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Abstract

This paper studies the economic impacts of carbon pricing. Exploiting insti-
tutional features of the European carbon market and high-frequency data, I
document that a tighter carbon pricing regime leads to higher energy prices,
lower emissions and more green innovation. This comes at the cost of a fall
in economic activity, which is borne unequally across society: poorer house-
holds lower their consumption significantly while richer households are less
affected. The poor are more exposed because of their higher energy share
and, importantly, also experience a larger fall in income. Targeted fiscal pol-

icy can help alleviate these costs while maintaining emission reductions.
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1. Introduction

The looming climate crisis has put climate change at the top of the global pol-
icy agenda. Governments around the world have started to implement carbon
pricing policies to mitigate climate change, either via carbon taxes or cap and
trade systems. Yet, little is known about the effects of such policies in practice.
Is carbon pricing effective at reducing emissions? What is the impact on output,
employment and inflation, and who bears the economic costs of these policies?

To answer these questions, I propose a novel approach to identify the aggre-
gate and distributional effects of carbon pricing, exploiting institutional features
of the European carbon market and high-frequency data. The European Union
Emissions Trading System (EU ETS) is the largest carbon market in the world,
covering around 40 percent of the EU’s greenhouse gas (GHG) emissions. The
market was established in phases and the regulations have been updated fre-
quently. Using an event study approach, I collect 126 regulatory update events
concerning the supply of emission allowances. By measuring the change in the
carbon futures price in a tight window around the regulatory news, I isolate a
series of carbon policy surprises. Reverse causality can be plausibly ruled out
because economic conditions are known and priced by the market prior to the
regulatory news, and they are unlikely to change within the tight window I con-
sider. Using the surprise series as an instrument, I estimate the dynamic causal
effects of a carbon policy shock.

I find that carbon pricing has significant effects on both emissions and the
economy. A carbon policy shock tightening the carbon pricing regime causes a
strong, immediate increase in energy prices and a persistent fall in overall GHG
emissions. Thus, carbon pricing is successful in achieving its goal of reducing
emissions. However, this does not come without a cost. Consumer prices rise
significantly and economic activity falls, as reflected in lower output and higher
unemployment. Monetary policy leans against the inflationary pressures, likely
exacerbating the effects on activity. Stock prices fall, but the shock does not ap-
pear to strongly transmit through financial markets. The main transmission chan-
nel appears to work through higher carbon prices, which passing through energy
prices lead to a fall in income, and thus consumption and investment. Interest-
ingly, the fall in activity turns out to be somewhat less persistent than the fall
in emissions — improving the emissions intensity in the longer term. Consistent
with that, I document a significant uptick in low-carbon patenting as carbon pric-

ing creates an incentive for green innovation.



Carbon policy shocks also contribute meaningfully to historical variations in
prices, emissions and macroeconomic aggregates. However, they did not account
for the fall in emissions associated with the global financial crisis — supporting the
validity of my identification strategy.

My results illustrate a trade-off between reducing emissions and the economic
costs of climate policies. Importantly, these costs are not equally distributed
across society. Using detailed household-level data, I document pervasive het-
erogeneity in the expenditure response to carbon policy shocks. While the ex-
penditure of higher-income households only falls marginally, low-income house-
holds reduce their expenditure significantly and persistently. These households
are more severely affected in two ways. First, they spend a larger share of their
disposable income on energy and thus the higher energy bill leaves significantly
fewer resources for other expenditures. Second, they experience a stronger fall
in income, as they tend to work in sectors that are more impacted by the policy.
Interestingly, these are not the sectors with the highest energy intensity but sec-
tors that are more sensitive to changes in demand, producing more discretionary
goods and services. Crucially, the magnitudes of the expenditure responses are
larger than what can be accounted for by the direct effect through energy prices
alone. This points to an important role of indirect, general equilibrium effects via
income and employment. Based on my estimates, indirect effects can account for
about two-thirds of the total effect on consumption.

My findings on the distributional impact of carbon pricing suggest that tar-
geted fiscal policies could be an effective way to reduce the economic costs. To
the extent that energy demand is inelastic, which turns out to be particularly
the case for poorer households, this should not compromise emission reductions.
This intuition is confirmed in a climate-economy model with nominal rigidities
and heterogeneity in households” energy expenditure shares, income incidence
and marginal propensities to consume (MPCs). The model can account for the
observed empirical responses to carbon policy reasonably well. Using the model,
I show that redistributing carbon revenues can mitigate the fall in aggregate
consumption and reduce the regressive distributional consequences of carbon
pricing, without compromising emission reductions to a significant extent. Fi-
nally, I provide some suggestive evidence that carbon pricing leads to a fall in
the support for climate-related policies that is particularly pronounced among
low-income households. Therefore, mitigating the distributional impact may also
help to increase the public support for climate policy.

A comprehensive series of sensitivity checks indicate that the results are ro-
bust along a number of dimensions including the selection of event dates, the



construction of the instrument, the estimation technique, the model specification,
and the sample period. Importantly, the results are also robust to accounting for
confounding news over the event window using an heteroskedasticity-based es-

timator.

Related literature and contribution. This paper contributes to a growing litera-
ture studying the effects of climate policy and carbon pricing in particular. While
there is mounting evidence on the effectiveness of such policies for emission re-
ductions (Martin, De Preux, and Wagner, 2014; Andersson, 2019, among others),
less is known about the economic effects. A number of studies have analyzed the
macroeconomic effects of the British Columbia carbon tax, finding no significant
impacts on GDP (Metcalf, 2019; Bernard and Kichian, 2021). Metcalf and Stock
(2020a,b) study the macroeconomic impacts of carbon taxes in European coun-
tries. They find no robust evidence of a negative effect of the tax on employment
or GDP growth.! In a similar vein, Konradt and Weder di Mauro (2021) find that
carbon taxes in Europe and Canada do not appear to be inflationary. In contrast,
theoretical studies based on computable general equilibrium models tend to find
contractionary output effects (see e.g. McKibbin et al., 2017; Goulder and Haf-
stead, 2018). I contribute to this literature by providing new estimates based on
the EU ETS, the largest carbon market in the world.

A large literature has studied the macroeconomic effects of discretionary tax
changes more generally. To address the endogeneity of tax changes, the literature
has used SVAR techniques (Blanchard and Perotti, 2002) and narrative methods
(Romer and Romer, 2010). The narrative approach points to large macroeconomic
effects: a tax increase leads to a significant and persistent decline of output and
its components (see also Mertens and Ravn, 2013; Cloyne, 2013). However, it is
unclear how much we can learn from these estimates with respect to carbon pric-
ing, which is enacted to correct an externality and not because of past decisions
or ideology. While the motivation behind carbon pricing is arguably long-term
and thus more likely unrelated to the current state of the economy — similar to
the tax changes considered in Romer and Romer (2010) — it is still perceivable
that regulatory decisions also take economic conditions into account.

To address this potential endogeneity in carbon pricing, I propose a novel
identification strategy exploiting high-frequency price variation. From a method-
ological viewpoint, my approach is closely related to the literature on high-
frequency identification, which was developed in the monetary policy setting

Metcalf and Stock (2020a,b) study the effects of national carbon taxes, which are present in
many European countries and cover sectors that are not included in the EU ETS. A key difference
is that European carbon taxes generally do not cover the power sector, which is part of the ETS.
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(Kuttner, 2001; Giirkaynak, Sack, and Swanson, 2005; Gertler and Karadi, 2015;
Nakamura and Steinsson, 2018, among others) and more recently employed in
the global oil market context (Kédnzig, 2021). In this literature, policy surprises
are identified using high-frequency asset price movements around policy events,
such as FOMC or OPEC meetings. The idea is to isolate the impact of policy news
by measuring the change in asset prices in a tight window around the events.

I contribute to this literature by extending the high-frequency identification
approach to climate policy, exploiting institutional features of the European car-
bon market. A number of studies have used event study techniques to analyze
the effects of regulatory news on carbon, energy and stock prices (Mansanet-
Bataller and Pardo, 2009; Fan et al., 2017; Bushnell, Chong, and Mansur, 2013,
among others). To the best of my knowledge, however, this paper is the first to
exploit these regulatory updates to analyze the economic effects of carbon pric-
ing. The approach is very general and could also be employed to evaluate the
performance of other cap and trade systems.

Equipped with this novel identification strategy, I provide new evidence not
only on the aggregate but also on the distributional consequences of carbon pric-
ing. Among policymakers, there is growing consensus that the transition towards
a low-carbon economy should involve fairness and equity considerations (Euro-
pean Comission, 2021). Against this backdrop, itis crucial to understand how car-
bon pricing affects economic inequality. I find that carbon pricing in the EU has
been more regressive than commonly thought, burdening lower-income house-
holds substantially more than richer ones. This stands in contrast to existing stud-
ies, which tend to find a more modest regressive impact (Beznoska, Cludius, and
Steiner, 2012; Ohlendorf et al., 2021). My findings illustrate the importance of
accounting for indirect, general-equilibrium effects via income and employment;
solely focusing on the direct effects via higher energy prices can understate the
actual distributional impact.

Finally, I show that carbon-policy induced changes in energy prices transmit
through a powerful demand channel that can outweigh the traditional cost chan-
nel. This has important implications for the transmission of energy price shocks
more broadly and speaks to a growing literature studying the role of Keynesian
supply shocks (see e.g. Guerrieri et al., 2022). The demand channel can be rein-
forced by the monetary policy reaction (Bernanke, Gertler, and Watson, 1997) and
the unequal incidence on constrained households (Bilbiie, 2008; Auclert, 2019;
Patterson, 2021). Thus, the distributional consequences do not only matter for
inequality but also for the transmission of the policy to the macroeconomy. To

formalize this in the context of carbon tax policy, I develop a climate-economy



model (in spirit of Heutel, 2012; Golosov et al., 2014; Annicchiarico and Di Dio,
2015) with nominal rigidities and household heterogeneity. In this sense, I also
contribute to an influential literature studying the role of heterogeneity in the
transmission of fiscal policies (see e.g. Johnson, Parker, and Souleles, 2006; Ka-
plan and Violante, 2014; Cloyne and Surico, 2017, among many others).

Roadmap. The paper proceeds as follows. In the next section, I provide in-
stitutional background on the European carbon market and discuss the high-
frequency identification strategy. Section 3 covers the econometric approach. Sec-
tion 4 presents the results on the aggregate effects of carbon pricing, on emissions
and the macroeconomy. Section 5 looks into the heterogeneous effects of carbon
pricing, using detailed household-level data. I analyze the distributional impact,
the relative importance of different transmission channels, and the role of redis-
tributing carbon revenues. Section 6 looks beyond the short term and analyzes
the impact on attitudes towards climate policies and the effects on green innova-
tion. Section 7 concludes.

2. Institutional Background and Identification

2.1. The European carbon market

The European emissions trading system is the cornerstone of the EU’s policy to
combat climate change. It is the largest carbon market in the world and also has
one of the longest implementation histories. Established in 2005, it covers more
than 11,000 heavy energy-using installations and airlines, accounting for around
40 percent of the EU’s greenhouse gas emissions.

The market operates under the cap and trade principle. Different from a car-
bon tax, a cap is set on the total amount of certain greenhouse gases that can be
emitted by installations in the system. The cap is reduced over time so that total
emissions fall. Within the cap, emission allowances are auctioned off or allocated
for free among the companies in the system, and can subsequently be traded. Al-
ternatively, companies can also use limited amounts of international credits from
emission-saving projects around the world. Regulated companies must monitor
and report their emissions. Each year, the companies must surrender sufficient
allowances to cover their emissions. This is enforced with heavy fines. If a com-
pany reduces its emissions, it can keep the spare allowances for future needs or

sell them to another company short of allowances (European Comission, 2020a).



A brief history of the EU ETS. The development of the EU ETS was divided
into different phases. Figure 1 shows the evolution of the carbon price over the
phases of the system. The first phase lasted three years, from 2005 to 2007. This
period was a pilot phase to prepare for phase two, where the system had to run
efficiently to help the EU meet its Kyoto targets. In this initial phase, almost all
allowances were freely allocated at the national level. In absence of reliable emis-
sions data, phase one caps were set on the basis of estimates. In 2006, the carbon
price fell significantly as it became apparent that the total amount of allowances
issued exceeded total emissions, and eventually converged to zero as phase one
allowances could not be transferred to phase two.
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Figure 1: The EU Carbon Price

Notes: The EU carbon price, as measured by the price of the first EUA futures
contract over the different phases of the EU ETS.

The second phase ran from 2008 until 2012, coinciding with the first commit-
ment period of the Kyoto Protocol where the countries in the EU ETS had con-
crete emission targets to meet. Because verified annual emissions data from the
pilot phase was now available, the cap on allowances was reduced in this phase,
based on actual emissions. The proportion of free allocation fell slightly, several
countries started to hold auctions, and businesses were allowed to buy limited
amounts of international credits. The commission also started to extend the sys-
tem to cover more gases and sectors; in 2012 the aviation sector was included,
even though this only applied for flights within the European Economic Area.
Despite these changes, EU carbon prices remained at moderate levels. This was
mainly because the 2008 economic crisis led to large fall in emissions. As this was
not reflected in the way the caps were set, this led to a large surplus of allowances
weighing down on prices.

The subsequent third phase began in 2013 and ran until the end of 2020.

Learning from the previous phases, the system was changed in a number of key
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respects. In particular, the new system relies on a single, EU-wide cap on emis-
sions in place of the previous national caps, auctioning became the default way
of allocating allowances with harmonized allocation rules for the allowances still
allocated for free, and the system covers more sectors and gases, in particular
nitrous oxide and perfluorocarbons in addition to carbon dioxide. In 2014, the
Commission postponed the auctioning of 900 million emission allowances to ad-
dress the surplus of allowances that has built up since the Great Recession (‘back-
loading’). Later, the Commission introduced a market stability reserve, which
became operative in January 2019. This reserve has the aim to reduce the cur-
rent surplus of allowances and improve the system’s resilience to major shocks
by adjusting the supply of allowances. To this end, back-loaded and unallocated
allowances were transferred to the reserve rather than auctioned in the last years
of phase three.

The current, fourth phase spans the period from 2021 to 2030. The legislative
framework for this trading period was revised in early 2018. To achieve the EU’s
2030 emission reduction targets, the pace of annual reductions in total allowances
is increased to 2.2 percent from the previous 1.74 percent and the market stability
reserve is reinforced to improve the systems resilience to future shocks. More
recently, the Commission has proposed to further revise and expand the scope of
the EU ETS, with the aim to achieve a climate-neutral EU by 2050 (see European

Comission, 2020a).

Regulatory events. Given its pioneering role, the establishment of the European
carbon market has followed a learning-by-doing process. As illustrated above,
since the start in 2005, the system has been expanded considerably and its insti-
tutions and rules have been continuously updated to address issues encountered
in the market, improve market efficiency, and reduce information asymmetry and
market distortions.

Building on the event study literature, I collect a comprehensive list of regu-
latory events in the EU ETS. These regulatory update events can take the form of
a decision of the European Commission, a vote of the European Parliament or a
judgment of a European court. Of primary interest in this paper are regulatory
news regarding the supply of emission allowances. Thus, I focus on news con-
cerning the overall cap in the EU ETS, the free allocation of allowances, the auc-
tioning of allowances as well as the use of international credits. Going through
the official journal of the European Union as well as the European Commission
Climate Action news archive, I could identify 126 such events during the period
from 2005 to 2019. The events as well as the sources are detailed in Table A.1 in



the Appendix. There are only a few events that concern the setting of the overall
cap in the system. In the first two phases, the key events concern decisions on the
national allocation plans (NAP) of the individual member states, e.g. the com-
mission approving or rejecting allocation plans or court rulings in legal conflicts
about the free allocation of allowances. With the move to auctioning as the default
way of allocating allowances, decisions on the timing and quantities of emission
allowances to be auctioned became the most important regulatory news in phase
three. Finally, starting from phase two, there were also a number of important
events related to the use and entitlement of international credits.

The selection of events is a crucial factor in event studies. As the baseline, I
use all of the identified events, however, in Appendix C.1, I study the sensitivity
of the results with respect to different event types in detail.

Carbon futures markets. There exist several organized markets where EU emis-
sion allowances (EUAs) can be traded. An EUA is defined as the right to emit
one ton of carbon dioxide equivalent gas and is traded in spot markets such as
Bluenext in Paris, EEX in Leipzig or Nord Pool in Oslo. Furthermore, there exist
also futures markets on EUAs, such as the EEX in Leipzig and ICE in London. In
2018, the cumulative trading volume in the relevant futures and spot markets was
about 10 billion EUA (DEHSt, 2019). The most liquid markets to trade emission
allowances are the futures markets. In this paper, I focus on data from the ICE,
which has been found to dominate the price discovery process in the European
carbon market (Stefan and Wellenreuther, 2020).

2.2. High-frequency identification

Since policies to fight climate change are long-term in nature, they are likely
less subject to endogeneity concerns than other fiscal polices (Romer and Romer,
2010). However, to properly address the concern that regulatory decisions in
the carbon market may take economic conditions into account, I adopt a high-
frequency identification approach.

The institutional framework of the European carbon market provides an ideal
setting in this respect. First, as discussed above, there are frequent regulatory
updates in the market that can have significant effects on the price of emission
allowances. Second, there exist liquid futures markets for trading allowances.
This motivates the idea to construct a series of carbon policy surprises by looking
at how carbon prices change around regulatory events in the carbon market. By
measuring the price change within a sufficiently tight window around the event,

reverse causality of the state of the economy can be plausibly ruled out because
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it is known and priced prior to the decision, and unlikely to change within the
tight window.

Specifically, I compute the carbon policy surprise series as the change in the
EUA futures price on the day of the regulatory event compared to the last trading
day before the event. To account for the fact that carbon prices were close to zero
at the end of the first phase, I measure the surprises as the EUR change in carbon
prices relative to the prevailing wholesale electricity price on the day before the

event:
carbon carbon
F td —F td—1

elec
p td—1

CPSurprise; 5 = , (1)
where d and t indicate the day and the month of the event, respectively, F; ; is the
settlement price of the EUA futures contract, and P¢%° | is the wholesale electricity
price. This allows me to isolate some variation in the carbon price that is driven
by the regulatory news, assuming that risk premia do not change over the narrow

event window.?

An alternative approach is to compute the surprise series as
the percentage change in the carbon price around the event. Reassuringly, this
produces very similar results, especially when excluding the second half of 2007
when carbon prices were approaching zero as the trial phase was coming to an
end, see Appendix C for more details.

The daily surprises, CPSurprise; 4, are then aggregated to a monthly series,
CPSurprise;, by summing over the daily surprises in a given month. In months
without any regulatory events, the series takes zero value.

Figure 2 shows the resulting carbon policy surprise series. We can see that
regulatory news can have a significant impact on carbon prices, with some news
moving carbon prices by close to 1.5 percent, relative to wholesale electricity
prices.® In the first phase, there were a number of significant events concerning
the free allocation of allowances. For instance, in June 2005 the initial national
allocation plans were finally completed, which lead to a significant increase in
prices. The beginning of the second phase was characterized by only few regula-
tory news. This changed dramatically from the second half of phase two through
the first years of phase three, which were marked by many significant carbon
policy surprises. For example, carbon prices jumped up in March 2011 after the

Commission proposed to start the auctioning of allowances earlier than originally

2While futures prices are in general subject to risk premia, there is evidence that these premia
vary primarily at lower frequencies (Piazzesi and Swanson, 2008; Hamilton, 2009; Nakamura and
Steinsson, 2018).

3Carbon prices, per se, turn out to be more volatile, with some announcements moving prices
in excess of 40 percent, see Appendix C.1.
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Figure 2: The Carbon Policy Surprise Series

Notes: The carbon policy surprise series, constructed as the change of the EUA
futures price around regulatory policy events concerning the supply of EU emis-
sion allowances relative to the prevailing wholesale electricity price.

planned. On April 16, 2013 the European Parliament voted against the Commis-
sion’s back-loading proposal, which led to a massive fall in carbon prices. And in
March 2014, the Commission approved two batches of international credit enti-
tlement tables, causing a significant fall in prices, just to name a few. There were
also a number of significant surprises towards the end of phase three. In Febru-
ary 2019, carbon prices jumped up following news on the adoption of a stricter
carbon leakage list, and in April 2019, carbon prices increased further, after an
update on auction volumes in EFTA countries contributing to bullish sentiment

in the market.

Construction choices and diagnostics. A crucial choice in high-frequency iden-
tification concerns the size of the event window. There is a trade-off between
capturing the entire response to the announcement and the threat of other news
confounding the response, so-called background noise (Nakamura and Steins-
son, 2018). To give markets enough time to respond to the regulatory news, I
use a daily event window. Using a tighter, intraday window is complicated by
the fact that exact release times of the regulatory events are mostly unavailable.
However, to mitigate concerns about background noise when using a daily win-
dow, I also present results from a heteroskedasticity-based approach that allows
for background noise in the surprise series (see Appendix C.2).

Another choice concerns the maturity of the futures contract. I focus here
on the front contract (the contract with the closest expiry date) for two reasons.
First, it is the most liquid contract and thus gives the best price signal. Second,

near-dated contracts also tend to be less sensitive to risk premia (Baumeister and
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Kilian, 2017; Nakamura and Steinsson, 2018). Thus, focusing on the front contract
helps to further mitigate concerns about time-varying risk premia.

To be able to interpret the resulting series as carbon policy surprises, it is cru-
cial that the events do not release other information such as news about the de-
mand of emission allowances or economic activity in the EU more generally. To
address these concerns, I select only regulatory update events that were specifi-
cally about changes to the supply of emission allowances in the European carbon
market and do not include broader events such as outcomes of Conference of the
Parties (COP) meetings or other international conferences. In a series of sensi-
tivity checks, I also show that the results are not driven by a particular subset of
events. In particular, the results are robust to excluding events from the first trial
phase or excluding event days in periods of economic distress, such as the Great
Recession or the European debt crisis (see Appendix C.1).

Finally, I perform a number of additional diagnostic checks on the surprise
series as proposed in Ramey (2016), in particular with regards to autocorrelation,
forecastability and correlation with other structural shocks. I find no evidence
that the series is serially correlated. The p-value for the Q-statistic that all auto-
correlations are zero is 0.97. I also find no evidence that macroeconomic or finan-
cial variables have any power in forecasting the surprise series. For all variables
considered, the p-values for the Granger causality test are far above conventional
significance levels, with the joint test having a p-value of 0.93. Finally, I show
that the surprise series is uncorrelated with other structural shock measures from
the literature, including oil demand, uncertainty, financial, fiscal and monetary
policy shocks. Overall, this evidence supports the validity of the carbon policy
surprise series. The corresponding figures and tables can be found in Appendix
B.1.

3. Econometric Approach

As illustrated above, the carbon policy surprise series has many desirable proper-
ties. Nonetheless, it is only an imperfect measure of the shock of interest because
it may not capture all relevant instances of regulatory news in the carbon market
and could be measured with error (see also Stock and Watson, 2018).

Therefore, I do not use it as a direct shock measure but as an instrument. Pro-
vided that the surprise series is correlated with the carbon policy shock but uncor-
related with all other shocks, we can use it to estimate the dynamic causal effects
of a carbon policy shock. Because of the short sample at hand, I rely on VAR
techniques for estimation. For identification, I rely on the external instrument
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approach (Stock, 2008; Stock and Watson, 2012; Mertens and Ravn, 2013). While
this approach tends to be very efficient, it provides biased estimates if the VAR is
not invertible. Thus, I also present results from an internal instrument approach
(Ramey, 2011; Plagborg-Meller and Wolf, 2019), which includes the instrument in
the VAR and is robust to problems of non-invertibility.

An alternative strategy would be to estimate the dynamic causal effects using
local projections (see Jorda, Schularick, and Taylor, 2015; Ramey and Zubairy,
2018). However, this approach is quite demanding given the short sample, as it
involves a distinct IV regression for each impulse horizon. Importantly, Plagborg-
Moller and Wolf (2019) show that the internal instrument VAR and the LP-IV rely
on the same invertibility-robust identifying restrictions and identify, in popula-
tion, the same relative impulse responses. In Appendix B.2, I compare the LP-IV
to the internal instrument VAR responses in the sample at hand. Reassuringly, the
responses turn out to be similar, even though the LP responses are more jagged
and less precisely estimated.

3.1. Framework

Consider the standard VAR model
yt = b+ BlYt—l +-- Bth—p +uy, 2)

where p is the lag order, y; is a n X 1 vector of endogenous variables, usisan x 1
vector of reduced-form innovations with covariance matrix Var(u;) = X, b is a
n x 1 vector of constants, and By, ..., By, are n X n coefficient matrices.

Under the assumption that the VAR is invertible, we can write the innovations

u; as linear combinations of the structural shocks &;:

uy — Sé‘f. (3)

By definition, the structural shocks are mutually uncorrelated, i.e. Var(g;) = Q is
diagonal. From the invertibility assumption (3), we get the standard covariance
restrictions £ = SQS’.

We are interested in characterizing the causal impact of a single shock. With-
out loss of generality, let us denote the carbon policy shock as the first shock in
the VAR, £1 ;. Our aim is to identify the structural impact vector s;, which corre-
sponds to the first column of S.

External instrument approach. Identification using external instruments works

as follows. Suppose there is an external instrument available, z;. In the applica-
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tion at hand, z; is the carbon policy surprise series. For z; to be a valid instrument,

we need

Elzie14] =a #0 4)
Ezte2.0¢] =0, )

where ¢7; is the carbon policy shock and €., is a (n — 1) x 1 vector consisting
of the other structural shocks. Assumption (4) is the relevance requirement and
assumption (5) is the exogeneity condition. These assumptions, in combination

with the invertibility requirement (3), identify s; up to sign and scale:

IE[ztut]

U Elzu ]’

(6)
provided that E[zsup 4] # 0. To facilitate interpretation, we scale the structural
impact vector such that a unit positive value of €;; has a unit positive effect on
Y14 1€ 81,1 = 1. Iimplement the estimator with a 2SLS procedure and estimate
the coefficients above by regressing i; on i ; using z; as the instrument. To con-
duct inference, I employ a residual-based moving block bootstrap, as proposed
by Jentsch and Lunsford (2019).

Internal instrument approach. To address potential problems of non-
invertibility, I also employ an internal instrument approach. For identification,
we have to assume in addition to (4)-(5) that the instrument is orthogonal to leads

and lags of the structural shocks:
E[ze11j] =0, forj#0. (7)

In return, we can dispense of the invertibility assumption underlying equa-
tion (3). Under these assumptions, we can estimate the dynamic causal ef-
fects by augmenting the VAR with the instrument ordered first, y; = (z¢, y})’,
and computing the impulse responses to the first orthogonalized innovation,
§1 = [chol(X)].1/[chol(X)]11. As Plagborg-Mgller and Wolf (2019) show, this
approach consistently estimates the relative impulse responses even if the instru-

ment is contaminated with measurement error or if the shock is non-invertible.

4To be more precise, the VAR does not have to be fully invertible for identification with external
instruments. As Miranda-Agrippino and Ricco (2018) show;, it suffices if the shock of interest is
invertible in combination with a limited lead-lag exogeneity condition.

14



3.2. Empirical specification

Studying the macroeconomic impact of carbon policy requires modeling the Eu-
ropean economy and the carbon market jointly. The baseline specification con-
sists of eight variables. For the climate block, I use the energy component of
the HICP as well as total GHG emissions.” To proxy the state of the economy,
I include the headline HICP, industrial production, and the unemployment rate.
Given that the economy was at the effective lower bound for most of the sample
period, I use the two-year rate as the relevant monetary policy indicator. How-
ever, using the shadow rate or other longer-term rates produces similar results.
Finally, I include a stock market index and the Brent crude oil price, deflated by
the HICP, as financial indicators. More information on the data and its sources
can be found in Appendix A.2.

The sample period starts in January 1999, when the euro was introduced, and
runs until December 2019, stopping before the outbreak of the Covid pandemic.
Recall that the carbon policy surprise series is only available from 2005 when the
carbon market was established. To deal with this discrepancy, the missing values
in the surprise series are censored to zero (see Noh, 2019, for a formal justification
of this approach). The motivation for using a longer sample is to increase the
precision of the estimates. However, restricting the sample to 2005-2019 produces
very similar results.®

Following Sims, Stock, and Watson (1990), I estimate the VARs in levels. Apart
from the unemployment and the two-year rate, all variables enter in log-levels.
As controls I use six lags of all variables and in terms of deterministics only a con-
stant term is included. However, the results turn out the be robust with respect
to all of these choices (see Appendix C.3).

4. The Aggregate Effects of Carbon Pricing

4.1. The impact on emissions and the macroeconomy

In this section, we study how carbon policy shocks affect the macroeconomy
through the lens of the baseline model. Recall, the main identifying assump-

>Unfortunately, GHG emissions are only available at the annual frequency. Therefore, I con-
struct a monthly measure of emissions using the Chow-Lin temporal disaggregation method with
indicators from Quilis’s (2020) code suite. As the relevant monthly indicators, I include the HICP
energy and industrial production. The results are robust to extending the list of indicators used.

®Note that while the carbon market was only established in 2005, the EU agreed to the Kyoto
protocol in 1997 and started planning on how to meet its emission targets shortly after. The
directive for establishing the EU ETS came into force in October 2003 (Directive 2003/87/EC).
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tion behind the external instrument approach is that the instrument is correlated
with the structural shock of interest but uncorrelated with all other structural
shocks. However, to be able to conduct standard inference, the instrument has
to be sufficiently strong. To analyze whether this is the case, I perform the weak
instruments test by Montiel Olea and Pflueger (2013).

The carbon policy surprise series turns out to be a strong instrument. The
heteroskedasticity-robust F-statistic in the first stage is 17.43. As this is clearly
above conventional critical values, we conclude that the instrument appears to
be sufficiently strong to conduct standard inference.

Having established that the carbon policy surprise series is a strong instru-
ment, we can now turn to the discussion of the macroeconomic and environmen-
tal impacts of carbon policy shocks. Figure 3 shows the impulse responses to the
identified carbon policy shock, normalized to increase the HICP energy compo-
nent by one percent on impact. The solid black lines are the point estimates and
the shaded areas are 68 and 90 percent confidence bands based on 10,000 boot-
strap replications.

A restrictive carbon policy shock leads to a strong, immediate increase in en-
ergy prices and a significant and persistent fall in GHG emissions. Thus, carbon
pricing appears to be successful at reducing emissions and mitigating climate
change by increasing the cost of emitting. Turning to the macroeconomic vari-
ables, we can see that the fall in emissions does not come without cost. Industrial
production falls and the unemployment rate rises significantly. The labor market
response turns out to be particularly pronounced. Consumer prices, as measured
by the HICP, increase. The pass-through is strong for headline, however, core
consumer prices tend to increase as well but the response is more short-lived (see
Figure B.4 in the Appendix). Monetary policy appears to lean against the infla-
tionary pressures, which likely exacerbates the effects on activity. Stock prices do
not respond significantly on impact but then tend to fall, anticipating the fall in
activity. However, the response is imprecisely estimated. Oil prices on the other
hand increase significantly, reflecting the fact that European oil producers and
refineries are also covered by the emissions trading scheme.”

In terms of magnitudes, the shock leads to an increase in energy prices of
about 1.6 percent at peak. GHG emissions and industrial production decline by
around 0.6 percent, the unemployment rate rises by about 0.2 percentage points
and consumer prices increase by slightly more than 0.2 percent. The two-year

“The EU ETS covers emissions associated with exploration and drilling, production and pro-
cessing, transportation, and refining of oil. This includes energy use associated with these activi-
ties and gas flaring, and may thus also affect crude oil prices. In addition, substitution away from
coal-fired electricity could put further upward pressure on oil prices.
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Figure 3: Impulse Responses to a Carbon Policy Shock

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.

rate increases by about 25 basis points, stock prices fall by over 1.5 percent and oil
prices increase by around 8 percent — all measured at the peak of the responses.
Thus, the responses are not only statistically but also economically significant.
While the price impacts materialize rather quickly, economic activity and GHG
emissions only fall with a substantial lag. The implied price elasticity of emis-
sions lies in the ballpark of the estimates in Metcalf (2019). It is also interesting to
observe that the fall in output appears to be less persistent than the fall in emis-
sions — implying an improvement in the emissions intensity at longer horizons.

We will revisit this finding in Section 6, where I study the effects of carbon pricing
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on green innovation.

The results from the internal instrument model turn out to be very similar, see
Appendix B.2. The signs are all consistent and the responses are of similar shape
and magnitude. Only the estimated response of the two-year rate is somewhat
less stable. The pre-test for invertibility by Plagborg-Meller and Wolf (2019) can
also not reject the null of invertibility at the 10 percent level. Overall, these find-
ings suggest that the results are robust to relaxing the assumption of invertibility.

To summarize, the above findings clearly illustrate the policy trade-off be-
tween reducing emissions and thus the future costs of climate change and the
current economic costs associated with climate change mitigation policies. It is
useful to contrast these results to Metcalf and Stock (20202), who study the eco-
nomic and environmental impact of European carbon taxes. They find that these
taxes were successful at reducing emissions but had no robust negative effect on
output and employment.

A crucial difference is that European carbon taxes do not include the power
sector, which is covered by the EU ETS, and plays a crucial role for the macroe-
conomic effects that I estimate. In fact, in terms of magnitudes my results are
consistent with previous evidence on energy price shocks, such as oil shocks (see
e.g. Kilian, 2009; Baumeister and Hamilton, 2019; Kanzig, 2021). Furthermore, in
many European countries, carbon taxes were implemented as part of a broader
tax reform which often included other changes to the tax code to cushion the im-
pact of carbon taxes. As we will discuss in Section 5.5, the distribution of carbon
revenues plays an important role in the transmission of carbon policy shocks. Fi-
nally, given that the EU is a monetary union, we would not expect a monetary
response to national carbon tax policies. By contrast, monetary policy seems to
lean against the inflationary pressures from the EU ETS, which also helps explain
the larger economic impacts (Bernanke, Gertler, and Watson, 1997).

In Appendix C, I perform a comprehensive series of robustness checks on the
identification strategy and empirical approach used to isolate the carbon policy
shock. These checks indicate that the results are robust along a number of dimen-
sions including the selection of event dates, the construction of the instrument,

the estimation technique, the model specification, and the sample period.

4.2. Historical importance

In the previous section, we have seen that carbon policy shocks can have signif-
icant effects on emissions and the economy. An equally important question is
how much of the historical variation in the variables of interest can carbon policy

account for? To this end, I perform a historical decomposition exercise.
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Figure 4 shows the historical contribution of carbon policy shocks to GHG
emissions growth. We can see that carbon policy shocks have contributed mean-
ingfully to variations in GHG emissions in many episodes. Importantly, however,
they cannot account for the significant fall in emissions after the global financial
crisis. This suggests that the high-frequency approach is not mistakenly picking
up demand-related disturbances, as the fall in emissions during the Great Reces-
sion was clearly driven by lower demand and not supply-specific factors in the

European carbon market.
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Figure 4: Historical Decomposition of GHG Emissions Growth

Notes: The figure shows the cumulative historical contribution of carbon policy shocks
over the estimation sample for GHG emissions growth against the actual evolution of
emissions growth. The solid line is the point estimate and the dark and light shaded
areas are 68 and 90 percent confidence bands, respectively.

On average, carbon policy shocks account for close to a quarter of the varia-
tions in emissions at horizons up to two years. Furthermore, carbon policy shocks
also explain a non-negligible share of the variations in energy prices and other
macroeconomic and financial variables (see the variance decomposition in Ap-
pendix B.2).

4.3. Wider effects and propagation channels

The above results suggest that energy prices play an important role in the trans-
mission of carbon policy shocks. Power producers seem to pass through the emis-
sion costs to energy prices to a significant extent, as can be seen from the strong
energy price response. This is in line with previous empirical evidence (see e.g.
Fabra and Reguant, 2014).

To get a better understanding of how carbon policy shocks transmit to the
economy, I analyze the effects on a wider range of macroeconomic and financial

variables. To compute the impulse responses, I extract the carbon policy shock
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from the monthly VAR as CPShock; = s&Z‘._lut (for a derivation, see Stock and

Watson, 2018) and estimate the effects using simple local projections:

Yitsh = Blo + ¥,CPShock + Bl 1yis—1+ ... + ﬁ;'q,pyi,tfp + it (8)

where ! is the effect on variable i at horizon h. Importantly, we can also use this
approach to estimate the effects on variables that are only available at the quar-
terly or even annual frequency. In this case, we aggregate the shock CPShock; by
summing over the respective months before running the local projections. Us-
ing the shock series directly in the local projections instead of the high-frequency
surprises increases the statistical power of these regressions, as the shock series
is consistently observed and spans the entire sample. Note, however, that this
comes at the cost of assuming invertibility. Throughout the paper, I normalize the
responses to have the same peak effect on HICP energy as in the baseline model
to facilitate comparison of the results. The confidence bands are computed using
the lag-augmentation approach (Montiel Olea and Plagborg-Magller, 2020).5

Figure 5 shows the impulse responses of real GDP, consumption, investment,
and wages. Consistent with the monthly evidence, we find that the shock leads to
a significant fall in real GDP. Looking at the different components, we can see that
the fall in activity appears to be driven by lower consumption and investment.
The consumption response turns out to be particularly pronounced.

Higher energy prices can affect the economy via both direct and indirect chan-
nels. They directly affect households and firms by reducing their discretionary
income. Given that energy demand is considered to be inelastic, consumers and
firms have less money to spend and invest after paying their energy bills (see e.g.
Hamilton, 2008; Edelstein and Kilian, 2009). Energy prices also affect the econ-
omy indirectly through the general equilibrium responses of prices and wages
and hence of income and employment.

Interestingly, the magnitudes of the effects are much larger than what can be
accounted for by the direct effect through higher energy prices alone. If energy
demand is completely inelastic, the direct price effect is bounded by the energy
share in expenditure, which is around 10 percent in Europe. Given the shock
magnitude, we would thus expect a direct impact on consumption of around 15
percent. However, the estimated consumption response is substantially larger
than that, suggesting indirect effects play an important role in the transmission

of carbon policy shocks. In fact, the significant fall in wages coupled with the em-

8As controls in the local projections, I use 7 lags for monthly variables, 3 lags for quarterly
variables and 1 lag for annual variables.
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Figure 5: Effect on GDP, Consumption, Investment and Wages

Notes: Impulse responses of a selection of quarterly variables estimated using local pro-
jections on the carbon policy shock. The responses are normalized to have the same peak
effect on HICP energy as in the baseline model.

ployment effects documented in Section 4.1 strongly supports this notion. The
mechanism works as follows. After a carbon policy-induced energy price in-
crease, the direct decrease in households” and firms’ consumption and invest-
ment expenditure leads to lower output and exerts downward pressure on em-
ployment and wages. At the same time, interest rates increase as monetary policy
leans against the inflationary pressures coming from higher energy prices, further
exacerbating these effects. The additional fall in aggregate demand induced by
lower employment and wages lies at the core of the indirect effect.

There is little evidence that carbon policy shocks strongly transmit through
financial channels or elevated uncertainty. As we have seen, the stock market
displays a muted response and measures of financial conditions such as credit
spreads do not respond significantly as well. Similarly, there is no significant
response of uncertainty measures (see Figure B.5 in the Appendix). Thus, these
alternative channels are unlikely to play a dominant role in the transmission of
carbon policy.

Finally, there are also transmission channels that work through the supply
side of the economy. Bagaee and Farhi (2019) focus on the input-output structure
of firms. They show that the centrality of the power sector can amplify the effects
of energy shocks in the presence of non-linearities. However, given that the sam-
ple of interest was characterized by relatively small shocks, we would not expect
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non-linearities to play a major role. In the next section, I shed more light on the
role of different transmission channels using detailed household micro data.

5. The Heterogeneous Effects of Carbon Pricing

Recently, there has been a big debate in Europe on energy poverty and the dis-
tributional effects of climate policy amid the European Green Deal (European
Comission, 2021). The situation has since been exacerbated by the Russian inva-
sion of Ukraine, which led to a substantial increase in energy bills.

Against this backdrop, it is crucial to better understand the distributional im-
pact of the EU ETS. If certain groups are left behind, this could ultimately un-
dermine the success of climate policy. To this end, I study the heterogeneous
effects of carbon pricing on households. This will help to get a better picture on
how carbon pricing affects economic inequality. Furthermore, looking into poten-
tial heterogeneities in the consumption responses helps to better understand the
transmission channels at work. There is reason to believe that there are impor-
tant heterogeneities at play. First, the direct effect through energy prices crucially
depends on the energy expenditure share, which is highly heterogeneous across
households. Second, households can also be affected differently in indirect ways,
as they may face different impacts on their incomes. As poorer households tend
to have a higher energy share and their income tends to be more cyclical, we
expect the impact to be regressive.

5.1. Household survey data

To be able to analyze the heterogeneous effects of carbon policy shocks on house-
holds, we need detailed micro data on consumption expenditure and income at
a regular frequency for a sample spanning the last two decades. Unfortunately,
such data does not exist for most European countries let alone at the EU level.
Therefore, I focus here on the UK which is one of the few countries that has such
data as part of the Living Costs and Food Survey (LCFS).”

The LCEFS is the major survey on household spending in the UK and pro-
vides high-quality, detailed information on expenditure, income, and household

characteristics. The survey is fielded in annual waves with interviews being con-

9The UK was part of the EU ETS until the end of 2020. Over the sample of interest, the ag-
gregate effects in the UK are comparable to the ones documented at the EU level, see Figure B.6
in the Appendix. To further mitigate concerns about external validity, I show that the results for
other European countries are comparable, using similar survey data for Denmark and Spain, see
Figure B.18.
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ducted throughout the year and across the whole of the UK. I compile a repeated
cross-section based on the last 20 waves, spanning the period from 1999 to 2019.
Each wave contains around 6,000 households, generating over 120,000 observa-
tions in total. To compute measures of income and expenditure, I first express the
variables in per capita terms by dividing household variables by the number of
household members. In a next step, I deflate the variables by the (harmonized)
consumer price index to express them in real terms. For more information, see
Appendix A.3.

Ideally, we would like to observe how individual consumption expenditure
and income evolve over time. Unfortunately, the LCFS being a repeated cross-
section has no such panel dimension. To construct a pseudo-panel, it is common
to use a grouping estimator in the spirit of Browning, Deaton, and Irish (1985).

A natural dimension for grouping households is their income. However, as
the income may endogenously respond to the shock of interest, we cannot use the
current household income as the grouping variable. Luckily, the LCFS does not
only collect information about current household income but also about normal
household income. This can be thought of as a proxy for permanent income.!’
Based on normal disposable household income, I group households into three
pseudo-cohorts: low-income, middle-income, and high-income households. Fol-
lowing Cloyne and Surico (2017), I assign each household to a quarter based on
the date of the interview, and create the group status as the bottom 25 percent of
the normal disposable income distribution for low-income, the middle 50 percent
for middle-income, and the top 25 percent for high-income in every quarter of a
given year. The individual variables are then aggregated using survey weights to
ensure representativeness of the British population.

Table 1 presents some descriptive statistics, overall and by income group.
We focus here on expenditure excluding housing, however, the results including
housing turn out to be similar. We can see that quarterly household expendi-
ture is increasing in income. While low-income households spend a large part of
their budget on non-durables, richer households spend more on durables. Im-
portantly, poorer households spend a significantly higher share of their expendi-
ture on energy: the energy share stands at almost 10 percent for low-income, just
above 7 percent for middle-income, and around 5 percent for high-income house-
holds. Thus, to the extent that energy demand is inelastic, poorer households are

more exposed to increases in energy prices.

107 have verified that normal income does not respond significantly to the carbon policy shock.
In contrast, current income falls significantly and persistently, as shown in Figure B.12 in the
Appendix. Alternatively, I group households by an estimate of permanent income obtained from
a Mincerian-type regression. The results again turn out to be robust, see Appendix B.3.

23



Table 1: Descriptive Statistics on Households in the LCFS

Overall By income group

Low-income Middle-income High-income

Income and expenditure

Normal disposable income 6,748 3,740 6,807 10,866

Total expenditure 4,458 3,025 4,444 6,238
Energy share 72 9.5 7.2 52
Non-durables (excl. energy) share 81.5 81.6 81.6 81.3
Durables share 11.2 8.9 11.2 13.5

Household characteristics

Age 51 47 54 49
Education (share with post-comp.) 34.0 25.7 29.7 51.2
Housing tenure
Social renters 20.8 46.9 17.4 3.7
Mortgagors 42.3 255 41.3 60.0
Outright owners 36.9 27.7 41.3 36.4

Notes: The table shows descriptive statistics on quarterly household income and expen-
diture (in 2015 pounds), the breakdown of expenditure into energy, non-durable goods
and services excl. energy, and durables (as a share of total expenditure) as well as a se-
lection of household characteristics, both over all households and by income group. For
variables in levels such as income, expenditure and age the median is shown while the
shares are computed based on the mean of the corresponding variable. The expendi-
ture shares are expressed as a share of total expenditure excluding housing, and semi-
durables are subsumed under the non-durable category. Age corresponds to the age of
the household reference person and education is proxied by whether a household mem-
ber has completed a post-compulsory education.

The different income groups turn out to be comparable in terms of their age.
Higher-income households tend to be better educated, and are more likely to be

homeowners, either by mortgage or outright.

5.2. Heterogeneity by household income

We are now in a position to study how households’ expenditure and income re-
spond to carbon policy shocks and, more importantly, how the response varies
by income group. Figure 6 shows the responses of total household expenditure
and current income for the three income groups we consider.'’ The solid black
lines are again the point estimates and the dark/light shaded areas are 68 and 90
percent confidence bands.

1o eliminate some of the noise inherent in survey data, I smooth the expenditure and income
measures with a backward-looking (current and previous three quarters) moving average, as in
Cloyne, Ferreira, and Surico (2020). The results are robust to using the raw series instead (even
though the responses become more jagged and imprecise) or using smooth local projections as
proposed by Barnichon and Brownlees (2019), see Figure B.10 in the Appendix. To flexibly control
for seasonal and trending behavior, I include a set of quarterly dummies and a linear trend.
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Figure 6: Household Expenditure and Income Responses by Income Group

Notes: Impulse responses of total expenditure (excluding housing) and current total dis-
posable household income for low-income (bottom 25 percent), middle-income (middle
50 percent) and high-income households (top 25 percent). The households are grouped
by total normal disposable income and the responses are computed based on the median
of the respective group.

We can see that there is pervasive heterogeneity in the expenditure response
across income groups. Low-income households reduce their expenditure signif-
icantly and persistently. In contrast, the expenditure response of higher-income
households is rather short-lived and only barely statistically significant. This re-
sult is even more stark when we separate between different types of expenditure.
Figure 7 shows the responses of energy, non-durable goods and services exclud-
ing energy, and durable goods expenditure. We can see that poor households sub-
stantially lower their non-durable expenditure while higher-income households
display an insignificant response. For durable expenditures, the pattern is less
clear cut. While low-income household cut durable expenditure, high-income

households also display a significant response. Therefore, the heterogeneity in
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Figure 7: Energy, Non-durables and Durables Expenditure Responses by Income Group

Notes: Impulse responses of energy, non-durables excluding energy and durables expenditure for low-income (bottom 25 percent), middle-
income (middle 50 percent) and high-income households (top 25 percent). The households are grouped by total normal disposable income and
the responses are computed based on the median of the respective group.



the total expenditure responses appears to be driven by the non-durable expendi-
ture component. Note that these group-specific differences are not only econom-
ically but also statistically significant (see the responses of the group differences
in Figure B.11 in the Appendix).

Low-income households are more affected in two ways. First, they face a
larger and more significant increase in their energy bill. This is consistent with the
fact that these households have a higher energy share to start with and their en-
ergy demand is particularly inelastic, for instance because of financial constraints.
Second, looking at the income responses, we can also see that they face a more
significant and substantial fall in their income. As we will see in Section 5.4, this
appears to be driven by the fact that they tend to work in sectors that are more
affected by the carbon policy shock. Taken together, the shock leads to a substan-
tial reduction in discretionary income, which forces poorer households, who are
also more likely to be financially constrained, to cut their expenditure by more.

At this stage, it is worth discussing a potential concern about grouping house-
holds concerning selection. The assignments into the income groups are not
random and some other characteristics may, potentially, be responsible for the
heterogeneous responses I document. To mitigate these concerns, I group the
households by a selection of other grouping variables, including age, education
and housing tenure. The results are shown in Figures B.14-B.16 in the Appendix.
While there is not much heterogeneity by age, less educated households tend
to respond more than better educated ones and social renters tend to respond
more than homeowners. However, none of the alternative grouping variables
can account for the patterns uncovered for income, suggesting that we are not

spuriously picking up differences in other household characteristics.

5.3. Direct versus indirect effects

We have seen that there is substantial heterogeneity in the households” expendi-
ture response to carbon policy shocks: while richer households change their ex-
penditure only marginally, low-income households lower their expenditure sig-
nificantly and persistently. Furthermore, indirect, general equilibrium effects via
income and employment seem to play an important role in the transmission of
the policy. To shed more light on the role of direct and the indirect effects, it is
instructive to convert the responses into an equivalent pound change in income
and expenditure over the three-year impulse horizon. This can be interpreted as
the overall short-run monetary adjustment following the change in carbon policy.

Table 2 shows the results, overall and by income group. We can see that en-

ergy expenditure increases for all income groups, but only low-income house-
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holds display a strong and significant increase. These households also cut their
expenditure significantly, while the adjustment for higher-income households is
less pronounced and not statistically significant. Importantly, the increase in en-
ergy bills cannot account for the large fall in non-energy expenditure. Note, how-
ever, that the shock also leads to a substantial fall in households’ incomes, which
is again particularly pronounced for low-income households. Coupled with the
fact that these households are more likely to be financially constrained (see e.g
Jappelli and Pistaferri, 2014), this helps explain the significant expenditure re-

sponse.
Table 2: Cumulative Monetary Changes over Impulse Horizon
Overall By income group
Low-income  Middle-income  High-income
Expenditure
Energy 23.88 28.36 22.53 2211
[-16.93, 64.69] [8.21,4851]  [-18.02,63.07]  [-0.96,45.17]
Non-durables -103.75 -134.76 -92.33 -95.60
excl. energy [212.38,4.87] [-241.21,-28.32] [-192.67,8.02] [-279.87, 88.67]
Durables -6.95 -2.92 -0.44 -23.99
[ -56.09, 42.20] [ -20.75, 14.92] [-10.37,9.50] [-71.44, 23.45]
Income

-203.70 -214.90 -138.65 -322.60
[-387.13,-2027] [-376.38,-53.41] [-301.82,24.52] [-635.44,-9.77]

Notes: The table reports the overall pound change in expenditure and income over the
three-year period following a carbon policy shock (in 2015 pounds). Bootstrapped 90 per-
cent confidence intervals are reported in brackets. The overall pound change is computed
as the present discounted value of the impulse response, multiplied by the corresponding
average quarterly expenditure/income.

By contrast, high-income households also display a significant fall in their
income, however, their expenditure responses turn out to be insignificant, con-
sistent with the notion that these households are less financially constrained and
thus better able to cushion the adverse effects on their income. Overall, these re-
sults point to an important role of indirect effects via income and employment.
My estimates suggest that the direct effect through energy prices accounts for less
than a third of the aggregate consumption response, as proxied by the increase in
energy bills relative to the overall fall in expenditure (23.88/86.82).

The expenditure heterogeneity uncovered in this section is striking, especially
against the backdrop that low-income households have much lower levels of ex-

penditure to start with (see in Table 1). Put differently, low-income households
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account for over 30 percent of the aggregate effect of carbon pricing on consump-
tion, despite the fact that they make up for a much smaller share of consumption
in normal times (around 15 percent). Accounting for indirect, general equilib-
rium effects turns out to be crucial to correctly assess the distributional impact
of carbon pricing. Focusing on the direct effect via the energy share alone can
understate the actual distributional effects considerably.

The distributional consequences also likely play an important role for the
magnitude of the aggregate expenditure response. My findings are consistent
with a literature that emphasizes the role of MPC heterogeneity in combination
with unequal income incidence for the transmission of aggregate demand shocks
(Bilbiie, 2008; Auclert, 2019; Patterson, 2021, among others). These studies show
in the context of aggregate-demand policies that the aggregate impact can be
amplified when the policy disproportionately affects the incomes of individuals
whose consumption is more sensitive. My results suggest that such a mechanism
is also at play in the transmission of carbon pricing, following the initial fall in
non-energy expenditure. Thus, even though low-income households only make
up for a relatively small portion of the population, they play an important role

for the transmission of the policy to the macroeconomy.

Alternative channels. Thus far, I focused my analysis on the direct effect via en-
ergy prices and the indirect, general-equilibrium effect via income. While there
may also other channels at work, I briefly discuss here why these alternative
channels are unlikely to play an important role in the transmission of carbon pol-
icy. First, carbon pricing may also have an effect on the prices of other goods via
substitution effects, which may in turn affect households” budgets. However, as
shown in Section 4.1, the response of core consumer prices is much more muted
and only barely significant; therefore this channel does likely not play a major
role. Second, there may be a number of channels that work through the response
of durable expenditure, for instance because of uncertainty or precautionary mo-
tives, or via a reduction in durables that are complementary in use with energy
(see also Edelstein and Kilian, 2009). However, the overall response of durable ex-
penditure is quantitatively too small to play a dominant role in the transmission
of carbon policy. Furthermore, in Section 4.3 I did not find any significant change
in aggregate uncertainty after the shock. Finally, households may also adjust their
saving behavior as interest rates increase in response to the shock. However, this
channel is particularly relevant for higher-income households, which contribute
relatively less to the aggregate consumption response.
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5.4. What drives the income response?

We have seen that there is significant heterogeneity in the households” income
responses. This section aims to shed light on what is driving the income inci-
dence by household group. There are at least two potential sources of heterogene-
ity. First, households may differ in their labor income, for instance because they
work in sectors that are differentially affected by the policy. Second, households
may differ in their income composition, as some households also have substantial
sources of financial income. I will focus here on the former, which is more rele-
vant to understand the heterogeneity at the lower-end of the income distribution.
In Appendix B.3, I also study the role of the household income composition.

To investigate into potential heterogeneities in labor income, I study how the
responses vary by the sector of employment using data from the UK Labour Force
Survey (LFS).!? I consider two dimensions to group sectors. First, I group sectors
by their energy intensity to gauge the role of the conventional cost channel. Sec-
ond, I group sectors by how sensitive they are to changes in aggregate demand.'

Table 3: Sectoral Distribution of Employment

Sectors Overall By income group

Low-income Middle-income High-income

Energy-intensity
High 21.6 9.8 25.6 25.8
Lower 784 90.2 74.4 74.2

Demand-sensitivity
High 30.5 49.0 27.2 18.1
Lower 69.5 51.0 72.8 81.9

Notes: The table depicts the sectoral employment distribution of households in the LFS,
both overall and by income group. I group sectors along two dimensions: their energy
intensity and their demand sensitivity. The energy-intensive sectors include agriculture,
utilities, transportation, and manufacturing. The demand-sensitive sectors include con-
struction, wholesale and retail trade, hospitality, and entertainment and recreation.

Table 3 presents descriptive statistics on the sectoral distribution of house-
holds, both overall and by income group. We can see that only few low-income

households work in sectors with a high energy intensity such as utilities or man-

12Unfortunately, the LCFS does not include any information on the sector of employment.
Therefore, I use data from the LFS which provides detailed information on employment sector
and income. For more information on the LFS, see Appendix A.3.

131 measure the demand-sensitivity by estimating the elasticity of sectoral labor income to
changes in aggregate income. Sectors that produce more ‘discretionary” goods and services turn
out to be more demand-sensitive. See Appendix B.3 for more information.
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ufacturing. Thus, the sectors’ energy intensity is unlikely to explain the hetero-
geneous income responses that we observe. A more relevant dimension of het-
erogeneity appears to be the sectors” demand sensitivity: low-income households
work disproportionally in sectors that tend to be more sensitive to aggregate fluc-
tuations, such as retail or hospitality, while a large majority of higher income

households work in less demand-sensitive sectors.
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Figure 8: Income Response by Sector of Employment

Notes: Impulse responses of income (pay from main and second job net of deduc-
tions and benefits) in different sectors, grouped by their energy-intensity and demand-
sensitivity. The response is computed based on the median income in the respective
group of sectors. The sector groups are described in detail in Table 3.

Figure 8 shows how the median income across different sectors changes after
a carbon policy shock. While sectors with a high energy intensity display a some-
what stronger fall in incomes than sectors with a lower intensity, the differences
are not that large quantitatively. By contrast, there is significant heterogeneity by
the sectors” demand-sensitivity: households working in demand-sensitive sec-
tors experience the largest and most significant fall in their income while house-
holds in less-demand sensitive sectors display more muted income responses.
This helps explain the observed heterogeneity in the income responses. In re-
sponse to a carbon policy shock, these sectors face a stronger decrease in demand,
also because households cut expenditure more in these sectors, and thus react by
laying off employees and cutting compensation. As low-income households are
overrepresented in these sectors, they are disproportionally affected.
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These results further support the notion that carbon policy shocks strongly
transmit to the economy not only through the traditional cost channel but also
through the demand side of the economy, in line with previous evidence by Kil-
ian and Park (2009) on the transmission of energy price shocks. A novel insight
is that in the presence of household heterogeneity, the demand channel may be
even stronger. This result speaks directly to a growing literature on the role of
Keynesian supply shocks (see e.g. Guerrieri et al., 2022; Cesa-Bianchi and Fer-
rero, 2021).

5.5. The role of redistributing carbon revenues

We have seen that the economic costs of carbon pricing are borne unequally
across society. Low-income households are the most affected, having to reduce
their expenditures the most, and are contributing disproportionally to the aggre-
gate response. A key question in this context is how the distribution of carbon
revenues matters for the transmission of the policy. Since auctioning became the
default way of allocating allowances, the system produces a growing share of
auction revenues. However, there is no direct redistribution scheme in place that
could offset the distributional effects on households that I document.'* The large
majority of revenues are earmarked and used for climate and energy related pur-
poses.

While using the carbon revenues for climate purposes may help to further
propel emission reductions, my results indicate that redistributing part of the
revenues to the most affected groups in society could mitigate the distributional
effects and reduce the economic costs of climate policy. To the extent that energy
demand is inelastic, which turns out to be particularly the case for low-income

households, this should not compromise the reductions in emissions.

A heterogeneous-agent climate-economy model. To study the role of redis-
tributing carbon revenues more formally, I build a climate-economy model. The
aim is to obtain a framework that can account for the empirical findings and can
be used as a laboratory for policy experiments. The model belongs to the dynamic
stochastic general equilibrium (DSGE) class. It augments the climate-economy

structure by Golosov et al. (2014) with nominal rigidities and household hetero-

4For the period from 2012-2020, the revenues generated by the member states of the EU ETS
exceeded 57 billion euros (European Comission, 20200). The current ETS does not feature a direct
redistribution scheme, however, there are certain other, indirect solidarity measures in place, e.g.
via the Cohesion Fund or the Just Transition Fund. Only in the recent ‘Fit for 55’ plan, the Euro-
pean Commission takes a step in this direction by proposing a Social Climate Fund for the new
ETS in transportation and buildings.
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geneity, as in Bilbiie, Kdnzig, and Surico (2021), to allow for the demand channels
identified in the data. I will only sketch the relevant parts of the model here, a
full description can be found in Appendix D.

The household sector consists of a continuum of infinitely lived households.
Households have identical preferences and derive utility from consumption x
and disutility from labor h. The consumption good is a composite of an energy
and a non-energy good. To retain tractability, I consider a model with limited
heterogeneity. There are two types of households: a share A of households are
hand-to-mouth (H) and a share 1 — A are savers (S) who choose their consumption
intertemporally. Apart from the difference in MPC, households differ in their en-
ergy expenditure share and income incidence. Consistent with the data, I assume
that the hand-to-mouth have a higher energy share and that their income is more
elastic to changes in aggregate income than savers’.

Households face idiosyncratic risk as they switch exogenously between types.
I'assume that only bonds are liquid and can be used to self-insure. There is limited
asset market participation. Only savers are able to self-insure themselves using
liquid bonds.'> They choose their consumption intertemporally, according to the

following Euler equation:

Uy (xst, hs,t)
Pst

= BE,

R? u Jh u h
t (S x(Xs,041, M5 041) +(1-59) x(XH,41 H,t+1)> , 9)
[T Ps,t+1 PH,t+1

where x;; is total consumption of household i, h;; is labor supply, Uy is the

. e R . . oo
marginal utility, 7 is the real risk-free rate, p;; is the price index of the house-
hold’s consumption basket, and 1 — s is the transition probability of becoming

hand-to-mouth. The demand for non-energy and energy goods is given by the

Pet
Ps,t
€y is the elasticity of substitution between non-energy and energy goods. Savers

following schedules: cg; = ag, <%> o xstand eg; = ag, ( >_€x xst, Where
also invest in capital k; and supply labor hg;. The corresponding optimizing
equations are standard and relegated to the Appendix. Savers receive labor in-
come, financial income from dividends and capital returns, and transfers wg;
from the government.

Hand-to-mouth households have no assets and thus consume all of their in-
come in every period: py Xyt = yg +. Their income yp ¢ consists of labor income
plus government transfers, wp ;. The non-energy and energy demand functions,

and labor supply equation are analogous to the expressions for the savers.

I5This is a tractable way of introducing idiosyncratic risk and liquidity in spirit of full-blown
HANK models a la Kaplan, Moll, and Violante (2018), see Bilbiie (2020) and Bilbiie, Kdnzig, and
Surico (2021) for a detailed discussion.
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The firm block of the model consists of two sectors: energy and non-energy
producers. Energy firms produce energy using labor as an input, and can adjust

their prices flexibly. Their production technology is given by
er = detheyt, (10)

as in Golosov et al. (2014). I assume that there is only a single source of energy
(e.g. coal) that is available in approximately infinite supply. Without loss of gen-
erality, energy is measured in terms of carbon content. Energy firms are subject
to a carbon tax 7;. This conforms well with my empirical analysis, where I study
the impacts of plausibly exogenous changes in carbon prices. The optimal energy
supply is characterized by w; = (1 — Tt)pe,t%.

The non-energy sector consists of standard New Keynesian firms that produce
non-energy goods using capital, energy, and labor as inputs and set prices subject
to nominal rigidities. Their production technology is given by

‘y

1 Sy—l 1 Ey—l €y 1
yt = e_')’st (1 _V)ey (atkltxh;;a> K +V€y (ey’t) Y 7 (11)

where e~ 7%t captures climate damages, modeled as a function of the atmospheric
carbon concentration s;. The cost-minimization problem gives rise to the factor
demands for capital r; = ocvlltmth—:, labor w; = (1 — a)vl,tmct% and energy
Pet = vzltmct%, where mc; are real marginal costs and v; ; and v, are auxiliary
terms given in the Appendix. The price setting problem gives rise to a standard
Phillips curve, which in log-linear form reads 7t; = «nic; + BE;7t;+1, where hatted
variables denote log-deviations from steady state.

As in Golosov et al. (2014), the current level of atmospheric carbon concentra-
tion is a function of current and past emissions, s; = (1 — ¢)s;_1 + @oer, where ¢
captures the share of emissions that do not immediately exit the atmosphere, and
1 — ¢ measures how emission decay over time.

The government runs a balanced budget in every period, i.e. all transfers are

financed by tax revenues. We consider the following transfer policy
Awpy = utiperer and (1 —ANwgy = (1 — u) T pe cer- (12)

The distribution of carbon tax revenues are governed by the parameter y. As the
baseline, I assume that all carbon revenues accrue to the savers y = 0. Later, we
will study alternative transfer policies. Carbon taxes 7; are set according to the
following rule: 7z = (1 — pr)T + prTt—1 + €+ Finally, the monetary authority
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follows a standard Taylor rule, targeting headline inflation. I calibrate the model
using macro and micro moments from the data and drawing on values previously

used in the literature. I discuss the calibration in detail in Appendix D.7.

Model evaluation. The impulse responses to a carbon policy shock, normal-
ized to match the estimated peak energy price response, are shown in Figure 9.
In what follows, we focus on the peak responses, as the model is not designed to
match the hump-shaped responses in the data. We can see that the model is suc-
cessful in generating consumption and income responses, overall and by house-
hold group, that are in the same order of magnitude as the estimated responses
in Section 5. As in the data, consumption and income are more responsive to car-
bon policy shocks for the low-income, hand-to-mouth households. In contrast,
the responses of high-income savers are much less pronounced.

The monetary response turns out to be an important factor for the transmis-
sion of carbon policy shocks. Recall that we assume that monetary policy tar-
gets headline inflation and thus leans against the inflationary pressures emerging
from the increase in carbon prices, consistent with the monetary policy response
estimated in the data. If we assume that monetary policy targets core inflation
instead, the effects of carbon policy are attenuated. Household heterogeneity
acts as a further amplifying channel through the unequal income incidence of the
shock linked to the heterogeneity in MPCs. Without these demand channels, it
is difficult to match the empirical magnitudes unless the energy share is set to
implausibly high levels, see Appendix B.4.

Redistributing carbon revenues. We are now in a position to study how differ-
ent carbon revenue redistribution schemes affect the transmission of carbon pol-
icy shocks. Figure 9 compares the baseline case when all carbon revenues accrue
to the savers (blue line) to the case where the revenues are distributed equally
across households y = A (red dashed line).

We can see that redistributing carbon revenues has important consequences:
the aggregate effect on consumption and income is much smaller than in the base-
line case of no redistribution. In contrast, redistributing revenues has a smaller
impact on the response of emissions, see Appendix B.4. The intuition is that the
redistribution scheme stabilizes the income of the hand-to-mouth which trans-
lates into a significantly smaller consumption response as they have a high MPC.
Savers, on the other hand, face a somewhat more prolonged fall in their income
but the effect on their consumption is more muted as they are able to smooth the
effects of the shock. Thus, redistributing carbon revenues also leads to a reduc-
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Figure 9: Model Responses for Consumption and Income

Notes: Impulse responses of consumption and income, in the aggregate as well as for
hand-to-mouth and savers, to a carbon policy shock normalized to match the peak energy
price response in the data. The blue line is the baseline response when carbon revenues
solely accrue to the savers; the red dashed line is the response when carbon revenues are
redistributed equally among hand-to-mouth and savers.

tion in consumption inequality. Emissions on the other hand change by less as
low-income households” energy demand is particularly inelastic and they make
up only a small share of aggregate emissions to start with.

The above findings speak directly to the recent debate on carbon pricing and
inequality in Europe. The model confirms the intuition that redistributing carbon
revenues could mitigate the effect on aggregate consumption and alleviate the
distributional impact without compromising emission reductions to a significant
extent. An interesting case in point in this context is the carbon tax in British
Columbia. Contrary to the EU ETS, the tax was introduced alongside substantial
reductions in income taxes and direct subsidies to the most affected households.

The existing empirical evidence finds that the tax also reduced emissions signif-
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icantly but the effects on economic activity turn out to be smaller (see Metcalf,
2019; Bernard and Kichian, 2021) — consistent with the predictions of my model.

6. Beyond the Short Term

We have seen that carbon pricing is successful in reducing emissions but this
comes at an economic cost, at least in the short term. This section aims to shed
light on some of the longer-term implications, specifically the impact of carbon
pricing on public attitudes towards climate policy and the effects on green inno-

vation.

Attitudes toward climate policies. An important argument for cushioning the
distributional impact is that a successful transition to a low-carbon economy re-
quires public support. If certain groups feel left behind, this could undermine the
success of climate policy as the yellow vest movement in France, which started
as a protest against higher fuel taxes, has shown for instance (Knittel, 2014).

To analyze this question, I use data from the British social attitudes (BSA)
survey. The BSA is an annual survey that asks about the attitudes of the British
population towards a wide selection of topics and is an important barometer of
public attitudes in the UK. To proxy attitudes towards climate policy, I rely on a
question that elicits the approval rate for environmentally-motivated fuel taxes
(see Appendix B.3 for more information).

Low-income Higher-income
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Figure 10: Effect on Attitude Towards Climate Policy

Notes: Impulse responses of public attitude towards climate policy for low- and
higher-income groups. The public attitude towards climate policy is proxied by the
share of households in the British social attitudes survey that express support for
environmentally-motivated fuel taxes. Low-income correspond to the bottom 25 percent
and higher-income to the other 75 percent of the income distribution.

Figure 10 shows the response of the approval rate of environmentally-
motivated tax policies to a carbon policy shock across income groups. While the

37



response of higher-income households is barely significant and even turns pos-
itive at longer horizons, low-income households display a significant and per-
sistent fall in the support of climate policies. Recall, these households are also
the ones that are most adversely affected by carbon policy shocks. These results
suggest that compensating the most affected households may help increase the
public support of climate change mitigation policies — consistent with recent evi-
dence by Anderson, Marinescu, and Shor (2019) and Dechezleprétre et al. (2022).

The impact on green innovation. A key motivation behind carbon pricing is to
create an incentive for directed technical change. In fact, part of the vision for
the EU ETS is to promote investment in clean, low-carbon technologies (Euro-
pean Comission, 2020a). Innovation in low-carbon technologies will be crucial to
sustain emission reductions without permanently lowering output.

To analyze this channel empirically, I study how the patenting activity in
climate change mitigation technologies changes in response to carbon policy
shocks. I use data on patent applications from the European Patent Office (EPO),
which has developed specific classification tags for patents in climate change mit-
igation technologies.
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Figure 11: Patenting in Climate Change Mitigation Technologies

Notes: Impulse responses of patenting activity in climate change mitigation technologies,
as measured by the number of climate change mitigation patents as a share of all patents
filed at the EPO. The left panel displays the share based on all patents while the right
panel focuses on high-value patents, i.e. patents filed at multiple patent offices.

The results are shown in Figure 11. We can see that the shock leads to a signifi-
cant increase in low-carbon patenting, and this is robust to focusing on high-value
patents. The effect is also economically significant as the average share of climate
change mitigation patents is around 10 percent. Thus, carbon pricing appears to
be successful in stimulating green innovation. These results support the findings
of Calel and Dechezleprétre (2016), who employ a quasi-experimental design ex-
ploiting inclusion criteria at the installations level to estimate the causal impact
of the EU ETS on firms’ patenting.
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7. Conclusion

Fighting climate change is one of the greatest challenges of our time. While it has
proved to be difficult to make progress at the global level, several national car-
bon pricing policies have been put in place. However, still little is known about
the effects of these policies on emissions and the economy. This paper provides
new evidence from the largest carbon market in the world, the EU ETS. I show
that tightening the carbon pricing regime leads to a significant increase in en-
ergy prices, a persistent fall in emissions and an uptick in green innovation. This
comes at the cost of temporarily lower economic activity and higher inflation.
Importantly, these costs are borne unequally across society. Poorer households
lower their consumption significantly and are driving the aggregate response
while richer households are less affected. Not only are these households more
exposed to carbon pricing because of their higher energy expenditure share, they
also experience a larger fall in their income. These indirect effects via income and
employment turn out to be quantitatively important. My results suggest that re-
distributing some of the carbon revenues to the most affected groups can reduce
the economic costs of carbon pricing and may help strengthen the public support
of the policy. In future work, it would be interesting to better understand how
climate, fiscal and monetary policy can be coordinated to organize a successful
transition to a low-carbon economy.
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A. Data

A.1. Details on regulatory events

In this Appendix, I provide a detailed list of all the regulatory events used in the

paper. To collect the events, I relied on a number of different sources. After 2010,

most of the relevant news can be found on the European Commission Climate

Action news archive: https://ec.europa.eu/clima/news/news_archives_en.

Before that, I used information from the official journal of the European Union:

https://eur-lex.europa.eu/homepage.html. Finally, the decisions on the NAPs

in the first two phases are taken from Mansanet-Bataller and Pardo (2009). Table
A.1 lists all the events.

Table A.1: Regulatory Update Events

Date Event description Type
1 25/05/2005  Italian phase INAP approved Free alloc.
2 20/06/2005  Greek phase I NAP approved Free alloc.
3 23/11/2005 Court judgement on proposed amendment to NAP, UK vs Commission Free alloc.
4 22/12/2005 Further guidance on allocation plans for the 2008-2012 trading period Cap
5 22/02/2006  Final UK Phase I NAP approved Free alloc.
6 23/10/2006  Stavros Dimas delivered the signal to tighten the cap of phase I Cap
7 13/11/2006  Decision avoiding double counting of emission reductions for projects under the Kyoto Protocol Intl. credits
8 29/11/2006 Commission decision on the NAP of several member states Free alloc.
9 14/12/2006 Decision determining the respective emission levels of the community and each member state Cap
10 16/01/2007  Phase Il NAPs of Belgium and the Netherlands approved Free alloc.
11 05/02/2007  Slovenia phase Il NAP approved Free alloc.
12 26/02/2007  Spain phase Il NAP approved Free alloc.
13 26/03/2007  Phase I NAPs of Poland, France and Czech Republic approved Free alloc.
14 02/04/2007  Austrian phase Il NAP approved Free alloc.
15 16/04/2007  Hungarian phase Il NAP approved Free alloc.
16 30/04/2007 Court order on German NAP, EnBW AG vs Commission Free alloc.
17 04/05/2007  Estonian phase Il NAP approved Free alloc.
18 15/05/2007  Ttalian phase Il NAP approved Free alloc.
19 07/11/2007  Court judgement on German NAP, Germany vs Commission Free alloc.
20 08/04/2008 Court order on German NAP, Saint-Gobain Glass GmbH vs Commission Free alloc.
21 23/04/2009  Directive 2009/29/EC amending Directive 2003/87/EC to improve and extend the EU ETS Cap
22 23/09/2009 Court judgement on NAP, Poland vs Commission Free alloc.
23 24/12/2009  Decision determining sectors and subsectors which have a significant risk of carbon leakage Free alloc.
24 19/04/2010 ~ Commission accepts Polish NAP for 2008-2012 Free alloc.
25 09/07/2010 Commission takes first step toward determining cap on emission allowances for 2013 Cap
26 14/07/2010 Member states back Commission proposed rules for auctioning of allowances Auction
27 22/10/2010 Cap on emission allowances for 2013 adopted Cap
28 12/11/2010 Commission formally adopted the regulation on auctioning Auction
29 25/11/2010 Commission presents a proposal to restrict the use of credits from industrial gas projects Intl. credits
30 15/12/2010 Climate Change Committee supported the proposal on how to allocate emissions rights Free alloc.
31 21/01/2011 Member states voted to support the ban on the use of certain industrial gas credits Intl. credits
32 15/03/2011 Commission proposed that 120 million allowances to be auctioned in 2012 Auction
33 22/03/2011 Court judgement on NAP, Latvia vs Commission Free alloc.
34 29/03/2011 Decision on transitional free allocation of allowances to the power sector Free alloc.
35 27/04/2011 Decision 2011/278/EU on transitional Union-wide rules for harmonized free allocation of allowances Free alloc.
36 29/04/2011 Commission rejects Estonia’s revised NAP for 2008-2012 Free alloc.
37 07/06/2011 Commission adopts ban on the use of industrial gas credits Intl. credits
38 13/07/2011 ~ Member states agree to auction 120 million phase IIT allowances in 2012 Auction
39 26/09/2011 Commission sets the rules for allocation of free emissions allowances to airlines Free alloc.
40 14/11/2011  Clarification on the use of international credits in the third trading phase Intl. credits
41 23/11/2011 Regulation 1210/2011 determining the volume of allowances to be auctioned prior to 2013 Auction
42 25/11/2011 Update on preparatory steps for auctioning of phase 3 allowances Auction
43 05/12/2011 Commission decision on revised Estonian NAP for 2008-2012 Free alloc.
44 29/03/2012 Court judgments on NAPs for Estonia and Poland Free alloc.
45 02/05/2012 Commission publishes guidelines for review of GHG inventories in view of setting national limits for 2013-20 Cap
46 23/05/2012 Commission clears temporary free allowances for power plants in Cyprus, Estonia and Lithuania Free alloc.
47 05/06/2012 Commission publishes guidelines on State aid measures in the context of the post-2012 trading scheme Free alloc.

46


https://ec.europa.eu/clima/news/news_archives_en
https://eur-lex.europa.eu/homepage.html

Date Event description Type
48 06/07/2012 Commission clears temporary free allowances for power plants in Bulgaria, Czech Republic and Romania Free alloc.
49 13/07/2012  Commission rules on temporary free allowances for power plants in Poland Free alloc.
50 25/07/2012  Commission proposed to backload certain allowances from 2013-2015 to the end of phase III Auction
51 12/11/2012 Commission submits amendment to back-load 900 million allowances to the years 2019-2020 Auction
52 14/11/2012 Commission presents options to reform the ETS to address growing supply-demand imbalance Cap
53 16/11/2012 Auctions for 2012 aviation allowances put on hold Auction
54 30/11/2012 Commission rules on temporary free allowances for power plants in Hungary Free alloc.
55 25/01/2013 Update on free allocation of allowances in 2013 Free alloc.
56 28/02/2013 Free allocation of 2013 aviation allowances postponed Free alloc.
57 25/03/2013 Auctions of aviation allowances not to resume before June Auction
58 16/04/2013 The European Parliament voted against the Commission’s back-loading proposal Auction
59 05/06/2013 Commission submits proposal for international credit entitlements for 2013 to 2020 Intl. credits
60 03/07/2013 The European Parliament voted for the carbon market back-loading proposal Auction
61 10/07/2013 Member states approve addition of sectors to the carbon leakage list for 2014 Free alloc.
62 30/07/2013 Update on industrial free allocation for phase IIT Free alloc.
63 05/09/2013 Commission finalized decision on industrial free allocation for phase three Free alloc.
64 26/09/2013 Update on number of aviation allowances to be auctioned in 2012 Auction
65 08/11/2013 ~ Member states endorsed negotiations on the back-loading proposal Auction
66 21/11/2013 Commission submitted non-paper on back-loading to the EU Climate Change Committee Auction
67 10/12/2013  European Parliament voted for the back-loading proposal Auction
68 11/12/2013 Climate Change Committee makes progress on implementation of the back-loading propsal Auction
69 18/12/2013 Commission gives green light for a first set of member states to allocate allowances for calendar year 2013 Free alloc.
70 08/01/2014 Climate Change Committee agrees back-loading Auction
71 22/01/2014 Commission proposed to establish a market stability reserve for phase V Cap
72 26/02/2014 Commission gives green light for free allocation by all member states Free alloc.
73 27/02/2014 Back-loading: 2014 auction volume reduced by 400 million allowances Auction
74 13/03/2014 Commission approves first batch of international credit entitlement tables Intl. credits
75 28/03/2014 Commission approves second batch of international credit entitlement tables Intl. credits
76 04/04/2014 Update on approval of international credit entitlement tables Intl. credits
77 11/04/2014  Commission approves four more international credit entitlement tables Intl. credits
78 23/04/2014  Commission approves final international credit entitlement tables Intl. credits
79 02/05/2014  Commission published the number of international credits exchanged Intl. credits
80 05/05/2014 Commission submits proposed carbon leakage list for 2015-2019 Free alloc.
81 04/06/2014  Auctioning of aviation allowances to restart in September Auction
82 04/07/2014  Commission published the first update on the allocation of allowances from the New Entrants’ Reserve Free alloc.
83 09/07/2014  Climate Change Committee agrees proposed carbon leakage list for the period 2015-2019 Free alloc.
84 27/10/2014  Commission adopts the carbon leakage list for the period 2015-2019 Free alloc.
85 04/11/2014 Updated information on exchange and international credit use Intl. credits
86 04/05/2015 Updated information on exchange and international credit use Intl. credits
87 15/07/2015 Proposal to revise the EU emissions trading system for the period after 2020 Cap
88 23/07/2015 Commission publishes status update for New Entrants’ Reserve and allocation reductions Free alloc.
89 04/11/2015 Updated information on exchange and international credit use Intl. credits
90 15/01/2016 Commission publishes status update for New Entrants’ Reserve Free alloc.
91 28/04/2016 Court judgment on free allocation in the EU ETS for the period 2013-2020 Free alloc.
92 02/05/2016 Updated information on exchange and international credit use Intl. credits
93 23/06/2016 Following court judgement, commission to modify cross-sectoral correction factor for 2018-2020 Free alloc.
94 15/07/2016 ~ Commission published a status update on the allocation of allowances from the New Entrants’ Reserve 2013-2020  Free alloc.
95 08/09/2016 Court judgment on free allocation in the EU ETS for the period 2013-2020 Free alloc.
96 04/11/2016 Updated information on exchange and international credit use Intl. credits
97 16/01/2017  Commission publishes status update for New Entrants’ Reserve Free alloc.
98 24/01/2017  Commission adopts Decision to implement Court ruling on the cross-sectoral correction factor Free alloc.
99 15/02/2017  European Parliament voted in support of the revision of the ETS Directive for the period after 2021 Cap
100 27/04/2017  Climate Change Committee approves technical changes to auction rules Auction
101 02/05/2017 Updated information on exchange and international credit use Intl. credits
102 12/05/2017  Commission publishes first surplus indicator for ETS Market Stability Reserve Auction
103 17/07/2017 Commission publishes status update for New Entrants’ Reserve Free alloc.
104  26/07/2017  Courtjudgment again confirms benchmarks for free allocation of ETS allowances for 2013-2020 Free alloc.
105 06/11/2017 Updated information on exchange and international credit use Intl. credits
106 15/01/2018 Commission publishes status update for New Entrants’ Reserve Free alloc.
107 04/05/2018 Updated information on exchange and international credit use Intl. credits
108 08/05/2018 Commission Notice on the preliminary carbon leakage list for phase IV (2021-2030) Free alloc.
109 15/05/2018 ETS Market Stability Reserve will start by reducing auction volume by almost 265 million allowances Auction
110 16/07/2018 Commission publishes status update for New Entrants’ Reserve Free alloc.
111 30/10/2018 Commission adopts amendment to ETS auctioning regulation Auction
112 06/11/2018  Updated information on exchange and international credit use Intl. credits
113 05/12/2018 Poland’s 2019 auctions to include some allowances not used for power sector modernization Auction
114 04/01/2019  Amendment to the ETS auctioning regulation Auction
115 15/01/2019 ~ Commission publishes status update for New Entrants’ Reserve Free alloc.
116~ 15/02/2019  Adoption of the Delegated Decision on the carbon leakage list for 2021-2030 Free alloc.
117 23/04/2019 Iceland, Liechtenstein and Norway to start auctions on the common auction platform soon Auction
118 15/05/2019 ETS Market Stability Reserve to reduce auction volume by almost 400 million allowances Auction
119 16/05/2019 Revised 2019 auction calendars including EEA EFTA volumes published Auction
120 12/06/2019 Poland’s 2020 auction volume to include allowances not used for power sector modernisation Auction
121 19/06/2019 Updated information on exchange and international credit use Intl. credits
122 11/07/2019 2020 and revised 2019 auction calendars of the common auction platform published Auction
123 15/07/2019 Commission publishes status update for New Entrants’ Reserve Free alloc.
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Date Event description Type
124 28/08/2019  Commission amends ETS auctioning regulation for phase 4 Auction
125 31/10/2019 Commission adopts the Regulation on adjustments to free allocation due to activity level changes Free alloc.
126 08/11/2019  Auctioning regulation amendment for phase 4 of the EU ETS published and to enter into force Auction

A.2. Macro data

In this Appendix, I provide details on the macroeconomic data used in the paper,

including information on the data source and coverage.

Table A.2: Data Description, Sources, and Coverage

Variable Description Source Sample
Instrument
LEXC.01 (PS) EUA futures front contract (settlement price) Datastream 22/04/2005-
31/12/2019
ELECWAVG Wholesale electricity price, constructed as weighted Datastream/European 22/04/2005-
average of EEX, APX, Nordpool, Powernext, OMEL,  Environment 31/12/2019

Baseline variables

EKESCPENF
GHGTOTAL

EKCPHARMF
EKIPTOT.G
EMECB2Y.
EKESUNEMO
DJSTOXX
DCOILBRENTEU

Additional variables

Other carbon futures

BAMLHEOOEHYIOAS
VSTOXX

EKGDP..D
EKESENMZD
EKGFCE.D
EMESJSABB
CCPATENTS

GME, and the EPX spot price, converted to EUR/tCO2
using GHG emissions intensity of electricity genera-
tion

HICP energy (EA-19)

Total GHG emissions excluding LULUCF and includ-
ing international aviation (EU)

HICP all items (EA-19)

Industrial production excl. construction (EA-19)
Two-year government bond yield

Unemployment rate (EA-19)

Euro STOXX

Brent Crude price

LEXC.0h (PS), for h in (2,3,4,5)

ICE BofA euro high yield index option-adj. spread
Euro STOXX 50 volatility

Real GDP (EA-19)

Final consumption expenditure (EA-19)

Gross fixed capital formation (EA-19)

Wages and salaries: all activities

Share of climate change mitigation technologies
(CCMT) patents filed at EPO

Agency/own calcu-
lations

Datastream
Eurostat/own
culations
Datastream
Datastream
Datastream
Datastream
Datastream
FRED

cal-

Datastream

FRED

stoxx.com
Datastream
Datastream
Datastream
Datastream

Google Patents Pub-
lic Data/own calcu-
lations

1999M1-2019M12
1999M1-2019M12

1999M1-2019M12
1999M1-2019M12
1999M1-2019M12
1999M1-2019M12
1999M1-2019M12
1999M1-2019M12

22/04/2005-
31/12/2019
1999M1-2019M12
1999M1-2019M12
1999Q1-2019Q4
1999Q1-2019Q4
1999Q1-2019Q4
1999Q1-2019Q4
2005Q1-2019Q4

The transformed series used in the baseline VAR are depicted in Figure A.1.
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Figure A.1: Transformed Data Series

A.3. Micro data

In this Appendix, I provide detailed information on the micro data used in Sec-
tions 5 and 6 of the paper. I use data from a selection of different surveys, which

are discussed in detail below.

A.3.1. LCFS

The living costs and food survey (LCFS) data can be obtained from the UK Data
Service. I use the waves from 1999-2001 of the Family Expenditure Survey, the
2001-2007 waves from the Expenditure and Food Survey and the 2008-2019 waves
from the LCFS, which superseded the previous two surveys. Note that within
this sample, the reporting frequency changed two times first from financial year

to calendar year and then back again to the financial year format. The waves

49


https://ukdataservice.ac.uk/
https://ukdataservice.ac.uk/

are adjusted to consistently reflect the calendar year prior to creating the pooled
cross-section. Most variables of interest are available in the derived household
datasets. The age at which full-time education was completed, as well as current
wages, is aggregated from the personal derived datasets.

As the main measure of expenditure, I use total expenditure excluding hous-
ing (p550tp-p536tp). For current income, I use current total disposable income,
calculated by subtracting income taxes and NI contributions from the gross in-
come (p352p-p392p-p388p-p029hp). I group the households by their normal dis-
posable income (p389p). For earnings, I use wages net of taxes (aggregate p004p
to the household level, subtract current taxes and add back taxes on financial in-
come p068h). For financial income, I use p324p, which includes interest income,
dividends and rents. For age, I use the age of the household reference person,
p396p. Education is proxied by the highest age a person in the household has
completed a full-time education (a010 aggregated to the household level). The
housing tenure status is recorded in variable al121.

For energy expenditure, I use expenditure on fuel, light and power (p537t).
Constructing measures of non-durable, services and durable expenditure is not
trivial in the LCFS data, as the broader available expenditure categories do not al-
low a clean split, e.g. personal goods and services (p544t) is a mix of non-durable
goods and services while household goods (p542t) includes both non-durable
and durable goods. To construct clean measures of non-durables, services and
durables expenditure, I split these broader subcategories into non-durable, ser-
vices and durable parts by grouping the items in a particular subcategory accord-
ingly, following closely the COICOP guidelines. A further challenge in doing so
is that the code names for disaggregated expenditure items changed when the
FES became the EFS in 2001. In Table A.3, I detail how the non-durable, services
and durable expenditure measures are constructed. At the item level, I provide
both, the relevant codes in the FES and the EFS/LCFS. Note that semi-durables
are subsumed under non-durables, and services do not include housing.

Table A.3: Expenditure Classification in LCFS

Category Subcategories Items

Non-durables  Fuel, light power (p537t)

Food, alcoholic drinks, tobacco

(p538t, p539t, p540t)

Clothing and footwear (p541t)

Non-durable household goods LCFS codes: ¢52111t, ¢52112t, ¢53311t, ¢55214t, c56111t,

(subset of p542t) c56112t, c56121t, ¢56123t, c93114t, ¢93313t, c93411t, c95311t,
c95411t, cc1311t
FES codes: d070104t, d070105t, d070211t, d070209t, d070401t,
d070402t, d070302t, d070601t, d120304t, d070501t
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Category Subcategories Items
Non-durable personal goods LCFS codes: ¢61112t, c61211t, c61311t, c61313t, cc1312t,
(subset of p544t) cc1313t, cc1314t, cc1315t, cc1316t, cc1317t, cc3211t, cc3222t,
cc3223t, cc3224t
FES codes: d090402t, d090102t, d090501t, d090101t, d090103t,
d090104t, d090105t, d090301t, d090202t, d090302t, d090303t
Non-durable motoring expenditure LCFS codes: ¢72114t, c72211t, ¢72212t, 72213t
(subset of p545t) FES codes: d100405t, d100301t, d100302t, d100303t
Non-durable leisure goods LCFS codes: 91126t, ¢91411t, <91412t, ¢91413t, c91414t,
(subset of p547t) c93111t, ¢93113t, c93311t, c95111t, c95211t, c95212t
FES codes: d120114t, d120108t, d120110t, d120109t, d120401t,
d120113t, d070703t, d120303t, d120301t, d120302t
Miscellaneous non-durable goods LCFS codes: ck5511c, cc3221t
(subset of p549t) FES codes: d070801t, d140601c, d090701t
Services Household services (p543t)
Fares and other travel costs (p546t)
Leisure services (p548t)
Service part of household goods LCFS codes: ¢53312t, c53313t, c53314t, c93511t, cc5213t
(subset of p542t) FES codes: d070212t, d070213t
Personal services LCFS codes: c61111t, ¢61312t, c62111t, c62112t, c62113t,
(subset of p544t) Cc62114t, c62211t, c62212t, c62311t, ¢62321t, c62322t, c62331t,
c63111t, cc1111t
FES codes: d090401t, d090502t, d090403t, d090404t, d090601t
Service part of motoring expendi- LCFS codes: b187-b179, b188, b249, b250, b252, ¢72313t,
ture (subset of p545t) 72314t, c72411t, c72412t, c72413t, ck3112t, ¢72311¢, ¢72312c,
cch411c
FES codes: b187-b179, b188, b249, b250, b252, d100403t,
d100406t, d100407t, d100404t, d100408t, d100201c, d100204c,
d100401c
Leisure services LCFS codes: c91511t, c93112t, c94238t, c94239t, c94246t
(subset of p547t) FES codes: d120111t, 120112t
Miscellaneous services LCFS codes: b237,b238, ck5315c, ck5213t, ck5214t
(subset of p549t) FES codes: b237,b238, d140402, d140406¢
Durables Durable household goods LCFS codes: b270, b271, c51111c, ¢51211c, c51212t, ¢51113t,

(subset of p542t)

Durable personal goods
(subset of p544t)

Durable motoring expenditure
(subset of p544t)

c51114t, c53111t, ¢53121t, c53122t, ¢53131t, c53132t, c53133t,
c53141t, ¢53151t, c53161t, ¢53171t, c53211t, c54111t, c54121¢,
c54131t, ¢54132t, c55111t, ¢55112t, c55213t, c56122t, c93212t,
c93312t, ¢93412t, cc1211t

FES codes: 1270, b271, d070101c, d070102c, d070103t,
d070304t, d070704t, d070203t, d070202t, d070204t, d070207t,
d070208t, d070201t, d070206t, d070303t, d070301t, d070205t,
d070701t, d070305t, d070306t, d070702t, d070602t

LCFS codes: cc3111t

FES codes: d090201t

LCFS codes: b244, b2441, b245, b2451, b247, c31315t, c71112¢,
c71122t, ¢71212t, ¢92114t, c92116t, c71111c, c71121c, c71211c,
92113c, ¢92115¢, c72111t, ¢72112t, ¢72113t, 91112t

FES codes: b244, b245, b247, d100105t, d100106t, d100107t,
d100101c, d100102¢, d100104c, d100203t, d100202t, d100205t
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Category Subcategories Items

Durable leisure goods LCFS codes: <c91124t, c82111t, c82112t, c82113t, c91111t,
(subset of p547t) c91113t, ¢91121t, c91122t, ¢91123t, c91125t, c91211t, c91311t,
€92211t, ¢92221t, 93211t
FES codes: d120104t, d080202t, d080205t, d080207t, d120105¢t,
d120101t, d120102t, d120103t, d120115t, d120402t, d120106t,
d120107t, d120201t

Regarding the sample, I apply the following restrictions. I drop households
that have a household reference person younger than 18 or older than 90 years.
Furthermore, I drop households with a negative normal disposable income. To
account for some (unrealistically) high or low values of consumption, for each
quarter and income group, I drop the top and bottom 1% of observations for total
expenditure.

A3.2. LFS

To get information on the sector of employment, I use data from the UK Labour
Force Survey (LFS). The LFS studies the employment circumstances of the UK
population. It is the largest household study in the UK and provides the official
measures of employment and unemployment. Apart from detailed information
on employment, it also contains a wide range of related topics such as occupation,
training, hours of work and personal characteristics of household members aged
16 years and over. The data can be obtained from the UK Data Service. I use
the quarterly waves from 1999-2019 to construct a pooled cross-section. For the
employment sector, I use the variable indsect, which describes the industry sector
in the main job based on the SIC 2003 classification. To proxy income, I use the

net pay from the main and second job (netwk and netwk?2).

A3.3. BSA

To proxy public attitudes towards climate policy, I use data from the British social
attitudes (BSA) survey. The data can also be obtained from the UK Data Service. I
use the waves from 1999-2019 to construct a pooled cross-section. To construct the
income groups, I use the income quartiles that are provided from 2010 onwards
(hhincq). For the years before, I use the household income variable (hhincome)
to construct the quartiles. The survey contains many questions on the attitudes
towards climate change, the environment and climate/environmental policy, but
unfortunately most variables are not part of the main set of questions that are
asked in every year. One exception concerns a question about taxes for car owners

(cartaxhi), in particular it asks whether you agree with the following statement:
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“For the sake of the environment, car users should pay higher taxes”, which was
tielded for all years up to 2017. Thus, I use the proportion of households agreeing

with this statement as a proxy for the public attitude towards climate policy.

B. Additional Charts and Tables

In this Appendix, I present additional tables and figures that complement the
analysis in the main body of the paper.

B.1. Diagnostics of the surprise series

As discussed in the paper, I perform a number of additional validity checks on the
surprise series. In particular, I investigate the autocorrelation and forecastability
of the surprise series as well as the relation to other shocks from the literature.

1

Ljung-Box Q test
p-value: 0.97
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Figure B.1: The Autocorrelation Function of the Carbon Policy Surprise Series

Figure B.1 depicts the autocorrelation function. We can see that there is little
evidence that the series is serially correlated. I also perform a series of Granger
causality tests. Table B.1 shows that the series is not forecastable by past macroe-
conomic or financial variables. Finally, I look how the series correlates with other
shock series from the literature and find that it is not correlated with other struc-
tural shock measures, including oil demand, uncertainty, financial, fiscal and
monetary policy shocks, see Table B.2.? There is some weak correlation with oil
supply shocks, which makes sense against the backdrop that the EU ETS also

covers European oil producers in the North Sea.

2] thank Mario Alloza for kindly sharing their fiscal policy shock series.

53



Table B.1: Granger Causality Tests

Variable p-value
Instrument 0.3279
EUA price 0.7060
HICP energy 0.7961
GHG emissions 0.6615
HICP 0.9949
Industrial production  0.7633
Two-year rate 0.5066
Unemployment rate ~ 0.2473
Stock prices 0.7887
REER 0.1595
Oil price 0.3280
Joint 0.9339

Notes: The table shows the p-values of a series of Granger causality tests of the carbon
policy surprise series using a selection of macroeconomic and financial variables.

Table B.2: Correlation with Other Shock Measures

Shock Source 0 p-value n Sample

Monthly measures

Global oil market

Oil supply Kilian (2008) (extended) -0.16 0.10 104 2005M05-2013M12
Kilian (2009) (updated) -0.00 0.97 164  2005M05-2018M12
Caldara, Cavallo, and Iacoviello (2019) -0.11 0.24 128  2005M05-2015M12
Baumeister and Hamilton (2019) -0.15 0.04 176 ~ 2005M05-2019M12
Kénzig (2021) (updated) 0.12 0.11 176 2005M05-2019M12

Global demand Kilian (2009) (updated) -0.09 0.27 164  2005M05-2018M12

-0.07 0.35 176 2005M05-2019M12

2005M05-2018M12

Baumeister and Hamilton (2019)

Oil-specific demand

Kilian (2009) (updated) 0.10 0.21 164

Consumption demand  Baumeister and Hamilton (2019) 0.13 0.10 176 ~ 2005M05-2019M12

Inventory demand Baumeister and Hamilton (2019) 0.02 0.78 176 2005M05-2019M12

Monetary policy

Monetary policy shock  Jarociriski and Karadi (2020) 0.08 0.32 140  2005M05-2016M12

Central bank info Jarocinski and Karadi (2020) 0.07 0.40 140  2005M05-2016M12

Financial & uncertainty

Financial conditions BBB spread residual -0.04 0.61 176 ~ 2005M05-2019M12

Financial uncertainty VIX residual (Bloom, 2009) -0.05 0.48 176 ~ 2005M05-2019M12
VSTOXX residual -0.06 0.43 176~ 2005M05-2019M12

Policy uncertainty Global EPU (Baker, Bloom, and Davis, 2016) ~ -0.07 0.37 176 2005M05-2019M12

Quarterly measures

Fiscal policy Euro area (Alloza, Burriel, and Pérez, 2019) 0.08 0.60 43 2005Q2-2015Q4
Germany 0.24 0.12 43 2005Q2-2015Q4
France -0.03 0.85 43 2005Q2-2015Q4
Italy 0.05 0.74 43 2005Q2-2015Q4
Spain 0.14 0.36 43 2005Q2-2015Q4

Notes: The table shows the correlation of the carbon policy surprise series with a wide
range of different shock measures from the literature, including global oil market shocks,
monetary policy, financial and uncertainty shocks. p is the Pearson correlation coefficient,
the p-value corresponds to the test whether the correlation is different from zero and n is
the sample size.

54



B.2. More on aggregate effects

In this Appendix, I present some additional results pertaining to the analysis in
Section 4 of the paper.

B.2.1. Internal instrument approach

A key advantage of the external instruments approach lies in its efficiency. How-
ever, this comes at the cost of assuming (partial) invertibility. If the invertibility
assumption is not satisfied, this can lead to biased results (Li, Plagborg-Moller,
and Wolf, 2021). To mitigate concerns about invertibility, I also present results
from the internal instruments approach (Ramey, 2011; Plagborg-Meller and Wolf,
2019) which is robust to non-invertibility.

The results are shown in Figure B.2. The figure shows the responses from
the internal instrument approach together with the external instrument baseline.
We can see that the responses turn out to be very similar, both qualitatively and
quantitatively. Only the estimated response of the two-year rate is somewhat less
stable. We can also see that the internal instrument responses are much less pre-
cisely estimated as the confidence bands are significantly more dispersed. Over-
all, however, these findings suggest that the results are robust to relaxing the

assumption of invertibility.

B.2.2. Local projection-instrumental variable approach

As discussed in the main text, I rely on VAR techniques for estimation because
the sample is relatively short and VARs provide a parsimonious characterization
of the data. However, as a robustness check, I have also tried to estimate the im-
pulse responses using a local projections instrumental variable (LP-IV) approach
a la Jorda, Schularick, and Taylor (2015) and Ramey and Zubairy (2018). To fix
ideas, the dynamic causal effects, gb]i, can be estimated from the following set of

regressions:

Yiern = By + Wiy + Bixi—1 + Eipp (1)

using z; as an instrument for Ay ;. Here, y; ;1 is the outcome variable of interest,
Ay + is the endogenous regressor, x;_1 is a vector of controls, ¢; ; j, is a potentially
serially correlated error term, and / is the impulse response horizon. I use the
same controls as in the VAR. For inference, I follow again the lag-augmentation
approach proposed by Montiel Olea and Plagborg-Meller (2020).

As the impacts of carbon policy are potentially quite persistent, we want to
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Figure B.2: Internal Versus External Instrument VAR

40

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid dark and red lines are the point estimates for
the internal instrument and the external instrument VAR, respectively, and the shaded
areas / dashed lines are 68 and 90 percent confidence bands.
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Figure B.3: Internal Instrument VAR Versus LP-IV

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid dark and red lines are the point estimates for
the internal instrument VAR and the LP-IV, respectively, and the shaded areas / dashed

lines are 68 and 90 percent confidence bands.
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look at the dynamic causal effects relatively far out. Given the short sample, this
is challenging in the LP-IV framework, which does not use the parametric VAR
restriction but estimates the effect by a distinct IV regression at each horizon h.
Consequently, the number of observations available for estimation decreases with
the impulse horizon. Against this background, I restrict the impulse horizon in
the LP-IV regressions to 20 months.

Figure B.3 compares the responses obtained from the LP-IV approach to the
ones from the internal instrument VAR. Recall that both approaches rely on the
same invertibility-robust identifying restrictions but use different estimation
techniques. We can see that the two approaches produce consistent results,
especially at horizons up to one year.® At longer horizons the differences tend to
be larger, however, the responses are also less precisely estimated.

B.2.3. Core versus headline HICP

In the paper, I document a significant and persistent increase in headline HICP.
An important question that has also relevant implications for the conduct of mon-
etary policy is how the shock transmits to core consumer prices. To this end, I re-
estimate the model substituting headline for core HICP. Figure B.4 presents the
response for core HICP together with the HICP headline and energy component
from the baseline model. We can see that the response of core consumer prices
is more muted and less precisely estimated. This illustrates that this is really a
shock to relative prices. Reassuringly, all other responses from the model with
core HICP are very similar to the baseline case.

3Note that this is despite the fact that we only control for 6 lags in both models.
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Figure B.4: Headline Versus Core HICP

Notes: Impulse responses of the headline, energy and core HICP to a carbon policy shock.
The headline and energy indices are from the baseline model; the core response is from
the model featuring core instead of headline HICP. The solid line is the point estimate
and the dark and light shaded areas are 68 and 90 percent confidence bands, respectively.

B.2.4. Variance Decomposition

To better understand how carbon policy shocks have contributed to variations
in macroeconomic and financial variables, I perform a variance decomposition
exercise in addition to the historical decomposition presented in the paper. I do
so both under the invertibility assumption maintained in the external instrument
VAR as well as under weaker assumptions in the context of a general SVMA
model, as proposed by Plagborg-Moller and Wolf (2020). In particular, I perform
a standard forecast error variance decomposition in the SVAR and compute fore-
cast variance ratios for the SVMA. The forecast variance ratio for variable i at

horizon h is given by

B Val‘(]/i,t+h | {]/T} —oo<T<ty {el,r}t<r<00)
Var (v ¢yn|{Vr } —coct<t)

FVR;, =1 , 2)
and measures the reduction in the econometrician’s forecast variance that would
arise from being told the entire path of future realizations of the shock of interest.
Plagborg-Meller and Wolf (2020) show that this statistic is interval-identified un-
der the assumption that a valid instrument is available. Under the assumption of

recoverablity, the ratio is point-identified by the upper bound.
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The results are shown in Table B.3. We can see that carbon policy shocks have
contributed meaningfully to historical variations in the variables of interest. Un-
der the invertibility assumption (Panel A), they account for about 30 percent of
the variations in energy prices and around 10 percent of the short-run variations
in emissions, which goes up to over 20 percent at the 3 year horizon. Turning
to the macroeconomic variables, we can see that they explain a substantial part
of variations in the HICP, especially at shorter horizons, and a non-negligible
fraction of the variations in industrial production and the unemployment rate
at longer horizons. The shocks explain less of the variations in the two-year rate
and stock prices but can account for about 20 percent of the variation in oil prices.
The forecast variance ratios in Panel B, which dispense from the assumption of

invertibility, paint a similar picture.

Table B.3: Variance Decomposition

h HICP energy =~ Emissions HICP 1P Two-year rate  Unemp. rate  Stock prices Oil price

Panel A: Forecast variance decomposition (SVAR-IV)

6 0.38 0.12 0.46 0.02 0.04 0.05 0.02 0.22
[0.03, 0.49] [0.02,0.42] [0.04,0.57] [0.01,0.30] [0.01, 0.24] [0.00, 0.33] [0.01, 0.31] [0.01, 0.33]

12 0.31 0.18 0.32 0.05 0.08 0.08 0.03 0.20
[0.03,0.41] [0.02,0.43] [0.03,0.46] [0.02,0.33] [0.01, 0.22] [0.01, 0.37] [0.01, 0.33] [0.02,0.31]

24 0.30 0.22 0.23 0.13 0.08 0.18 0.04 0.20
[0.03, 0.38] [0.02,0.39] [0.02,0.39] [0.02,0.34] [0.02,0.21] [0.01, 0.43] [0.01, 0.31] [0.02, 0.27]

36 0.28 0.20 0.18 0.16 0.08 0.23 0.04 0.16

[0.03, 0.35] [0.02,0.36] [0.02,0.35] [0.02,0.33] [0.02,0.21] [0.01, 0.44] [0.02,0.31]  [0.02,0.24]

Forecast variance ratio (SVMA-IV)

6 0.04,0.21 001,006  0.04,021  0.00,0.01 0.03,0.14 0.00, 0.01 0.00, 0.02 0.01, 0.08
[0.01,039]  [0.00,0.25] [0.01,0.40] [0.00,0.17]  [0.01,0.37] [0.00,0.15]  [0.00,0.19]  [0.01,0.24]
12 003,015 003,015  0.03,0.15  0.01,0.03 0.03,0.18 0.00, 0.01 0.01, 0.04 0.01, 0.06
[0.01,0.36]  [0.00,0.45] [0.01,0.39] [0.00,027]  [0.01,0.41] [0.00,0.21]  [0.00,0.27]  [0.01,0.26]
24 0.02,013 004,023  0.02,011  0.02,0.10 0.03,0.19 0.02,0.09 0.01, 0.06 0.01, 0.06
[0.01,0.36]  [0.00,0.50] [0.00,0.39] [0.00,0.32]  [0.02,0.38] [0.00,0.33]  [0.00,0.31]  [0.01,0.26]
36 002,012 004,021  0.02,009 002013 0.04,0.20 0.03,0.14 0.01, 0.06 0.01, 0.06

[0.01,0.33]  [0.00,0.46] [0.00,0.36] [0.00,0.32]  [0.02,0.38] [0.00,0.38]  [0.01,0.31]  [0.01,0.26]

Notes: The table shows the variance decomposition at horizons ranging from 6 months
to 4 years. Panel A includes the forecast error variance decomposition from the external
instrument VAR, Panel B shows the identified set for the forecast variance ratio. Boot-
strapped 90% confidence intervals are reported in brackets.

B.2.5. Financial conditions and uncertainty

To better understand how the shock transmits to the economy, I have also looked
at the responses of indicators for financing conditions and financial uncertainty,
see Figure B.5. However, as can be seen from the responses these variables do not

appear to play a dominant role in the transmission of the carbon policy shock.
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Figure B.5: Financial Conditions and Uncertainty

Notes: Impulse responses of financial conditions, as proxied by the BBB bond spread,
and the VSTOXX index as a measure of financial uncertainty.

B.2.6. Aggregate effects for the UK

Because of data availability, the household-level analysis is carried out for the
UK. As a validating exercise, I have verified that the aggregate effects on the UK,
as measured by real GDP, consumption and investment, are comparable to the

EU level responses, see Figure B.6.
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Figure B.6: Effect on GDP, Consumption, Investment and Wages in the UK

Notes: Impulse responses of a selection of quarterly variables estimated using local pro-
jections on the carbon policy shock. The responses are normalized to have the same peak
effect on HICP energy as in the baseline model.
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B.3. More on heterogeneous effects

In this Appendix, I present some additional results pertaining to Section 5 on the

heterogeneous effects of carbon pricing in the paper.

B.3.1. Further descriptive statistics

Figure B.7 compares the empirical distribution of age and total expenditure for
the three income groups. We can see that the groups are comparable in terms of
their age distribution. As expected, higher income groups tend to have higher

expenditure but there is also more within group variation.
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Figure B.7: Empirical Distribution of Age and Total Expenditure in the LCFS

Notes: The figure shows the empirical probability distribution of age and total expendi-
ture (excl. housing) for all three income groups. The distributions are estimated using an

Epanechnikov kernel.

Figure B.8 depicts the evolution of different households characteristics, in-
cluding age, education and housing tenure, over time. We can see that there are
some trends in these variables, however, they are rather slow-moving and thus
unlikely to confound potential heterogenities in the household responses to car-
bon policy shocks, which exploit variation at a much higher frequency.
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Figure B.8: Evolution of Household Characteristics by Income Group

Notes: The figure shows the evolution of age, education, and housing tenure status over

time by income group.

B.3.2. Aggregate expenditure responses

Before studying at the heterogeneous expenditure responses by income group, I

look at the aggregate expenditure responses as a validating exercise. The results

are shown in Figures B.9. We can see that the response of aggregated expenditure

from household micro data is very similar to the consumption response from

national statistics — both in terms of shape and magnitude. This supports the

notion that the micro data is indeed representative for the macroeconomy. For

completeness, I also report the aggregated responses for different expenditure

categories.

63



%

%

B.3.3.

In the LCFS, households interviewed at time t are typically asked to report ex-
penditure over the previous three months (with the exception of non-durable
consumption which refers to the previous two weeks). To eliminate some of the
noise inherent in survey data, I smooth the expenditure and income measures
with a backward-looking (current and previous three quarters) moving average,
as in Cloyne, Ferreira, and Surico (2020). However, as shown in Figure B.10, the
results are very similar when using the raw series instead, even though the re-

sponses become more jagged and imprecise, or by using smooth local projections
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Figure B.9: Aggregate Expenditure Responses

Smoothing impulse responses

as proposed by Barnichon and Brownlees (2019).
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Figure B.10: Sensitivity with Respect to Smoothing of Responses

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income by income group, computed using simple backward-looking
moving average (baseline), smooth local projections (red dotted line), and unsmoothed
(blue dashed line).

B.3.4. Group differences

In the main text, we document pervasive heterogeneity in the expenditure and
income responses by household income group. Another important question is
whether these differences are statistically significant. To this end, I estimate
the responses of the group differences in expenditure and income, in particu-
lar low-income versus middle-income and low-income versus high-income. The
responses are shown in Figure B.11. We can see that low-income households dis-
play a significantly stronger fall in income and expenditure than higher-income
households. Thus, the group differences are not only economically but also sta-

tistically significant.
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Figure B.11: Group differences in Expenditure and Income Responses

B.3.5. Robustness concerning grouping

To mitigate concerns about endogenous changes in the grouping variable, I look
at the responses of current and normal disposable income in Figure B.12. We
can see that both variables are rather slow-moving. Current income starts to fall
significantly after about a year. In contrast, the response of normal disposable
income moves less and is insignificant, supporting its validity as a grouping vari-
able.
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Figure B.12: Responses of Current and Normal Income

As discussed in the main text, the normal income variable can be thought of
as a proxy for permanent income. As a robustness check, I compute estimates
for permanent income from a Mincerian-type regressions. Specifically, I use age,
education, ethnicity, sex, martial status, occupation, the source of the main house-

hold income, as well as interactions between age and education, and between age
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and sex as predictors, as in Alves et al. (2020). Figure B.13 shows the responses
by permanent income group. We can see that the results turn out to be robust.
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Figure B.13: Expenditure and Income Responses by Permanent Income

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income by permanent income, estimated using a Mincerian-type re-
gression using age, education, ethnicity, sex, martial status, occupation, the source of the
main household income, as well as interactions between age and education, and between
age and sex (bottom 25 percent, middle 50 percent, top 25 percent).

B.3.6. Selection

To mitigate concerns about selection, I use a number of different grouping vari-
ables, including age, education and housing tenure. From Figures B.14-B.16, we
can see that none of these alternative grouping variables can account for the pat-
terns uncovered for income, suggesting that we are not spuriously picking up
differences in other household characteristics. Similarly, the uncovered hetero-
geneity can also not be accounted for by occupation, sex and region. These results

are available from the author upon request.
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Figure B.14: Household Expenditure and Income Responses by Age Group

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for young (bottom 33 percent), middle-aged (middle 33 per-
cent) and older households (top 33 percent), based on the age of the household head.
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Figure B.15: Household Expenditure and Income Responses by Education Status

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for less educated, normally educated and well educated
households. Education status is proxied by the highest age a household member has
completed full-time education and the three groups are below 16 years, between 17 and
18 years (compulsory education), and 19 years or above (post-compulsory).
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Figure B.16: Household Expenditure and Income Responses by Housing Tenure

Notes: Impulse responses of total expenditure excluding housing and current total dis-
posable household income for social renters, mortgagors and outright owners.

B.3.7. What drives the income response?

To understand what is driving the heterogeneity in the income responses, we
study how the labor income responses vary by sector of employment using data
from the LFS. To this end, I grouped sectors according to their SIC 2003 sections
by their energy intensity and their “demand sensitivity”, i.e. how much sectoral
labor income changes after changes in aggregate income. The data on energy
intensities is from the ONS. The demand sensitivity is proxied by the elasticity
of sectoral labor income to aggregate labor income, using sectoral data from the
LFS and wage data from national accounts. Similar results are obtained when
estimating the elasticity with respect to the unemployment rate. Table B.4 shows
the data on sectoral energy intensity and estimated demand sensitivity together

with the resulting classification. I define high energy intensive sectors as sectors
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Table B.4: Sectors by Energy Intensity and Demand Sensitivity

Panel A: Energy intensity and estimated demand sensitivity

Sectors Energy intensity Demand sensitivity
(T]/£m) (euyi)
A-B:  Agriculture, forestry and fishing 114 0.43
CE: Mining and quarrying; energy, gas and wa- 12.8 0.16
ter
D: Manufacturing 11.6 0.44
F: Construction 2.6 0.52
G-H: Wholesale and retail trade; hotels and 3.0 0.51
restaurants
I: Transport, storage and communication 94 0.19
J-K:  Banking, finance and insurance 0.7 0.41
L-N: Public admin, education and health 1.3 0.35
O-Q: Other services 1.1 0.72

Panel B: Sector classification

Group Sectors SIC sections

High energy intensity Agriculture, forestry, and fishing; mining and A-E, I
quarrying; manufacturing; electricity, gas and
water supply (utilities); transport, storage and
communications

Lower energy intensity Construction; Wholesale and retail trade; Hotels F-H, J-Q
and restaurants; Financial intermediation; Real
estate, renting and business; Public administra-
tion and defense; Education; Health and social
work; Other community, social and personal ser-
vices

High demand sensitivity Construction; Wholesale and retail trade; Hotels F-H, O-Q
and restaurants; Other community, social and
personal services

Lower demand sensitivity =~ Agriculture, forestry, and fishing; mining and A-E, J-N
quarrying; manufacturing; electricity, gas and
water supply (utilities); transport, storage and
communications; Financial intermediation; Real
estate, renting and business; Public administra-
tion and defense; Education; Health and social
work

Notes: The sectors are grouped based on SIC 2003 sections. Note that the grouping is not
perfect, as the LFS only has information on groups of sections over the entire sample of
interest. The data on the energy intensity by sector from 1999-2019 is from the ONS.

with an energy intensity above 5 and high demand sensitive sectors as sectors
with a demand sensitivity in excess of 0.5. Choosing the threshold involves some
judgment. As a robustness check, I have excluded/included the sectors closest to
the two thresholds for both groupings. The results turn out to be not sensitive to
the precise level of the threshold.
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Finally, another source of heterogeneity in the income response is the income
composition. To better understand this, I study the responses of labor earnings
and financial income. We can see that the earnings of low-income households fall
more promptly and significantly than for higher-income households, consistent
with the results on total income. On the other hand, the financial income of low-
and middle-income households barely shows a response, reflecting the fact that
these households own very little financial assets. In contrast, high-income house-
holds experience a temporary fall in their financial income in the short run, which

however subsequently reverts (consistent with the stock market response).
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Figure B.17: Responses of Earnings and Financial Income

Notes: Impulse responses of labor earnings (wages from main occupation) and finan-
cial income (interest, dividend, rents) by income group (bottom 25 percent, middle 50
percent, top 25 percent).
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B.3.8. External validity

To mitigate concerns regarding external validity, I confirm the main results on the
heterogeneity in household expenditure by income group using data for Den-
mark and Spain. As can be seen from Figure B.18, the expenditure response
turns out to be significant and persistent for low-income households, while high-
income households are much less affected. These findings confirm the results for
the UK, supporting the external validity of the results.
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Figure B.18: Expenditure by Income Group for Other European Countries

Notes: Impulse responses of total expenditure for low-income, middle-income and high-
income households in Denmark and Spain. The Danish data are from the Danish house-
hold budget survey (HBS) available for 1999-2019, accessed via the StatBank Denmark
database, and expenditure is grouped by total annual income (under 250K DKK, 250-
999K DKK, 1000K DKK or over). The Spanish data are from the Spanish HBS available
for 2006-2019, accessed via the INE website, and expenditure is grouped by regular net
monthly household income (under 1000 euros, 1000-2499 euros, 2500 euros or over).
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B.3.9. Attitudes towards climate policy

As discussed in the paper, public opposition can be an impediment for climate
policy. Thus, it is interesting to see how carbon pricing affects the public attitude
towards climate policy. To analyze this question, I use data from the British social
attitudes (BSA) survey. The BSA is an annual survey that asks about the attitudes
of the British population towards a wide selection of topics, ranging from wel-
fare to genomic science. The BSA is used to inform the development of public
policy and is an important barometer of public attitudes. Some of the questions
in the BSA are repeated over time and thus, it is possible to analyze how certain
attitudes have changed over time.

To proxy the public attitude towards climate policy, I rely on a question from
the transportation module of the survey, which asks about the attitude towards
environmentally-motivated fuel taxes. In particular, the question asks whether
the respondent agrees with the following statement: “For the sake of the envi-
ronment, car users should pay higher taxes”. The BSA also includes information
about the income of the respondent, thus it is possible to analyze how the atti-
tudes of different income groups have evolved. Figure B.19 shows how the atti-
tude towards climate policy has changed among low- and higher-income house-
holds. We can see that the support of climate policy has remained relatively stable
at moderate levels for a large part of the sample. In the early to middle 2010s, the
support started increasing for higher-income households. In contrast, the support
of low-income households has remained stable until the end of the sample.
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Figure B.19: Public support for climate policy by income group

Notes: The figure shows the evolution of the attitude towards climate policy by income
group, as proxied by the share of households in the British social attitudes survey that
agree to the following statement: “For the sake of the environment, car users should pay
higher taxes”.
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B.4. Additional results from heterogeneous-agent climate-

economy model

In this appendix, we present some additional results from the heterogeneous-
agent climate-economy model. Figure B.20 shows the response of emissions un-
der the different carbon revenue redistribution schemes. We can see that emis-
sions fall by somewhat less when redistributing revenues than under the baseline
case when all revenues accrue to the savers but importantly, the consumption re-
sponse is dampened significantly more (by a factor close to 45 percent). This sug-
gests that there may be a trade-off that policy makers could exploit. The intuition
behind this result is that low-income households” energy demand is particularly

inelastic and they make up only a small share of aggregate emissions to start with.
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— — —Redistribute revenues
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Figure B.20: Emissions Response

As discussed in the main text, monetary policy plays an important role in the
transmission of the policy. After a carbon policy shock leading to an increase
in energy prices, monetary policy leans against the inflationary pressures by in-
creasing interest rates. This in turn leads to a further fall in consumption and
investment. Figure B.21 shows the impulse responses under two different mone-
tary policy rules. As the baseline, we assume that monetary policy targets head-
line inflation. As an alternative, we consider a rule where monetary policy targets
core inflation. We can see that the effects on consumption and income are attenu-

ated significantly when monetary policy targets core instead of headline inflation.
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Figure B.21: The Role of Monetary Policy

Household heterogeneity also plays an important role for the magnitudes of
the responses. In particular, heterogeneity in MPCs linked to heterogeneity in
energy shares and income incidence can amplify the responses further. This is
illustrated in Figure B.22, which compares the responses of the heterogeneous

agent to the corresponding representative agent version of the model.
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Figure B.22: Heterogeneity Versus Representative Agent
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To get a better understanding of how much the heterogeneity matters for the
direct and indirect channels we identify, we perform a decomposition. In par-
ticular, we compare four different scenarios: (i) a model where there is no het-
erogeneity in income incidence and energy share (this is achieved by perfectly
redistributing income over the cycle and calibrating the energy share for H and S
to the same level), (ii) a model with equal incidence but heterogeneity in energy
shares, (iii) a model with unequal incidence and no energy share heterogeneity,
and (iv) our baseline case with both heterogeneities. From Figure B.23, we can
see that the heterogeneity in income incidence turns out to be crucial, accounting
for the bulk of the amplification of the aggregate consumption response. This can
be seen from the fact that the model with unequal incidence is already very close

to the baseline with heterogeneous energy shares and income incidence.
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Figure B.23: Role of Unequal Income Incidence and Energy Share Heterogeneity
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C. Sensitivity Analysis

In this Appendix, I perform a number of robustness checks on the identification
strategy and the empirical specification used to isolate the carbon policy shock,
as discussed in Sections 2-3 of the paper. Throughout, I report the point estimate
as the solid black line and 68 and 90 percent confidence bands as dark and light
shaded areas, respectively.

C.1. Instrument construction

Selection of relevant events. A crucial choice in the high-frequency event study
approach concerns the selection of relevant events. For the exclusion restriction to
be satisfied, the events should only release information about the supply of emis-
sion allowances and not about other factors such as macroeconomic or geopo-
litical news. To this end, I have not included broader events such as the Paris
agreement or other COP meetings but limited the analysis to specific events in the
European carbon market. The most obvious candidates are events about the free
allocation and auctioning of emission allowances. I have also included events on
the overall cap in the carbon market as well as events about international credits.

Because the events concerning the cap tend to be broader in nature, I exclude
these events as a robustness check. As shown in Figure C.1, the results turn out
to be robust. I have also tried to exclude the events about international credits,
which affect the supply of allowances only indirectly, by changing the number of
credits from international projects that can be exchanged for allowances. From
Figure C.2, we can see that the results turn out to be very similar. By going
through all events in detail, I could also identify some events that are poten-
tially confounded, either because some other event happened on the same day
(more on this below) or because they could potentially also contain some infor-
mation about demand in the carbon market. Reassuringly, however, excluding
these events does not change the results materially (see Figure C.3).

The results are also not driven by events in a given period. Excluding events
in phase 1 (2005-2007) or events that occurred during the and European sovereign
debt crisis (2009-2012) produces comparable results, see Figures C.4-C.5.
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Figure C.1: Excluding Events Regarding Cap

Notes: Impulse responses to a carbon policy shock, normalized to increase the HICP
energy by 1 percent on impact. The solid line is the point estimate and the dark and light
shaded areas are 68 and 90 percent confidence bands, respectively.
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Figure C.2: Excluding Events Regarding International Credits
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Figure C.3: Excluding Potentially Confounded Events
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Figure C.4: Excluding Phase One Events
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Figure C.5: Excluding Events During European Sovereign Debt Crisis

Alternative instrument.

As discussed in the paper, I measure the carbon pol-

icy surprises as the change in the EUA futures price on the day of the regula-

tory event relative to the prevailing wholesale electricity price on the day before

the event. A key advantage of this approach is that it directly gives a notion of

how economically relevant a carbon policy surprise is. In particular, it gives less

weight to large percentage changes in carbon prices that occurred in an environ-

ment where carbon prices were very low. An alternative approach is to simply

measure the surprise as the percentage change in the carbon price on event days.

To fix ideas, the carbon policy surprise is in this case computed as follows:

CPSurprise; ; = log(
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where d and t indicate the day and the month of the event, respectively and F; 4
is the settlement price of the EUA futures contract. This measure has the ad-
vantage that it is less focused on the electricity market but on carbon markets
more broadly. However, because this approach generates one relatively large
surprise in November 2007 when carbon prices were approaching zero, I exclude

this event from the analysis.*
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Figure C.6: Alternative Carbon Policy Surprise Series

Notes: The figure shows the carbon policy surprise series, measured as the per-
centage change in carbon prices around event days, compared to the baseline car-
bon policy surprise series, which is expressed relative to the prevailing wholesale
electricity price before the event.

Figure C.6 shows the carbon policy surprise series, measured as the percent-
age change in carbon prices, relative to the baseline surprise series. We can see
that the series are fairly similar, particularly during phase two and the beginning
of the third phase. Overall, the two series are highly correlated, with a correlation
coefficient of about 0.7.

Reassuringly, using the alternative instrument produces consistent results.
Figure C.7 presents the impulse responses to a carbon policy shock using the
alternative instrument, together with the baseline responses. We can see that the
responses are very similar, both qualitatively and quantitatively. This illustrates
the benefits of using the surprise series as an instrument as opposed to a direct

shock measure.

4In a previous version of the paper, I used this measure of the carbon policy surprise series as
the baseline. Interestingly, this produces very similar results, even when including the November
2007 event.
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Figure C.7: Instrument Based on Percentage Change in Carbon Price

Futures contracts. EUA futures are traded at different maturities. I focus on
the contracts traded on a quarterly cycle. As a baseline, I use the front contract,
which is the contract with the closest expiry date and is the most liquid. Figure
C.8 presents the results based on other contracts. Overall, the responses turn out
to be robust to using contracts with longer maturities. This supports the notion

that the results are not severely affected by changes in risk premia.
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Figure C.8: Using Different Futures Contracts

C.2. Confounding news

Another important choice in high-frequency identification concerns the size
of the event window. As discussed in Section 2.2, there is a trade-off between
capturing the entire response to the policy news and background noise, i.e. the
threat of other news confounding the response. Common window choices range
from 30-minutes to multiple days. Unfortunately, the exact release times are
unavailable for the majority of the policy events considered, making it infeasible
to use an intraday window. Therefore, I use a daily window to compute the

policy surprises.
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To mitigate concerns about other news confounding the carbon policy sur-
prise series, I employ an alternative identification strategy exploiting the het-
eroskedasticity in the data (Rigobon, 2003; Nakamura and Steinsson, 2018). The
idea is to clean out the background noise in the surprise series by comparing
movements in carbon prices during policy event windows to other equally long
and otherwise similar event windows that do not contain a regulatory update
event. In particular, I use the changes in carbon futures prices on the same week-
day and week in the months prior a given regulatory event.

The identification strategy works as follows. Suppose that movements in the
EUA futures z; we observe in the data are governed by both carbon policy and
other shocks:

Zr =€t + Z €t T U
j#1
where ¢;; are other shocks affecting carbon futures and v ~ iidN (0, 02) captures
measurement error such as microstructure noise. Because z; is also affected by
other shocks, it is no longer a valid external instrument. However, we can still
identify the structural impact vector by exploiting the heteroskedasticity in the
data.

The identifying assumption is that the variance of carbon policy shocks in-
creases at the time of regulatory update events while the variance of all other
shocks is unchanged. Define R1 as a sample of regulatory events in the EU ETS
and R2 as a sample of trading days that do not contain an regulatory event but
are comparable on other dimensions. R1 can be thought of as the treatment and
R2 as the control sample. The identifying assumptions can then be written as
follows
Uszl,Rl > ‘7521,1{2
Ué/m = crgzlez, forj=2,...,n. 3)

2 _ 2
Uv,R1 = U,R2
Under these assumptions, the structural impact vector is given by

_ Ers [ztug] — Ego[ziuy] A
. Eg1(z7] — Ero[z7] @)

As shown by Rigobon and Sack (2004), we can also obtain this estimator through
an IV approach, using Z = (z%;, —z%,)’ as an instrument in a regression of the

. . o JERY;
reduced-form innovations on z = (zy, Zg,)".
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The assumption that the variance of the surprise series is much larger on event
days than on a sample of controls days is indeed supported by the data. Figure
C.9 shows the carbon policy surprise series together with the control series. We
can see that the policy surprise series is much more volatile than the control series,
and a Brown-Forsythe test for the equality of group variances confirms that this

difference is also statistically significant.
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Figure C.9: The Carbon Policy and the Control Series

Notes: This tigure shows the carbon policy surprise series together with the sur-
prise series constructed on a selection of control days that do not contain a regu-
latory announcement but are otherwise similar.

Figure C.10 shows the impulse responses estimated from this alternative ap-
proach. The results turn out to be consistent with the baseline results from the ex-
ternal instrument approach, even though the responses are a bit less precisely es-
timated. These results suggest that the bias induced by background noise is likely
negligible in the present application. However, part of the statistical strength un-
der the external/internal instrument approach appears to come from the stronger

identifying assumptions.
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Figure C.10: Heteroskedasticity-based Identification

Interestingly, the heteroskedasticity turns out to be even more stark when us-
ing the percentage change in the carbon price as the relevant instrument. As we
can see from Figure C.11, in this case, the variance of the surprise series is close
to 7 times larger than the variance of the control series. As shown in Figure C.12,
this helps to increase the precision of the estimated responses. Reassuringly, the

point estimates are again very similar to the baseline external instrument results.
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Figure C.11: The Alternative Carbon Policy and the Control Series

Notes: This figure shows the alternative carbon policy surprise series based on the
percentage change in carbon prices together with the surprise series constructed

on a selection of control days.
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Figure C.12: Heteroskedasticity-based Identification Using Alternative Surprise
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C.3. Sample and specification choices

An important robustness check concerns the estimation sample. Recall, the base-
line sample goes back to 1999, which is longer than the instrument sample which
only starts in 2005. The main motivation for using the longer sample is to in-
crease the precision of the estimates. As a robustness check, I restrict the overall
sample to the 2005-2019 period. The responses are shown in Figure C.13. Over-
all, the results are very similar to the ones using the longer sample. However,
some responses turn out to be a bit less stable, which could point to difficulties in
estimating the model dynamics on the relatively short sample.

One advantage of the shorter sample is that it is possible to include the carbon
price. Figure C.14 shows the response from a model that includes the carbon
price in lieu of the oil price. We can see that the shock leads to a significant
increase in the carbon price, in line with the interpretation of a shock tightening
the carbon pricing regime. Interestingly, however, the carbon price response turns
out to be less persistent than the energy price response. We can also back out the
elasticity of energy to carbon prices, which turns out to be around 4 percent at the
peak. This lies in the ballpark of the average emissions cost share of EU power
producers.

I also perform a number of other sensitivity checks on the specification of the
model. The baseline VAR includes 8 variables, which is relatively large, especially
given the short sample. As a robustness test, I use a 6-variable model, excluding
stock prices and the oil price. As can be seen from Figure C.15, the results from
this smaller model turn out to be very similar to the larger baseline model. The
results also turn out to be robust to the lag order (Figure C.16 shows the responses
using 3, 9 or 12 lags) and the choice of deterministics (Figure C.17 includes a linear
trend). Only the responses in the model with 3 lags are somewhat different for
some variables. This illustrates the importance of controlling for sufficient lags to
adequately capture the dynamic relationships in the data. The models with more
generously parameterized lag orders produce very similar results to the baseline

model with 6 lags.
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Figure C.13: Results Using 2005-2019 Sample
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D. A heterogeneous-agent climate-economy model:

Derivations

In this appendix, I provide the derivations for the heterogeneous-agent climate-
economy model. As discussed in the main text, the aim is to obtain a framework
that can account for the empirical findings —both at the aggregate level and along
the cross section — and can be used for policy experiments. The model combines
a climate-economy structure in the spirit of Golosov et al. (2014) with nominal
rigidities, household heterogeneity and risk. The model consists of four build-
ing blocks: households, firms, a government and a climate block. The house-
hold block consists of two types of households: Households in the hand-to-mouth
(H) and savers (S) state, that differ in their MPCs, income incidence and energy
shares. We incorporate idiosyncratic risk by assuming that households switch
exogenously between types. The firm block is further divided into consumption
good and energy producers. In this appendix, we go over each model block in
detail.

D.1. Households

The household sector consists of a continuum of infinitely lived households, in-
dexed by i € [0,1]. Households are assumed to have identical preferences with
felicity function U(x, h), deriving utility from consumption x and disutility from
labor h. We assume that the felicity function is of the constant elasticity class and
separable in consumption and labor:

X1 h}fa

U(xi hip) = i'lt — Vi

where 1/0 is the intertemporal elasticity of substitution and 1/0 is the labor sup-
ply elasticity.

Households have access to three assets: a risk-free bond, shares in imperfectly
competitive firms, and physical capital. They participate infrequently in finan-
cial markets. When they do, they can freely adjust their portfolio and receive
dividends from dividends and capital income. We call this the savers’ state (S).
When agents do not participate in financial markets, they can use only bonds to
smooth consumption. We call this the hand-to-mouth state (H). We denote by s

the probability to keep participating capital markets in period t + 1, conditional

] —
t+1

of household j. Similarly, we call & the probability to keep being excluded from

upon participating at ¢, i.e. s = p(s S|s]t = S), where s]t is the current state
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financial markets, i.e. h = p(s{; n=H \s{f = H). Hence, the probability to become
a financial market participant is (1 — /). The share of hand-to-mouth households
thus evolves as A; 1 = hA; + (1 —s)(1 — At). We focus on the stationary equilib-
rium with A = (1 —5)/(2 —s — h), which is the unconditional probability of being
hand-to-mouth.

The requirement s > 1 — h ensures stationary and has a straightforward in-
terpretation: the probability to remain in state S is larger than the probability to
move to state S (the conditional probability is larger than the unconditional one).
In the limit case of s = 1 —h = 1 — A, idiosyncratic shocks are iid: being S or H
tomorrow is independent on whether one is S or H today. At the other extreme
stands TANK: idiosyncratic shocks are permanent (s = i = 1) and A stays at its
initial value (a free parameter).

We make two key assumptions to obtain a tractable representation. First, there
is perfect insurance among the households in a particular state but not between
households in different states. Accordingly, we can think of households as liv-
ing on two different islands and that within each island all resources are pooled.
Households on the same island will thus make the same consumption and saving
choices. Second, however, we assume that stocks and capital are illiqguid. When
savers can no longer participate in financial markets, they cannot take their stock
and capital holdings with them. Only bonds are liquid and can be transferred
when switching between islands.

The timing is as follows. At the beginning of every period, resources within
types are pooled. The aggregate shocks are revealed and households make their
consumption and saving choices. Next, households learn their state in the next
period and have to move to the corresponding island accordingly, taking an
(equally-split) fraction of the bonds on the current island with them.

The flows across islands are as follows. The total measure of households leav-
ing the H island each period is the number of households who participate next
period: A(1 — h). The measure of households staying on the island is thus Ah. In
addition, a measure (1 — A)(1 — s) leaves the S island for the H island at the end
of each period. Recall that our assumptions regarding insurance imply symmet-
ric consumption/saving choices for all households in a given island. Denote by
bs 41 the per-capita beginning-of-period t + 1 bonds of S (after the consumption-
saving choice, and also after changing state and pooling). The end-of-period ¢ per
capita real values (after the consumption/saving choice but before agents move
across islands) are zg ;1. Likewise, by 11 is the per capita beginning-of-period
t +1 bonds in the H island (where the only asset is bonds). The end-of-period
t values (before agents move across islands) are zp (1. We have the following
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relations:

bsti1=(1—A)bgti1 = (1= A)szg i1+ A1 = h)zpep
briy1 = Abpiy1 = (1= A)(1—8)zs 441 + Ahzp iy,

where b; ;11,1 € {S, H} denote the bond holdings of the entire island. As stocks
and capital do not leave the S island, we do not have to keep track of them.

Capital accumulation is simply characterized by:

: 2
. Pk (U
kiy1=ir— "+ (——0) k 1—20)k,
1 =1t Z(kt ) e+ ( )ki
where ¢ is the depreciation rate and ¢y is a parameter that governs the costs of
adjusting the capital stock.

The program of savers reads

VS (bs ;i ki) = max M—t[) ﬂ—l—ﬁEvs(b Wi i1 k1)
Sty Wi, Kt Xe 1254100 1kes it s 1_ o Sl+9 t St+1, W41, M 41
A
th— /\EtVH(bH,H-l)

subject to

b

Wi it Ry bg, wi kv, Kt
Pst¥st+Zst1 + Vi t_u t g = wilts + ﬁtl T (Vt +(1- Td)dt) Tt (I-7 )th — T wsi
ko =i — 2 (L —5) K+ (1- )k
2 \ k¢

b1 = (1 —A)szg 1 +A(1—h)zp i
b1 = (1= A)(1 = s)zg 41+ Ahzp i1
zst+1 = 0.

The household internalizes how aggregate bond holdings evolve according to
households switching between types. Furthermore, the bond holdings a house-

hold takes from an island cannot be negative, i.e. borrowing is not possible.
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The first-order conditions read

x*U

L= 2y

pPst

Asy = B(1— A)SEVE (bs s 11, i1, kiv1)] + BA(1 — 8)E[VE (b si1)] + sy
/\s,tl/t

-1 BE{[V3 (bs i1, i1, ki1)]

0t = BEVE (b p11, wivn, ki)

At B i

0
Aswr = pshg

together with the complementary slackness condition:

zs4+16s,t = 0,

with s > 0. Ag;, {t and ¢ s are Lagrange multipliers associated with the budget
constraint, capital accumulation, and the inequality constraint, respectively.
From the Envelope theorem, we have

Asy RY
Vi (bs s, wi, ki) = 1 _S;L Ifltl
A
VS (bs g, wi k) = 725 (v + (1 7)d, )

A i) i i

Using this in the FOCs gives

x*(f
Yy
pst
R? u
Ast = BSE; AS’tHHtil + BA(1 —s)E¢ [V} (bHt41)] + Cs

Vo1 + (1 — 1)d
Ast = BE; | As 41 1 ) tH]

4

) | : | |
7y = BE; 15,_t+/\1 (1= 4 G (1 _5— Pk (il _ 5) + o ( 1 5) t+1 )]

2 \ ki1 ki1 ki1

Ast _r (1 (B

0
Aswr = Pshg ;.
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Tobin’s marginal g is defined as q; = % Using this, we can rewrite the

optimal capital and investment decision as

As 41 k P (it+l )2 (it+1 ) it 41
= BE | 23 (1= ) + 1—o— e (Il 5} 4 (14 —g) L
p t[ As (( )it1 qt+1 2 \kiy Pk ke kit

The only thing that remains to be determined is V{(bp++1). We can obtain
this from the problem of the hand-to-mouth. Their program reads

1-0 1—1—9
H xH 1—-A_
Vi (bys) =  max — Y + BEV (bp 1) + B EtV2(bs,i1, Wry1, kig1)
Xz iy 1 — 1 + 9 A

subject to

v by
PStXHt + ZH 41 = Wihpg + —— +wyt

Ht A

bsii1 = (1 —A)szg 11+ A(L—h)zp i1
br1 = (1—A)(1—38)zs11 + Ahzp i1

zyt+1 = 0.
The first-order conditions read

Xpp = AHt
A = BARE(V (b ii1)] + B(1— A) (1 — B)E[VE (bs p41, i1, kes1)] + Erie

0
Agwr = Yhy,

together with the complementary slackness condition:

zHi+1CH: = 0,

with gH,t > 0.
From the Envelope theorem, we have

A Ry
AT

Vi (by,) =
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Thus, we can rewrite the Euler equations for bonds accordingly

Rb
A= BEt | e (MA R + (L= h)Ag 1) | + Chy
t+1
and similarly for the savers:
R
Asi = PEr | i — (SAsir1+ (1 =8)Amsa) | +Csr
t+1

Note that the Euler equation for stocks and capital are isomorphic to the con-
ditions in a representative-agent setting. There is no self-insurance motive, for
they cannot be carried to the H state.”

In contrast, the bond Euler equations are of the same form as in fully-fledged
incomplete-markets models of the Bewely-Huggett-Aiyagari type. In particular,
the probability (1 — s) measures the uninsurable risk to switch to a bad state next
period, risk for which only bonds can be used to self-insure, thus generating a
demand for bonds for “precautionary” purposes.

Two additional assumptions are required to deliver our simple equilibrium
representation. First, we focus on equilibria where (whatever the reason) the
constraint of H agents always binds (i.e. {ig > 0) and their Euler equation is
in fact a strict inequality (for instance, because the shock is a “liquidity” or impa-
tience shock making them want to consume more today, or because their average
income in that state is lower enough than in the S state, as would be the case
if average profits were high enough; or simply because of a technological con-
straint preventing them from accessing any asset markets) and the constraint of
S never binds (s = 0) so that their Euler equation always holds with equality.
Second, we focus on the zero-liquidity limit, that is we assume that even though
the demand for bonds from S is well-defined (the constraint is not binding), the
net supply of bonds is zero, so there are no bonds traded in equilibrium.

Under these assumptions, the H households are indeed hand-to-mouth as
their budget constraint reads

PstXHt = Wil + WH s )

5As households pool resources when participating (which would be optimal with t=0 sym-
metric agents and t = 0 trading), they perceive a return conditional on participating next period.
This exactly compensates for the probability of not participating next period, thus generating the
same Euler equation as with a representative agent.
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The intertemporal consumption/saving behavior by savers is characterized

by
x_U
Ne, = ot 6
St Des (6)
b
Ast = BE; 8 L (sAgpr1+ (1 —$)Am41) (7)
LA
[ Vi1 + (1 —1)d
Ast = BEt | As a1 R " ) t+1] (8)
As 41 k Pk it+1 2 it+1
q: = PE¢ | —* (=) + e (1 - ——<—— > +(Pk<—— )
As 2 \kip1 kit
9)
1= g (1—cpk(’i—5>> (10)
ki
, RV 1—19)d
PsXst+ st + g1 = wihy + 1fl—tlbs,t + (1= )riks s + % + ws, (11)
; 2
kg =i — (2L 5) ket (1—0)ks, (12)
2 \ k;

as market clearing implies that w; = w1 = 1.

As to the intratemporal choice between energy and non-energy consumption,
recall that the final consumption bundle xgs, is a CES aggregate of consumption
and energy goods

€x
1

L ex—1 i ex—1 ex—
— €x €x €x €x
XSt = (”s,ccs,t +4ag,es ) /

where ag . and ag, are distribution parameters with ag . +ag, = 16, and ey is the

®Note that the distribution parameters ag . and ag,, sometimes also referred to as shares, are
in fact not shares but depend on underlying dimensions unless €y = 1. In other words, these
parameters are not deep parameters but depend on a mixture of parameters that depends on the
choice of units. To circumvent this issue, we follow the re-parameterization approach proposed
by Cantore and Levine (2012). In particular, we calibrate the steady-state energy share and to back
out the implied distribution parameters. We have:

ex—1 ex—1
Pe€s [ Pe \ Pe
ag, = —> [ £ =wg, | &= ,
o psXs (Ps) o (Ps)

where wg , is the energy expenditure share. From this, we then have ag . = 1 — ag .. Note that this
share is dimensionless. Thus, we can calibrate or estimate it. By using this strategy, we can also
perform comparative statics, varying the elasticity ey.
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.. e ) . O(ct/ect)/ (ct/ect) 7
elasticity of substitution between non-energy and energy goods: 3 ot/ (per/ 1)

Making the distribution parameters household-specific allows for heterogeneity
in the households’ energy share.
The demands for the consumption and energy good the are given by

1\ ¢
Cs = ag,c <—> Xt (13)
Ps,t
Per\
esy = as, < & ) X3t (14)
Ps,t

respectively. Note that the consumption good is chosen to be the numeraire, i.e.
it’s price is one in real terms.

The corresponding price index is

1
Pst = (ﬂS,c + as,epg,t_e"> e (15)

Similarly, for the hand-to-mouth, we have

1\ &
CHt = AH, (—) XH,t (16)
Ps,t
Pet\
e,
€Ht = AH, ( ) XH t (17)
Ps,

and the price of their bundle is

_1
PH = (aH,c - aH,epije"> e (18)

Finally, the optimal labor supply decisions are characterized as

As,iwr = psh, (19)
/\H,twt = QDHh?—[,t- (20)

D.2. Firms

The firm block of the model consists of two sectors: energy and non-energy pro-
ducers. Importantly, non-energy firms also use energy as an intermediate input
to produce the non-energy good. Further, we assume that non-energy firms face
some restrictions in adjusting their prices while the energy sector does not face

71f e, approaches oo, the goods are perfect substitutes; if €, approaches 0, the goods are perfect
complements; and if €, approaches 1, the goods are one-for-one substitutable, which corresponds
to the Cobb-Douglas case.
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any price rigidity.

Energy producers. The energy firm produces energy using labor only according
to the following production function:

ey = ag,the,t. (21)

We assume that there is only a single source of energy (e.g. coal) that is available
in (approx.) infinite supply. Note that we measure energy in terms of carbon
content (carbon amount emitted). Energy firms are subject to a carbon tax .

Their maximization problem reads

max (1 — Tt)Pe’tef — wthe,t
he,t
s.t. ey = ae,the,t

The FOC gives the optimal energy supply:

Wt (o

(1=)pes et 22
Non-energy firms. To simplify matters, we split the non-energy goods sectors
into two subsectors: a representative competitive final goods firm which aggre-
gates intermediate goods according to a CES technology and a continuum of in-
termediate goods producers that produce different varieties using capital, energy
and labor as an input. To the extent to which the intermediate goods are imperfect
substitutes, there is a downward-sloping demand for each intermediate variety,
giving the intermediate producers some pricing power. Importantly, however, in-
termediate goods producers cannot freely adjust prices. Nominal price rigidities
are modeled according to Calvo (1983) mechanism. In each period, a firm faces a

constant probability 1 — 6, of being able to reoptimize the nominal wage.

Final goods producer. Final goods firms maximize profits subject to the produc-
tion function by taking prices as given. Since final goods firms are all identical,
we can focus on one representative firm. These firms bundle the differentiated
goods into a final good using a CES technology. Taking prices as given, the final

goods producer chooses intermediate good quantities y;(i) to maximize profits:

€

LN LN = A
max Pt]/d,t—/o P(i)ye(i)di st ygp = (/0 ye(i) dz) ,

ye(i)
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where v, ; is aggregate demand and €, > 1 is the elasticity of substitution. When
goods are perfectly substitutable €, — oo, we approach the perfect competition
benchmark.

From the first order condition, we get the usual demand schedule

ye(i) = (P;E:))ep Yai-

From the zero profit condition we obtain the aggregate price level P; =

(R Riy=erdf) ™.

Intermediate goods producers. Intermediate inputs are produced by a contin-
uum of monopolistic firms indexed by i € [0, 1] according to the following CES
production technology, using capital k; (i), energy e, (i), and labor h, (i) as in-
puts

ey/ (ey—1)

(ey—1)/ -
€y €y —|—1/1/€-V (ey,t(i))(ey 1)/ey )

) = e | (1) (o)) )
(23)

where a; is a technology shifter, and e~ "** captures climate damages, modeled
as a function of the atmospheric carbon concentration s;. We assume that capi-
tal/labor and energy are complements, i.e. €, < 1.

As intermediate goods producers are monopolists, they maximize profits by
taking the demand function of final goods firms into account. We consider now
the problem of an intermediate goods firm i. For the sake of simplicity the pro-
gram is split into two sub-problems: the cost minimization and the price setting
problem. To find the real cost function, factor costs are minimized subject to the
production function. The program of firm i reads

. e b .
kt(l.)/}{ﬁl(gley,t (i)rt t(7) + wihy,1 (i) + pe,rey,(i)

ey—1)/¢ _ ey/(ey—1)
st yp(i) <e 7 [(1 —v)Ve (atkt(i)“hy,t(i)l_“>( v=1/e + /ey (eylt(i))(ey 1)/€y}
The FOCs read
eyfl
i) _ o1 =y ek )
yi(i) yi(i)
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Wiyt () _ v E (€ k() O AN
ye(d) =(1 )(1 ) A (i) ( o) >
Pepeyr(i) 1 (e Ty (i) e
v(@) A*(l)( o) )

where A(i) is the corresponding Lagrange multiplier. This multiplier has the
interpretation as real marginal cost —how much will costs change if you are forced
to produce an extra unit of output, i.e. A;(i) = mc;(i), and it is equal across firms,
i.e. mcy(i) = mcy. This in turn implies that the output-capital, output-labor, and
output-energy ratios are the same across firms.

Now that we have found the real cost function, we can move to the intermedi-
ate goods firms’ price setting problem. Intermediate goods producers set prices
to maximize the expected discounted stream of (real) profits. However, as out-
lined above, firms are not able to freely adjust price each period. In particular, in
each period there is a fixed probability of 1 — 6, that a firm can adjust its price.
Since there is a chance that the firm will get stuck with its price for multiple peri-
ods, the pricing problem becomes dynamic. Firms will discount profits k periods
into the future by Mt,t+k0 where M; ;1 = ,Bk 2 '*k is the stochastic discount fac-
tor, which follows from the fact that the firm is owned by the savers. The price
setting problem reads

- As tik (P (1) . )
max E 9 kZodtk mc 1
B tk;,)(ﬁ P Asys Prok Yk (i) — mepy iy ()
, P(i)\ ~¢ °°
s.t. {yt+k(l) = (pt( )> yd,t+k} :
t+k k=0
The FOC reads

€p—1 N —1 €
E; Z Boy) )\s tk (( —€p)P Ly Ya ik + €p mep ( Pe(i) 1Pt£kyd,t+k> = 0.
By rearranging, we obtain

k
€p E; E}io:o(ﬁep) As, t+kmct+k t+kydt+k

bili) = €p—1 0
p Et Y 32 o(BOp)kAg 11k P +k yd t+k

Note that nothing on the RHS depends on i. Thus, all firms will choose the same
reset price P} = DPy(i).

108



We can write the optimal price more compactly as

F ey — 1 Xy
with
Xip=Er Y (BOp) Mg primer kP a vk
k=0
ad k ep—1
Xop = Et Y (BOp) AsiskPl e Ya sk
k=0

We can also write the X’s recursively

Xyt = Asmei Py, + BOpE: X1 111
1
Xop = AP yay + BOE: X 441.°

Let us now rewrite these expressions in terms of inflation (as the price level

X>

: . X
may be non-stationary). Define x; ; = PTlpt and xp; = prtl Thus, we have

t t

€p
X1t = Asmciyay + BOpErxy 111,14

e,—1
X2t = AsYa + BOpErxa 1115

The reset price equation then writes

€ X
pf=—F_p=4
€p—1 x4
€ X1t
= H;( = P Ht—' ,

ep—1 x4

. o . Py
where we define reset price inflation as Iy = pt-.

Exploiting the Calvo assumption, we can write the aggregate price index as

1—¢p

I, = (1—6,) (1) +6,.

81f 8y = 0, then this would reduce to

€
Pt* = P 1 Pt mcy,
€p —
——
M

i.e. the optimal price would be a fixed markup over nominal marginal cost.
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By way of summary, optimal behavior of firm i is characterized by

ey—1
1 e~ Tt kihl T
k1 - ) me, (—t aall ) (24)
Yt Y
et
h 1 e—’)/Sta ktxh —u €y
M — (1 _ 0()(1 _ ]/)5 mcy <# (25)
Yt Yt
ey—1
Petlyt _ v%mct (e_wey/t) ) (26)
Yt Yt
I = 11, 27)
ep—1 x4
X1 = Agmesyq s + POpErxt pia 1T, (28)
-1
Xop = Asa + BOpErxa L) (29)
I, = (1-6,)(IT;) ¢ + 0, (30)

. (6 —1)/5 ] e c Ey/(Ey—l)
yili) = e [(1 —v)te (atkt( ) by (i)' ) T Ve (e, (i) Y yl

The aggregate production is given by

1
= [ wa
(ey—1)/ey (€)—1)/e ey/(ey—1)
_ / —YSt |: 1/€y <€ltkf( ) h ( ) ) +V1/€y (ey,t(i)) Y y] di
(ey—1)/ey }ey/(eyl)

=y =e " [(1 — )V (akihl®) + 016 (o) e

L/P(i)\ 7
:/0 (%) divar = NYay,

where we have exploited the fact that factors are hired in the same proportion
and plugged in for the demand function. Note that there is a wedge between

(31)

aggregate output and aggregate demand. The intuition is that with Calvo pric-
ing, firms charging prices in different periods will generally have different prices,
which implies that the model features price dispersion.

We can rewrite the dispersion term in terms of inflation making use of the

Calvo assumption. We have

Ap = (1 —60,)(IT}) ST 4 0,IT1," Ay (32)
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Firms profits are

LP(i N LI
dy = ; tp(tl)yt(z)dz—mct/o ye(i)di.

Plugging in the demand function gives

_ 1 1 . —€p
dy Zyd,tptep 1/0 Pt(i)l_epdi—mctyd,t/o (Ptp(:)> di.

: 1- . g
Now since P, 7= J. ! Py(i)'¢rdi, this reduces to

0
1 Pt(i))_ef’ .
d; = — / — d
t = Ydr — MCtYq ¢ 0 ( P, 1

Thus, we can write profits as

d = (1 — mcAr)yg (33)
Further, note that
meryr = 1ikt + Peteyr + Wiky p.

Thus, we can also write profits as
dr = Yap — Tk — Pety,t — wthy,t-

D.3. Climate block

Following Golosov et al. (2014), I model the current level of atmospheric carbon

concentration as a function of current and past emissions:

[ee]

5t = 2(1 - ds)etfs/

s=0

where 1 —ds; = (1 — ¢1)¢o(1 — ¢)°. Here, 1 — ¢y is the share of remaining emis-
sions exiting the atmosphere immediately while ¢( is the remaining share of
emissions that decay over time at a geometric rate 1 — ¢. We can write this in

recursive form as

st = (1 — @)st_1 + @oer. (34)
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D.4. Fiscal and monetary policy

The government runs a balanced budget in every period, i.e. all transfers are

financed by tax revenues. We consider the following transfer policy

Awp = Tddt + Tkrfkt + UTtPe €t (35)
(1= ANws; = (1 — p)Tipeer. (36)

The distribution of carbon tax revenues are governed by parameter y. As the
baseline, we assume that all carbon revenues are obtained by the savers, i.e. y =
0. Later, we will experiment with alternative transfer policies.’

Carbon taxes T; are set according to the following rule:
T = (1= p0)T+peT1 +€xpe (37)

Finally, we assume that there is a monetary authority that conducts monetary

policy according to the following Taylor rule (in log-linear form):

i = Py (1= )t + €mpu, 8)

where 77, is headline consumer price inflation: 7it; = Afty; + (1 — A)7tg; with

_ _PHt __ _Pst
HH,t = PHi-1 Ht and HS,t = Psi1 Ht.

D.5. Aggregation and market clearing

Because capital is only held by S, we have that (1 — A)ks; = kyand (1 — A)igy = iy
Because bonds are in zero net supply, we have zg; = zp; = bg; = by = 0.
Aggregate total, non-energy, and energy consumption are given by x; =
Axpr+ (1 —A)xgy, ¢ = Acgy+ (1 — A)cgy, and ecp = Aegy + (1 — Aesy, re-
spectively. Labor market clearing requires Ahp; + (1 — A)hg; = hy; + hes. The

energy market clears if e; = e+ + ey,+. Finally, goods market clearing requires that
¢t +1ir = Ya,r- (39)

To derive this, we multiply the households budget constraints by their shares

and sum over them:

9Furthermore, we assume that 7@ = 8 = 0. However, the tax scheme can be used to equalize
incomes if ¢ = 8 = = A.
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Apaexpe + (1 — A)(psixse +ise + bs 1) = AMwihp s + wpg) + (1 — A) <ZUthlt + %bs,t + (1= ) riks; + (1%1"1/\)@ + (Us,t>
¢t + it + petecy = wihy + 1k + Teperer + di

ct +it + Peteet = Wihe + 1iki + Tpeper + Yap — rike — Wikt — pe ey s

ct + it = Wehyt + Wihet + Tepeer + Yar — Wihyt — Peter

ct+ip = (1 — T)peser + Tperer + Yar — Peet

Ct + it = yd/b

D.6. Equilibrium

A general equilibrium of this economy is defined as a sequence of quantities

Q = {Xt, X5t, XH,t, Ct, CS t, CH t, €c,t, €5 £, €H b its K1, Yt, Yt BELE 1 ¢ My ) He g, €4 1, MICH €4, S8, T,
WH g, A, Aty X0 X2} 5o s a sequence of prices P =

{As,t, Wi, Tt, Pet, PS,t, PHE R?, Ty, IT;, I, ¢, T74 }22,, and a sequence of forcing
variables F = {ay, det, €1,t, €mp,t } 1o Such that

1. Given a sequence of prices P, and a forcing sequence F, the sequence of
quantities Q solves the households” and the firms’ problems.

2. Given a sequence of quantities Q and a sequence of forcing variables F, the
sequence of prices P clears all markets.
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The equilibrium is characterized by the following set of equations:

Table D.1: Summary of Equilibrium Conditions

10:
11:

12:
13:

14:

15:

16:

17:
18:

19-20:

21:
22:
23:

24:

25:
26:
27:
28:
29:
30.
31:

Labor supply, S
Non-energy demand, S

Energy demand, S

Shadow value of wealth

Bonds Euler equation, S

Investment Euler equation, S

Tobin’s g

Capital accumulation

Final good price index, S
Labor supply, H
Non-energy demand, H
Energy demand, H

Consumption, H

Final good price index, H

Capital demand non-energy firm

Labor demand non-energy firm

Energy demand non-energy firm
Reset price

Auxiliary terms

Aggregate inflation
Price dispersion
Aggregate demand non-energy

Prod. function non-energy firm

Energy supply
Production function energy firm

Carbon emissions

Aggregate total consumption
Aggregate non-energy consumption
Aggregate energy consumption
Labor market clearing

@wt yshs,
1) %
Cst = 4as,c (@) XSt
—ey
est = g, (%) Xs)t
Psilst = xg7
x2¥ RY Xo
-7 S t St+1
pst PE: |:Ht+1 SPS t+1 +(1-
= BE: [ e ((1 — ™)+
_ Pk [ B+
qt+1 1- 2 (kil -
_ it
A

kt+1—lt—ﬂ(,%— ) kt+(1—5)kt
1

1— T—ex
—€.
Ps,t = (ﬂ5c+ﬂsdﬂ A)

U'
th wt l/JHhH t
1\ &
CHt = 4H,c (THJ XH,t
e
t
eHt = AHe (;;t) XH,t
PHXHt = Wil + WH t

1

T—ex
1—€
PHt = (“H,c taH,eP t X)

) ey—1
1 TSt k1T ey
reky A e htagkihy
= a1 ) Sme, ()

. eyt
wihye _ ei eivst”fk?hy;a <y
= (1—a)(1—v)¥mc —

1 ey—1
Pe,tly,t — ey ei'ystey,r €y
B = vme (g
x _ _€p X1t
I = 5y, .
X1t = Amcryas + BOpEexy L7
ep—1
X2t = MYa + POpErxo L1
1-
H €p _ (1—9p)(H*)1 ep+9
€
- (1 - Qp)(H;‘) €thp + GthpAtfl
yd,tAt =Yt
ey
& e @t
yp=e 7 (1-v)% ( k?hyt“) T (eyt)

(1 — T¢) peer = wihey

et = e the

st = (1—@)si—1 + poer

xp = Axps+ (1 —A)xg,
=Acps + (1= A)esy

ect = Aepr + (1 —Aess

Ahpg+ (1= A)hgy = hyt + he,t
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32: Energy market clearing er = et + eyt

33:  Goods market clearing cr+ip =1y,

34: Tax schedule T =(1—p)T+pcT-1 + Ex

35: Transfers, H Awp s = d, + Tkrfkt + UTiPe et

36: Dividends dr = (1 —mcip)yg

37:  Taylor rule P =0t + (1= pr) (PrAAT) + Empyt
38:  Headline inflation Ay = At + (1—A) g,

39:  Inflation, py My = pf{fj -1

40:  Inflation, ps g, = b5

D.7. Calibration

We parameterize the model as follows. The time period is a quarter. The discount
factor B takes the standard value 0.99, which implies an annualized steady-state
interest rate of 4 percent. The intertemporal elasticity of substitution 1/¢ and the
labor supply elasticity 1/0 are set to 1. These are standard values in the literature.

The labor weight in the utility function, ¢; is set such that steady-state hours
worked h; are normalized to one. I calibrate the share of hand-to-mouth A to
25 percent, corresponding to the low-income threshold used in the LCFS. Such a
share is also in line with the estimates of hand-to-mouth households in Kaplan,
Violante, and Weidner (2014). Idiosyncratic risk is calibrated to 1 —s = 0.04, as
in Bilbiie (2020). The distribution parameters ay, and ag, are set to match the
energy expenditure shares of 9.5 percent for the hand-to-mouth and 6.5 percent
for the savers as observed in the LCFS. Note that the elasticity of substitution
€y is the same as the own price elasticity in this model. I calibrate €, to 0.05 for
hand-to-mouth and 0.275 for savers, as my empirical evidence points to a lower
elasticity for constrained households. The implied average elasticity is consistent
with Labandeira, Labeaga, and Lopez-Otero (2017) who perform a meta analysis
on the price elasticity of energy demand and find an average short-run elasticity
of around 0.21.

Turning to the production side, I set the depreciation rate J to 0.025, imply-
ing an annual depreciation on capital of 10 percent. The capital adjustment cost
parameter is set to ¢ = 4, which implies an elasticity of investment to Tobin’s
marginal g of 10. I set « to 0.3, implying a steady-state capital share of around 70
percent (see e.g. Smets and Wouters, 2003). Using data on non-household energy
consumption and energy prices in the EU, I estimate a energy share of around
7 percent. To approximate that share, I thus set v = 0.07. The elasticity of sub-
stitution between energy and capital/labor is set to 0.21, drawing again on the

evidence in Labandeira, Labeaga, and Lopez-Otero (2017). The elasticity of sub-
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stitution between non-energy varieties is assumed to be 6, which is a standard
value and implies a steady-state markup of 20 percent, consistent with the ev-
idence in Christopoulou and Vermeulen (2012). The Calvo parameter 6, is set
to 0.825, which implies an average price duration of 5-6 quarters, in line with
the empirical estimates in Alvarez et al. (2006). These parameter choices imply a
relatively flat Phillips curve with a slope of 0.04.

For the climate block, I rely on the values in Golosov et al. (2014). I abstract
from uncertainty about the damage parameter and use the deterministic, long-
run value from Golosov et al. (2014). Note, however, that carbon emissions in my
model are in arbitrary units. Thus, following Heutel (2012) I scale the damage
parameter to make the increase in output damages from doubling the steady-
state carbon stock consistent with the projected increase in damages from dou-
bling CO2 levels in 2005. Turning to the carbon cycle, note that the excess car-
bon has a half-life of about 300 years (Archer, 2005). This implies a value of
1— ¢ = 0.9994.10 Furthermore, according to the 2007 IPCC reports, about half
of the CO2 pulse to the atmosphere is removed after a time scale of 30 years. This
implies that g = % = 0.5359.

Turning to fiscal and monetary policy, I compute the steady-state carbon tax as
the implied tax rate implied by the average EUA price which is around 3.9 percent
(the average real EUA price as a share of gross electricity prices in emission units).
The persistence of the tax shock is set to 0.85, which is broadly consistent with the
shock persistence estimated in the external instruments VAR. Finally, the Taylor
rule coefficient on inflation is set to 1.5, and interest smoothing is assumed to be
0.8. These values are standard in the literature.

All other taxes are assumed to be zero in the baseline case, later we will use
them to equalize the income incidence. Furthermore, we assume that all carbon
tax revenues accrue to the savers, y = 0, motivated by the fact that there is no
redistribution scheme in the current EU ETS in place. The calibration is summa-
rized in Table D.2.

10From the carbon cycle, we have Ess;,, = (1 — ¢)"s; = 0.5s;. Thus, we impose (1 — ¢)12%0 =

0.5 to get ¢.
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Table D.2: Calibration

Parameter Description Value Target/Source/Comments
B Discount factor 0.99 Standard value
1/0 Intertemporal elasticity of substi- 1 Standard value
tution
1/6 Labor supply elasticity 1 Standard value
A Share of hand-to-mouth 0.25 Share of low-income households,
LCFS
1-s Probability of becoming H 0.04 Bilbiie (2020)
af e Distribution parameter H 0.078 Energy share of 9.5%, LCFS
ase Distribution parameter S 0.056 Energy share of 6.5%, LCFS
€xH Elasticity of substitution 0.05 LCFS, Labandeira, Labeaga, and
energy/non-energy H Lopez-Otero (2017)
€x§ Elasticity of substitution 0.275 LCFS, Labandeira, Labeaga, and
energy/non-energy S Lépez-Otero (2017)
€y Elasticity of substitution 0.21 Labandeira, Labeaga, and Lopez-
energy/non-energy firms Otero (2017)
) Depreciation rate 0.025 Standard value
Pk Capital adjustment costs 4 Standard value
o Capital returns-to-scale 0.3 Standard value
v Energy returns-to-scale 0.07 Steady-state energy share of ~
7%; Eurostat
€p Price elasticity 6 Steady-state markup of 20%
0y Calvo parameter 0.825 Average price duration of 5-6
quarters
0% Climate damage parameter 53%107° Golosov et al. (2014)
0 Emissions staying in atmosphere  0.5359 Golosov et al. (2014)
1—¢ Emissions decay parameter 0.9994 Golosov et al. (2014)
Or Taylor rule coefficient inflation 1.5 Standard value
o7 Interest smoothing 0.8 Standard value
T Steady-state carbon tax 0.039 Implied tax rate from average
EUA price
07 Persistence carbon tax shock 0.85 Persistence in the data

D.8. Steady state and model solution

We assume that a = g, = 1 in steady state and we normalize ¢; such that h; = 1.

Furthermore, T is calibrated. Finally, we assume that there is zero inflation in

steady state, i.e. Il = Il = 1. From the definition of aggregate inflation and the

price dispersion, this impliesII* =1, A =1and y; = y.

From the investment Euler equation, we have

1
r=f - 1 5.
1— 7k
From the bonds Euler, we get
RV =
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From the reset price, we get

€, —1
me = -F .

€p

From Tobin’s q, we have g = 1.

To solve for the steady state, we guess k and e. From [27], we get s.!! From
[26], we get h,. From [31], we get hy. From [15] we get y. From [24], we get ¢y.
From [32], we get e.. From [17], we get p.. From [16], we get w. From [8], we get
i. From [33], we get c. From [9], we get ps:

1

T—ex
ps = (ﬂs,c + ﬂs,epi_e")
1
1—ey

1 176x
—€
Ps +WsepPs )

1

1—€x
ex—1 ex—1
= Ps (Psx — Wsep”  + wS,e)

ex—1

= (1 — Ws P,

ex—1 ex—1

= 1= Ps — WsePe + Wwsg e

1

ex—1
ps = <1 + wS,epg"_l — ws,e) .

From this we then have ag, = wg, (%) ot and ag. = 1 — ag,. Similarly we
get from [14] py and ap, and ap .. From [36], we get d. From [35], we get wp.
From [13], we get xy. From [11], we get cy. From [12], we get ey. From [29], we
get cs. From [30], we get es. From [3], we get xs. From [4], we get A. From [1], we
get s and from [10], we get . From [19]-[20], we get the values of the auxiliary
terms x; and x».
Then we optimize such that [2] and [25] hold.

To solve the model, we log-linearize the equilibrium equations around the
deterministic steady state and solve for a set of linearized policy functions using

Dynare.

1The equation numbers here refer to the equations in Table D.1.
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