta fstat_{c1} + \eta_g + \lambda_y + \theta_m + \omega_f + \varepsilon_{ic(p)g}$

Treatment 0/1 var d_p , p: descendant of pair p in first gen

- fstat_{c1}: first gen couple's husband's father's status
- Clan fixed effects
 - θ_m : male (7 clans)
 - ω_f : female (120; clans of **in-marrying women**)
- ▶ η_g : generation fixed effects, λ_y : birth year fixed effects
- Two-way clustering on first generation-pair and generation

Human Capital Response: Loss, Followed by Advantage

Mechanism: Increased Preference for Human Capital

Shock meant that people lost land, house, and property

- ▶ 75% of arable land destroyed in single year (Beattie '79)
 - Land becomes arable again with time memory may linger
- Norms shift more from land- to human capital-based wealth
 - Affects disproportionately those w/ first-hand experience of destruction
- Change in norms passed down from one generation to the next

Hypothesis: Increased Preference for HC ⇔ More Intergenerational Benefit from Father & Grandfather

Intergenerational relation in human capital:

$$hc_{ic(p)g} = \alpha + \omega_1 hc_{ic(p)g-1} + \omega_2 hc_{ic(p)g-2} + X\psi + \varepsilon_{ic(p)g}$$

	Con	trol	Trea	Treated		
Father HC	-0.033 (0.143)	-0.154 (0.215	0.258** (0.033)	0.223** (0.033)		
Grandfather HC		0.184+ (0.103)		0.081** (0.028)		
Generations	3, 4, 5	4, 5	3, 4, 5	4, 5		
Ν	411	247	4,236	2,751		

 \triangleright And: Difference between T/C doesn't exist before the shock

Treated Descendants Also Exhibit More Upward Mobility & Less Downward Mobility

Panel A: Control Descendants

Panel B: Treated Descendants

		Father			Father		
		No HC	HC		No HC	HC	
Son	No HC HC	96.6% 3.4%	75.3% 24.7%		92.5% 7.5%	51.9% 48.1%	
		100%	100%		100%	100%	

▷ Transition matrices for generations 3, 4, and 5

Treatment of People vs Treatment of Regions

Summary

- Persistent effects from big shock using longitudinal individual data over centuries
 - Long-run can be different from faded version of short-run
- Human capital reversal: Fall of Ming first causes heavy loss, then advantage in human capital acquisition
- Mechanism: Families switch from land- to human capital-based wealth
 - Change in human capital norms transmitted from generation to generation
 - Evidence from inter-generational analysis
- What would economic history look like if we combined the regional perspective with the people perspective?