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Abstract

The construction of tall buildings has been central in facilitating sustainable urbanization

and growth in cities around the world. Using supply side variation for identification, we

demonstrate that the average elasticity of city population to aggregate city building heights

is 0.12, and that of city built area to heights is -0.17. Land saved from development by

post-1975 tall building construction is over 80% covered in vegetation. To isolate the effects

of technology-induced reductions in the cost of height from correlated demand shocks, we

use interactions of static demand differences and the geography of bedrock as instruments

for observed changes in height, a triple difference identification strategy. Central to the

analysis is newly organized data on the population, land area, and a measure of total

height for 1975-2015 in 12,877 cities worldwide. Quantification using a canonical urban

model suggests that about two-thirds of the potential benefits from reductions in the cost

of heights has been realized. Worker welfare would increase by 1% if constraints to vertical

development were relaxed, though aggregate land rents would decline by 2%.
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1 Introduction

Chicago’s ten-storey 42-meter tall Home Insurance Building, built in 1884-85 and often regarded

as the world’s first skyscraper (Schleier, 1986), was among the first uses of technologies that would

prove to transform cities around the world. Since then, technological improvements that have

lowered the marginal cost of building high have facilitated the construction of the more than

16,000 km of buildings over 55 meters tall in cities worldwide. Most of this construction has

occurred since 1975 for residential use in developing economies. With the equivalent of almost

43,000 Empire State Buildings, which cost 572 million in 2020 dollars to construct, the stock

of tall buildings worldwide holds an aggregate asset value of more than 15 trillion dollars, after

accounting for depreciation since construction. Indeed, a look at many global cities today leaves

no doubt that the skyscraper revolution has been transformative (Glaeser, 2012). Each of the

world’s largest cities now hosts over 100 km of heights in tall buildings. In cities of over 1 million

people, tall buildings account for about 10% of the stock and 18% of aggregate construction costs

for existing structures. Like currently developed countries during the 19th and 20th centuries,

many developing economies are now in a process of rapid urbanization, growth, and structural

transformation. With these great pressures, the technology of building high has allowed cities

to accommodate greatly increased populations while saving land for non-urban uses.

In this paper, we empirically and theoretically investigate the extent to which the skyscraper

revolution has facilitated sustainable urbanization and urban growth, with a particular focus on

cities in developing economies. Our empirical analysis recovers causal effects of the component

of 1975-2015 tall building construction driven by technical progress and declines in the marginal

cost of height on urban population growth, urban form, and land use. Using data from 12,877

urban agglomerations worldwide, we estimate an average elasticity of city population to height of

0.12 and an average elasticity of built-up land area to height of -0.17. These estimates are driven

by cities in the developing world but also apply to cities in North America. While built land area

elasticities are quite stable across cities of different sizes, estimated population elasticities are

above average at about 0.15 for the largest cities and are largest at about 0.30 for the smallest

cities. Tall buildings have facilitated substantial growth in the developing world’s largest 100

cities since 1975. Had the technological advances driving declines in the cost of height not

occurred, these cities would be up to 50 percent smaller in population and be up to one-third

larger in land area. The skyscraper revolution has been critical to the growth and success of

the world’s largest cities and the preservation of surrounding rural land, over 80% of which is

covered in tree canopy or short vegetation.

For identification, we use an instrumental variables strategy that leverages both cross-

sectional and time series variation in the marginal cost of building high. In the cross-section, we

use variation in city mean bedrock depth as a key source of identifying variation. Descriptive

analysis and building cost function estimates indicate marginal cost of height per building floor

area that is U-shaped in bedrock depth, consistent with engineering standards for foundation

depth and the narrative in Barr et al. (2011). Bedrock that is too close to the surface must

be blasted away at high cost to make room for building foundations. Foundations built above
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bedrock that is beyond the optimal depth must either be reached with the costly installation of

deep wide piles, placed on a more costly raft, or engineered to be underpinned by many very

long deeply bored piles. Favorable bedrock depth thus acts as a cost shifter, promoting more

construction of tall buildings for a given level of demand. As a result, the elasticity of tall

building construction with respect to historical city population, a proxy for the level of demand,

is greater at more favorable bedrock depths. Finally, differencing over time 1975-2015 leverages

secular reductions in the marginal cost of height for identification. Particularly in the developing

world, costs were sufficiently prohibitive in 1975 to preclude the existence of many tall buildings.

Put together, our identification strategy leverages triple difference comparisons of historically

large versus small cities on more versus less favorable bedrock depths over time.

To implement the empirical strategy, we compile a unique data set of all 12,877 cities with

populations over 50,000 worldwide (in 182 countries), covering about 90% of the world’s total

urban population. For these cities, we collect census-based population and satellite-based area

estimates going back to 1975, allowing us to measure population and land use in and around

these cities over time. To capture the vertical size of cities, we use a data set of 750 thousand

tall buildings from Emporis. This data set has comprehensive information on the location, use,

and construction year of all buildings over 55 meters tall worldwide.

To conceptually ground the empirical work and evaluate the welfare consequences of

policies that influence building heights, we incorporate building height into a neoclassical urban

general equilibrium “representative city” model with frictional rural-urban migration. Potential

floorspace rents for the commercial and residential sectors capitalize differences in production

and residential amenities, respectively, across space within the city. Developers respond to

higher floorspace rents by building taller, facing construction costs that are convex in height

(Ahlfeldt and McMillen, 2018), consistent with our empirical evidence. In a competitive market,

the land rent is the residual in the profit function that determines whether land is developed

for commercial or residential use (Duranton and Puga, 2015). This setup draws from Ahlfeldt

and Barr (2022), though it adds migration frictions through heterogeneity in tastes for urban

life (McFadden, 1974), incorporating ideas from Harris and Todaro (1970), Bryan and Morten

(2018) and Desmet et al. (2018) to accommodate domestic migration. Imperfect mobility of

workers means that population and the utility of residents are endogenous objects.1

In the model, as in the data, reductions in the cost of height cause cities to grow vertically and

become more productive and compact. Under our model parameterization, a reduction in the

cost of height leads to an increase in the sum of heights across all buildings in the city, a measure

of vertical size that we adopt from Jedwab et al. (2020). The vertical expansion is partially

offset by a horizontal contraction. Due to the positive net effect on housing supply, the average

floorspace rent falls. Lower rents, in conjunction with higher wages that arise from agglomeration

economies, result in greater urban utility. Rural-urban migration (Harris and Todaro, 1970) is

a central element in the model, as it is the way that cities grow in population in response

to reductions in the cost of height. Matching estimated population and land area elasticities

1Our setup nests the closed-city and open-city models as special cases under extreme and negligible taste
heterogeneity. See Brueckner (1987) for a discussion of these cases in the standard urban model.
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with respect to height for a sub-sample of cities inferred to have the least burdensome land-use

regulations to their model simulated counterparts yields an associated estimated elasticity of

migration with respect to the urban real wage of 1.8, which is similar to other evidence in the

literature (Caliendo et al., 2019).

Using the model, we undertake two counterfactual exercises which together indicate that

about one-third of the potential welfare gains from heights have been realized. First, we compare

the welfare consequences of the full relaxation of a 15 floor height limit to market allocations

for all cities worldwide. Results indicate that relative to this height limit, the market allocation

increases worker welfare by 3.2% and reduces aggregate land rents by 3.1%. Population gains

and regulatory cost declines associated with going to the market allocation increase steeply in

city size. Aggregate land rents decline most in the largest cities due to the horizontal contraction

facilitated by the greater allowed heights. Hence, reducing height regulation redistributes welfare

from land to labor. Landlords lose with the lower rents associated with the supply expansion

that comes with new heights but workers gain more due to slightly higher wages, enhanced

access to preferred locations, and lower rents. The second exercise is to compute the aggregate

effects of going from a 15 floor height limit to the current existing heights observed in the data.

This increases worker welfare by 2.2% and reduces aggregate land rents by 1.3%. Once again,

landlords lose through the relaxation of the supply constraint but workers benefit from higher

wages and improved access to their preferred location. Put together, the implication is that

about two-thirds of the welfare potential of tall buildings has been realized globally. Relaxations

of restrictions on building tall buildings thus has the potential to increase potential residents’

welfare by 1.0%. This number is as large as 1.9% for cities in South Asia and as low as 0.3% in

East Asia and the Pacific. These gaps are driven by both the differing costs of heights in these

regions and the amount of existing tall building construction.

Our analysis builds on the more focused existing evidence on the consequences of building

heights, which mostly uses data from the US. Rosenthal and Strange (2008) and Curci (2020)

provide evidence that skyscrapers catalyze nearby densification and productivity gains, with

complementary evidence of within structure productivity advantages for tall buildings in Liu

et al. (2020). Danton and Himbert (2018), Koster et al. (2013), and Liu et al. (2018) provide

empirical evidence on the returns to height in residential and commercial buildings. Our model

also has many features in common with that in Curci (2017), which examines the consequences

of vertical versus horizontal city expansion.

While this is the first paper to comprehensively study how declines in the costs of building tall

have contributed to urban growth and change in cities around the world, our analysis has many

parallels with the large empirical literature exploring the impacts of transport infrastructure

on cities. Like highways, railroads, and subways, tall buildings are a central component of

city capital stocks. Similar to the research on transport, we face the identification challenge of

isolating variation in infrastructure supply across cities and over time that is unrelated to local

demand conditions. Indeed, our identification challenge is perhaps more demanding than that

for transport, as there are few systematic institutional reasons for building heights to vary across

cities. Somewhat analogous to Faber (2014)’s use of least cost paths driven by topography as
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instruments for highway routes in China, we use natural bedrock depth as a source of exogenous

variation in changes in the cost of building taller. Duranton and Turner (2012) estimate an

elasticity of urban population growth with respect to urban highway infrastructure of 0.15 for

the US, which is quite similar to our estimate of 0.12 for the world. Our estimated population

density elasticity for tall buildings of 0.29 is about 3 times as large as those found for urban

radial highways in the US and China (Baum-Snow, 2007; Baum-Snow et al., 2017).2

Conceptually, our study perhaps most closely relates to the large literature studying land use,

housing supply, and regulation. Our modeling framework incorporates insights from the land use

and housing production literatures to accommodate height restrictions and general equilibrium

linkages across labor and housing markets within and between residential and commercial sectors.

Following in the tradition of Muth (1969), we incorporate residential and commercial real estate

production into the neoclassical monocentric land use theory of Alonso (1964) and Mills (1967),

with some elements of the more recent quantitative spatial models summarized in Redding

and Rossi-Hansberg (2017). Qualitative conclusions thus mirror those from the more targeted

modeling frameworks in Bertaud and Brueckner (2005) and Henderson et al. (2021), though we

put more emphasis on accommodating variation across cities in the marginal cost of height. The

use of the simple monocentric city structure allows our model to reasonably characterize cities of

many different sizes and shapes, in part as captured by differences in fundamental productivities

and amenities. Our model parameterization uses as important inputs results from the more

focused empirical studies of the cost of height (Ahlfeldt and McMillen, 2018) and returns to

height (Liu et al., 2018, 2020). These central parameters shape the verticality of cities in our

model (Barr, 2010, 2012), with the dominant idea that tall buildings are a reflection of economic

activity at the time they were built (Ahlfeldt and Barr, 2020).

Much research on the existence and implications of housing market regulation has been

carried out for developed economies, including Gyourko and Molloy (2015); Hilber and

Vermeulen (2016); Hsieh and Moretti (2019); Baum-Snow and Han (2019); Brueckner and Singh

(2020), and Duranton and Puga (2020). The more limited work for cities in the developing world

has mostly come to the same conclusion, that height regulations are broadly binding and have

negative welfare consequences. There is evidence in Brueckner and Sridhar (2012) for Indian

cities, Brueckner et al. (2017) and Tan et al. (2020) for Chinese cities, Henderson et al. (2021)

for Nairobi, along with Jedwab et al. (2020)’s meta-analysis for cities around the world. We

provide a comprehensive quantitative evaluation of the extent to which reductions in the cost of

building high have influenced affordability, rural-urban migration, productivity, and welfare for

all cities worldwide. Moreover, we quantify the prospects for further gains through relaxation of

height regulations.

The use of geological conditions as instruments has been particularly common in the literature

concerned with the economic (productivity and amenity) effects of urban density, as summarized

2Other papers studying impacts of different types of transport infrastructure on cities include Storeygard
(2016); Gonzalez-Navarro and Turner (2018); Gibbons et al. (2019); Heblich et al. (2020); Baum-Snow (2020);
Baum-Snow et al. (2020), and Jedwab and Storeygard (2021). Redding and Turner (2015) provides a
comprehensive overview of much of this extensive literature.
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by Ahlfeldt and Pietrostefani (2019). Similar to our empirical approach, a few studies in this

literature use soil and subsoil geological conditions to instrument for density in the identification

of agglomeration spillovers (Rosenthal and Strange, 2008; Combes et al., 2011). These papers

argue that solid bedrock, or favorable geological conditions more generally, reduce the cost of

building tall structures, leading to greater employment and population densities for reasons

unrelated to features that may have a direct impact on productivity or amenities such as access

to coastlines and navigable rivers. This paper builds on these ideas and the more direct evidence

in Barr et al. (2011) and Barr (2016) to directly document the causal connections from bedrock

depths to building heights, a required intermediate step to density that has heretofore not been

comprehensively explored. The large applied agglomeration and urban growth literature, as

summarized in Combes and Gobillon (2015), does not closely consider the requirements of the

built environment for generating density. This lack of inquiry is likely due to the challenges

associated with putting together data appropriate for the analysis. Our estimates indicate that

the lower costs of tall building construction have facilitated cities’ vertical expansions as a central

vehicle to densification and associated enhanced productivities and amenities.

Understanding how the skyscraper revolution fits into the process of urban development is

all the more important as cities that do not develop vertically tend to sprawl (Burchfield et

al., 2006) and/or become inefficiently spatially configured. Odd urban spatial structures impede

growth (Harari, 2020), and associated sprawl typically occupies land that is particularly valuable

in non-urban uses. According to World Bank (2022), urban areas occupied 3.6 million sq km in

2011, whereas 48.0 million sq km of land was in agriculture. As cities are more likely to be sited

on agriculturally productive land (Henderson et al., 2018), land savings through increased urban

compactness frees up more space for agriculture and tree canopy. Taller cities make us “greener”

(Glaeser, 2012) by accommodating more people on less land. In that, the skyscraper revolution

has parallels with the Green Revolution, whose goal was to use rural land more intensively in

order to use less land globally (Gollin et al., 2021).

2 Data and Descriptive Evidence

2.1 The Growth in Tall Buildings

Until the 1960s, the vast majority of the world’s tall buildings (over 55 meters tall) were office

buildings found in the largest cities of the highest income countries. Starting in the 1970s, the

construction of tall buildings spread through many middle income countries and into medium

sized and smaller cities worldwide. Moreover, most such construction was for residential rather

than commercial use. Figure 1 depicts these patterns. As seen in the left panel, the world’s

total stock of tall building heights increased slowly from 1884, when the first skyscraper was

built, until the 1970s. During our primary study period of 1975-2015, the total stock of heights

in buildings for which we observe construction year increased from 868 km to 12,387 km. This

growth corresponds to more than 70% of the total stock today and is about three times the

distance between New York and Los Angeles.
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Figure 1: Evolution of Aggregate Tall Building Heights

(a) All Buildings (b) Residential vs. Office Towers

Notes: The left panel shows the evolution of the total stock of tall building heights (km) for the world and the United
States. The right panel shows the evolution of the stock of tall building heights (km) separately for residential and office
buildings. Only buildings above 55 meters are included.

During our primary study period of 1975-2015, total heights increased seven times more for

residential buildings than for office buildings (right panel of Figure 1). While most buildings

over 100 meters host offices, most buildings between 55 and 100 meters are residential, and these

make up the lion’s share of tall building construction since 1975.

The rapid increase in construction starting in the 1970s came with advances in technology.

Until the 1960s, most tall buildings were steel construction. In the 1970s, there was a shift

toward concrete construction. Concrete buildings use lower cost materials but cannot be easily

built as tall as steel construction buildings. In the 1975-2015 period, concrete accounts for 80

percent of height in new construction buildings over 55 meters, with the remainder about evenly

split between steel and composite. As concrete is heavier than steel, more recently built tall

buildings have required more robust foundations to accommodate the extra weight.

Figure 2 shows how widespread tall buildings have become around the world. For an

exhaustive data set of 12,877 cities worldwide, it shows the absolute change (km) in aggregate

tall building heights between 1975 and 2015. While the highest-stock cities included New York,

Chicago, Hong Kong, Moscow, London, Sao Paulo and Philadelphia in 1975, in 2015 the list is

dominated by Seoul, Hong Kong, Moscow, Sao Paolo, Singapore, New York, Guangzhou and

Tokyo. In terms of absolute changes per capita 1975-2015, some of the most dynamic cities

include Seoul, Hong Kong, Panama City, Singapore, Moscow, Kuala Lumpur, Dubai, and Tel

Aviv, reflecting the spread of tall building construction to lower income economies.

The remarkable 1975-2015 tall building construction boom can be explained by both supply

and demand factors. On the demand side, the 1975-2015 period saw both rapid urbanization and

income growth in many countries. This has manifested as particularly strong demand growth

in larger cities. On the supply side, there was technical progress in tall building construction,

bringing costs down.
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Figure 2: Sum of Tall Building Heights, World Cities, 1975-2015

(a) 1975

(b) 2015

Notes: This figure shows the total stock of tall building heights (km) for 12,877 world cities of at least 50,000 residents in
2015. Only buildings above 55 meters are included.

7



Figure 3 provides evidence on reductions in the cost of height over time. For this figure, we

use building level data from Emporis on construction cost and floor area for the United States,

described in more detail in the following sub-section.3 This figure is created in two steps. First, a

construction cost index is created by residualizing city and country-decade of construction fixed

effects from log cost per building floor area. This residualization partials out local input cost

differences across cities and over time. Second, this index is smoothed over construction year and

building height using a bivariate Gaussian kernel. Because time effects are removed, construction

cost per floor area is (approximately) mean 0 by construction in each year. Therefore, this figure

speaks only to the relative change in construction costs in taller versus shorter buildings.

Figure 3: Construction cost as function of height and construction year
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Notes: Cost is the log cost per floor area, residualized for city and country-by-decade of construction fixed effects. The
sample consists of 591 buildings in US cities (see Panel A in Table A2 in the Appendix). We use locally weighted regressions
with a bivariate Gaussian kernel to estimate local means of the residualized cost measure within the height-bedrock plane
with a bandwidth parameter for both covariates of κ = 50. Appendix Section H.3 has details and provides results from locally
weighted regressions with univariate kernels that deliver confidence bands for height categories that roughly correspond to
the dotted blue and solid red lines.

Evident in Figure 3 are steep declines in the cost of height over the past century that

continued throughout our study period of 1975-2015. In 1975, buildings of 200 meters were

on average 3.5% higher cost to build per square meter than 125 m tall buildings. By 2015,

that gap had fallen to just 1.3% greater. Appendix Section H.5 documents further evidence

of secular declines in construction costs that were more rapid for tall buildings than shorter

buildings. Our supply model in Section 2.4 below specifies how a combination of such secular

cost declines and variation in levels of demand for real estate across cities of different sizes can

have precipitated the post-1975 boom in tall building construction documented in Figure 1 that

has been particularly oriented toward the world’s largest cities.

3The United States is the only country for which we have enough construction cost data to build a reliable
cost index prior to about 1990.
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2.2 Data Sources

The empirical analysis uses historical information about urban agglomerations and building

heights for 12,877 cities worldwide, 11,273 of which are in developing economies. Also

incorporated into the data set are information on city bedrock depth and lights at night. Below

we briefly describe each data source. Additional information is in Appendix H.

City Boundaries and Population: Using the Global Human Settlements-Urban Centre

Database (GHS-UCDB) (Florczyk et al., 2019, version 1.2 from 18/04/2020), we obtain the

GIS boundaries of all 12,877 current agglomerations of at least 50,000 inhabitants worldwide,

which they call “urban centres” (UCs). These UCs correspond to commuting zones, as in US

metropolitan statistical areas.4 The GHS-UCDB reports the (satellite-based) total land area and

built-up area of each city c. 1975, 1990, 2000 and 2015. Using the built-up area and population

census data, the GHS-UCDB also reports population estimates for each city in these same years.

As built-up area is more consistently measured over time, this is our main measure of urbanized

land. The 12,877 cities account for about 90% of the world’s total urban population in 2015

(United Nations, 2018).

Land Use: For additional measures of changes in land use in and near cities, we use the 1982-

2015 Global Land Change Data (Song et al., 2018). For each ≈5X5 km pixel worldwide, this

data set records agricultural suitability of the soil. Moreover, we observe whether there was tree

canopy, short vegetation or urbanized/desertification land cover in 1982 and 2015. In 2000 and

2015, we observe whether the land was used for growing crops.

Building Heights and Construction Costs: Emporis (2022) (last accessed 02-07-2022) was

a global provider of international skyscraper and high-rise building data.5 Emporis collected

information about the full life-cycle of each building, from conception to demolition, covering

thousands of cities worldwide. The database contains data for 693,855 “existing [completed]”

buildings.6 For almost all buildings, we know the exact geographic coordinates, or at least the

city in which it is located. This allows us to assign each building to a city in the GHS-UCDB

data set. Since we know the year of construction (and demolition if demolished), we obtain

the total sum of heights for each city-year from 1884 (when the first skyscraper – the Home

Insurance Building in Chicago – was built) to date. For a select set of 1,053 buildings, the

Emporis data set also reports the building’s construction cost, though 20 of these do not have

floorspace information.

Inspection of the kernel density of 2015 building heights in the Emporis data set (Figure

A1) reveals a mode and large spike at 55 meters. Since cities are likely to have more buildings

below than above 55 meters, and since the distribution of buildings is relatively smooth after 55

meters, we infer that the data set likely only captures the universe of buildings above 55 meters.

As such, our sum of heights measure for each city and year only includes buildings of at least

4We refer to “UCs”, “agglomerations” and “cities” interchangeably. For example, the New York UC includes
“New York; Islip; Newark; Jersey City; Yonkers; Huntington; Paterson; Stamford; Elizabeth; New Brunswick.”

5Since September, 2022, information in the Emporis data has been integrated into CoStar Group data
products.

6We only consider buildings of the following types: “building with towers”, “high-rise building”, “low-rise
building”, “multi-story building”, and “skyscraper”.
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55 meters.

In 1975, 5% of cities in our full sample had any tall buildings, including only 1% of cities

in the developing world. The cities that did have tall buildings were mostly large and in the

developed world. Of the 515 cities over 500,000 people in 1975 in our full sample, 41% had at

least one tall building. But among the 347 large cities in the developing world, only 23% had

any tall buildings. Between 1975 and 2015, cities of all sizes built some tall buildings, but this

growth was disproportionately oriented toward larger cities. The fraction of cities under 100,000

that built their first tall buildings in the 1975-2015 period was only 0.02. This number rises to

0.13 for cities of 100,000-500,000 and 0.32 for cities over 500,000, despite both groups having

larger 1975 bases.

To account for the fact that many cities have no buildings above 55 meters in some years, we

primarily use ln (Heights + 1) to measure the sum of heights in each city. However, all results

are robust to using scaling factors other than 1, the inverse hyperbolic sine transformation, or an

indicator for whether the city had any tall buildings as alternative measures of city heights. One

way to view our empirical approach is thus as treating heights in the base year as 0, especially

for the sub-sample analysis that uses cities in developing economies only.

Bedrock Depth: Shangguan et al. (2017) reports bedrock depth in meters at a 30 second (≈
1 km) resolution for the entire world. (For example, there are 8,118 such pixels in the New York

UC). We use our GIS city boundaries to obtain mean bedrock depth in meters (MBD) for each

city. Shangguan et al. (2017) indicates “this data set is based on observations extracted from a

global compilation of soil profile data (about 1,300,000 locations) and borehole data (about 1.6

million locations).” Looking across all pixels within our city boundaries, 90% of the variance

in bedrock depth is between rather than within cities in our data. For pixels within cities of at

least 300,000 people in 2015, a Theil decomposition indicates that about three-quarters is from

between city variation, depending on whether it is calculated as unweighted or weighted by city

population. Our results are not sensitive to the use of mean bedrock depth across all pixels in

each city or the bedrock depth at each city’s central business district inferred from the brightest

cluster of lights at night pixels.

Lights at Night: While our main analysis considers city population and built area 1975-2015,

we also study the effects of tall building construction on lights at night, for which only more

recent data are available. Night lights data corresponding to the DMSP satellites are provided

by NGDC (2015). We use the radiance calibrated version of this data, which is available for

select years 1996-2011, to avoid issues related to top-coding.7 The data are available at a fine

spatial resolution and we use GIS to obtain mean night light intensity per area for each city.

2.3 Patterns of Vertical Growth in the Data

Conditional on bedrock depth, larger cities had both greater 1975 levels and 1975-2015 growth

in heights. This holds true whether heights are measured in meters, growth rates, or at the

extensive margin. For example, among cities of fewer than 100 thousand people in 1975, the

7This data set records levels of luminosity beyond the normal digital number upper bound of 63.
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average city with medium depth bedrock built 63 meters of heights in buildings over 55 meters,

whereas in the largest cities (over 500 thousand people in 1975) the average city built 26.5 km of

heights between 1975 and 2015. In the following sub-section, we formally interpret this pattern,

which is monotonic in 1975 city population, as reflecting the fact that technical progress which

reduced the marginal cost of height allowed the greater levels of real estate demand in larger

cities to be accommodated by building taller.

Conditional on 1975 city population, we see more tall building construction in cities on

intermediate bedrock depths. Between 1975 and 2015, the average large city on mean bedrock

depths below 10 meters built 5.2 km of tall buildings, relative to the 26.5 km built in cities on

intermediate bedrock depths cited above. Among small cities on shallow bedrock depths, only 9

meters of heights were built, relative to the 63 meters on intermediate bedrock depths cited above.

We note that secondary Chinese cities are heavily over-represented in the deep bedrock category.

In many of these locations, the post-1990 construction boom did not respond to standard market

forces. Moreover, the costs of installing foundations to support tall buildings depend more on

soil conditions in areas where bedrock is very deep. As a result, there is more dispersion in

height growth among cities on deep bedrock, meaning that they provide less identifying power

than do cities on bedrock depths below 30 meters. Nonetheless, mean 1975-2015 height growth

is lower in these deep bedrock cities than those on intermediate bedrock conditional on 1975

population.

Rapid 1975-2015 urbanization rates around the world manifested as population growth of

46% and built area growth of 55% in the average city. Our empirical results will indicate that this

decline in average population density would have been even greater absent the contemporaneous

boom in tall building construction, especially in the largest cities. On average across our sample,

the typical city added 895 meters of heights on a base of 67 meters in 1975, with almost all of

this growth among cities in the top tercile of the city size distribution. Table A1 presents means

of our key outcome variables and three measures of city aggregate height of buildings over 55

meters tall by categories of 1975 city population and city mean bedrock depth (MBD).

2.4 The Data Generating Process for Heights

Here we demonstrate conceptually how greater levels of real estate demand, more favorable

bedrock depths, and secular declines in the marginal cost of height have interacted to generate

more tall building construction in certain cities. In 1975, only a few very high demand cities had

tall buildings. With technical progress and declines in the marginal costs of height, it became

viable for more cities to host tall buildings. This increased viability was particularly true for high

population cities, where demand was high, with favorable intermediate bedrock depths, where

costs of height were lower. As a result, we see more robust height growth in large relative to

small cities with intermediate relative to low or high bedrock depths. This triple difference idea,

which compares cities of different 1975 populations and bedrock depths over time, leads into

our instrumental variables strategy of using 1975 log city population interacted with a flexible

function of bedrock depth as a source of exogenous variation in the 1975-2015 growth in building
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heights across cities.

Having established above that the marginal cost of height secularly declined after 1975,

the next step is to provide evidence on how the cost of height is related to bedrock depth

in cross-sectional comparisons. Structural engineers have a simple rule of thumb known as

Rankine’s Theory which indicates the depth of a building’s foundation required for stability.

Rankine’s Theory lays out a proportional relationship between building weight (which is roughly

proportional to height) and foundation depth, with the constant of proportionality differing as a

function of soil conditions around the foundation. According to Rankine’s Theory, the optimal

foundation depth is around 10% of the building’s height. In order for a building to be stable,

the bottom of the foundation must either be anchored to bedrock, have a sufficiently wide base

(“raft”), or incorporate many very deeply bored piles. As rafts and numerous deeply bored piles

are more costly to construct and install, builders prefer to anchor to bedrock if it is not too deep.

However, if bedrock is within only a few meters of the surface, expensive blasting is required to

install the foundation.

Central to our empirical approach is the observation that construction cost per square foot

varies with both building height and bedrock depth. Figure 4 provides descriptive evidence on

how construction cost varies with bedrock depth. It is constructed using the the same methods

as Figure 3, with the bivariate smoothing of residualized log construction cost per building floor

area performed over bedrock depth and building height.

Figure 4 depicts both the non-monotonicity of construction costs in bedrock depth conditional

on height and the rate at which construction costs increase in height. The descriptive evidence

is that the cost-minimizing bedrock depth for 125 meter tall buildings is 18 meters (blue lines),

while that for 200 meter tall buildings is 25 meters (red lines). Constructing a 125 meter tall

building at the optimal bedrock depth saves more than 5% in cost per square meter relative to

building on surface level or very deep bedrock. The associated cost savings are much larger for

200 meter tall buildings. Moreover, Figure 4 shows that unit costs increase in building height

much more rapidly where bedrock is deep.8 (Appendix H.4 has further discussion).

The engineering evidence thus suggests that a reasonable approximation of the cost function

for developing a building of height S on bedrock depth Bac in city a of country c at time t is

Cact(S) = cactS
1+θ(Bac,µt). (1)

To be consistent with patterns seen in Figure 3, we allow the elasticity of unit cost with respect to

height, θ(Bac, µt), to change over time, as governed by the µt parameters. To be consistent with

patterns seen in Figure 4, we allow both the elasticity of unit cost with respect to height and the

cost shifter cact to depend on bedrock depth. It is evident from Figure 4 that, commensurate with

the engineering discussion, the marginal cost of height per square meter is greater at low and high

bedrock depths, meaning that θ is U-shaped in Bac and θBB > 0. As c is non-parameterically

8Below we demonstrate that the relatively low predicted unit costs on the bottom right of Figure 4, where
bedrock is deep, are not significant. This region of the graph is mostly extrapolated, as 90% of the buildings with
construction cost data are built on bedrock less than 30 meters deep.
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Figure 4: Construction cost as function of height and bedrock depths
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sample includes 1,033 buildings in 206 cities and 55 countries (see Panel A in Appendix Table A2). Locally weighted
regressions with a bivariate Gaussian kernel are used to estimate local means of the residualized cost measure within the
height-bedrock plane. We set the bandwidth parameter for bedrock, b, to κb = 6 and for building height, h, to κh = 40,
which correspond to about one third of the standard deviation of each respective covariate. We bin height at the upper
limit, so 250 m includes all buildings of at least 250 m height. Appendix Section H.3 has details and also provides results
from locally weighted regressions with univariate kernels, delivering confidence bands for height categories that roughly
correspond to the blue dotted and red solid lines.

indexed by city and time, it incorporates differences in bedrock depth in addition to labor and

materials costs that may change over time. To maintain tractability and simplicity, we maintain

separability of time effects from bedrock depth effects in the elasticity of unit cost with respect

to height.9

To corroborate the descriptive evidence in Figure 4 that θ is U-shaped in B, we recover

rough non-parametric estimates of the θ(B,µ) function with our limited construction cost data.

We regress log construction cost per floor area on building height for each bedrock depth

using an instrumental variables locally weighted regression (IV-LWR) approach. CBD distance

instruments for building height with controls for city and country-year fixed effects. As inAhlfeldt

and McMillen (2018) and Ahlfeldt and Barr (2022), identifying variation comes from comparing

construction costs of different buildings in the same city exposed to approximately the same

bedrock depth but at different CBD distances. The result, depicted in Figure A4, supports

the engineering-based hypothesis that bedrock at intermediate depths is associated with lower

marginal costs of height. Estimates of θ range from 0.1 at intermediate bedrock depths to 1.1

at very low and moderate to high depths. While imperfect, these results support the idea that

cities with bedrock in an intermediate range will have a greater ease of accommodating high real

9To allow this setup to fit fully into the general equilibrium model in Section 4, we will impose that all lots
are of the same size and developers’ only choice is building height. To be consistent with the empirical work and
exclude the possibility of selection on bedrock depth within cities for siting tall buildings, we assume that bedrock
depth is the same at all locations in each city.
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estate demand, resulting in lower barriers to growth. Details of this estimation procedure and

results are in Appendix Section H.4.

As construction cost differs by bedrock depth, the profit maximizing level of height also

differs by bedrock depth conditional on demand conditions. Competitive building developers

have the following profit function associated with building to height S(x) at location x in city

ac at time t.

πact(S, x) =

∫ S

0
pact(x, s)ds− Cact(S)− ract(x). (2)

As developers are price takers, they treat the sales price per unit of real estate at location x and

height s pact(x, s) as exogenous. ract(x) denotes the fixed cost component of development, which

includes both the land price and any regulatory development costs at location x. In Section 4,

we lay out a demand structure that justifies the separable form pact(x, s) = pact(x)s
ω, where ω is

positive and close to 0. (In particular, for the model to be well-behaved we need that θ > ω.) A

positive ω reflects the amenity value associated with improved views and reduced noise.10 Profit

maximization yields the log of the optimal height S∗ that depends on the price per unit of real

estate services and cost factors.

lnS∗(pact(x), cact, Bac, µt) =
1

θ(Bac, µt)− ω

(
ln

pact(x)

cact
− ln [1 + θ(Bac, µt)]

)
(3)

This expression highlights the fact that the developer’s choice of log height depends on the

interaction between bedrock depth, as included in θ(Bac, µt), and the level of demand, as included

in pact(x).

To understand how optimal heights differ across space within cities, it is convenient to impose

some restrictions on the pact(x) function. Following the model developed further in Section 4,

we impose that the price per floor area of real estate decays with CBD distance.

pact(x) = p0actf(x; ρac) (4)

Each city a in country c at time t faces its own real estate demand conditions, leading us to index

CBD rents by this triplet. Each city also has its own transport network driving accessibility to the

center, leading us to index the advantages of being near the center by city, where f ′(x; ρac) < 0

and ρac governs the city-specific accessibility advantages to the center.

Equation (3) lays out the logic behind our triple difference empirical strategy as implemented

with IV. First, compare two cities in 2015 at a given CBD distance x that are identical in all

ways, including the same favorable bedrock depth of 15 meters, except for their CBD rents p0act.

The difference in ln p0act between these two cities captures their difference in real estate or height

demand. That is the first difference. Second, consider an analogous pair of cities with the same

gap in ln p0act but with a less favorable bedrock depth of 0 meters. The form of the θ function

documented above indicates that these second two cities have a smaller gap in heights, as the

10Evidence for both commercial and residential buildings indicate that real estate prices and rents are typically
higher on higher floors of tall buildings, reflecting the amenity value of height (Liu et al., 2018; Ben-Shahar and
Hongjia, 2022; Nase and Barr, 2023).

14



elasticity of height with respect to price has an inverse-U shape in bedrock depth. This is the

second difference, which can be derived by calculating ∂2 lnS∗

(∂ ln p0)(∂B)
. Finally, the secular decline

in the cost of height over time manifests as a reduction in µt. This reduction has facilitated

taller construction in high demand locations, and particularly so in cities with favorable bedrock.

This is the third difference. Differentiating (3) with respect to ln p0act then Bac then µt derives

this result, given that dµt < 0. In 1975, building tall was very costly everywhere. As the

marginal cost of height declined for all cities, it is the locations with strong demand conditions

and favorable bedrock depths that are predicted to increase their heights the most.11

We are now in a position to characterize aggregate city building heights as observed in the

Emporis data. As real estate prices decline in CBD distance, each city has a unique endogenous

distance cutoff within which buildings of over 55 meters exist in each year. (In some cities, this

cutoff is 0.) Call this distance cutoff x55act. Then the total stock of heights in city a at time t is

H55
act =

(
p0act

cact(1 + θ(Bac, µt))

) 1
θ(Bac,µt)−ω

∫ x55
act

0
f(x; ρac)

1
θ(Bac,µt)−ωLac(x)dx (5)

In this expression, Lac(x) is a city-specific function that captures the amount of land that can

be developed at each distance. For example, it is 2πx for a circular city. This equation shows

that the aggregate height in a city depends on the same factors as the profit-maximizing level

of height at each specific location. The integral covers the land in use for tall buildings.

The aggregate stock of heights follow the same triple difference pattern as location-specific

building height in Equation (3). Following the comparative statics on lnS∗ in Equation (3) for

each location within x55act delivers an aggregate of the location-specific gaps, which must follow

the same pattern. Cities with greater heights at all locations xmust also have a greater aggregate

stock of heights when adding up over the same range of x. In addition, any city with a greater

height at any location x must also have a greater CBD distance cutoff x55act beyond which heights

are below 55 meters, representing an additional force increasing the gap in aggregate heights.

2.5 Predicting City Level Height Growth

Evidence in the prior sub-section indicates that more height should be constructed in larger

cities, and even more so in those with favorable bedrock depth. Moreover, this phenomenon

should have strengthened over time. We demonstrate these patterns empirically by graphing

estimated coefficients γb in the following descriptive regression.

Constac = γb(ac) lnPopac75 + δ lnPopac75 + κc + ϕb(ac) + ϵac

The dependent variable is 1975-2015 construction in city a of country c with binned mean

bedrock depth b(ac). Construction is measured either as whether the city had any tall buildings

in 2015 but not 1975 or as the change in the log sum of heights in the city. Each city is placed

in a 5 meter wide bedrock bin (0-4 m, 5-9 m, etc.) and there are separate country and bin fixed

11The isomorphism between gaps in unit costs, through negative differences in ln cact, and demand, through
positive differences in ln p0act, is also evident in Equation (3).
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effects. As the regression controls for ln city population, all γb coefficients are of the bin-specific

impact of 1975 ln population on 1975-2015 construction relative to the population impact in the

0-4 meter bedrock depth bin.

γb coefficient estimates are graphed in Figure 5. Bubble sizes are proportional to the number

of observations. Statistical significance (relative to 0) is indicated with stars. Quadratic and

more flexible fractional polynomial lines of fit are also indicated.

Figure 5: Relationships Between Tall Buildings and ln 1975 Population by Bedrock Depth

(a) Any Tall Building Construction (b) ∆ln(Heights+1)

Notes: The left panel graphs coefficients on ln 1975 city population for each 5 meter bin of bedrock depth in which the
dependent variable is an indicator for whether the city had any height growth. The right panel graphs analogous coefficients
in which the dependent variable is the ln sum of heights constructed 1975-2015 plus one. Similar graphs with dependent
variables measured as levels in 1975 are much flatter in bedrock depth than counterparts using 2015 levels.

Figure 5 shows the inverse U shaped impact of city mean bedrock depth on construction in

strong relative to weak demand cities. In particular, the probability of having new tall building

construction in response to a doubling of population is about 0.1 higher at a bedrock depth of

30-34 than at 0-4. Similarly, the elasticity of height growth with respect to 1975 population is

about 0.65 greater for cities in the intermediate range of bedrock than the low or high ranges.

As the quadratic fit (solid line) is similar to the more flexible fractional polynomial fit (dashed

line), most of the empirical work uses a quadratic parameterization. We note that as 90% of

cities are in the range of bedrock between 0 and 30, the upward-sloping portion of the population

elasticities in bedrock depth seen in Figure 5 provides most of the identifying variation. The

supply model predicts that the pattern seen in Figure 5 should be strongest in 2015 and muted

in 1975. This is exactly what we see, as shown in Figure A6.

Put together, the first stage estimation equation takes the following form.

Constac = k1MBDac + k2MBD2
ac + δ lnPopac75

+γ1MBDac × lnPopac75 + γ2MBD2
ac × lnPopac75+

+Xac75ξ + κc + ϵac

(6)

The key components of this equation are the interactions with coefficients γ1 and γ2. These
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indicate how the elasticity of construction with respect to population differs by bedrock depth.

In (6), the dependent variable can be measured in levels or as 1975-2015 growth.12

Table 1 presents the first stage coefficients on city mean bedrock depth interacted with ln

1975 city population. Panel A is for cities in all countries and Panel B is for cities in developing

economies only. The first two columns show results for an indicator of whether any tall buildings

were constructed by the indicated year. The third column shows the difference. The next two

columns are analogous except ln total tall building height plus one in each year is the dependent

variable. The final column shows results for the 1975-2015 change. Table A4 reports remaining

first stage coefficients.

Table 1: First-Stage Estimates

Tall Building Indicator ln (Heights + 1)

1975 2015 ∆ 1975-2015 1975 2015 ∆ 1975-2015

(1) (2) (3) (4) (5) (6)

Panel A: All Countries

Bedrock Depth 0.0018*** 0.0046*** 0.0028*** 0.0126*** 0.0402*** 0.0276***

× ln Pop 1975 [0.0005] [0.0007] [0.0007] [0.0032] [0.0062] [0.0054]

(Bedrock Depth)2 -0.0000*** -0.0000*** -0.0000** -0.0002*** -0.0003*** -0.0002**

× ln Pop 1975 [0.0000] [0.0000] [0.0000] [0.0000] [0.0001] [0.0001]

R-Squared 0.14 0.24 0.08 0.18 0.33 0.18

Panel B: Developing Economies

Bedrock Depth 0.0004 0.0036*** 0.0032*** 0.0030 0.0292*** 0.0262***

× ln Pop 1975 [0.0005] [0.0007] [0.0007] [0.0028] [0.0060] [0.0056]

(Bedrock Depth)2 -0.0000 -0.0000*** -0.0000** -0.0000* -0.0002** -0.0002**

× ln Pop 1975 [0.0000] [0.0000] [0.0000] [0.0000] [0.0001] [0.0001]

R-squared 0.13 0.24 0.13 0.14 0.29 0.22

Notes: Each column is a separate regression of the indicated variable at top on the variables indicated on the left,
a quadratic in mean city bedrock depth, log 1975 city population, and country fixed effects. Regressions in Panel
A have 12,849 observations and those in Panel B have 11,257 observations. Remaining coefficients are reported
in Table A4.

Evident in Table 1 is that coefficients on the interaction between mean bedrock depth and

population (γ1 and γ2) grow in magnitude over time for both outcomes. Analogous results for

1990 and 2000 reveal that this growth is monotonic in year (not reported). Also of note is that

γ1 and γ2 are estimated to be approximately 0 in 1975 in developing economies. These locations

had very little height in 1975 regardless of bedrock conditions or population. Therefore, for

developing country cities, to a first approximation one can view our analysis as using the 2015

level of tall building height as the key measure of the 1975-2015 change in heights.

Before discussing the main results, we consider the implications of these first stage results for

identification of causal impacts of heights on urban structure. The main idea for identification is

12We also considered earthquake risk and exposure to Hong Kong as alternative sources of identifying variation
in city heights. Both of these alternative potential instruments are also cost shifters. However, identification
checks reveal them to provide less broad-based identifying variation than does bedrock depth, causing both of
these alternatives to identify treatment effects that are more local. Estimates using these alternative instruments
follow the same patterns as those presented in this section.
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that bedrock depth is a supply factor that is uncorrelated with factors driving demand for height

at the city level. However, in order to operationalize this idea, it turns out to be important to

interact bedrock depth with a measure of static demand strength, for which we use ln 1975 city

population. Bedrock depth by itself is not a strong enough source of identifying variation to

generate first stage predictions of height or height growth that are sufficiently powered to be

useful in determining causal effects of heights.

Given the need to use interactions as the source of identifying variation, the key identification

assumption is more subtle than simply that bedrock is exogenous to city demand shocks. Instead,

the identifying assumption is that historically larger cities on more favorable bedrock did not

change in different ways from historically larger cities on less favorable bedrock relative to

historically smaller cities on favorable relative to unfavorable bedrock. This double difference

over time (making a triple difference) is the key argument needed for identification.

As such, any threats to identification would come from correlations between bedrock and

latent city demand growth that was different for large and small cities. This would occur if

bedrock depths more favorable for tall building construction also somehow allowed large cities

to have greater post-1975 growth potential. Our empirical analysis in the following section

examines the potential for such omitted variable bias to exist.

3 Empirical analysis

For 12,877 agglomerations a in 182 countries c, long difference regressions of the form in (7)

make up the heart of our empirical analysis. Our primary dependent variables of interest yac

are the 1975-2015 growth rates of population or built up area in agglomeration a of country c.13

Controls for a quadratic in mean city bedrock depth, log 1975 city population, and country fixed

effects are included.

yac = β∆ ln (Heightsac + 1) + α1MBDac + α2MBD2
ac + α3 lnPopac75 + κc + εac (7)

We primarily examine IV versions of this estimation equation, in which log population in

1975 interacted with a quadratic in city mean bedrock depth enters as instruments for

∆ ln (Heightsac + 1).

As is formalized in the model in the following section, one can view (7) as capturing differences

in the quantities of real estate demanded for cities with exogenously different amounts of heights.

One central parameter that influences these responses is the elasticity of population with respect

to urban utility (ζ). In a closed city, in which ζ is 0, the real estate supply shock from the lower

cost of height manifests as lower floorspace rents and shorter commutes, a clear welfare gain

for city residents that manifests as a much more compact city. Empirically, this scenario maps

to a large negative built area elasticity and a zero population elasticity, both with respect to

city heights. As ζ grows, in-migration responds more, thereby bidding up rents and lengthening

13An alternative option is to specify (7) as a regression of an outcome measured in 2015 on 2015 heights and
indicated controls plus the dependent variable in 1975. Because the sum of heights in 1975 is near 0 in the vast
majority of cities in our sample, this alternative specification yields very similar results.
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commute times. The result is smaller welfare gains for city residents but more opportunity

for outsiders to benefit from the city’s improved infrastructure. Empirically, this means larger

positive population responses and smaller magnitude negative built area responses.

The inclusion of the mean bedrock depth controls in (7) is not necessary for identification

but does make identification stronger. Without these controls, we would be relying on their

exclusion from the demand equation for heights for identification. While we think it reasonable

that bedrock depth is not a demand factor, bedrock depth on its own does not provide much

identifying variation in heights. Instead, we need to interact bedrock depth with a level demand

factor, for which we use 1975 ln city population, in order to predict supply shocks to heights

with sufficient power. For this reason, we leave in the bedrock depth controls in (7). However,

excluding them does not affect any of our results.

We note that OLS estimates of β in (7) are muted relative to IV estimates at 0.05 for the

population outcome and -0.09 for the built area outcome. As standard threats to identification

would typically bias both OLS coefficients in the same direction, we conclude that these smaller

magnitudes primarily reflect measurement error in heights. If demand factors were a central

driver of city growth in heights, conditional on controls, the OLS population and built area

elasticities would both be biased upwards. IV estimates that correct this endogeneity problem

would thus be smaller (or more negative) than corresponding OLS estimates for both outcomes.

Instead, measurement error, which seems sensible, would lead to attenuation bias. By only

using buildings over 55 meters tall to measure heights, we do not measure all buildings that are

relevant to real estate supply. There are many idiosyncracies in how much tall building occurs

that disconnects it from fundamental supply and demand forces. On the taller side, this includes

prestige skyscrapers that are not by themselves economically viable. On the shorter side, local

zoning regulations may lead to considerable construction up to a cap that is high but below

55 meters in some cities. By isolating common supply factors for identification, we smooth out

these idiosyncracies, thereby increasing the magnitudes of estimated coefficients.

3.1 Main IV Results

Table 2 presents our headline empirical results. Panel A shows results for all cities and Panel

B shows results for cities in developing economies only. The first column shows that a 100 log

point increase in heights leads to about a 12 percent increase in city population. This magnitude

of height increase is the average for cities in the top tercile of 1975 population, while the average

city had 1975-2015 height growth of 46 log points. The second column of Table 2 shows that

a 100 log point increase in heights caused the built-up land area of a city to decline by about

17 percent. This is very similar to the 15 percent response for total city area. Putting the

results in Columns 1 and 3 together, it is clear that exogenous height growth has substantially

increased population density. When population density is explicitly put on the left hand side of

the regression, the estimated heights coefficient is 0.27, matching the population coefficient in

column 1 minus the area coefficient in column 3.

The final column of Table 2 shows results for the growth rate in lights at night 1990-2015, a
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Table 2: Main IV Results

∆ ln Pop ∆ ln Built Area ∆ ln Urban. Area ∆ ln Pop Dens. ∆ ln Lights

Period s-t: 1975-2015 1975-2015 1975-2015 1975-2015 1990-2015

Panel A: All Countries

∆ ln(Heights+1) 0.12*** -0.17*** -0.15** 0.27*** 0.15***

[0.03] [0.04] [0.06] [0.07] [0.06]

Panel B: Developing Economies

∆ ln(Heights+1) 0.13*** -0.16*** -0.18** 0.31*** 0.17***

[0.03] [0.04] [0.08] [0.08] [0.06]

Notes: Each entry is from a separate regression of the indicated variable at top using the full sample in Panel
A and cities in developing economies only in Panel B. Equation (7) shows the regression specification used.
∆ln(Heights+1) is instrumented with an interaction between bedrock depth and ln Pop 1975. See Table 1 for
first stage results. The first stage F statistic is 28.42 for all regressions in Panel A and 22.84 for all regressions
in Panel B. Table A5 reports coefficients on control variables for Panel A.

measure of total city economic growth due to heights. This is not significantly different from the

population growth result in the first column. We note that lights per capita is also estimated to

positively respond to heights, with an elasticity of 0.04 (or 0.06 for developing economies), but is

not statistically significant (unreported).14 Results for developing economies, representing 87%

of the cities in our data, are very similar to those for the full sample.

These results are robust to a number of specification checks. One potential concern is that

trends in the amenity value of cities, or other demand factors, may be differentially correlated

with bedrock depth in large versus small cities. However, inclusion of additional controls for

infrastructure and regional connectedness, including subways, roads, and measures of market

access, do not affect results. Controls for location and topography (natural amenities) also

do not affect results. Cities with shallow bedrock may find it more costly to expand their

infrastructure. As such, another way we evaluate the potential importance of infrastructure is

to verify that results hold excluding cities on bedrock up to 6 meters deep (the 25th percentile

of the bedrock depth distribution) from the sample. Finally, using 100 meters rather than 55

meters as the height cutoff to define tall buildings also has no affect on results. Table A7 presents

all of these results for the full sample and cities in developing economies only.15

As country fixed effects are included, variation across cities within countries with more

variation in city size interacted with bedrock depth identifies IV coefficients of interest. In

contrast, within-country variation in heights for all countries identifies corresponding OLS

coefficients. While almost all countries have cities of many different populations represented,

only larger countries tend to have much variation in bedrock depth. Indeed, Table A8 shows

that the IV population elasticity estimates are almost identical for the 7,473 cities in countries

14Estimated population and built area elasticities are 0.11 and -0.24 respectively using 1990 as the base year.
Those using 1975 levels rather than 1975-2015 changes are 0.09 and -0.11, respectively. (Table A6).

15We also verify that estimates are robust to controlling for distance to mines and/or oil and gas fields, or
excluding cities within 50 km of either from the estimation sample. While access to natural resources may also
influence construction costs, we undertake these checks with the idea that cities with natural resource oriented
economies may have different trends in demand than other cities.
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with the greatest variation in bedrock depth (Gini index above 0.75) and at least 6 cities; built

area elasticities using this sample are a bit more muted at -0.13 rather than -0.17. OLS estimates

of population elasticities draw closer to IV estimates in the high Gini index sub-sample relative

to the full estimation sample, such that the two are no longer significantly different. This

is evidence that our IV estimates reflect local average treatment effects within high bedrock

variation countries and that there is relevant measurement error in heights. Estimated built

area elasticities exhibit similar patterns but with larger remaining IV-OLS gaps in the high Gini

index sub-sample.

Finally, we provide evidence that our estimated elasticities primarily capture migration of

people from rural areas to cities rather than displacement between cities. Borusyak et al. (2022)

demonstrates the econometric challenges associated with endogenous migration flows between

regions in the empirical setting in which local outcomes are regressed on exogenous region-

specific shocks for the universe of regions in a country. As our data does not include rural units,

our analysis is not subject to these biases provided that city growth in response to exogenously

assigned heights draw only from the rural hinterland rather than from other cities.

We carry out three types of exercises to evaluate the prevalence of displacement in our

data. First, we explore robustness to different levels of regional and sub-national fixed effects.

As migration occurs at higher rates more locally, we expect there to be greater displacement

between cities for fixed effects covering smaller regions. If coefficient estimates do not grow with

the use of more local fixed effects, that is evidence that our estimated elasticities reflect rural-

urban migration. Second, we explore robustness to a sub-sample that only includes countries

with urbanization rates below 20% in 1975, in which the vast majority of migrants to cities must

have come from rural areas. Finally, in the spirit of the fix proposed in Borusyak et al. (2022),

we control for the accessibility to heights in alternative cities that are likely to be viewed by

migrants as substitutes.16

Table A9 shows the results of the first two exercises. IV estimates for population grow by

at most 0.03 when including finer fixed effects and decline by 0.02-0.03 when using sub-region

rather than country fixed effects. None of these differences are statistically different from our

headline population elasticity estimate of 0.13 for developing economies. The final column of

Table A9 shows results for the sample restricted to countries that were less than 20% urban in

1975. The population elasticity estimated for this sample remains stable at 0.13. Built area

elasticities are somewhat more sensitive to the inclusion of various levels of fixed effects and

sample. These estimates grow in magnitude to as much as -0.25 with alternative fixed effects.

However, the estimated area elasticity shrinks to -0.08 for the sub-sample of rural countries, with

a large standard error of 0.05. Once again, none of these estimates are statistically different from

our primary built area elasticity estimate of -0.16 for developing economies.

For the third exercise, we calculate market potential (MP) terms that summarize accessibility

of each city ac to other population centers and heights. We calculate the MP for heights for city

16Fully carrying out the proposed fix in Borusyak et al. (2022) requires observing migration flows in a base
period; unfortunately, this is information we do not have for most countries in our data.

21



a in country c and year t as

MPH
act =

∑
a′∈C(a),̸=a

Heightsa′ctPopa′c75
dis(a, a′)α

. (8)

That is, we sum heights times population in all other cities in the country of city a, discounting

by the distance between city a and a′ raised to the power α, which we vary between 1
3 and 3.

From these measures in 1975 and 2015, we build ∆ lnMPH
act to include as a control variable in

regressions.

As heights in other cities may be endogenous to trends in demand factors in city ac, we

build an instrument for ∆ lnMPH
act that follows the same logic as our instruments used in

the main analysis. In particular, we build instruments by replacing Heightsa′c75 in (8) with

Popa′c75MBDa′c or Popa′c75MBD2
a′c. Then, analogous to our main estimation equation (7), we

also control for three additional terms capturing the discounted sums of 1975 city populations

and bedrock depths by replacing Heightsac75 in (8) with Popac75, MBDac, or MBD2
ac and

taking logs.

Table A10 shows the results with these market potential controls. The big message is that

we find no evidence that displacement effects between cities in our sample are driving elasticity

estimates. We show OLS results for α = 0.33, α = 0.5 and α = 1, and IV results for α = 2

and α = 3. As bedrock depth tends to be highly spatially correlated, we need strong spatial

decay in order for instruments to be able to separate out height growth in other cities from that

in city ac. But whether instrumenting for ∆ lnMPH or not, estimated population and built

area elasticities remain very stable. We come to the same conclusion when only including the

largest 5 cities in the country in MP terms or when controlling separately for height growth in

each of these cities (unreported). The coefficient on the height market potential control is 0 or

positive when instrumented, which may reflect a growth effect of improved access to markets.

The lack of movement in our main elasticity estimates of interest indicates that MP terms are

conditionally uncorrelated with our instruments for height growth in city ac.

3.2 Heterogeneity in Estimates

Table 3 shows heterogeneity of our main IV estimates by region of the world. The first column

presents population and built area growth coefficients for all developing economy cities in Asia

except the Middle East of 0.17 and -0.20, respectively. Remaining cities in the developing world

generate similar estimates of 0.15 for population and -0.26 for built area, though these are slightly

underpowered with a first stage F-statistic of 7.9. Because most of our data is for the developing

world, and the population and land use pressures are greatest in these countries, we focus most

of our policy analysis on this sample. No developing economy region other than Asia has enough

observations to generate strong first stage identification.

The third column in Table 3 presents results for cities in developing economies that we infer

to have relatively lax building restrictions. We defer the discussion of these results to Section

3.4 below.
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Table 3: IV Results by World Region

Developing Economies Developed Economies

Asia x MENA Others Unconstrained Total USA+Can Others

Panel A: ∆ ln Pop

∆ ln(Heights+1) 0.17*** 0.15** 0.22*** -0.02 0.30** 0.01

[0.03] [0.07] [0.05] [0.03] [0.12] [0.02]

Panel B: ∆ ln Built Area

∆ ln(Heights+1) -0.20*** -0.26*** -0.38*** -0.04 -0.67* -0.04

[0.04] [0.09] [0.09] [0.03] [0.35] [0.03]

First Stage F 20.92 7.881 11.88 14.28 5.771 13.64

Observations 6,990 4,267 5,557 1,592 372 1,268

Notes: Each entry is from a separate IV regression using data from cities in world regions indicated
in column headers over the indicated time period. “Asia x ME” refers to countries in Asia except the
Middle East. “Unconstrained” refers to countries with no history of communism and with below median
regulatory environments. Section 3.4 explains in more detail how this sample is selected.

Estimates in the right block of Table 3 are for cities in developed economies. These are subject

to more complicated interpretation, as the majority of large cities in developed economies had

significant heights in 1975. Moreover, these countries had largely completed their transitions

from rural to urban by 1975. While we find no overall average impact of heights on city

structure in developed economies for the 1975-2015 period, estimated coefficients are quite large

in magnitude, though under-powered, for cities in the USA and Canada. This pattern fits with

the idea that land use and building height restrictions are relatively lax in North America and

severe in Europe, which contributes most of the observations to the other developed economies

sample. However, we caution that the estimates for North America are more likely to in part

reflect displacement between cities rather than rural-urban migration. Cities in Eastern Europe

are a major driver of the 0 results for developed economies, which is consistent with their mostly

centrally planned histories.

To further understand why estimates differ for developing and developed economies, we

look back in time to the 1850-1975 period for cities in Europe and West Asia and 1920-1975

for cities in the US. These are periods of development that better match the sorts of changes

experienced in developing economies during the 1975-2015 period, including structural change

out of agriculture and rapid urbanization. Moreover, no tall buildings existed in Europe in 1850

and few existed in the USA in 1920. For Europe, we use data from Bairoch (1988), which has

city populations until 1850. For the US, we use decennial census data. We start in 1920 in the

USA, predating the roaring 20’s construction boom, so that variation in initial city size is large

enough to generate some first stage identifying power.

As we do not have city footprints in 1850 or 1920, we focus on estimating population

elasticities. The associated regression specifications are the same as above except for the different

base years. For these earlier periods, we estimate separate population elasticities for 1,095

cities in Europe and West Asia and 324 cities in the USA that are both 0.21 (SEs of 0.10
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and 0.17, respectively). Both are a bit underpowered with first stage F-statistics of 5.4 and

4.1, respectively. However, they are robust to a number of specification checks and sample

restrictions.17 The big message is that the 0 estimate for developing economies only applies to

the modern era; we find population elasticities that are in line with those for the developing

world in the period of European and American development.

Next, we examine the distinction between impacts of commercial versus residential heights.

While we can observe building use in the Emporis data, we do not have separate instruments for

these two types of buildings. Instead, we make use of the fact that country-specific industrial

structure and land use planning regimes influence the extent to which tall buildings host

residential or commercial tenants. Service-oriented economies tend to have a higher share of

tall buildings in commercial. Higher income economies with fewer restrictions on urban sprawl

also tend to have a higher share commercial. For example, the US fits both criteria. In the

developing world, Egypt and Pakistan also have about 50% of their tall buildings dedicated

to commercial uses. In contrast, countries with land constraints and fewer office workers tend

to have a higher share of tall buildings in residential use. Example countrie include Brazil,

India, and South Korea. Because the residential share of tall buildings is in part driven by such

country-specific factors (and we have country fixed effects), we can learn about impacts of the

construction of residential versus commercial heights by restricting the sample to only include

cities in countries with at least some baseline share of tall buildings in residential use. We do this

recognizing that various sources of unobserved heterogeneity between countries are interacting

with height growth to generate these effects.

Figure 6 shows estimates by country residential share of tall buildings. The top portion

shows the positive estimated population height elasticities and the bottom portion shows the

built area height elasticities. Red lines use subsets of cities in the developing world and blue lines

use subsets of cities worldwide. Moving from left to right, the sample becomes more constrained

to only include cities in countries with at least the residential share of tall buildings indicated

on the horizontal axis.

The results in Figure 6 are striking. Cities in countries that built more residential heights

accommodated more population and saved more land, especially in the developing world.

Population elasticities rise from 0.13 to 0.21 when using close to the full developing world sample

(countries with at least 50% of tall buildings residential) to just those countries with at least

90% residential. The residential impact is even greater for built area. Built area elasticities

monotonically decline from -0.13 to -0.50, with more than half of this decline driven by the

progressive exclusion of countries with 70-75% tall buildings in residential.

The broad implication of evidence in Figure 6 is that the type of tall buildings matters. As

residential real estate is much more space intensive than offices per-capita, it is not surprising

that residential buildings have bigger effects than commercial buildings. The model developed

in the following section is parameterized to respect this observation.

17For the USA, we can get the first stage F up to 7.7 by excluding Las Vegas and controlling for 1920 city
heights, with no effect on the elasticity estimate.
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Figure 6: Effects of Heights by Country Tall Building Residential Share

Notes: This figure shows four sets of estimated coefficients on the change in log heights in IV regressions of the form in
(7). The top portion of the graph indicates coefficients for which the 1975-2015 change in log population is the outcome.
The outcome in the bottom half of the graph is 1975-2015 change in log city built area. Moving from left to right, the
sample becomes increasingly constrained to include only countries with at least the fraction of tall buildings nationwide in
residential use indicated on the horizontal axis. Red lines are coefficients for cities in the developing world only. Blue lines
include all cities with at least the indicated residential share.

3.3 Aggregate Impacts of Height

Here we provide an accounting of the extent to which post-1975 expansions in building

heights have accommodated city population and land savings. With the rapid rate of

urbanization occurring in many developing economies, cities are facing historic population

pressures. Moreover, the land surrounding the largest cities in most countries is among the

most productive land for (Henderson et al., 2018). How well has the tall building construction

that has occurred since 1975 mitigated these pressures in aggregate?

To carry out these aggregation calculations, we refine our main height elasticity estimates in

Tables 2 and 3 by focusing on heterogeneity by city population. For separate samples of Asian

cities outside the Middle East and other cities in the developing world, we estimate instrumental

variables locally weighted regressions (IV-LWR) by city population. This process is the same as

standard IV estimation of (7), but with a separate coefficient on the change in heights estimated

for each observation in the data set. These estimates are calculated using a separate weighted

IV regression for each observation, with greater weights assigned to observations that are closer

in 1975 city ln population. See Appendix I.2 for further details.

Figure 7 shows the results for city population growth as an outcome. Evident in this figure

is the non-monotonicity in height effects by city population, with the largest causal effects of

heights for the smallest and largest cities. For Asian cities, the population elasticity of height is

about 0.3 for cities of 50,000 residents in 1975, falling to 0.11 at a population of 1 million and

then rising to 0.16 for the very large cities (right axis). For other cities in the developing world,
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estimates follow the same pattern and are slightly larger but are also less precisely estimated.

We calculate analogous estimates for the built area outcome. For both regions, these hover

around -0.20, do not vary much by 1975 city population, and are less precisely estimated than

the population responses. First stage F-statistics (left axis) are shown in shaded pink and are

strong for all city sizes in the Asian sample but only for small cities in other areas. Plots of

estimated local height elasticities for the entire sample and all developing world cities are in

Figures A7 and A8.

Figure 7: IV-Locally Weight Regression Population Estimates: Developing World
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(b) Other developing cities

Notes: Figures show non-parametric estimates of height elasticities estimated with an LWR-IV approach. In each LWR,
we estimate the height elasticity from a regression of the 1975-2015 long-difference in log city population against the long-
difference in log building height using a second-order polynomial of bedrock depth interacted with initial 1975 log population
as instrumental variables. Controls are a second-order polynomial of bedrock depth, initial log population, and country fixed
effects. We use a Gaussian kernel with a locally varying bandwidth that is inversely related to the density of observations.
Confidence bands are at the 95% level.

Armed with these estimated elasticities, we obtain the predicted city-specific absolute change

in population and built area ∆̂yac caused by the actual change in height observed in the

data, ∆Hac75−15. We begin with values of the outcome in the initial period yac75 and apply

estimated causal height elasticity parameters β̂a for city a. The following expression shows

how we calculate the resulting city-specific change in the outcome predicted by our city-specific

regression estimates and 1975-2015 growth in heights.

∆̂yac = yac75 ×
(
exp

(
β̂a ×∆ ln (Heightsac + 1)

)
− 1
)

(9)

This procedure takes the observed height growth as exogenous. Therefore, it only allows us to

calculate the 1975-2015 population growth or built area savings that occurred had all of the

heights constructed during this time period been assigned in a way that is uncorrelated with

covariates or the error term in (7). If that is not the case, this calculation likely somewhat

overstates the growth in population and decline in built area that can be attributed to tall

building construction.

Table 4 show the results of this exercise by six indicated 1975 city population categories,

with cutoffs set on a logarithmic scale. First, note that in Asia there were only 108 cities in the

top three size categories of cities over 1.2 million people, out of 7,464 cities total. However, these

cities constructed 85% of the heights over the 1975-2015 period. Elsewhere in the developing
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world, these top cities built two-thirds of the heights during this period. Indeed, city population

is a good predictor for height growth.

Table 4: Aggregate Effects of 1975-2015 Tall Building Construction

City Pop. Number 1975-2015 Share of % of Pop % of Area % Tree % Other Other

(2015) of Cities ∆ Height (km) Height ∆ Accomm Saved Cover Veg Nonveg

Panel A: Asian Cities, except Middle East

< 162,755 5837 73 0.03 1 1 8 73 19

to 442,413 1282 96 0.03 6 6 10 72 14

to 1,202,604 237 233 0.08 18 15 6 72 22

to 3,269,017 87 865 0.30 75 32 11 76 13

to 8,886,111 16 1,119 0.39 66 39 11 73 15

> 8,886,111 5 471 0.16 59 38 10 77 13

All 7,464 2,855 23 17 10 75 15

Panel B: Cities in Other Developing Regions

< 162,755 3559 39 0.03 2 5 14 78 8

to 442,413 379 138 0.12 16 15 15 75 10

to 1,202,604 90 210 0.18 32 33 18 68 14

to 3,269,017 31 292 0.26 58 35 11 67 22

to 8,886,111 5 55 0.05 39 37 21 58 21

> 8,886,111 3 407 0.36 42 39 18 66 16

All 4,067 1,141 18 21 16 68 16

Notes: Estimates in each panel are based on separate sets of locally weighted regressions of ∆ ln Pop or ∆ ln built area
on the change in log heights. Estimated elasticities for each city are applied to the 1975-2015 height growth in each city to
determine the associated predicted city-specific population accommodated and built area saved.

Given that the largest cities built the lion’s share of new tall buildings, it is natural that

the main impacts are concentrated in these types of cities. In particular, for the smallest Asian

cities, only 1 percent of 2015 population is accommodated in tall buildings constructed 1975-

2015, saving 1 percent of the built area. These percent impacts increase monotonically to 75

percent and 32 percent, respectively, for cities between 1.2 and 3.3 million in 1975 population.

These substantial effects mainly come from the fact that these cities built so many tall buildings

during this time period, though treatment effects for the largest cities are also a bit greater.

Above 1.2 million, the impacts flatten out some near these high levels, in which tall building

construction accommodates about 70 percent of population and saves 35 percent of built area

in Asian cities. Outside of Asia, the patterns of effects are similar though a bit muted, as the

largest non-Asian developing country cities built fewer tall buildings than those in Asia.

One big message from Table 4 is that the technological changes that facilitated the

construction of tall buildings has fundamentally altered the largest cities in the world. It has

allowed them to accommodate a large fraction of their 2015 populations (over half in Asian cities

in 2015) and allowed their built up footprints to be smaller by up to 39 percent.

The final three columns of Table 4 provide an accounting of the types of land saved through

tall building construction. For each city with 1975-2015 height growth, we calculate the city’s

land savings. We then generate a buffer around the city boundary to match the area of land
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saved and aggregate the various land uses. This exercise shows that about 10% of saved land

around Asian cities is tree canopy and 75% is non-tree vegetation, with slightly larger shares

around the larger cities. In other regions, even more tree canopy is saved at up to 20%, though

less land of other types is saved. Both in Asia and elsewhere in the developing world, tall

buildings have saved land that is at least 80% covered in some sort of vegetation.

While tall buildings has saved peripheral land around cities from urbanization, they have

also caused urbanized regions to become less green. In particular, we show that the construction

of tall buildings has crowded out agriculturally suitable land, tree canopy and cropland within

2015 urbanized regions. To quantify these responses, we run regressions similar to those in Table

2 but with changes in various measures of land as dependent variables. Table 5 presents these

results. Panel A shows results for all cities and Panel B shows results only for cities in developing

economies.

Table 5: Land-Use Changes Inside 2015 Urbanized Boundaries

Time Period 1975-2015 (2)-(4) 1982 - 2015 (5)-(7) 2000 - 2015

Weight Agric Suit None None

Dep. Var.: ∆ Log ... Area Built Urbanized Tree Cover Short Veg. Short Veg. Cropland Urban Veg.

(1) (2) (3) (4) (5) (6) (7)

Panel A: All Economies

Avg Frac of Area, Base Year 0.56 0.17 0.09 0.72 0.73 0.18 0.55

Coeff. on ∆ ln Height -0.16*** 0.16*** -0.22** -0.02** -0.07*** -0.07* -0.06***

[0.04] [0.03] [0.03] [0.01] [0.03] [0.04] [0.01]

Impact on Frac of Total -0.090 0.027 -0.019 -0.014 -0.051 -0.013 -0.033

Panel B: Developing Economies

Avg Frac of Area, Base Year 0.57 0.18 0.08 0.72 0.73 0.25 0.48

Coeff. on ∆ ln Height -0.14*** 0.21*** -0.24*** -0.02** -0.08*** -0.05 -0.07***

[0.04] [0.03] [0.04] [0.01] [0.03] [0.04] [0.02]

Impact on Frac of Total -0.080 0.038 -0.019 -0.014 -0.058 -0.013 -0.034

Notes: Each column in each panel is associated with a separate IV regression of the growth rate in land with the
use indicated at top on the change in log heights using the same specification as in table 2. In the first column,
the regression is weighted by agricultural suitability of the built area in the city. Entries in top rows indicate
the aggregate share of year 2015 urban land in the indicated use in the respective base year. The bottom row
indicates the fraction of aggregate urban land area gained of each type indicated in column headers based on
initial aggregate shares calculated across all cities in our data worldwide and regression coefficients.

The first column of Table 5 presents results from the same regression as in Table 2 column 2,

except that observations are weighted by the fraction of city land that is suitable for agriculture.

This object has an average of 0.56 across cities in our sample. The estimated coefficient of -0.16

is almost identical to that in Table 2, indicating that there is not much selection of tall buildings

into cities that are suitable or unsuitable for agriculture.

Results in the following column indicates that heights promoted infill urbanization. An

approximate doubling of heights increased urbanization of 2015 urban land from a base of 17%
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by 16% for all cities and 21% for developing country cities betweeen 1982 and 2015. As these

base year percentages are calculated aggregating across all cities in our data, these estimates

imply that 2.7% of 2015 urban land area overall and 3.8% in developing country cities was

urbanized due to 1982-2015 height growth.

Results in the following two columns show that an approximate doubling of heights reduced

tree cover by 22 percent and short vegetation by 2 percent within urbanized areas, using data

from 1982 and 2015. When multiplied by the initial fractions of 2015 definition agglomerations

that were covered by tree canopy or vegetation, we see that 1.9% of urbanized land in 2015

was converted from tree cover and 1.4% of the urbanized land in 2015 was converted from

short vegetation given an approximate doubling of heights 1975-2015. These impacts are

approximately the same in all cities and developing country cities only.

Column (5) shows analogous results for short vegetation over the 2000-2015 period. For this

period, we observe the amount of short vegetation that is cropland and urban vegetation. The

total impact of doubling heights on short vegetation is larger at 5.1% of 2015 area lost for all

cities and 5.8% lost for cities in developing economies. Column (6) shows a small negative effect

of heights on cropland within urbanized areas, which accounts for about one-quarter of the short

vegetation lost because of tall building construction since 2000. As seen in Column (7), most

of the rest is accounted for by urban vegetation, which includes yards and parks. While tall

buildings save land from urban development, they also remove a significant amount of urban

vegetation in already developed areas.

3.4 Model-Relevant Estimates

The main objective of our empirical work has been to recover averages of population and built

area elasticities with respect to building heights across all cities in the world and for various sub-

samples. It is these averages that are most relevant for developing a retrospective understanding

of how tall buildings have influenced for the sizes and shapes of cities. However, these averages

surely mask many dimensions of underlying heterogeneity, including height limits and land use

regulation.

The model developed in the following section describes an environment in which only

fundamental supply and demand forces determine a city’s equilibrium heights, population and

area. There is no role in the model for height restrictions or land use regulation. As such,

credible model quantification requires elasticity estimates for a sub-sample of cities that are

unregulated. Moreover, an empirically grounded city level measure of regulatory restrictiveness

will be useful in determining how large the welfare gains from full deregulation could be.

To identify the countries with the least restrictive regulations, we begin with a city-level

regression using data from 2010, 2015 and 2020 of heights on various city level demand and supply

factors including city and country population, GDP, and geographical constraints (bedrock

depth, altitude, ruggedness, etc.). Coefficients from this regression are reported in Barr and

Jedwab (2023). Aggregating the data at the country level, we select the 42 developing economies

with population-weighted mean residuals above 0 as the least regulated countries. We only
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include countries in the developing world with no history of communism.18

As expected, the elasticity estimates for this sample, reported in the third column of Table

3, are larger than our broader average estimates reported in Table 2. In particular, for this

relatively unconstrained sample, we find a population elasticity of 0.22 and an area elasticity of

-0.38, both of which are statistically significant.

4 Theoretical Analysis

This section develops a theory that facilitates conceptual and quantitative analysis of the

role of tall buildings in shaping urban economic development. This version of the standard

urban monocentric city model follows in the tradition of Muth (1969), while incorporating

and expanding on the real estate development technology in Section 2.4. This “representative

city” model is intended to be flexible enough to capture the key forces that link tall building

construction to urban growth and change that are common to cities of many different shapes,

sizes, and stages of development. The model is stylized but can also be applied quite generally

to cities in our data. In Section 4.2, we quantify the model. This includes matching observed

population and area elasticities. In Section 4.3, we use the quantified model to conduct

counterfactuals that allow us to calculate the welfare effects associated with the adoption of

the tall-buildings technology and the consequences of relaxing the inferred height restrictions for

all cities in our data.

4.1 Model Setup

We expand on the standard urban model with endogenous heights (Duranton and Puga, 2015;

Ahlfeldt and Barr, 2022) by allowing workers to have the discrete choice of entering the city,

following Ahlfeldt et al. (2022)’s approach to modelling labour market entry. Thus, we obtain

an imperfectly open city which nests the conventional closed-city and open-city model versions

of the monocentric model as special cases. The model generates a positive and finite height

elasticity of population and a negative and finite height elasticity of area through a floor space

supply channel, as is observed in the data. These responses strike a balance between the 0

population and large negative area elasticity in a closed-city model (Alonso, 1964) and the large

population and small positive area response in an open-city model (Ahlfeldt and Barr, 2022).

We walk through each component of the model below.

Environment: We consider a circular city of endogenous radius. The city is embedded in

a country of N̄ workers, which also has a rural hinterland. L(x) = 2ℓπx units of land are

available for development at each distance x from an exogenously located historic city center,

18This selected set of low regulation countries includes Brazil, Kenya, Panama, the Philippines, and Thailand.
If we also include developed economies, which would include Germany, Israel, Spain, South Korea, Taiwan and
the US, we get larger elasticity estimates. However, we are concerned that these may reflect displacement between
cities in addition to urban growth.
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where ℓ = [0, 1] is the fraction of land that is developable. The area beyond the endogenous city

margin at x = x1 is the rural hinterland.

Workers: All workers are ex-ante identical and choose to live inside or outside the city. The

utility of worker ν is described by:

U(ν) = max
o

[Uo exp(ao(ν))], (10)

where o ∈ {inside, outside} and ao(ν) is an idiosyncratic taste shock for living in location

o. Workers living in the agricultural hinterland receive an exogenous subsistence utility

Uo=outside = Ũ1/ζ . All workers choosing to live in the city enjoy the same endogenous utility

Uo=inside = Ū . The idiosyncratic shocks ao(ν) are drawn from the same Gumbel distribution

with distribution function

G(ao(ν)) = exp[− exp(−ζao(ν)− Γ)]. (11)

ζ > 0 is the taste dispersion parameter and Γ is the Euler-Mascheroni constant, included so that

the Gumbel shocks are mean 0.

Utility maximization delivers the urban population N as share µ of the country population

N̄ .19

N = µN =
U

ζ

U
ζ
+ Ũ

N (12)

The resulting elasticity of urban population with respect to urban utility (the migration

elasticity) is ζ(1 − µ), with 1 − µ reflecting the stock of available rural residents at risk of

moving to the city.

City utility depends on a local amenity, tradeable goods consumption g, and residential floor

space fR. Workers choices of residential locations, on floors s in buildings located at CBD

distance x, all must deliver the same utility level U(x, s) = Ū in equilibrium. Utility is Cobb-

Douglas with a floor space expenditure share of 0 < (1 − αR) < 1. The amenity value of each

location AR(x, s) depends on horizontal (x) and vertical (s) locations. Put together, we have

U(x, s) = AR(x, s)
( g

αR

)αR(fR(x, s)

1− αR

)1−αR

. (13)

The amenity decays with CBD distance and rises with height, taking the following form:

AR(x, s) = āRe−(τR max (0,x−xR))sω̃
R

ω̃R > 0 is the height elasticity of the residential amenity, capturing benefits such as better views

or less exposure to noise and pollution. τR > 0 determines the rate at which utility declines in

distance from the edge of a central recreational district located at x = xR, with āR the amenity

19See Ahlfeldt et al. (2022) for a formal derivation. This is almost isomorphic to using Frechet random utility
draws with dispersion parameter ζ, with the advantage that this formulation justifies cases in which 0 < ζ < 1.
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within this district. τR > 0 generates the centripetal force of rising residential demand nearer

to the city center.20 Workers face the budget constraint

y = pR(x, s)fR(x, s) + g,

in which the endogenous wage y can be spent on housing, with endogenous unit price pR(x, s),

and the tradeable good.

Utility maximization and imposing U(x, s) = Ū yields the residential bid rent for location

(x, s) of

pR(x, s) = AR(x, s)
1

1−αR y
1

1−αR Ū
− 1

1−αR . (14)

Averaging across all floors of a building of height SR(x) at any location, x delivers the horizontal

residential bid rent

p̄R(x) =
1

1 + ωR
[
āRy

Ū
e−(τR max (0,x−xR))]

1

1−αR SR(x)ω
R
, (15)

where ωR = ω̃R

1−αR is the height elasticity of residential rent. This follows the form asserted in

Section 2.4.

Firms: Atomistic perfectly competitive firms produce the tradeable good using labor l and

commercial floor space fC with the Cobb-Douglas production function

g(x, s) = AC(x, s)
( l

αC

)αC(fC(x, s)

1− αC

)1−αC

. (16)

Productivity at each location is shifted by

AC(x, s) = āCNβe−(τC×max (0,x−xC))sω̃
C
.

ω̃C > 0 is the height elasticity of productivity, that captures benefits such as signaling and

workplace amenity effects (Liu et al., 2018). The agglomeration elasticity of productivity β > 0

describes how productivity increases in city employmentN (Combes and Gobillon, 2015). τC > 0

determines the rate at which productivity declines in distance from the edge of a central urban

core at xC and with the āC exogenous productivity within this core. One way to rationalize this

setting is to assume that all workers have to meet within this center to exchange knowledge.21

Profit maximization and imposing zero profits delivers the commercial bid rent

pC(x, s) = AC(x, s)
1

1−αC y
αC

αC−1 .

Averaging across all floors of a building with height SC(x) at each location x delivers the

20By imposing a constant amenity within the central district, we avoid the peaking of bid-rents and profit-
maximizing heights at unrealistically high levels in the city center.

21By flattening productivity within the core, we avoid the peaking of bid-rents and profit-maximizing heights
at unrealistically high levels.

32



horizontal commercial bid rent

p̄C(x) =
1

1 + ωC
[āCNβe−(τC×max (0,x−xC))]

1

1−αC y
αC

αC−1SC(x)ω
C
, (17)

where ωC = ω̃C

1−αC is the height elasticity of commercial rent. This form resembles (15).

Developers and Land Use: We extend the representative developer’s problem laid out in

Section 2.4 to index by type of use, commercial (C) or residential (R). Using (15) for residents

and (17) for firms, the use-specific profit-maximizing building height matches (3), indexing all

parameters by use. We require θU > ωU and pU (x) > cU (1 + θU ) for the solution to be well-

behaved.

The developer may be subject to a height limit S̄U imposed by the planning system.

Conditional on building type U , the developer’s resulting choice of height is thus

S̃U (x) = min(S∗U (x), S̄U ). (18)

Inserting into (2) and imposing zero profits, we obtain the use-specific bid rent for land22

rU (x) = aU (x)(S̃U )
1+ωU

− cU (S̃U )
1+θU

. (19)

If planning restrictions do not bind, this function is declining in CBD distance x, reflecting

greater willingness to pay for accessibility to the center.

At each location x, land is allocated to the use highest bid-rent use, given residential

and commercial bid-rents in (19) and agricultural bid-rent rA. Under the restriction that the

commercial rent gradient is steeper than the residential rent gradient, which is consistent with

plausible parameter values, there is a distance x0 at which commercial and residential land

rents equate (rC(x0) = rR(x0)). At shorter distances, commercial developers outbid residential

developers when competing for land; thus this x0 defines the boundary of the central business

district (CBD).23 Similarly, there is a distance x1 where residential and agricultural land rents

intersect (rR(x1) = rA) and the city ends.

Spatial equilibrium. For given values of the city-wide endogenous objects {y,N,U}, all

location-specific endogenous variables are uniquely determined. We obtain floor space rents

from (17) and (15), heights via from (18), and use-specific land rents from (19). Land use then

goes to the highest bidder, pinning down x0 and x1.

Real estate markets clear, implying that all floor space supplied at distance x, L(x)SU (x),

22aC(x) = 1
1+ωC [āCNβe−(τC×max (0,x−xC))]

1
1−αC y

αC

αC−1 and aR(x) = 1
1+ωR [ ā

Ry
Ū

e−(τR max (0,x−xR))]
1

1−αR .
23In our quantification, two parameter restrictions together ensure a commercial center surrounded by a

residential area: The housing share in production is smaller than the housing share in consumption and τC > τR.
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is input into either consumption or production:

FC(x) = L(x)SC(x), x ∈ [0, x0]

FR(x) = L(x)SR(x), x ∈ (x0, x1),
(20)

where FC(x) is the total input of floor space of all firms at x and FR(x) = f̄R(x)n(x) is total

floor space consumption by all workers n(x) at x. Using FC(x) from Eq. (20) and the marginal

rate of substitution in Eq. (??), we obtain labor demand at each location:

L(x) =
αC

1− αC

p̄C(x)

yC
L(x)SC(x) (21)

Using FR(x) from Eq. (20) in the Marshallian demand function, labor supply at any location

is given by

n(x) =
L(x)SR(x)

yR
p̄R(x)

1− αR
. (22)

General equilibrium: Aggregate labor market clearing means that

L =

∫ x0

0
L(x)dx =

∫ x1

x0

n(x)dx = N. (23)

Using Eq. (21) in Eq. (23) delivers

y =
αC

1− αC

∫ x1

0 p̄C(x)L(x)SC(x)dx

N
. (24)

We further assume housing market clearing so that

(1− αR)yN =

∫ x1

x0

p̄R(x)L(x)SR(x)dx. (25)

Using Eq. (15), we can solve Eq. (25) for urban utility:

Ū =

 1
1+ωR y

1

1−αR
∫ x1

x0
Ã(x)

1

1−αR (SR(x))(1+ωR)L(x)d(x)
(1− αR)yN

1−αR

(26)

Eqs. (12), (24), and (26) constitute the exactly identified system of equations that solves for the

general-equilibrium constants {y, U,N}.

Welfare: Given Gumbel-distributed preference shocks, expected utility across all workers

living inside and outside the city can be expressed as follows:24

V =
(
Ũ + U

ζ
) 1

ζ
(27)

24See Ahlfeldt et al. (2022) for a formal derivation.
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Given our perfectly symmetric city, the aggregate land rent is defined by:

R =

∫ x0

x1

rR(x)L(x)dx+

∫ 0

x0

rC(x)L(x)dx+

∫ x̄

x1

rAL(x)dx (28)

Intuition: To give a sense of the key forces in the model, Figure 8 shows how key elasticities

change with the migration elasticity ζ. Anticipating model quantification in the following sub-

section, this figure also provides intuition on how ζ is identified.

At the left of the graph is a closed city, in which ζ is 0. In this environment, reductions

in the cost of height θ and associated new tall buildings does not draw in any population but

makes the city more compact. The associated supply shock to city real estate lowers rents. The

greater spatial concentration of production raises wages through an agglomeration force.

Moving to the right in Figure 8, it becomes easier for people to move into the city. This

results in higher population, area, and rent elasticities. At ζ = 3, the real estate supply shock

effect of lowering the cost of height gets balanced by the general equilibrium migration response

such that rents do not respond to heights. For greater values of ζ, where population elasticities

are very large, rent elasticities are slightly positive.

Figure 8: Height elasticities in model by preference heterogeneity (ζ)
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Note: Dotted horizontal lines are our estimates of the height elasticity of population and the height elasticity of area from
cities that are unconstrained by height regulation (the empirical moments).

4.2 Quantification

We take parameters {αU , β, ωU , θU , τU , xU , āU , c̃U , S̄U , ra, ζ, ℓ, Ũ} and the endowments {N̄ , x̄}
as given and treat {y,N, Ū} as city-wide endogenous objects for which we solve, along with the

location-specific variables {L(x), n(x), p̄U (x), rU (x), S̃U (x)} using a numerical procedure which

we describe in Appendix section J.1. We summarize our choices in Table 6 and provide a brief

rationale below. For details, we refer to Appendix Section J.2.
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Our primary objective is to find a parametrization that rationalizes the height elasticities

estimated in Section 3.4. We are not interested in matching the building height profile (or any

other gradient) of a particular city. Instead, we generate a stylized city with a height profile

that is consistent with the data when interpreted through the lens of the canonical urban land

use model. To this end, we estimate the semi-elasticity of height with respect to distance from

the city center from our data and exploit that there is a direct mapping from this reduced-form

parameter to the structural amenity decay parameter (τU ) within our model. Similarly, we let

the data speak and set the share of built-up land ℓ to the observed mean ratio of built-up area

over total land area. We set x = 1, which results in an urban core with an area of slightly

more than a square mile, a size that is anecdotally ascribed to the densest and most productive

economic clusters, such as the City of London. We set N̄ = 10M and x̄ = 100km, which

generates a country population density of about 300 workers per km2, about the value observed

for the UK. The scale parameters {āU , c̃U , ra, Ũ} do not affect the height gradient, but they

govern how attractive the city is relative to the rural hinterland and, hence, how many workers

the city attracts. We generally invert c̃U for given values {āU , c̃U , ra} to rationalize a given city

population.

This leaves us with the preference heterogeneity parameter, ζ. For our purposes, it is a central

parameter since it governs the migration response to any shock that affects the attractiveness of

the city. The larger ζ, the more workers will move into the city in response to a positive shock

to the supply of tall buildings. Since more workers use more floor space, the total land area

will shrink less than the population density increases. If ζ was sufficiently large, the city could

even expand vertically and horizontally. To identify ζ, we use a simulated method of moments

(SMM) approach, treating the height elasticity of population and the height elasticity of area as

moments that we match in model and data. Intuitively, we solve the model under varying values

of θU for a given value of ζ, which delivers variation in population and area that mimics the

bedrock-induced variation in the cost of height in our empirical analysis. In each run, we also

compute a measure of tall building height. Log-linear regressions of model-generated population

and area against model-generated heights produce our moments in the model.

One complication that arises in matching the moments is that our building heights data is

bottom-coded at 55 m. We address this feature of our data by generating a height measure

within the model that aggregates all heights above a height threshold T . Since the truncated

aggregate height measure is highly sensitive to the fuzziness of the height gradient, there is no

one-to-one mapping from the threshold in the data (55 m) to T . Therefore, we treat T as an

additional parameter to be identified by our SMM approach. We find that under T = 4 and

ζ = 1.8, we exactly match our moments. As long as T ≥ 4, we obtain a ζ value of slightly below

two. The implied elasticity of labor supply to the city of about 1.5 is in line with reduced-form

estimates in the literature (Beaudry et al., 2014). Our ability to comfortably reproduce the

empirical moments within our model under a canonical parametrization adds to our confidence

in the identification strategy proposed in Section 3.
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Table 6: Baseline parameterization

Parameter Value Further reading

1− αC Share of floor space at inputs 0.15 Lucas and Rossi-Hansberg (2002)
1− αR Share of floor space at consumption 0.33 Combes et al. (2019)
β Agglomeration elasticity of production amenity 0.03 Combes and Gobillon (2015)
θC Commercial height elasticity of construction cost 0.5 Ahlfeldt and McMillen (2018)
θR Residential height elasticity of construction cost 0.55 Ahlfeldt and McMillen (2018)
ωC Commercial height elasticity of rent 0.03 Liu et al. (2018)
ωR Residential height elasticity of rent 0.07 Danton and Himbert (2018)
τC Production amenity decay 0.03 Appendix Section J.2
τR Residential amenity decay 0.03 Appendix Section J.2
ζ Preference heterogeneity 1.8 Appendix Section J.2

Notes: Parameter values for {αU , β, θU , ωU} are borrowed from Ahlfeldt and Barr (2022) recommend these as suitable
for stylized presentations and simple counterfactual analysis. The last column provides a references for the interested
reader for further reading, but not necessarily the source of a point estimate. We set the scale parameters to
āC = āR = 2, c̃C = c̃R = 150, ra = 50, N̄ = 10M, x̄ = 100km and invert Ũ so that µ = 0.2. There are no binding height
limits in the baseline parametrization (S̄C = S̄R = ∞).

4.3 Counterfactuals

We are now ready to use the quantified model to explore the welfare effects of the tall-buildings

technology as well as height limits that stand in the way of its adoption. To this end, we simulate

the model with and without binding height constraints. In doing so, we account for variation in

demand and supply conditions on the market of height which generate rich heterogeneity in the

welfare effect.

4.3.1 Illustrative examples

We begin with some illustrative examples to develop the intuition for the mechanisms through

which the welfare effect operates in the model. The starting point is the equilibrium derived

under the baseline parameterization from Table 6 which we illustrate in the first row of Figure

9. Intuitively, the slopes of the use-specific floor-space bid-rent functions determine the slopes

of the height gradients and the land bid-rent curves which, in turn, determine the land use

pattern. Notice that the discontinuities in floor space rents and heights at the within-city land

use boundary arise endogenously as a result of a net-cost of height θU − ωU that is smaller for

commercial developments.

In the second row, we solve the model under the same parameterization, except that we

increase the cost of height by 20% to emulate the effect of having less favorable bedrock.

For the interested reader, we report changes in aggregate outcomes from the baseline to the

counterfactual equilibrium in Table A12 in the Appendix. In keeping with intuition, building

heights fall because—for given floor space rents—building tall is less profitable. In response, the

city area expands by 17.8%. The relocation of firms and residents to more peripheral locations

increases commuting costs by 2.9% and lowers productivity by about 0.9%. Due to the reduction

in floor space supply, commercial rents increase by 11.2%. Although residents live farther from

the center, residential rents increase by 1.2%. Lower productivity and higher commercial rents

reduce labor demand, lowering the wage by 3.1%. Due to the lower wage, greater commuting
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costs, and higher resident rents, indirect utility in the city, Ū , net of any idiosyncratic component,

falls by 6.6%. Since living in the city has become less attractive, the population falls by 8.9%.

Expected utility across all workers inside and outside the city, V, falls by 1.3%. Aggregate land

values fall by 1%. There is redistribution from owners of land in the center, where the intensity

of land use falls, to owners of rural land that is being converted into urban land as the city

expands.

Figure 9: Urban spatial structure, cost of height, and regulation
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Note: Figure illustrates the solution to the model laid out in Section 4 under the parameter values from Table 6 (upper
panels), a counterfactual where we increase the cost of height to θC = 0.6, θR = 0.65 (middle panels), and a counterfactual
in which we introduce a height limit of S̄C = S̄R = T = 4. See Table A12 in the Appendix for the impact of the greater
cost of height and a binding height limit on aggregate outcomes.

In the third row, we set S̄C = S̄R = T = 4, which results in an even flatter city than under

the increased cost of height. Given that the CBD normally hosts the tallest buildings of the city,

it is no surprise that the height cap results in a substantial horizontal expansion of the CBD.

Although we have imposed a tighter constraint on vertical growth, the horizontal area of the

city, at 14%, increases less than in the cost counterfactual. Because the vertical compression

of the CBD is stronger than in the cost counterfactual, the horizontal expansion of the CBD is

more pronounced. Therefore, the increase in commuting cost (8%) and the reduction in average

productivity (8%) are also stronger. Wages also fall more (8%). The result is a reduction in

housing demand that is so large that, despite the negative shock to residential floor space supply,

residential rents fall substantially (14.8%). The increase in commuting costs and the lower wage,
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however, dominate the effect of rents on indirect utility in the city, which decreases by 10.9%,

leading to a fall in expected utility, V by 2.1%. Population falls by 15%, 50% more than in

the cost counterfactual. Driven by the conversion of rural into residential and residential into

commercial land use, aggregate land values increase increases by some notable 15%. Therefore,

the height limit redistributes income from the mobile to the immobile factor. An important

lesson from this counterfactual exercise that has been overlooked in the literature focusing on

the residential sector (Brueckner and Sridhar, 2012) is that a major welfare cost of height limits

arises from firms being pushed out of the locations where they are most productive.

4.3.2 Heterogeneity in welfare effects

Intuitively, the welfare effect of a height regulation must be related to its ”bite”. If we introduce

the same height limit into a city with a lower cost of height, the effect should be larger since the

regulation will have a greater bite. Indeed, it turns out that if we introduce the same height limit

as in the third row of Figure 9 under a 20% greater cost of height, the impact on population and

expected utility falls by about one third; the effect on area about halves (see Table A12 in the

appendix). The standard approach in the literature to measuring the bite of height regulations

is to compute the height gap (Jedwab et al, 2022, Barr and Jedwab, 2022). It represents the

percentage fraction of the total height that would have been developed in the market equilibrium

which has remained undeveloped due to height restrictions.

Empirically, the height gap can be established by comparing a city’s total height to the

total height of the tallest cities with similar characteristics, such as population, GDP per capita,

or earthquake risk. In our model, the height gap is straightforward to compute by comparing

solutions under binding and nonbinding height limits.25

We exploit this feature of the model to illustrate how the welfare effect associated with a

height gap depends on population and cost of height. In doing so, we solve the model varying

height cost (θU ) and height limit (S̄U ), and rural utility Ũ values. Concretely, we exploit that

there is a unique mapping from urban and rural utility to population in Eq. (12) to find {S̄U , Ũ}
values that rationalize any given combination of population and height gap using a procedure

that we describe in Algorithm 4. We use this procedure to compute welfare effects for all

combinations of height costs {0.2, 0.3, ..., 1}, height gaps {0%, 10%, ..., 100%}, in each case for a

small city of half a million and a large city of two million. It is worth recalling that for a given

cost of height and a given height gap, the only reason why a city has a larger population is that

it possesses greater demand for height.

Figure 10 confirms that losing height is more costly in terms of expected utility loss if the

cost of height in a city is low, e.g. due to favorable bedrock. Lowering the cost of height from 0.6

to 0.3 about triples the relative utility loss at any given height gap in a city with a population

of 2M. Demand conditions also matter. Holding the cost of height constant, we observe greater

effects in cities that are larger. So, one important conclusion from Figure 10 is that height limits,

25Since we compute the height gap aggregating all heights exceeding T = 4, the height gap can range between
0 and 100%.
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even when expressed in terms of their relative effects on total height, tend to be more costly in

cities with fundamentals that increase demand for and supply of height.

As already discussed in the context of Figure 9, vertical compression means horizontal

expansion. This implies a significant increase in the value of land in more remote parts of

the city and, in particular, land that is being converted from residential into commerical and

rural into urban use. Figure 10 reveals that this uplift is generally large enough to more than

compensate for the decline in land rent in the more constrained parts of the city. Again, the

effect on aggregate land rent is much greater in cities with a lower cost of height where the loss

of tall building height is particularly consequential. Holding the cost of height constant, there

is little variation in population, which reveals that demand-side factors play a limited role.

Figure 10: Heterogeneity in welfare effects
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Note: To generate each panel, we solve the model under different values of {θC}, setting θR = θC +0.05. We find values of
{S̄, Ũ} to rationalize a given combination of population and height gap, conditional on given θU values. We hold all other
parameter values constant at the value described in Table 6. The height gap is the fraction of free-market total tall-building
height that is not developed due to a height limit.

4.4 The Contribution of Tall Buildings to Welfare

We now return to our sample for 12,877 real-world cities with the aim of using the model to

evaluate the welfare effects of tall buildings. To this end, we use the same procedure as in Figure

10 to invert the model and rationalize observed values of population and height gap conditional

on the observed cost of height for each city in our data (see Algorithm 4 in the appendix for
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details). As is discussed in Section 3, population is covered in the GHS-UCDB data introduced in

Section 3. We obtain city-specific estimates of the cost of height using bedrock depths reported

by Shangguan et al. (2017) and our non-parametric estimate of the relationship between bedrock

depth and the cost of height illustrated in Figure A4.

To obtain a measure of the height gap for each city, we build on the analysis in Barr and

Jedwab (2023). Using the same underlying regression model that was used to identify low

regulation countries, as discussed in Section 3.4, they build predicted (log) heights for each city

in the sample. After partitioning the sample into 1,000 bins of about 13 cities each using these

predicted heights, we obtain the 90th percentile value in actual (log) heights in each bin. This is

assumed to be the unconstrained amount of heights built given fundamental supply conditions

conditional on city observables about demand and supply that generate the binned prediction.

We construct our height gap measure for city i in bin b as:

Gapib = max

(
[1− lnHeightsib

lnHeights90b
], 0

)
(29)

By construction, Gapib goes from 0% to 100%. We emphasize that while this gap measure is

likely to be correct on average conditional on observables, it is less likely to be accurate for

specific cities.26

In Table 7, we tabulate the city-populated-weighted mean welfare effect by world region.

We report the incidence on the mobile (labour) and immobile (land) factors for two scenarios.

First, we calculate the welfare consequences of going from no height restrictions (S̄U = ∞) to a

complete ban on tall buildings (S̄U = T ). The result is the welfare cost associated with banning

all equilibrium tall buildings in the model. Second, we calculate the welfare consequences of

going from no height restrictions (S̄U = ∞) to the actual height gaps (Gapib), which delivers

the welfare cost associated with current height regulations.

Table 7 presents the welfare results. They indicate that on a global scale tall buildings have

the potential to increase worker welfare by 3.2%, relative to having no tall buildings (bottom

row). About two-thirds of the height potential has been realized under current regulations;

worker welfare could increase by 1.0% if current height constraints were relaxed. However,

there is significant heterogeneity across world regions. Since a relatively large fraction of the

US urban population lives in large cities, and bedrock conditions are generally favorable, the

welfare potential for North America is more than twice as large as the global average, though

most of it has been realized. The region with the most to gain is South Asia, where only about

half of the potential 4.1% has been realized. East Asia and Europe/Central Asia have realized

over three-quarters of their small welfare potentials of less than 3%.

On the flip side, land owners stand to lose from deregulating heights. Of the 3.15% increase

in land value associated with going from unregulated heights to no heights, about 60% (1.85

percentage points) has been realized due to height restrictions. Magnitudes of counterfactual

26Gaps are about 0% for Chicago, Seoul, Sao Paulo and Manila, 3% for NYC and Shanghai, 9% for Bangkok,
10% for Paris and Mexico City, 13% for London and Los Angeles, 17% for Ho Chi Minh City, and 23% for Dhaka
and Karachi.
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Table 7: Wefare effects of tall buildings by world regions

City characteristics Expected utility (V) Agg. land rent (R)

World region
Urban
pop.
(BN)

Share
large
cities

Cost of
height

θ

Est.
height
gap

No
tall

building

Actual
height
limit

No
tall

building

Actual
height
limit

East Asia & Pacific 1.03 55.76% 1.01 43.36% -2.37% -0.30% 2.25% 0.57%
Europe & Central Asia 0.36 41.06% 0.76 37.79% -2.58% -0.43% 2.54% 1.24%
Latin America & Caribbean 0.35 52.79% 0.73 40.50% -2.99% -0.68% 3.10% 1.58%
Middle East & North Africa 0.25 48.82% 0.81 66.46% -3.48% -1.45% 3.35% 2.79%
North America 0.17 67.35% 0.65 26.97% -6.59% -1.06% 6.00% 3.29%
South Asia 0.90 37.17% 0.66 44.37% -4.10% -1.88% 4.06% 2.99%
Sub-Saharan Africa 0.43 33.69% 0.68 51.40% -2.75% -1.33% 2.70% 2.11%

Mean 3.49 46.49% 0.79 44.57% -3.23% -1.00% 3.15% 1.85%

Notes: Model-based estimates are matched to real-world cities based on population, cost of height and height gap, an
empirical estimate of how much of the potential height has not been realized taken from Barr & Jedwab, 2023. Welfare
estimates are population-weighted averages by region. Height ban means no tall building exceeding four floors. Large city
population share is the share of urban population in cities with a population of at least 1M.

changes in real estate values exhibit a similar pattern across world regions as worker welfare,

though with the opposite sign.

Finally, it is important to realize that—while already large—the welfare effect of height limits

is likely to grow over time. The history of tall buildings is one of technological innovations that

have lowered the cost of height. The exact rate is difficult to estimate, but extant estimates

suggest that the cost-of-height parameter, θ, has declined by 2% per year in the long run (see

Ahlfeldt and Barr (2022) and Appendix Section H.5). Even if this rate halves, the cost of height

will fall by 20% within a generation. Our simulations suggest that even if cities adjust to keep the

relative bite of height regulation constant, the welfare cost will increase significantly, especially

in regions, such as East Asia and the Pacific, where the cost of height is currently particularly

large.

5 Conclusion

We demonstrate that tall buildings make cities more productive, compact, and affordable. As

the cost of building tall structures decreases with further technological progress, this potential

will only increase into the future. Hence, the potential cost of height restrictions are large.

While this study emphasizes the benefits of allowing cities to build tall, there may also be

amenity and productivity costs from the associated congestion that we have not considered. A

priority for future research should be to measure such costs.
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ONLINE APPENDIX NOT FOR PUBLICATION

H Data and stylized facts

H.1 Value of tall buildings

We observe the volume of buildings indexed by i in city m, Vim. The height of a building is Sim.

A simple way of measuring the value of building i, vim is:

vim =
p̄im
δm

Vim

where p̄im is the average rent per square meter and δm is a city-specific discount rate used to

compute the present value of a perpetual stream of revenues. Since the monocentric standard

urban model has received great support in data (see Liotta et al., 2022, for evidence from a

global sample of cities), it is reasonable to express rent as

p̄im = p̄0m × exp (−τmDCBDim) + εim,

where r∗m is the rent at the central business district (CBD) of city m, DCBDim is the distance

from the CBD in km, and τm > 0 is a decay parameter that governs how quickly rents decay in

distance from the CBD.

Ahlfeldt and Barr (2022a) show that under canonical assumptions, this decay parameter is a

linear transformation of the semi-elasticity of height with respect to distance from the CBD. We

estimate this this semi-elasticity by city and then use the result from Ahlfeldt and Barr (2022a)

to compute city-specific rent gradients as τm = − ∂ lnSim
∂DCBDim

×0.2. We can further use equilibrium

condition for profit-maximizing building height derived in (Ahlfeldt and Barr, 2022a) to express

the rent at the CBD as:

P̄ 0
m = c̃

(
S0
m

)0.5
,

Where S0
m is the height at the CBD.

Our object of interest is the share of the value of buildings exceeding 55 meters at total stock:

TBS =

∑
m

∑
i vim × 1(Sim > 55)∑

i vim

Assuming E(εim|m) = 0, we can combine all ingredients to compute our object of interest as

TBS =

∑
m

∑
i(S

0
m)0.5 exp (−τmDCBDim)Vim × 1(Sim > 55)∑
m

∑
i(S

0
m)0.5 exp (−τmDCBDim)Vim

.

Ahlfeldt and Barr (2022b) show that tall building represent a source of ”big data” from

which one can infer the spatial distribution of economic activity. Thus, we use our data set of

tall buildings to identify the city centre as the median coordinate. Having recovered city center

it is then straightforward to estimate to estimate the city specific height gradient ∂ lnSim
∂DCBDim

.
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H.2 Summary Statistics

Table A1: Summary Statistics

City Population in 1975
< 100k 100k-500k > 500k
(1) (2) (3) (3) - (2)

Avg Sum of Heights >55 m in 1975 3 36 1,441 1,404
Frac of Cities with Tall Bldgs in 1975 0.01 0.09 0.41 0.32

MBD Mean 1975-2015 ∆ ...

<10m ln Pop 0.55 0.45 0.55 0.10
ln Built Area 0.46 0.76 0.75 -0.01
ln (Heights + 1) 0.05 0.37 2.05 1.68
Heights (m) 9 72 5,206 5,134
Any Tall Bldgs 0.01 0.06 0.21 0.15
Observations 3,876 788 113

10m - 30m ln Pop 0.46 0.29 0.42 0.13
ln Built Area 0.50 0.60 0.55 -0.05
ln (Heights + 1) 0.21 1.20 3.40 2.20
Heights (m) 63 694 26,540 25,846
Any Tall Bldgs 0.03 0.18 0.32 0.14
Observations 4,561 1,547 313

> 30m ln Pop 0.47 0.27 0.44 0.17
ln Built Area 0.73 0.94 0.78 -0.16
ln (Heights + 1) 0.10 0.69 4.09 3.40
Heights (m) 26 220 11,780 11,560
Any Tall Bldgs 0.02 0.11 0.46 0.35
Observations 1,151 436 89

Note: Each city in the main estimation sample is one observation. Entries in columns (1), (2) and (3) are
conditional means as a function of 1975 city population and city mean bedrock depth (MBD). All differences
in the final column are statistically significant at the 5 percent level except growth in population for cities with
bedrock depths between 0 and 10 meters and built area for cities with bedrock depths between 0 and 10 or 10
and 30 meters.

The final column in Table A1 explicitly shows that height growth was greater in cities of over

500 thousand residents in 1975 than in those cities with between 100 and 500 thousand residents

at all three indicated bedrock depths. Differencing relative height growth between intermediate

and shallow bedrock depths, we see that larger cities on intermediate depth bedrock experienced

more rapid 1975-2015 height growth than did those cities on shallow bedrock. We note that

secondary Chinese cities are heavily over-represented in the deep bedrock category for large

cities at the bottom of Column (3). In many of these locations, the post-1990 construction

boom did not respond to standard market forces.
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H.3 Data on Tall Buildings

The full Emporis data set includes 693,855 buildings worldwide. These include buildings of

various types, heights and sizes. While Emporis attempted to collect extensive information about

the world’s buildings, it could not do so comprehensively. As a result, we are concerned about

the selection of buildings recorded in the data set. Our empirical strategy requires measuring

the universe of buildings above some height cutoff. To determine this height cutoff, we inspect

the following nonparameteric density of building heights in the full Emporis data set.

Figure A1: Distribution of Building Heights (m) in Emporis circa 2022

Notes: This figure shows the kernel density of heights (meters) for all 693,855 “existing [completed]” buildings in Emporis
(accessed 02-07-2022). We only include “building with towers”, “high-rise building”, “low-rise building”, “multi-story
building”, and “skyscraper” property types.

Evident in Figure A1 is a spike in the distribution of building heights at just above 55 meters.

It is for this reason that we use the 55 meter height threshold above which to measure the sum

of heights for each city.

For a subset of our tall buildings data set, we observe not only the height of a tall building,

but also the cost of construction (excluding cost of land acquisition) and the floor area. In

this section, we describe how we process the data to generate the heat maps in Figure 3 and 4

and provide complementary LWR estimates using bivariate kernels that provide non-parametric

point estimates of the cost-bedrock relationship by height groups aongside confidence bands.

H.3.1 Descriptive statistics

In Table A2, we provide summary statistics of the Emporis data used in this section. Panel A

summarizes sample that we restrict to US cities to ensure that variation in the cost of height

over a long time is identified within one country that roughly follows a common trend. We use
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this sample in Figures 3, A2, and A5 and Table A3. Panel B summarizes the multinational

sample that we use in Figures 4, A4, and A3 for cross-sectional analyses.

Table A2: Summary statistics of Emporis data

Mean SD Min Max

Panel A: 591 observations in 93 US cities

Construction year 1988.23 23.95 1902.00 2021.00
Height (m) 102.15 55.72 55.03 541.33
Bedrock depth (m) 19.66 14.72 2.50 113.01
Ln construction cost 7.05 1.20 3.18 10.98
Ln cost (residulized) -0.00 0.53 -1.61 2.65

Panel B: 1,033 observations in 206 cities in 55 countries

Construction year 1994.98 21.00 1902.00 2021.00
Height (m) 113.42 71.52 55.00 828.00
Bedrock depth (m) 20.08 13.05 0.00 117.53
Gross floor area (m2) 53972.87 61268.07 934.00 9.8e+05
Ln construction cost 7.12 1.58 -5.25 10.98
Ln cost (residulized) -0.00 0.85 -7.60 5.14

Notes: Unit of observation is buildings in Emporis data.

H.3.2 Residualized log unit cost

The cost of constructing a tall building depends on a range of factors that are unrelated to

the height of the building and the depth of bedrock such as the price of labour or construction

materials. Therefore, we residualize observed construction cost Ci,m(i),c(i),t per unit of floor area

Fi,m(i),c(i),t of a building i, constructed in city m in country c during decade t using the following

regression:

lnCi,m(i),c(i),t − lnFi,m(i),c(i),t = µm(i) + ηc(i),t + εCi,m(i),c(i),t,

where µm(i) is a time-invariant fixed effect controlling for arbitrary demand and supply shifters

at the city level and ηc(i),t is a country by decade effect that controls for time-varying effects such

as increasing demand due to economic growth or varying costs of construction materials. From

this regression, we recover the residual, εCi,m(i),c(i),t, as a relative cost measure that describes log

deviations from country-trend-adjusted city averages.

H.3.3 LWR using a bivariate kernel

As discussed in Section 2, innovations in construction technology may have affected the

construction cost for buildings of different height differently. Intuitively, improvements in

mainframe computing and software that allow for refined structural engineering to withstand

collateral wind loads should have had a greater impact on the cost of building very tall buildings.

Likewise, the engineering literature suggests that in determining construction cost, building

height and bedrock depth interact in a complex fashion. For tall buildings, there is generally
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a cost-minimizing bedrock depth, but this depth is likely to vary by height—taller buildings

require deeper foundations—and so does the importance of bedrock—bedrock is generally more

important to anchor taller buildings. To evaluate such complex relationship non-parametrically,

we employ a locally weighted regressions approach (Cleveland and Devlin, 1988; McMillen, 1996)

using a bivariate kernel.

Let’s assume we have a set of variables s ∈ {s1, s2} that determine construction cost. For

each combination of grid values along those dimensions s̃1 ∈ S̃1, s̃2 ∈ S̃2 we run the locally

weighted regression

εCi = ε̄s̃
1,s̃2 + ε̃s̃

1,s̃2

i

using the Gaussian kernel weight

W s̃1,s̃2

i =
ws̃1,s̃2

i∑J
j=iw

s̃1,s̃2

j

,where

ws̃1,s̃2

i =
∏

s=∈{s1,s2}

1

κs
√
π
exp

[
−1

2

(
si − s̃

κs

)2
]
.

(30)

where κs are bandwidth parameters.

Hence, we run S̃1× S̃2 locally weighted regressions to recover S̃1× S̃2 parameters ε̄s̃
1,s̃2 which

are local means that we plot on the height-bedrock plane in Figures 3 and 4. This amounts to

112 (years) × 195 (height values) = 21,840 regressions in 3 and 35 (bedrock depth values) ×
195 (height values) = 6,825 regressions in Figure 4.

H.3.4 LWR using a univariate kernel

The strength of the heatmaps in Figure 3 and 4 is to provide an accessible presentation of

a non-parametric function in two dimensions. In doing so, we focus on point estimates and

abstract from confidence bands. For an illustration of the latter, subdivide the data set in

groups defined by building height and estimate the the relationships between cost and either

the year of construction or bedrock height groups using LWR and univariate kernels that are

otherwise identicaal to Eq. (30). Since we include only one dimension in our kernel, we use

smaller bandwidth parameters. The blue and the red lines for 100-150 m and 150-250 m in

Figures A3 and A2 roughly correspond to the blue and red lines in Figures 4 and 3.

The results presented in A2 confirm that the construction cost of very tall buildings exceeding

150 m in the US have fallen significantly more that in other height categories. In particular,

costs in this category have fallen throughout the study period on which we focus in the main

stages of the analysis.

The results presented in Figure A3 confirm that the cost-minimizing bedrock depth for

buildings of about 125 m is about 18 m, whereas it is 25 m for buildings of about 200 m. The

additional insight from the confidence bands is that we can reject that the cost is the same at

lower or greater depths. Another relevant finding from Figure A3 is that the point estate of cost

for short buildings and deep bedrocks are associated with a large standard error.
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Figure A2: Construction cost as function of height and construction year
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Notea: The sample consists of 591 constructions in US cities (see Panel A in Table A2). Ln cost per floor area is residualized
to control for city fixed effects and country-by-decade of construction effects. We use locally weighted regressions with a
univariate Gaussian kernel and a bandwidth of κ = 25 to estimate local means of the cost measure for varying bedrock
depths. Confidence bands are at the 95% level.

Figure A3: Construction cost as function of height and bedrock depths
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Note: The sample consists of 1,033 constructions in 206 cities in 55 countries (see Panel A in Table A2). Ln cost per floor
area is residualized to control for city fixed effects and country-by-decade of construction effects. We use locally weighted
regressions with a univariate Gaussian kernel and a bandwidth of κ = 4 to estimate local means of the cost measure for
varying bedrock depths. Confidence bands are at the 95% level.

H.4 Cost of height and bedrock depth

A convenient way of summarizing the cost of height is the elasticity of per-unit construction

cost with respect to height (Ahlfeldt and McMillen, 2018; Ahlfeldt and Barr, 2022a). The
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engineering literature and stylized evidence discussed in Section 2 suggests that this elasticity

should non-linearly depend on bedrock depth. Intuitively, bedrock very close to the surface

makes the construction of taller buildings relatively more expensive since these require deeper

foundations and removing bedrock is costly. Similarly, very deep bedrock makes the construction

of taller buildings relatively more expensive since bedrock is more important as an anchor for

the foundations of taller buildings.

To empirically substantiate this notion, we use a LWR-IV approach to causally estimate how

unit costs change in height depending on bedrock depth. We require a demand-side instrumental

variable to remove the effect of supply-side factors such as ruggedness that could be correlated

with sub-soil geology. We use distance from the CBD as and instrumental variable since it

affects building heights via the demand side (Brueckner, 1987; Ahlfeldt and Barr, 2022a) and

has empirically been shown to be a strong predictor of height (Ahlfeldt and McMillen, 2018;

Ahlfeldt and Barr, 2022a). The city center is defined as the median coordinate of buildings

exceeding 100 m height and or the tallest building where building exceeds 100 m. Concretely,

we estimate a first stage

lnhi.m(i),c(i),t = αb̃ lnDCBDi,m(i) + µ̃b̃
m(i) + η̃b̃c(i),t + ε̃b̃i,m(i),c(i),t (31)

and a second stage:

lnCi,m(i),c(i),t − lnFi,m(i),c(i),t = θb̃ l̂nhi.m(i),c(i),t + µb̃
m(i) + ηb̃c(i),t + εb̃i,m(i),c(i),t (32)

for each LWR b̃ ∈ B̃ using a weighted 2SLS estimator. hi,m(i),c(i),t is the height of building i,

constructed in city m in country c during decade t, DCBDi,m(i) is distance from the city center

defined as the median coordinate of buildings with hi ≥ 100 m (or the tallest building if it is

smaller), lnCi,m(i),c(i),t−lnFi,m(i),c(i),t is the log of the cost per unit of floor area, {µb̃
m(i), µ

b
m(i)} are

city fixed effects, {ηb̃c(i),t, η
b
c(i),t} are country by decade fixed effects, and {ε̃b̃i,m(i),c(i),t, ε

b̃
i,m(i),c(i),t}

are error terms.

In each LWR b̃ ∈ B̃ we weigh observations by the Gaussian kernel weight

W b̃
i =

wb̃
i∑J

j=iw
b̃
j

,where

wb̃
i =

1

κb̃
√
π
exp

−1

2

(
bi − b̃

κb̃

)2
 .

(33)

Notice that Eq. (33) uses a univariate version of the same kernel as in Eq. (30), except that we

employ a LWR-specific bandwidth. This is because we wish to allow for a more flexible fit via a

smaller bandwidth in the in the more populated part of the bedrock distribution where we also

expect more variation in θ, whereas we wish to reduce standard errors in the right tail of the

bedrock distribution that is more sparsely populated and where we expect less variation in θ.
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To this end, we use a variant of Scott’s rule of thumb for bandwidth selection and define

κb̃ = M 3.49σ̂b̃(
N b̃
) 1

3

,

where the standard deviation σ̂b̃ and the number of observations N b̃ are computed for rolling

subsamples that satisfy |bi − b̃| ≤ B = 10. We scale the rule-of-thumb bandwidth by a factor of

M = 2 since the non-parametric estimation of derivatives generally requires larger bandwidths

than the estimation of levels (Henderson and Parmeter, 2015, Section 5.9).

Figure A4: Cost of height as function of bedrock depths
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Notes: We show non-parametric estimates of the cost of height from an LWR-IV approach. In each LWR, we estimate
the height elasticity from a regression of the log of construction cost per floor area against building height, controlling for
city fixed effects and country by decade of construction effects. The sample consits of 1,033 constructions in 206 cities in
55 countries (see Panel A in Table A2). We use distance from the city center as an instrumental variable for height to
remove the effects of unobserved factors that affect construction cost (such as ruggedness) that could be correlated with
bedrock. The city center is defined as the median coordinate of buildings exceeding 100 m height and or the tallest building
where building exceeds 100 m. The median first-stage F-statistic is 10.4. We use a Gaussian kernel with a locally varying
bandwidth that is inversely related to the density of observations. Confidence bands are at the 95% level.

The results in Figure A4 support the engineering-based hypothesis that bedrock at

intermediate intermediate depths reduces the construction cost of tall buildings. Within the

sample of buildings for which we observe height, construction cost, and floor area, the marginal

cost of increasing height is minimized at a bedrock depth of about 10 to 15 m. At depths

below about 5 m or greater than 23 m, the cost of height is significantly larger. This range

is roughly consistent with the descriptive evidence from Figures 4 and A3, given an average

building height of 109 m in our sample. Yet, it appears that the causal estimation approach

yields somewhat lower optimal bedrock depths, perhaps because deeper bedrock is correlated

with other geological factors that add to construction cost. More importantly, the results from

Figure A4 support the idea that as demand for height increases over time, cities with bedrock

within an intermediate range will have a greater ease of accommodating that demand, resulting

in lower barriers to growth.
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H.5 Cost of height over time

As discussed in more detail by Ahlfeldt and Barr (2022a), several technological innovations have

contributed to the emergence of tall buildings as an increasingly widespread urban phenomenon.

Around the turn from the 19th to the 20th century, the elevator and and the steel frame made tall

commercial and residential structures economically viable. From the 1960th, mainframe allowed

for more sophisticated structural engineering that allowed for lighter and taller buildings that

could withstand large collateral wind loads. Improvements in software and hardware have ever

since allowed to design tall buildings more efficiently. In the near future, the magnetic elevator

is expected to remove yet another barrier to vertical growth.

It is, therefore, reasonable to expect a secular downward trend in the cost of height.

Indeed, indirect evidence from correlations of land prices and building heights substantiates this

hypothesis (Ahlfeldt and McMillen, 2018; Ahlfeldt and Barr, 2022a). We use our construction

cost data set to directly test the hypothesis that the height elasticity of construction cost has

decreased over time. Since different parts of the world have adopted the skyscraper technology

at different points in time, we focus on the US—the only country where we can estimate the

cost of height throughout the 20th century—to avoid changes in our estimates of the cost of

height over time being driven by the international composition of the sample. In Table A3, we

report the results from instrumental variable regressions of a log cost measure against the log

of height and an interaction with a yearly time trend. We normalize this trend to have a value

of zero in 1975, the beginning of our observation period in the main stages of our analyses.

Hence, the coefficient on the non-interacted log height variable gives the height elasticity of cost

in 1975 while the coefficient on the interaction reveals how this elasticity changes over time. All

estimates control for city fixed effects, decade fixed effects and a yearly time trend. Columns (1)

presents OLS estimates. Column (2) presents 2SLS estimates where the log distance from the

city center (the median coordinate of bildings exceeding 100 m or the tallest building if shorter)

and its interaction with a time trend serve as instrumental variables. Both models confirm

the hypothesis that the cost of height has decreased over time. The OLS estimates point to a

reduction in the height elasticity of costs by slightly less than one percentage point per year.

The 2SLS estimates are significantly larger, pointing to a reduction of 2.2 percentage points per

year.

To allow for greater flexibility in the time trend, we use LWR-IV specification similar to the

one described by Eqs (31), (32) and, (33). The only difference is that we use the year instead

of bedrock as a covariate in the univariate kernel and employ a constant bandwidth of κ = 30

since we have no priors regarding when we should expect greater changes in the cost of height.

Figure A5 confirms that the height elasticity of cost has declined since the beginning of the 20th

century. Hence, the evidence supports the notion of a secular downward trend in the cost of

height that should act as supply-side driver of vertical growth.
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Table A3: Cost of height over time

(1) (2)
Ln cost per space Ln cost per space

Ln height 0.255∗∗∗ (0.08) 0.578∗∗ (0.26)
Year - 1975 0.086∗∗∗ (0.01) 0.146∗∗∗ (0.04)
Ln height × Year - 1975 -0.008∗∗∗ (0.00) -0.022∗∗ (0.01)

KPF - 3.13
City FE Yes Yes
Decade FE Yes Yes
IV - Yes
Observations 554 554
R2 .819 -

Notes: Unit of observation is building. All buildings with height ≤ 55 m excluded.
The sample considts of 591 constructions in US cities (see Panel A in Table A2).
Robust standard errors in parentheses are clustered on cities. In (1), instrumental
variables are log distance from center and the interaction a yearly time trend. The
city center is defined as the median coordinate of buildings exceeding 100 m height
and or the tallest building where building exceeds 100 m.The sample used is the one
summarized in Panel A of Table A2 (US cities). ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Figure A5: Construction cost as function of height and bedrock depths
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Notes: We show non-parametric estimates of the cost of height from an LWR-IV approach. In each LWR, we estimate the
height elasticity from a regression of the log of construction cost per floor area against building height, controlling for city
fixed effects and decade of construction effects. We use distance from the city center as an instrumental variable for height.
The city center is defined as the median coordinate of buildings exceeding 100 m height and or the tallest building where
building exceeds 100 m. We use locally weighted regressions with a univariate Gaussian kernel and a bandwidth of four to
estimate local means of the cost measure for varying bedrock depths. Confidence bands are at the 95% level. The sample
consists of 591 constructions in US cities (see Panel A in Table A2).

H.6 Further First Stage Evidence

Figure 5 shows that between 1975 and 2015 larger cities on more favorable bedrock experienced

more rapid height growth. The following figure demonstrates that, as predicted, this comes from

there being a more muted relationship in 1975 than in 2015, but both with the same shape.

Table 1 presents the main first stage coefficients. Remaining coefficients are shown in the

following table.
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Figure A6: Relationships Between Tall Buildings and ln 1975 Population by Bedrock Depth in
1975 and 2015

(a) Tall Building Indicator, 1975 (b) Tall Building Indicator, 2015

(c) ln Sum of Heights, 1975 (d) ln Sum of Heights, 2015

Notes: The top panels graph coefficients on ln 1975 city population for each 5 meter bin of bedrock depth in which
the dependent variable is an indicator for whether the city had any height growth. The bottom panels graph analogous
coefficients in which the dependent variable is the ln sum of heights constructed. 1975 is on the left and 2015 is on the
right.

I Empirical analysis

This section complements Section 3 in the main paper.

I.1 Robustness of Main IV estimates

Table A5 shows coefficients on control variables in Panel A of Table 2.

Table A6 shows robustness of our baseline results to various specification checks.

Table A7 shows that our baseline results are robust to controlling within (subways) and

between (highways) city accessibility and various geographic feature that could be correlated

with bedrock. Table A9 shows robustness with respect to various spatial fixed effects. Table A8

shows our IV estimates are not driven by a small number of countries with great variation in
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Table A4: First-Stage Estimates: Remaining Coefficients

Tall Building Indicator ln (Heights + 1)

1975 2015 ∆ 1975-2015 1975 2015 ∆ 1975-2015

Panel A: All Countries

ln Pop 1975 0.0773*** 0.1286*** 0.0512*** 0.5272*** 1.0025*** 0.4753***

[0.0076] [0.0093] [0.0093] [0.0498] [0.0769] [0.0653]

Bedrock Depth -0.0208*** -0.0538*** -0.0330*** -0.1473*** -0.4721*** -0.3248***

[0.0054] [0.0079] [0.0079] [0.0362] [0.0698] [0.0612]

(Bedrock Depth)2 0.0002*** 0.0005*** 0.0002** 0.0018*** 0.0039*** 0.0021**

[0.0001] [0.0001] [0.0001] [0.0004] [0.0011] [0.0009]

Panel B: Developing Economies

ln Pop 1975 0.0517*** 0.1140*** 0.0623*** 0.2998*** 0.8206*** 0.5208***

[0.0079] [0.0098] [0.0098] [0.0477] [0.0804] [0.0674]

Bedrock Depth -0.0048 -0.0420*** -0.0372*** -0.0353 -0.3417*** -0.3064***

[0.0055] [0.0078] [0.0084] [0.0323] [0.0687] [0.0638]

(Bedrock Depth)2 0.0001 0.0003*** 0.0003** 0.0005* 0.0025** 0.0020**

[0.0000] [0.0001] [0.0001] [0.0003] [0.0010] [0.0009]

Notes: This table reports additional coefficient estimates from regressions in Table 1. Regressions
in Panel A have 12,849 observations and those in Panel B have 11,257 observations.

Table A5: Main IV Results: Remaining Coefficients

∆ ln Pop ∆ ln Built Area ∆ ln Urban. Area ∆ ln Pop Dens. ∆ ln Lights

Period s-t: 1975-2015 1975-2015 1975-2015 1975-2015 1990-2015

ln Initial Pop s -0.12*** 0.24*** -0.68*** -0.37*** -0.15***

[0.03] [0.03] [0.06] [0.04] [0.04]

Bedrock Depth 0.00*** 0.00*** 0.02*** -0.00* 0.00**

[0.00] [0.00] [0.00] [0.00] [0.00]

(Bedrock Depth)2 -0.00 -0.00** -0.00*** 0.00 -0.00

[0.00] [0.00] [0.00] [0.00] [0.00]

Notes: This table shows coefficients on control variables for our main IV regressions in Table 2 Panel A.

Table A6: Checks on the Main IV Specification

1975-2015 1990-2015

Outcome ln Pop ln BltAr ln BltAr ∆ ln BltAr ∆ ln Pop ∆ ln BltAr ∆ ln Pop ∆ ln BltAr

2015 ln Heights 0.09*** -0.11***

[0.02] [0.02]

∆ ln Heights -0.12*** -0.12*** 0.11*** -0.24*** 0.09*** -0.23***

[0.03] [0.03] [0.03] [0.05] [0.03] [0.05]

First Stage F 41.97 35.5 23.92 23.92 16.83 16.83 15.14 15.14

1975 ln Pop Yes Yes Yes Yes No No Yes Yes

1990 ln Pop No No No No Yes Yes No No

1975 ln Built Area No Yes Yes Yes No No No No

Notes: Results are analogous to those in Table 2. The first 2 columns show results of regressions of 2015 levels on 2015 log
heights, controlling for 1975 levels. The following 2 columns are also for the 1975-2015 period. Remaining columns are for
the 1990-2015 period.
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bedrock depth.

Table A7: Robustness of Results in Table 2 with Various Controls

(1) (2) (3) (4) (5) (6) (7)

Panel A: Dependent Variable = ∆ ln Population; All Countries

∆ ln Height 0.12*** 0.12*** 0.09*** 0.13*** 0.13*** 0.12*** 0.13***

[0.03] [0.03] [0.03] [0.04] [0.03] [0.03] [0.03]

Panel B: Dependent Variable = ∆ ln Built Area; All Countries

∆ ln Height -0.17*** -0.18*** -0.19*** -0.08** -0.18*** -0.18*** -0.18***

[0.04] [0.03] [0.04] [0.04] [0.03] [0.03] [0.04]

Observations 12,849 12,849 12,647 9,698 12,807 12,807 12,849

F-statistic 28.42 32.22 25.08 15.25 29.69 32.52 23.66

Panel C: Dependent Variable = ∆ ln Population; Developing Countries

∆ ln Height 0.13*** 0.14*** 0.10*** 0.17*** 0.13*** 0.13*** 0.13***

[0.03] [0.03] [0.04] [0.06] [0.03] [0.03] [0.03]

Panel D: Dependent Variable = ∆ ln Built Area; Developing Countries

∆ ln Height -0.16*** -0.19*** -0.18*** -0.10* -0.18*** -0.19*** -0.16***

[0.04] [0.04] [0.05] [0.05] [0.04] [0.04] [0.04]

Observations 11,257 11,257 11,169 8,141 11,234 11,234 11,257

F-statistic 22.84 24.04 16.22 9.167 24.15 24.34 20.76

Country FE Yes Yes Yes Yes Yes Yes Yes

Infrastructure Controls No Yes No No No Yes No

Drop Subway Cities No No Yes No No No No

Drop Bedrock < 6 meters No No No Yes No No No

Geographic Controls No No No No Yes Yes No

∆ ln 100m+ Height No No No No No No Yes

Notes: Each column presents separate estimates from a variation of the baseline model in Table 2 for the full
sample of cities (panels A-B) and the sample of developing country cities (panels C-D). Infrastructure controls
are second-order polynomials of log number of subway stations in 1975 and log market access in 1975. Market
access for city i is the total sum of the 1975 population of other cities j in the same country weighted by the
inverse of Euclidean distance between cities i and j. Geographic controls are second-order polynomials of log
Euclidean distance from the coast, log Euclidean distance from a major lake, log mean altitude, the log of the
standard deviation in altitude, log agricultural suitability, and log mean annual temperature (1961-1990).

I.2 Construction of Locally-weighted regression estimates

In Section 3, we present height elasticity estimates for various outcomes for groups of cities such

as in developed or developing countries. To obtain city-specific estimates of a height elasticity, βa,

we estimate a locally weighted regressions (LWR) variant of our baseline instrumental variable

strategy. Concretely, we estimate, for each city ã ∈ N , the following second-stage specification:

∆lnY ac75−15 = βã∆ lnHac75−15 +
2∑

n=1

αã
n (Bac)

n + αã
3lnP ac75 + κãc + µã

ac
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In each LWR-IV regression indexed by ã ∈ N , a second-order polynomial of city-level mean

bedrock depth interacted with 1975 log city population serve as instrumental variables for

∆ lnHac75−15. Notice that expect for the subscript ã that denote city-specific estimates, all

variables are defined as in Section 3 in the main paper. In each LWR ã ∈ J we weigh observations

by the Gaussian kernel weight

W ã
a =

wã
a∑N

j=aw
ã
a

,where

wã
a =

1

κã
√
π
exp

[
−1

2

(
lnPa − lnP ã

κã

)2
]
,

Where κã governs the bandwidth and lnPa−lnP ã gives the log difference between the population

of any city a and the target city ã for which a local value of β is being estimated. Intuitively, a

city a will receive a higher weight in a LWR ã ∈ J , the more similar its population is to that of

city ã.

We employ a LWR-specific bandwidth because we wish to allow for a more flexible fit via a

smaller bandwidth in the more populated part of the population distribution, whereas we wish

to reduce standard errors in the right tail of the population distribution that is more sparsely

populated. To this end, we use a variant of Scott’s rule of thumb for bandwidth selection and

define

κã = M
3.49σ̂ã

lnP

(N ã)
1
3

,

where the standard deviation σ̂ã
lnP and the number of observations N b̃ are computed for rolling

subsamples that satisfy | lnPa − lnP ã| ≤ B = 5. We scale the rule-of-thumb bandwidth

by a factor of M = 20 since the non-parametric estimation of derivatives generally requires

larger bandwidths than the estimation of levels (Henderson and Parmeter, 2015, Section 5.9).

Importantly, these choices ensure that we can distinguish our point estimates from zero with

nearly 95% confidence throughout the population distribution.

We present our LWR estimates of the height elasticity for the outcomes population, built-

up area, and urban area in Figures A7, A8, and A9. We observe that the height elasticity

of population is u-shaped with respect to initial city size. This pattern is suggestive of a

sizable extensive-margin effect (introducing tall buildings) coupled with an intensive-margin

effect (vertical growth conditional on having tall buildings) that increases in city size. It is

noteworthy that the turning point is reached at a population of about exp(13.8) = 1M , which

has been found to about the threshold when cities typically adopt the skyscraper (buildings

taller than 150 m) technology (Ahlfeldt and Barr, 2022a).

The convex intensive-margin effect is plausible as a vertical expansion is likely to have a

greater impact on a city’s capacity to accommodate residential and commercial uses when a

city has exhausted its potential for horizontal expansion. Consistent with this hypothesis, we

find that a large city’s area (built-up and urban area) is relatively insensitive to a technology-

induced increase in height (due to favorable bedrock). The implication is that less vertical growth
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cannot easily be compensated by greater horizontal growth. In contrast, the land area is much

more responsive to technology-induced vertical growth in small cities. This is intuitive since

small cities can more easily grow horizontally if the cannot grow vertically (due to unfavorable

bedrock conditions).

Figure A7: LWR estimates of height elasticity of population

Note: We show non-parametric estimates of the height elasticity from an LWR-IV approach. In each LWR, we estimate
the height elasticity from a regression of the 1975-2015 long-difference in the log outcome against the long-difference in log
building height using a second-order polynomial of bedrock depth interacted with initial 1975 log population as instrumental
variables. Controls are a second-order polynomial of bedrock depth, initial log population, and country fixed effects. We
use a Gaussian kernel with a locally varying bandwidth that is inversely related to the density of observations. Confidence
bands are at the 95% level.

I.3 Aggregated effects by category

It is straightforward to obtain the absolute change in an outcome ∆Ya75−15 caused by change

in height ∆Ha75−15 based on the value of the outcome in the initial period Ya75 and a causally

estimated value (capturing the supply-side channel, exclusively) of a height elasticity βa for city

a:

∆Ya75−15 = Ya75 × (exp (βa ×∆Ha75−15)− 1) (34)

This city specific-effect effects can then be aggregated to arbitrary groups. We present results

for groups of developing-country cities in Table A11. For comparison, we also present results
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Figure A8: LWR estimates of height elasticity of built-up area

Note: We show non-parametric estimates of the height elasticity from an LWR-IV approach. In each LWR, we estimate
the height elasticity from a regression of the 1975-2015 long-difference in the log outcome against the long-difference in log
building height using a second-order polynomial of bedrock depth interacted with initial 1975 log population as instrumental
variables. Controls are a second-order polynomial of bedrock depth, initial log population, and country fixed effects. We
use a Gaussian kernel with a locally varying bandwidth that is inversely related to the density of observations. Confidence
bands are at the 95% level.

for cities in the USA and Canada. Many other developed countries, in particular in Europe,

impose strong height constraints. This implies that height and location of tall buildings

are determined by planners instead of profit-maximizing developers, rendering the economic

reasoning underlying our first-stage regressions inapplicable.

J Model

J.1 Equilibrium solver

For given values of {y, Ū}, parameters {αU , β, ωU , θU , τU , xU , āU , c̃U , S̄U , ra, ζ, ℓ, Ũ}, and the

endowment N̄ there is a unique mapping to all other endogenous object. Hence, the equilibrium

can be references by {y, Ū}. To solve for these equilibrium values, we implement an algorithmic

procedure that we describe in pseudo-code in Algorithm 1.
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Figure A9: LWR estimates of height elasticity of urban area

Note: We show non-parametric estimates of the height elasticity from an LWR-IV approach. In each LWR, we estimate
the height elasticity from a regression of the 1975-2015 long-difference in the log outcome against the long-difference in log
building height using a second-order polynomial of bedrock depth interacted with initial 1975 log population as instrumental
variables. Controls are a second-order polynomial of bedrock depth, initial log population, and country fixed effects. We
use a Gaussian kernel with a locally varying bandwidth that is inversely related to the density of observations. Confidence
bands are at the 95% level.

Algorithm 1: Equilibrium solver

Data: Given values for primitives {αU , β, ωU , θU , τU , xU , āU , c̃U , S̄U , ra, ζ, ℓ, N̄ , Ũ}
Guesses of equilibrium values of {Ū , y}

1 while Ū ̸= ̂̄U or y ̸= ŷ do

2 Compute N using Eq. (12)

3 Compute p̄U (x) using Eqs. (15) & (17) Compute S̃U (x) using Eq. (18)

4 Compute rU (x) using Eq. (19)

5 Allocate land use using Eq. (??)

6 Compute market-clearing wage ŷ using Eqs. (21) and (23)

7 Compute endogenous city-utility ̂̄U using Eq. (26)

8 Update guesses to weighted combination of old guesses and {U, ŷ}
Result: Equilibrium values of {Ū , y}
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J.2 Quantification

This section adds to Section 4.2 in the main paper.

J.2.1 Amenity decay (τU)

In the absence of binding height limits, we can use Eq. (18) to obtain:

lnSU (x1) = lnSU (x)− τU

(1− αU )(θU − ωU )
x1.

Since the land area of a city is L = ℓπ(x1)
2, we can solve for the amenity decay parameter:

τU = (1− αU )(θU − ωU )
lnSU (x1)− lnSU (x)√

L
ℓπ

We assume that the average height of a residential building at the city margin, lnSR(x1), is

about 1.5 floors (5 m). As a measure of residential height within the city core, lnSR(x), we

use the average height of the five tallest residential buildings in the city. Using the measure of

city area, L, observed in our data and the set values of parameters {αR, θR, ωR, ℓ}, we obtain a

distribution of city-specific decay parameters summarized in Figure A10. We find that the decay

parameter tends to be smaller in larger cities, maybe because these tend to be better connected

by high-speed transport infrastructure such as highways and subways. Since, in our baseline

parametrization, we target a city with a population with 2M, we set the decay parameter to

0.03 for both uses. Both rates of decay reflect the cost of moving workers in space (not goods),

so it is reasonable to assume that they are comparable.

Figure A10: Amenity decay τR
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J.2.2 Scale parameters (ℓ, aU , cU , ra, Ũ)

The scale parameters ℓ, aU , cU , ra, N̄ , Ũ do not affect the steepness of the height gradient, but

they govern the attractiveness of the city relative to the rural hinterland and, hence, total

population, area, and height.

The mean area in 2015 in our data is 22 km2 (s.d. 114). The built-up area is 51 km2 (s.d.

190). Since, on average, the total area is about twice the built-up area, we set ℓ = 0.5. We set

aC = aR = 2, cC = cR = 150, ra = 50, N̄ = 10M and use Eq. (12) to invert the rural utility

Ũ =
1− µ

µ
Ū ζ (35)

for a chosen urbanization rate using a numerical procedure described in Algorithm 2.

Under these values we obtain a height of about 35 floors within the urban core in the baseline

with µ = 0.2, which is close to the mean height of the five tallest buildings in a city with a 2M

population in our data.

Algorithm 2: Ũ inverter

Data: Given values of primitives {αU , β, ωU , θU , τU , xU , āU , c̃U , S̄U , ra, ζ, ℓ, N̄}
Guess of Ũ

User-chosen µ

1 while Ũ ̸= ̂̃U do

2 Compute Ū using Algorithm 1

3 Compute rural utility, ̂̃U , using Eq. (35)

4 Update guess of Ũ to weighted combination of old guess and ̂̃U
Result: Ũ that rationalizes given µ

J.2.3 Preference heterogeneity

We seek to find the value of ζ under which the model generates our key moments in the data:

Our estimates of the height elasticity of population, β̂N , and the height elasticity of area, β̂L.

In our empirical identification strategy, we exploit subsoil geography to ensure that we identify

these parameters from variation in the cost of height, holding housing demand factors constant.

Since we have full control over the data-generating process, it is straightforward to mimic this

source of variation in the model.

To this end, we solve the model multiple times for values of θ ∈ Θ, where θC = θ and

θR = θ + 0.05 to maintain the same difference between the commercial and residential height

elasticity as in the baseline specification in Table 6. Holding all other parameters constant, we

obtain differences in equilibrium outcomes that are solely driven by variations in the cost of

height. To operationalize our SMM approach, we nest this loop over θ ∈ Θ within a search over

a parameter space defined by ζ ∈ Z and T ∈ R. Notice that we invert Ũ using Eq. (35) each

time we adjust ζ, setting µ = µ̄ and all parameters to the values in Table 6 to keep the city
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population constant. For each combination of {θ, ζ, T }, we solve the model and compute the

endogenous outcomes city area

Lζ,T
θ =

∫ (x1)
θ,ζ,T

0
L(x)dx,

city population

N ζ,T
θ =

∫ (x1)
θ,ζ,T

(x0)
θ,ζ,T

(n(x))θ,ζdx,

and city tall building height

Hζ,T
θ =

∫ (x1)
θ,ζ,T

0
L(x)

(
(SC(x))θ,ζ − T

)
dx+

∫ (x1)
θ,ζ,T

(x0)
θ,ζ,T

L(x)
(
(SR(x))θ,ζ − T

)
dx. (36)

For each combination of {ζ, T }, we run the following regressions on the model-based outcomes

to recover our moments in the model {β̃N , β̃L}:

lnLζ,T
θ = cL,ζ,T + β̃L

ζ,T lnHζ,T
θ + ϵ̃L,ζ,Tθ

lnN ζ,T
θ = cN,ζ,T + β̃N

ζ,T lnHζ,T
θ + ϵ̃N,ζ,T

θ

We find our preferred combination of {ζ, T } by minimizing the value of the residual sum of

squares of the moments in model and data:

ζ, T = arg min
ζ∈Z,T ∈R

∑
o∈N,L

(
β̂o − β̃o

)2
(37)

We provide a compact summary of the procedure using pseudo code Algorithm 3.

Algorithm 3: Calibrating {ζ, T }
Data: Given values of primitives {αU , β, ωU , θU , τU , xU , āU , c̃U , S̄U , ra, ζ, ℓ, N̄}

Moments in data {β̂N , β̂L}
User-chosen µ

1 foreach ζ ∈ Z do

2 Use Algorithm 2 to invert Ũ so to match µ = 0.2(⇒)N = µN̄ = 2M) under baseline

values of {θC = 0.5, θR = 0.55}
3 foreach T ∈ R do

4 foreach θ ∈ Θ do

5 Use Algorithm 1 to solve for equilibrium outcomes of {Lζ,T
θ , N ζ,T

θ , Hζ,T
θ }

6 foreach o ∈ N,L do

7 Regress ln oζ,Tθ against lnHζ,T
θ to obtain model moment β̃o

8 Use moments in data {β̂N , β̂L} and model {β̃N , β̃T } in Eq. 37 to find {ζ, T }
Result: {ζ,L} values that match moments in model and data
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Guided by Figure A4, we define a grid of height costs Θ = {0.2, 0.3, ..., 1}. Further, we set

m̄u = 0.2. We search over Z = {0, 0, 1, ..., 5} and R = {0, 1, ..., 20}. For the moments in the

data, we use β̂N = 0.22 and β̂L = −0.38 from Table XXX estimated from a subset of cities

that are relatively unconstrained by height regulation. Under ζ = 1.8 and T = 4, we almost

exactly match the moments. Figure A11 plots the value of the objective function against the

two dimensions of the parameter space. There is a clearly defined minimum in the objective

function at our identified value of ζ. In contrast, the choice of T is less consequential. As long

as T ≥ 3, the model generates height elasticities that are close to those estimated from data.

It is plausible that we obtain the best fit under a value of T = 4 (corresponds to about 15 m)

that is smaller than the bottom-coding in the data (55 m). To see this, consider that the model

generates an average height of 14 floors, which corresponds to 55 m. Setting T = 15, we would

generate a tall building height measure in the model of H = 0. In reality, we would most likely

observe a positive value for H because the mean height of 55 m would be generated by a mix of

taller and shorter buildings.

Figure A11: Value of objective function by ζ, T
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Figure 8 provides some intuition into how matching moments in model and data pins down ζ.

At ζ = 0, workers are immobile. Therefore, the population does not respond to supply-induced

changes in supply. Consequently, a vertical expansion leads to a relatively large contraction of

the city area. Given a fixed population, the added supply of floor space results in lower rents.

This implies lower costs to firms, leading to an expansion of floor space input, production, labor
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demand, and, eventually, higher wages. At higher values of ζ, we observe a larger population

response to the supply-driven reduction in rent. The larger the population response, the smaller

the response in the other outcomes. Since the relationships between height elasticities and ζ are

monotonic, we obtain the well-behaved objective functions displayed in Figure A11.

J.3 Counterfactuals

This section compliments Section 4.3 in the main paper.

J.3.1 Illustrative examples

Figure 9 in the main paper illustrates gradients in selected model outcomes under the baseline

parameterization (first row) and two counterfactuals in which we increase the cost of height by

20% (second row) and add a binding height limit (third row). The first two columns in Table

A12 report relative changes in various model outcomes from the baseline parameterization to

these counterfactuals.

In keeping with intuition, both counterfactuals, which correspond to negative floor space

supply shocks, deliver a lower urban indirect utiltiy, and consequentially, a lower urban

population and expected utility, overall. As the city contracts vertically, it expands horizontally,

resulting in a larger total urban area. As visible in Figure 9, the CBD expands horizontally,

pushing the residential zone outwards. As a result, commuting costs, exp (τR × x), increase.

This is one of the main mechanisms through which the height constraints will affect residents

indirectly, even if a height limit primarily affects commercial developments. The other channel

is the wage. For one thing, limits to vertical development displace firms to less productive

locations. For another, the cost of commercial floor space increases. Both act as negative shocks

to labor demand, lowering the equilibrium wage. Since greater commuting costs and lower

wages imply lower housing demand, residential rents do not necessarily increase by much, even

if residential floor space supply falls. Indeed, residential rents even decrease by about 15% in the

counterfactual where we impose a height ban. Given the expenditure share on housing of one-

third, the ceteris paribus effect on indirect utility amounts to about 5%. This effect compensates

for commuting cost and wage effects, each of which amounts to about 8%, resulting in a negative

net effect on indirect urban utility (Ū) of about 11%. Since, in this example, we have an urban

population share, µ, of slightly below one-fifth, the negative effect on expected utility in the

total population is to about 2%.

J.3.2 Heterogeneity in welfare effects

Algorithm 4 uses pseudo code to describe the numerical procedure we use to compute welfare

effects for cities of a given cost of height, population, and height gap, which we use in Sections

4.3.2 and 4.4.
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Algorithm 4: Welfare effects

Data: Given values of primitives {αU , β, ωU , τU , xU , āU , c̃U , S̄U , ra, ζ, ℓ, N̄ , T }
City population, Popa, observed in data

Height gap, HGa, observed in data

Bedrock depth, MBDa, observed in data

1 Use MBAa and non-linear mapping in Figure A4 to obtain cost of height, θCa

2 Set θRA = θCa + 0.05

3 Set height limit in model to S̄U = T
4 while Height gap in model, H̃G < HGa do

5 Use Algorithm 2 to invert rural utility, Ũ , that satisfies µN̄ = Popa

6 Use Eq. (36) to compute constrained tall building height H

7 Use Algorithm 1 to solve for counterfactual under no height limit, S̄ = ∞
8 Use Eq. (36) to compute unconstrained tall building height H∗

9 Compute H̃G = H
H∗ − 1

10 Marginally increase height limit in model, S̄

11 Use Algorithm 1 to solve for Wactual, where W ∈ {V,R}, under calibrated height limit S̄

12 Use Algorithm 1 to solve for welfare Wban under counterfactual height limit S̄ = T
13 Use Algorithm 1 to solve for welfare Wmarket under counterfactual height limit S̄ = ∞
14 Compute welfare effect of existing tall buildings Ŵactual = Wactual

Wban − 1

15 Compute welfare potential of tall buildings Ŵpotential = Vmarket

Wban − 1

16 Compute welfare effect of existing height regulation Ŵregulation = Vactual

Wmarket − 1

Result: Effects of existing tall buildings, all potential tall buildings, and height limits

on expected utility {V̂actual
a , V̂potential

a , V̂regulation
a } and land rent

{R̂actual
a , R̂potential

a , R̂regulation
a } for city a

J.3.3 The contribution of tall buildings to welfare

Table A13 replicates Table 7 with the only difference being that we lower the cost of height, θ,

by 20%. As a result, all welfare effects by about 50%.
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Table A9: Evidence of Displacement Effects: Robustness to Different Fixed Effects and Samples

(1)-(4) All Economies (5)-(9) Developing Economies

Panel A: ∆ ln Pop

∆ ln Height 0.12*** 0.10*** 0.15*** 0.14*** 0.13*** 0.10*** 0.16*** 0.14*** 0.13***

[0.03] [0.03] [0.02] [0.02] [0.03] [0.03] [0.03] [0.02] [0.04]

Panel B: ∆ ln Built Area

∆ ln Height -0.17*** -0.22*** -0.23*** -0.21*** -0.16*** -0.21*** -0.25*** -0.22*** -0.08

[0.04] [0.04] [0.04] [0.03] [0.04] [0.05] [0.04] [0.03] [0.05]

Level of FE Baseline Subregion Admin 1 Admin 2 Baseline Subregion Admin 1 Admin 2 Baseline

Sample Full Full Full Full Full Full Full Full <20% Urb

Observations 12,849 12,873 11,967 7,848 11,257 11,269 10,606 7,439 4,594

IV F-stat 28.42 26.74 35.51 35.52 22.84 20.02 28.96 35.23 9.77

Notes: Columns (1)-(8) present variants of the baseline empirical specification in 2 with the following alternative fixed effects.
Subregion: 2018 United Nations Geoscheme, grouping countries into 20 world regions (e.g., South America, Central America,
and North America); Admin 1: First-level administrative divisions that subdivide countries into large sub-national units (e.g.,
provinces for China); Admin 2: Second-level administrative divisions that subdivide countries into smaller sub-national units
(e.g., prefectures for China). The final column (9) only uses cities in the sample of developing economies that were less than
20% urbanized in 1975.

Table A10: Including Controls for Market Potential

∆ ln Pop ∆ ln Built Area

Panel A: Full Sample

∆ ln(Hgt+1) 0.13*** 0.13*** 0.13*** 0.13*** 0.13*** -0.19*** -0.19*** -0.18*** -0.20*** -0.18***

[0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.03] [0.04] [0.04]

∆ lnMPH 0.01** 0.01* 0.01 0.00 0.04* -0.04*** -0.04*** -0.04*** 0.19*** 0.09***

[0.01] [0.01] [0.01] [0.02] [0.02] [0.01] [0.01] [0.01] [0.04] [0.03]

First Stage F 31.66 31.73 31.47 20.60 38.37 31.66 31.73 31.47 20.60 38.37

Panel B: Developing Economies

∆ ln(Hgt+1) 0.15*** 0.14*** -0.20*** -0.17***

[0.03] [0.03] [0.05] [0.04]

∆ lnMPH -0.02 0.02 0.18*** 0.10***

[0.02] [0.02] [0.04] [0.03]

First Stage F 22.73 35.38 22.73 35.38

Decay Param 0.33 0.5 1 2 3 0.33 0.5 1 2 3

IV ∆ lnMPH No No No Yes Yes No No No Yes Yes

Notes: The sample size is 12,849 Panel A and 11,257 in Panel B. Regressions have the same specification as in Table 2 with the
addition of the indicated market potential term and unreported controls for spatially discounted population, mean bedrock depth
and mean bedrock depth squared, as is explained in the text. Additional inclusion of individual controls for 1975 population and
heights growth in the largest cities in the country or the closest cities in space yield population and built area elasticities that are
within 0.01 of those reported in this table.

Table A11: Aggregate effects by country groups

Pop (mill) % of 2015 Area (sq km) % of 2015

All countries 435 12% -449 –15%
Developing countries 370 13% -236 –15%
Developing Asia excl. MENA 200 20% -119 –21%
Other developing countries 484 26% -161 –17%

Notes: For developing countries, we aggregate city-specific height effects computed according
to equation (34) using city-specific height elasticity estimates from Figures A7 and A8.

24



Table A12: Counterfactuals: Illustrative example

20% higher cost of height Binding height limit
Binding height limit under
20% higher cost of height

Total population –8.91% –15.06% –10.07%
Total area 16.75% 13.97% 6.35%
Average commuting cost 2.92% 7.97% 4.83%
Average residential rent 1.23% –14.86% –10.59%
Average commercial rent 11.23% 6.33% 0.09%
Average productivity –0.90% –5.39% –4.23%
Wage –3.08% –7.63% –5.17%
Total land value –1.02% 14.65% 9.85%
Urban utility (Ū) –6.61% –10.90% –6.86%
Expected utility (V) –1.29% –2.09% –1.21%

Notes: The first two scenarios directly correspond to the counterfactuals in the second and third rows of Figure 9. Averages
are weighted by number of workers.

Table A13: Wefare effects of tall buildings by world regions: 20% lower cost of height

City characteristics Expected utility (V) Agg. land rent (R)

World region
Urban
pop.
(BN)

Share
large
cities

Cost of
height

θ

Est.
height
gap

No
tall

building

Actual
height
limit

No
tall

building

Actual
height
limit

East Asia & Pacific 1.03 55.76% 0.81 43.36% -3.76% -0.57% 3.69% 1.31%
Europe & Central Asia 0.36 41.06% 0.61 37.79% -3.54% -0.62% 3.61% 1.99%
Latin America & Caribbean 0.35 52.79% 0.58 40.50% -4.35% -0.98% 4.50% 2.52%
Middle East & North Africa 0.25 48.82% 0.65 66.46% -5.57% -2.48% 5.46% 5.21%
North America 0.17 67.35% 0.52 26.97% -8.68% -1.43% 8.26% 4.97%
South Asia 0.90 37.17% 0.53 44.37% -5.75% -2.82% 5.96% 4.73%
Sub-Saharan Africa 0.43 33.69% 0.54 51.40% -3.93% -2.00% 3.89% 3.29%

Mean 3.49 46.49% 0.63 44.57% -4.72% -1.57% 4.74% 3.12%

Notes: Model-based estimates are matched to real-world cities based on population, cost of height and height gap, an
empirical estimate of how much of the potential height has not been realized taken from Barr & Jedwab, 2023. Compared
to the actual cost of height used in Table 7, we have reduced the cost of height, θ, by 20%. Welfare estimates are population-
weighted averages by region. Height ban means no tall building exceeding four floors. Large city population share is the
share of urban population in cities with a population of at least 1M.
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