U.S. Risk and Treasury Convenience

International Asset Pricing, NBER Summer Institute 2023

Giancarlo Corsetti¹ Simon Lloyd² Emile Marin³ Daniel Ostry²

¹European University Institute and C.E.P.R.

²Bank of England and Centre for Macroeconomics

³U.C. Davis

July 10 2023

The views expressed here do not necessarily reflect the position of the Bank of England.

Dollar perceived as safe in short run

Flights-to-safety appreciate dollar in bad times

[Maggiori 2017; Kekre & Lenel 2021; Ostry 2023; ...]

Dollar perceived as safe in short run

- Flights-to-safety appreciate dollar in bad times
- But in long run: near-zero excess returns on long-maturity dollar-bond portfolios (vs. G.7)

[Chinn & Meredith 2005; Lustig, Stathopoulos & Verdelhan 2019; ...]

[Maggiori 2017; Kekre & Lenel 2021; Ostry 2023; ...]

Dollar perceived as safe in short run

- Flights-to-safety appreciate dollar in bad times
 - [Maggiori 2017; Kekre & Lenel 2021; Ostry 2023; ...]
- But in long run: near-zero excess returns on long-maturity dollar-bond portfolios (vs. G.7)

[Chinn & Meredith 2005; Lustig, Stathopoulos & Verdelhan 2019; ...]

Treasuries viewed as special

· Treasuries command convenience yield, but (now) only at short maturities

[Du, Im & Schreger 2018; Jiang, Krishnamurthy & Lustig 2021; Engel & Wu 2022; Diamond & Van Tassel 2022; ...]

Dollar perceived as safe in short run

- Flights-to-safety appreciate dollar in bad times
 - [Maggiori 2017; Kekre & Lenel 2021; Ostry 2023; ...]
- But in long run: near-zero excess returns on long-maturity dollar-bond portfolios (vs. G.7)

[Chinn & Meredith 2005; Lustig, Stathopoulos & Verdelhan 2019; ...]

Treasuries viewed as special

· Treasuries command convenience yield, but (now) only at short maturities

[Du, Im & Schreger 2018; Jiang, Krishnamurthy & Lustig 2021; Engel & Wu 2022; Diamond & Van Tassel 2022; ...]

U.S. itself a safe haven

Dollar perceived as safe in short run

- Flights-to-safety appreciate dollar in bad times
 - But in long run: near-zero excess returns on long-maturity dollar-bond portfolios (vs. G.7)

[Chinn & Meredith 2005; Lustig, Stathopoulos & Verdelhan 2019; ...]

[Maggiori 2017: Kekre & Lenel 2021: Ostrv 2023: ...]

Treasuries viewed as special

· Treasuries command convenience yield, but (now) only at short maturities

[Du, Im & Schreger 2018; Jiang, Krishnamurthy & Lustig 2021; Engel & Wu 2022; Diamond & Van Tassel 2022; ...]

U.S. itself a safe haven

But U.S. equity premia high and rising

[Farhi & Gourio 2018; Atkeson, Heathcote & Perri 2022; ...]

Dollar perceived as safe in short run

- Flights-to-safety appreciate dollar in bad times
- But in long run: near-zero excess returns on long-maturity dollar-bond portfolios (vs. G.7)

[Chinn & Meredith 2005; Lustig, Stathopoulos & Verdelhan 2019; ...]

[Maggiori 2017: Kekre & Lenel 2021: Ostrv 2023: ...]

Treasuries viewed as special

· Treasuries command convenience yield, but (now) only at short maturities

[Du, Im & Schreger 2018; Jiang, Krishnamurthy & Lustig 2021; Engel & Wu 2022; Diamond & Van Tassel 2022; ...]

U.S. itself a safe haven

But U.S. equity premia high and rising

[Farhi & Gourio 2018; Atkeson, Heathcote & Perri 2022; ...]

How are these dimensions of U.S. (dollar) 'specialness' interlinked?

Treasury (In)convenience: 'Specialness' at Different Maturities

Note. Cross-country 6M and 10Y U.S. Treasury convenience yield (avg. vs. other G.7), 2000:M2 to 2020:M12. Constructed from CIP deviation data from Du, Im & Schreger (2018) following Jiang, Krishnamurthy & Lustig (2021).

Rising U.S. Relative Equity Premia

U.S. Relative Equity Risk Premium

Percentage Points 2 $\beta = 0.032^{***}$ ß 0 Ģ Μ 2000m1 2004m1 2008m1 2012m1 2016m1 2020m1

Note. Relative U.S. equity risk premium (avg. vs. other G.7), 2000:M2 to 2020:M12.

Rising U.S. Relative Equity Premia and Permanent Risk

U.S. Relative Equity Risk Premium

Note. Relative U.S. equity risk premium and permanent risk (avg. vs. other G.7), 2000:M2 to 2020:M12.

U.S. Relative Permanent Risk

Permanent Risk and Currency Risk Premia

Standard two-country, no-arbitrage setup predicts:

[Lustig, Stathopoulos & Verdelhan 2019]

Relative U.S. Permanent SDF Volatility = Long-Run U.S. Dollar Premium

Permanent Risk and Currency Risk Premia

Standard two-country, no-arbitrage setup predicts:

[Lustig, Stathopoulos & Verdelhan 2019]

Relative U.S. Permanent SDF Volatility = Long-Run U.S. Dollar Premium

But empirical evidence does not appear consistent:

U.S. Relative Permanent Risk

Carry-Trade Returns on 10Y Bonds

Our Paper

Theory: two-country, no-arbitrage setup to link U.S. safety across markets: FX, bond, equity

Relative U.S. Risk =	U.S. FX Risk Premium	+ Relative U.S. Convenience Yield
Relative SDF Volatility	Pecuniary Return	Non-Pecuniary Return

Our Paper

Theory: two-country, no-arbitrage setup to link U.S. safety across markets: FX, bond, equity

$\underbrace{\text{Relative U.S. Risk}}_{\text{Relative U.S. Risk}} =$	U.S. FX Risk Premium	+ Relative U.S. Convenience Yield
Relative SDF Volatility	Pecuniary Return	Non-Pecuniary Return

- In equilibrium, changes in U.S. relative risk induce movements in either the pecuniary or non-pecuniary returns to U.S. dollars/Treasuries in short- and long-run
- In long run: countries can have different 'permanent' risk, yet long-run carry-trade returns can be near zero because risk differences reflected in convenience yields

Our Paper

Theory: two-country, no-arbitrage setup to link U.S. safety across markets: FX, bond, equity

Relative U.S. Risk =	U.S. FX Risk Premium	+ Relative U.S. Convenience Yield
Relative SDF Volatility	Pecuniary Return	Non-Pecuniary Return

In equilibrium, changes in U.S. relative risk induce movements in either the pecuniary or non-pecuniary returns to U.S. dollars/Treasuries in short- and long-run

• In long run: countries can have different 'permanent' risk, yet long-run carry-trade returns can be near zero because risk differences reflected in convenience yields

Empirics: measure U.S. relative risk across markets/maturities and test model relationships

- * Document rise in relative U.S. total risk vs G.7, driven by permanent risk
- $\star\,$ Decline in long-maturity U.S. Treasury convenience and rise in relative U.S. permanent risk are two sides of the same coin

 \cdot Two countries: H (U.S.) and F (*)

- \cdot Two countries: H (U.S.) and F (*)
- · Representative investor pricing kernels: Λ_t , Λ_t^* (SDF: $M_{t,t+k} = \Lambda_{t+k}/\Lambda_t$)

- \cdot Two countries: H (U.S.) and F (*)
- · Representative investor pricing kernels: Λ_t , Λ_t^* (SDF: $M_{t,t+k} = \Lambda_{t+k}/\Lambda_t$)
- $\Lambda_t = \Lambda_t^{\mathbb{P}} \Lambda_t^{\mathbb{T}}$ such that $\Lambda_t^{\mathbb{P}}$ is a martingale ($\Lambda_t^{\mathbb{P}} = \mathbb{E}_t[\Lambda_{t+1}^{\mathbb{P}}]$) [Alvarez & Jermann 2005]
 - $M_{t,t+1}^{\mathbb{T}} = \Lambda_{t+1}^{\mathbb{T}} / \Lambda_t^{\mathbb{T}}$: **Transitory** component reflects intertemporally 'smoothable' cons. growth affected by, e.g., business-cycle risk, risk associated with adjustment to permanent shocks • $M_{t,t+1}^{\mathbb{P}} = \Lambda_{t+1}^{\mathbb{P}} / \Lambda_t^{\mathbb{P}}$: **Permanent** component reflects long-run effects of shocks to cons. growth affected by, e.g., steady-state risk of financial crisis or changes to long-run growth prospects

- \cdot Two countries: H (U.S.) and F (*)
- · Representative investor pricing kernels: Λ_t , Λ_t^* (SDF: $M_{t,t+k} = \Lambda_{t+k}/\Lambda_t$)
- $\cdot \Lambda_t = \Lambda_t^{\mathbb{P}} \Lambda_t^{\mathbb{T}} \text{ such that } \Lambda_t^{\mathbb{P}} \text{ is a martingale } (\Lambda_t^{\mathbb{P}} = \mathbb{E}_t[\Lambda_{t+1}^{\mathbb{P}}])$ [Alvarez & Jermann 2005]
 - $M_{t,t+1}^{\mathbb{T}} = \Lambda_{t+1}^{\mathbb{T}} / \Lambda_t^{\mathbb{T}}$: **Transitory** component reflects intertemporally 'smoothable' cons. growth affected by, e.g., business-cycle risk, risk associated with adjustment to permanent shocks • $M_{t,t+1}^{\mathbb{P}} = \Lambda_{t+1}^{\mathbb{P}} / \Lambda_t^{\mathbb{P}}$: **Permanent** component reflects long-run effects of shocks to cons. growth affected by, e.g., steady-state risk of financial crisis or changes to long-run growth prospects
- · Conditional entropy (volatility) of SDF to measure country risk:

$$\mathcal{L}_t(M_{t+1}) = \mathbb{E}_t \ln M_{t+1} - \ln(\mathbb{E}_t M_{t+1}) \approx \frac{1}{2} \mathsf{var}_t(M_{t+1})$$

Trade in:

- #1. Bonds: earning pecuniary returns and non-pecuniary convenience yields
- #2. Foreign Exchange: earning pecuniary currency movements
- #3. Equities: pecuniary returns tied to country-specific risk

Bond Markets

Agents invest in term structure of H and F bonds, with maturity $k = 1, 2, ..., \infty$:

Home Investor (U.S.):

$$\begin{split} e^{-\theta_t^{H,H(k)}} = & \mathbb{E}_t \left[M_{t,t+k} R_t^{(k)} \right] \\ e^{-\theta_t^{H,F(k)}} = & \mathbb{E}_t \left[M_{t,t+k} \frac{\mathcal{E}_{t+k}}{\mathcal{E}_t} R_t^{(k)*} \right] \end{split}$$

where \mathcal{E}_t exchange rate \uparrow is a Foreign currency appreciation

Assumption 1 (Convenience-Yield Term Structure)

Term structure of convenience yields $\theta_t^{i,j(k)}$ (investor *i*, bond *j*, maturity *k*) is observable at time *t*.

Foreign Investor:

$$e^{-\theta_t^{F,F(k)}} = \mathbb{E}_t \left[M_{t,t+k}^* R_t^{(k)*} \right]$$
$$e^{-\theta_t^{F,H(k)}} = \mathbb{E}_t \left[M_{t,t+k}^* \frac{\mathcal{E}_t}{\mathcal{E}_{t+k}} R_t^{(k)} \right]$$

Equity and FX Markets

Assumption 2 (Equities and Convenience)

Investors trade in domestic risky asset (return $R_{t,t+1}^g$) whose convenience is normalised to zero.

$$1 = \mathbb{E}_t \left[M_{t,t+1} R_{t,t+1}^g \right]$$
$$1 = \mathbb{E}_t \left[M_{t,t+1}^* R_{t,t+1}^{g*} \right]$$

Equity and FX Markets

Assumption 2 (Equities and Convenience)

Investors trade in domestic risky asset (return $R_{t,t+1}^g$) whose convenience is normalised to zero.

 $1 = \mathbb{E}_t \left[M_{t,t+1} R_{t,t+1}^g \right]$ $1 = \mathbb{E}_t \left[M_{t,t+1}^* R_{t,t+1}^{g*} \right]$

Equilibrium FX Process

$$\frac{\mathcal{E}_{t+1}}{\mathcal{E}_{t}} = \frac{M_{t,t+1}^{*}}{M_{t,t+1}} e^{\theta_{t}^{F,H(1)} - \theta_{t}^{H,H(1)}}$$

Investors across countries and time face same FX process, so no-arbitrage implies agreement on convenience yields: $\theta_t^{F,H(1)} - \theta_t^{F,F(1)} = -(\theta_t^{H,F(1)} - \theta_t^{F,F(1)})$

 $+\ restrictions$ on term structure of convenience yields

Restriction

Total, Permanent and Transitory SDF Risk

Lower bound for Total SDF risk:

[Jiang & Richmond 2023]

$$\mathcal{L}_t(M_{t,t+1}) \ge \mathbb{E}_t \log \left[\frac{R_{t,t+1}^g}{R_t}\right] - \theta_t^{H,H(1)}$$

We derive new bounds for permanent SDF risk :

[Alvarez & Jermann 2005]

Proposition

Lower bound for Permanent SDF risk:

$$\mathcal{L}_t\left(M_{t,t+1}^{\mathbb{P}}\right) \ge \mathbb{E}_t \log\left[\frac{R_{t,t+1}^g}{R_t}\right] - \mathbb{E}_t\left[rx_{t+1}^{(\infty)}\right] - \theta_t^{H,H(\infty)} + \mathbb{E}_t\left[\theta_{t+1}^{H,H(\infty)}\right]$$

where $rx_{t+1}^{(k)} = \log(R_{t,t+1}^{(k)}/R_t)$

Rel. risk measures assuming bounds hold with equality (maximised by equity indices)

- Rel. risk measures assuming bounds hold with equality (maximised by equity indices)
- Measure $\theta_t^{H,H}$ using swap-Treasury spreads

[Du, Hébert & Li 2022]

- ► Rel. risk measures assuming bounds hold with equality (maximised by equity indices)
- Measure $\theta_t^{H,H}$ using swap-Treasury spreads
- Proxy (log) equity risk premium according to Gordon growth formula: [Farhi & Gourio 2018]

$$\mathbb{E}_t \log \left[\frac{R^g_{t,t+1}}{R_t} \right] := \frac{D_t}{P_t} + g^e_t - r_t + \pi^e_t$$

- D_t/P_t : dividend-price ratio from G.7 equity price indices (Global Financial Data)
- $\cdot g^e_t$: proxy exp. future dividend gr. with avg. annual dividend gr. in 10 years prior to t

Realised Eq. Ret. Plot

 $r_t - \pi_t^e$: 6-month nominal zero-coupon bond yield and inflation forecasts (Consensus Economics)

► CIP to Conv Yids

IR and FX Data

Cross-Country CY Plot

▶ Within-FA CY Plot

Within-U.S. CY Plot

[Du, Hébert & Li 2022]

- ► Rel. risk measures assuming bounds hold with equality (maximised by equity indices)
- Measure $\theta_t^{H,H}$ using swap-Treasury spreads

IR and FX Data

Proxy (log) equity risk premium according to Gordon growth formula: [Farhi & Gourio 2018]

$$\mathbb{E}_t \log \left[\frac{R_{t,t+1}^g}{R_t} \right] := \frac{D_t}{P_t} + g_t^e - r_t + \pi_t^e$$

- D_t/P_t : dividend-price ratio from G.7 equity price indices (Global Financial Data)
- $\cdot g^e_t$: proxy exp. future dividend gr. with avg. annual dividend gr. in 10 years prior to t
- $r_t \pi_t^e$: 6-month nominal zero-coupon bond yield and inflation forecasts (Consensus Economics)

Key finding: U.S. Total risk now higher than G.7, driven by Permanent risk

▶ Realised Eq. Ret. Plot ▶ CIP to Conv. Ylds. ▶ Cross-Country CY Plot ▶ Within-U.S. CY Plot

. ▶ Within-FACY Plo

[Du, Hébert & Li 2022]

Our Measures of U.S. Relative Risk

Note. Relative U.S. equity risk premium and permanent risk (avg. vs. other G.7), 2000:M2 to 2020:M12.

U.S. Relative Permanent Risk

Relationship to Other Measures of U.S. Relative Risk

U.S. Relative Permanent Risk

Ex Ante Equity-Based Measure

Standard Deviations Percentage Points 2 $\beta = 0.043^{***}$ $\beta = 0.03^{***}$ ŝ N 0 0 ŝ 2 <u>e</u> 2004m1 2020m1 2000m1 2008m1 2012m1 2016m1 2000m1 2004m1 2008m1 2012m1 2016m1 2020m1

Note. Relative U.S. permanent risk (avg. vs. other G.7, LHS), 2000:M2 to 2020:M12. Schorfheide, Song & Yaron (2018) volatility of permanent component of US %△ cons. (RHS), 2000:M1 to 2015:M1.

U.S. Long-Run Risk

Schorfheide, Song & Yaron 2018

Unconditional Long-Run SDF Risk, FX Premia and Convenience Yields

Absent convenience, long-horizon UIP holds $(\lim_{k\to\infty} \frac{1}{k}\mathbb{E}\left[rx_{t+k}^{FX}\right] = 0) \Rightarrow$ permanent risk equalised across countries $\mathcal{L}(M_{t,t+1}^{\mathbb{P}}) = \mathcal{L}(M_{t,t+1}^{\mathbb{P}*})$ [Lustig, Stathopoulos & Verdelhan 2019]

With convenience, changes in relative permanent risk generate adjustment through non-pecuniary convenience yields: $\left(\mathcal{L}(M_{t,t+1}^{\mathbb{P}}) - \mathcal{L}(M_{t,t+1}^{\mathbb{P}^*})\right) \uparrow \longleftrightarrow \left(\theta_t^{F,H(\infty)} - \theta_t^{F,F(\infty)}\right) \downarrow$

July 2023

Measures of U.S. Relative Risk and Long-Run Treasury Convenience

	Regression			
	Dependent Variable: $ ilde{ heta}_{i,t}^{F,H(\infty)} - ilde{ heta}_{i,t}^{F,F(\infty)}$			
US Relative Equity Prem.	-0.08***		·	
	(0.02)			
US Relative Equity Return		-0.03***		
		(0.01)		
US Relative Equity net Term Prem.	-0.05***			
			(0.01)	
US Relative Permanent Risk				-0.06***
				(0.01)
Observations	1,657	1,657	1,657	1,544
Country FE	YES	YES	YES	YES
Within R-squared	0.0564	0.0402	0.0402	0.0616
Pedroni Panel Cointegration t Test	-5.43***	-5.36***	-4.86***	-4.46***

Pedroni (1999, 2004) Test Details: H_0 : No cointegration in alls panels; H_1 : Cointegration in every panel

▶ UR Tests ▶ Coint. Tests

Conditional Long-Run SDF Risk, FX Premia and Convenience Yields

Carry-trade return long Foreign ∞ -maturity bond, short Home ∞ -maturity bond for one period:

$$\mathbb{E}_{t}[rx_{t+1}^{(\infty),CT}] = \underbrace{\mathbb{E}_{t}[rx_{t+1}^{FX}]}_{\mathbb{E}_{t}[rx_{t+1}^{FX}]} + \underbrace{\mathbb{E}_{t}[rx_{t+1}^{(\infty)*}] - \mathbb{E}_{t}[rx_{t+1}^{(\infty)}]}_{\mathbb{E}_{t}[rx_{t+1}^{(\infty)}]}$$

Currency Returns

Difference in Local Bond Returns

Proposition

U.S. Relative Permanent Risk

$$\underbrace{\mathcal{L}_{t}(M_{t,t+1}^{\mathbb{P}}) - \mathcal{L}_{t}(M_{t,t+1}^{\mathbb{P}*})}_{-\mathbb{E}_{t}[rx_{t+1}^{(\infty),CT}] + \left(\theta_{t}^{F,H(\infty)} - \theta_{t}^{F,F(\infty)}\right) - \underbrace{\left(\mathbb{E}_{t}[\theta_{t+1}^{F,H(\infty)}] - \mathbb{E}_{t}[\theta_{t+1}^{F,F(\infty)}]\right)}_{\mathbb{A} \mid \mathbb{B} \text{ transum Convenience}} = 0$$

Long-Run Risk, Treasury Convenience & FX Premia in the Data

$$\begin{split} \tilde{\theta}_{i,t}^{F,H(\infty)} &- \tilde{\theta}_{i,t}^{F,F(\infty)} = \beta_0 + \beta_1 \big[\tilde{\mathcal{L}}_t(M_{i,t,t+1}^{\mathbb{P}}) - \tilde{\mathcal{L}}_t(M_{i,t,t+1}^{\mathbb{P}*}) \big] \\ &+ \beta_2 r x_{i,t+1}^{(\infty),CT} + \beta_3 \big[\tilde{\theta}_{i,t+1}^{F,H(\infty)} - \tilde{\theta}_{i,t+1}^{F,F(\infty)} \big] + f_i + \varepsilon_{i,t} \end{split}$$

Variables	Dependent	: Variable: $ ilde{ heta}_{i,t}^{F,H(lpha)}$	$\tilde{\theta}_{i,t}^{F,F(\infty)} = \tilde{\theta}_{i,t}^{F,F(\infty)}$
$\tilde{\mathcal{L}}_t\left(M_{i,t,t+1}^{\mathbb{P}}\right) - \tilde{\mathcal{L}}_t(M_{i,t,t+1}^{\mathbb{P}*})$	-0.015**		
	(0.008)		
$ ilde{\mathcal{L}}_t \left(M_{i,t,t+1}^{\mathbb{P}} \right)$		-0.024***	
		(0.009)	
$ ilde{\mathcal{L}}_t(M_{i,t,t+1}^{\mathbb{P}*})$		0.002	
		(0.01)	
$ ilde{\mathcal{L}}_t\left(M_{i,t,t+1}^{\mathbb{P}} ight) - ilde{\mathcal{L}}_t(M_{i,t,t+1}^{\mathbb{P}*})$ ex post			-0.012***
			(0.004)
Observations	1,508	1,508	1,508
Country FE	Yes	Yes	Yes
Within R^2	0.682	0.688	0.688

Corsetti, Lloyd, Marin & Ostry (BoE, EUI, UC Davis)

U.S. Risk and Treasury Convenience

SR Reg.

Conclusion

- $\star\,$ Framework to assess dimensions of U.S. 'specialness' jointly in FX, bond and equity markets
 - * In equilibrium, changes in U.S. relative risk induce movements in either the pecuniary or non-pecuniary returns to U.S. dollars/Treasuries
- Combine theory with novel measures of SDF risk (from equity markets) as well as convenience yields (from CIP) and returns (from FX and bond markets) for G.7 countries
- * Document rise in relative U.S. total risk vs G.7, driven by permanent risk
- * Decline in long-maturity U.S. Treasury convenience and rise in relative U.S. permanent risk are two sides of the same coin
 - Mechanism: re-assessment by investors of U.S. risk following the recent large global crises
 (Dot-Com and GFC) that originated in the U.S
 [Kozlowski, Veldkamp, & Venkateswaran 2019]

Appendix

Restrictions on Term Structure of Convenience Yields

Lemma (Term Structure of Convenience Yields)

Given $M_{t,t+1}$, $M_{t,t+1}^*$, the Euler equations, and the exchange-rate process, term structure of convenience yields satisfies the following conditions:

$$\theta_t^{F,H(k)} - \sum_{\tau=0}^{k-1} \theta_{t+\tau}^{F,H(1)} = \theta_t^{H,H(k)} - \sum_{\tau=0}^{k-1} \theta_{t+\tau}^{H,H(1)}$$

for all k and all t. There is an analogous expression for the Home and Foreign investors' convenience yields on Foreign bonds.

Back

Short-Run SDF Risk, FX Premia and Convenience Yields

Euler equations & FX process imply tight link between relative *total* risk, pecuniary one-period currency returns $(rx_{t+1}^{FX} = r_t^{(1)*} - r_t^{(1)} + \Delta e_{t+1})$ and one-period non-pecuniary convenience yields

Higher U.S. relative total risk can generate adjustment through two channels

- #1 FX Risk Premia: U.S. dollar depreciates \rightarrow U.S. investor earns higher returns to net-long positions in Foreign currency bond: rx_{t+1}^{FX} \uparrow
- #2 **Convenience Yields:** U.S. investor earns higher convenience yield on Foreign bond vis-à-vis U.S. Treasury: $(\theta_t^{F,H(1)} - \theta_t^{F,F(1)}) \downarrow$

Interest Rates and Exchange Rates

- \mathcal{E}_t : FX data for U.S. vs. other G.7 economies: 1997:M1 to 2020:M12
- $r_{\star}^{(k)}$: 6-month and 10-year zero-coupon government bond yields

Note, U.S. Short and Long-Run Carry-Trade Returns (avg. vs. other G.7), 2000:M2 to 2020:M12.

Mapping CIP to Cross-Country Convenience Yields

Measure relative U.S. Treasury convenience $\theta_t^{F,H(k)} - \theta_t^{F,F(k)}$ from CIP deviations

$$\mathbb{E}_{t}[M_{t,t+k}^{*}\frac{\mathcal{E}_{t}}{\mathcal{E}_{t+k}}\underbrace{\left(\frac{F_{t}^{(k)}}{\mathcal{E}_{t}}R_{t}^{(k)*}\right)}_{\text{Synthetic Treasury}}] = e^{-\theta_{t}^{F,F(k)}-\beta_{k}^{*}(\theta_{t}^{F,H(k)}-\theta_{t}^{F,F(k)})}$$

β_k^{*} = 1: Foreign investor values a synthetic Treasury same as a U.S.-issued Treasury
 ⇒ U.S. Treasuries only convenient due to their currency and CIP deviations not informative
 β_k^{*} < 1: Intrinsic convenience from U.S. Treasury, beyond its currency denomination
 ⇒ CIP_t^(k) suggests Foreigners value U.S. bonds more than Foreign ones

$$\theta_t^{F,H(k)} - \theta_t^{F,F(k)} := \frac{1}{1 - \hat{\beta}_k^*} CIP_t^{(k)}$$

[Jiang, Krishnamurthy & Lustig 2021]

Maturity	6-month	1-year	10-year
\hat{eta}^*_k	0.76	0.89	0.85

Back

Cross-Country Convenience Yields

Note. Cross-country 6M and 10Y U.S. Treasury convenience yield (avg. vs. other G.7), 2000:M2 to 2020:M12.

U.S. Within-Country Convenience Yields

Measure using interest-rate swaps: $\theta_t^{H,H(k)} := r_{irs,t}^{(k)} - r_t^{(k)}$

[Du, Hébert & Li 2022]

Note. Within-country 6M and 10Y U.S. Treasury convenience yield, 2000:M2 to 2020:M12.

Corsetti, Llovd, Marin & Ostry (BoF, FUL UC Davis)

July 2023

Back

U.S. 10Y Within-Country Conv. Yield $\theta_{\star}^{H,H(\infty)}$

E.A. Within-Country Convenience Yields

Measure using interest-rate swaps: $\theta_t^{F,F(k)} := r_{irs\,t}^{(k)*} - r_t^{(k)*}$

[Du, Hébert & Li 2022]

E.A. 6M Within-Country Conv. Yield $\theta_t^{F,F(1)}$

Note. Within-country 6M and 10Y E.A. convenience yield, 2000:M2 to 2020:M12.

Corsetti, Llovd, Marin & Ostry (BoF, FUI, UC Davis)

July 2023

Back

Relative Equity Risk Premia

U.S. Relative Expected Equity Risk Premium

Note. Ex ante and ex post relative U.S. equity risk premia (avg. vs. other G.7), 2000:M2 to 2020:M12.

U.S. Relative Realised Equity Returns

Panel Unit-Root Tests

	Adj. t	p-val.		Adj. t	p-val.
Currency Returns			Equity Risk Premium		
rx_{t+6m}^{FX}	-5.87	0.00	U.S.	-2.90	0.00
rx_{t+1y}^{FX}	-4.06	0.00	R.o.W.	-4.03	0.00
$rx_{t+1}^{(\infty),CT}$	-6.30	0.00	ERP	-2.13	0.04
Cross-Country Convenience			Equity Returns		
$ heta_t^{F,H(6m)} - heta_t^{F,F(6m)}$	-7.08	0.00	Rel. Eq. Ret.	-6.20	0.00
$ heta_t^{F,H(1y)} - heta_t^{F,F(1y)}$	-5.55	0.00	Permanent Risk		
$ heta_t^{F,H(10y)} - heta_t^{F,F(10y)}$	-3.26	0.00	$\mathrm{D}\mathcal{L}_t(M_{t,t+1}^{\mathbb{P}})$, ERP	-4.42	0.00
Within-Country Convenience			$\mathrm{D}\mathcal{L}_t(M_{t,t+1}^{\mathbb{P}})$, ERP (m.a. TP)	-1.35	0.68
$\theta_t^{H,H(6m)} - \theta_t^{F,F(6m)}$	-4.68	0.00	ERP net TP	-5.41	0.00
$ heta_t^{H,H(10y)} - heta_t^{F,F(10y)}$	-2.18	0.03	ERP net (m.a.) TP	-1.83	0.18
Relative Total Risk			$D\mathcal{L}_t(M^{\mathbb{P}}_{t,t+1})$, Eq. Ret.	-5.09	0.00
$\mathrm{D}\mathcal{L}_t(M_{t,t+1})$, ERP	-1.91	0.12]		
$\mathrm{D}\mathcal{L}_t(M_{t,t+1})$, Eq. Ret.	-4.89	0.00			

Note. Im, Pesaran and Shin (2003) tests. H₀: all panels include unit root. H₁: at least one panel does not include a unit root.

Back

Panel Cointegration Tests

	Modified Phillips-Perron t	Phillips-Perron t	Augmented Dickey-Fuller t			
Dependent Variable: $\theta_t^{F,H(10y)} - \theta_t^{F,F(10y)}$						
$\mathrm{D}\mathcal{L}_t(M_{t,t+1}^{\mathbb{P}})$	-4.19	-3.64	-4.47			
p-val	0.00	0.00	0.00			
$\mathrm{D}\mathcal{L}_t(M_{t,t+1}^{\mathbb{P}})$ (smooth.)	-4.19	-3.64	-4.47			
p-val	0.00	0.00	0.00			
Eq. net TP (smooth.)	-5.26	-3.79	-4.85			
<i>p</i> -val	0.00	0.00	0.00			
Eq. Ret.	-5.75	-4.09	-5.36			
<i>p</i> -val	0.00	0.00	0.00			

Note. Pedroni (1999, 2004) panel-by-panel cointegration tests. H_0 : no cointegration. H_1 : all panels cointegrated.

▶ Back

Testing Short-Run Relationship (Proposition 1)

$$\tilde{\theta}_{i,t}^{F,H(6M)} - \tilde{\theta}_{i,t}^{F,F(6M)} = \beta_0 + \beta_1 \left[\tilde{\mathcal{L}}_t \left(M_{i,t,t+1} \right) - \tilde{\mathcal{L}}_t (M_{i,t,t+1}^*) \right] + \beta_2 r x_{t+1}^{FX} + f_i + \varepsilon_{i,t}$$

	$ heta_t^{F,H(1)} - heta_t^{F,F(1)}$	$\theta_t^{F,H(1)} - \theta_t^{F,F(1)}$
Rel. Tot. Risk	-0.03**	
	(0.01)	
U.S. Eq. Risk Prem.		-0.01
		(0.01)
R.o.W. Eq. Risk Prem.		0.01^{***}
		(0.00)
Observations	1,531	1,531
# Countries	6	6
Controls	YES	YES
Country FE	YES	YES
Within R^2	0.0184	0.0714

July 2023

