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and forecast accuracy for output growth density projections, both across forecasters

and over time, and only a mild relationship for inflation projections. As the horizons

shortens, the relationship becomes one-to-one, as the theory would predict.

JEL CLASSIFICATION: C1, C11, C13, C15, C32, C58, G12, G13, G15

KEY WORDS: Bayesian inference, Bayesian Nonparametric, Survey of Professional Fore-

casters, Noisy Rational Expectations.

∗Correspondence: Marco Del Negro (marco.delnegro@ny.frb.org): Research Department, Federal Re-
serve Bank of New York, 33 Liberty Street, New York NY 10045. Other Correspondence: Roberto Casarin
(r.casarin@unive.it) and Federico Bassetti (federico.bassetti@polimi.it). This project was begun
with Francesco Ravazzolo, whom we thank for many useful conversations. We thank Alissa Johnson for ter-
rific research assistance. We are also grateful for insightful feedback to the participants of several seminars,
workshops, and conferences, and Michael Clements, Mikkel Plagborg-Møller, and Christopher Sims, for their
useful feedback. The views expressed in this paper do not necessarily reflect those of the Federal Reserve
Bank of New York or the Federal Reserve System.

1



2

I Introduction

The pioneering work of Manski (2004) highlighted the benefits of probabilistic surveys com-

pared to surveys that only ask respondents for their point projections: probabilistic surveys

simply provide a wealth of information that is not included in point projections.1 As Potter

(2016) writes, “in a world characterized by pervasive uncertainty, density forecasts provide a

comprehensive representation of respondents’ views about possible future outcomes for the

variables of interest.” Given the respondents’ density forecasts, the econometrician can com-

pute numerous objects of interest, such as the mean, the median, the variance, the skewness,

the interquantile range, et cetera.

Except that survey respondents do not provide us with density forecasts. For most

surveys concerning continuous variables, they only provide the percent chance that the vari-

able of interest (e.g., inflation over the next year) would fall within different pre-specified

contiguous ranges or bins. That is, the information we have consists in the integral of the

forecast density over these bins, or equivalently, in a few points of the cumulative density

function (CDF). In order to extract most quantities of interest, standard practice consists

in postulating a parametric form for the forecast distribution and computing its parameters

by minimizing the distance between the observed CDF points and those implied by the as-

sumed distribution, which is often either a step-wise uniform (Zarnowitz and Lambros, 1987),

a Gaussian (Giordani and Soderlind, 2003), or a generalized beta distribution (Engelberg et

al., 2009).2

In this paper we propose a Bayesian nonparametric approach for the estimation of the

survey respondents’ forecast densities.3 The approach starts by making parametric assump-

1Indeed, a number of recent surveys, including the Federal Reserve Bank of New York’s Survey of Con-

sumer Expectations and Survey of Primary Dealers and Market Participants, the Atlanta Fed’s Survey of

Business Uncertainty and Business Inflation Expectations Survey, the ECB’s Survey of Professional Forecast-

ers, and the the Bank of England’s Survey of External Forecasters, rely heavily on probabilistic questions.
2For a few quantities of interest, such as the median, one can compute nonparametric bounds as in

Engelberg et al. (2009). We are well aware that this perspective on how forecasters respond to probabilistic

surveys—namely, that they assign probabilities to bins using an underlying predictive distribution, possibly

adding some noise because of rounding or other reasons—may be challenged in favor of more a behavioral

alternative. However, this is explicitly or implicitly the assumption made by the existing literature when

extracting an underlying distribution, whether a normal or a beta, and constructing measures of uncertainty.

Moreover, it is the assumption that underlies the (noisy) rational expectations hypothesis, which we test in

our application.
3In economics, the Bayesian nonparametric approach so far has applied to the analysis of treatment effects
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tions on the mapping between the predictive distribution of forecasters and the bin prob-

abilities they report, where this mapping explicitly allows for the introduction of noise in

the reporting (due to, e.g., rounding toward zero). We then relax this parametric model by

embedding it into the more general Bayesian nonparametric framework, thereby amending

the potential misspecification associated with the parametric assumptions. This is because,

loosely speaking, Bayesian nonparametrics replaces any parametric model with a potentially

infinite mixture of such models, attaining more flexibility while at the same time using the

information from the cross-section of forecasters to estimate the parameters of the mix-

ture components. Intuitively, each mixture component corresponds to a forecaster type

(e.g., low/high variance; optimists/pessimists; low/high noise; et cetera, and combinations

thereof). As long as the number of types grows more slowly than the number of forecasters,

there is enough information to estimate the parameters corresponding to each type.

Our approach differs from existing methods in a few important dimensions. First, it

allows for full-fledged inference regarding the mapping between data and objects of inter-

est, in the sense that it generates a posterior probability for these objects. While current

approaches provide point estimates for, say, measures of the scale of the predictive densi-

ties like the variance, they do not supply any assessment of the uncertainty surrounding

these estimates, which is often large given the limited information provided by the survey

responses. Second, inference conducted using a specific parametric distribution can be nat-

urally sensitive to the choice of the distribution, or the choice of the mapping between the

distribution and the reported bin probabilities. The nonparametric nature of our approach

provides some robustness to misspecification regarding these parametric assumptions. Last,

our approach conducts inference jointly across survey respondents, that is, using the entire

cross-section instead of being applied to each respondent separately. As hinted above, this

joint inference allows for partial information pooling across forecasters thereby improving

the precision of the inference, making it possible to obtain some consistency results when

the number of forecasters grows to infinity.

We use this approach to address the question of whether US Survey of Professional Fore-

casters (SPF) density forecasts are consistent with the noisy rational expectations hypothesis

(see, for instance, Coibion and Gorodnichenko, 2012, 2015). According to this hypothesis,

(Chib and Hamilton, 2002), autoregressive panel data (Hirano, 2002; Gu and Koenker, 2017; Liu, 2021), time

series (Bassetti et al., 2014), stochastic production frontiers models (Griffin and Steel, 2004), unemployment

duration (Burda et al., 2015), and finance (Griffin, 2011, and Jensen and Maheu, 2010). Griffin et al. (2011)

provide an intuitive description of the approach and a survey of this literature.
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forecasters receive both public and private signals about the state of the economy. The pre-

cision of forecasters’ signals, both public and private, ought to be reflected in equal measure

in their density forecasts and, under rational expectations, in their ex-post forecast accuracy,

both in the cross-section and over time. For example, if the economy becomes more uncertain

and the precision deteriorates, this should be reflected in both higher subjective uncertainty

and worse ex-post forecast errors. In fact, we find that for horizons close to two years there

is no relationship whatsoever between subjective uncertainty and ex-post forecast accuracy

for output growth density projections, and only a very mild relationship for inflation pro-

jections. As the horizons shortens, the relationship becomes one-to-one, in accordance with

the theory. These findings suggest that forecasters do not correctly anticipate periods of

macroeconomic uncertainty, except for very short horizons. Notably, this finding is robust

to the exclusion of the Covid period.

The outline of the paper is as follows. Section II presents the inference problem, briefly

describes current approaches, and formally discusses our Bayesian nonparametric approach.

Section III first provides a few examples of how our approach differs from current practice

and then discusses the relationship between subjective uncertainty and forecast accuracy.

Section IV concludes pointing out some of the limitations of the analysis and discussing

avenues for further research.

II Inference for Probabilistic Surveys

In this section we start by providing a short introduction to probabilistic survey data focusing

on those features that are relevant for this analysis, and in the process describe the SPF data

used in our application. Then we briefly discuss the approaches used so far for translating

the information provided by the respondents into subjective predictive distributions and

objects of interest, such as measures of uncertainty. The rest of the section is devoted to the

description of our approach.

II.A The inference problem and current approaches

Probabilistic forecasts such as those elicited by the Philadelphia Fed as part of the SPF take

the form of probabilities assigned to bins: the percent chance that the variable of interest,

e.g., inflation, falls within different contiguous ranges, where these ranges are pre-specified
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Figure 1: Probability forecasts for selected examples

Forecasts for output growth in 2020 made in 2019Q2

(532) (584)

Forecasts for inflation in 2009 made in 2008Q4

(516) (560)

Note: Each panel displays the forecast probabilities zij , j = 1, . . . , J (step-wise solid lines) for a given forecaster i (forecaster
number shown in parentheses) and the bin bounds (black ticks, horizontal axis).

by the survey designer.4 Formally, for each forecaster i = 1, ..., n the data consist of a vector

of probabilities zi = (zi1, . . . , ziJ), with zij ≥ 0 and
J∑
j=1

zij = 1, measuring the predictive

likelihood that the continuous variable y falls within the respective bin. Reflecting the fact

that the bins are mutually exclusive and contiguous, and generally cover the entire real line,

we denote the bins by (yj−1, yj], j = 1, . . . , J , with y0 < y1 < . . . < yJ , where y0 and yJ

are equal to −∞ (left open bin) and +∞ (right open bin), respectively. Figure A-3 in the

Appendix displays the evolution of the bin ranges from 1982, the beginning of our sample,

4Some recent surveys, such as the Atlanta Fed’s Survey of Business Uncertainty, only specify the number

of bins and let the respondents determine their boundaries.



6

until the end in 2021, for both output growth and inflation, and shows that bins were changed

in 1992, 2009, and 2020 for output growth surveys, and in 1985, 1992, and 2014 for inflation

surveys. The SPF is conducted at a quarterly frequency (answers are collected in the middle

of each quarter, right after GDP figures for the previous quarter have been released) and

asks about probabilistic predictions for current and the following year year-over-year growth

rates in real output (GDP) and the price level, as measured by the GDP deflator. Stark

(2013) describes in detail the features of the SPF survey, and the Philadelphia Fed’s site

provides a manual for interpreting the data.5

Figure 1 provides a few examples of survey responses that illustrate a number of common

features of the SPF data. The top two panels show the probabilistic forecasts for output

growth in 2020 made in 2019Q2 by respondents 532 and 584, while the bottom two panels

show the forecasts for inflation in 2009 made in 2008Q4 by respondents 516 and 560 (respon-

dents are anonymous). The probabilities zi’s are displayed as histograms, while the black

ticks on the horizontal axis mark the boundaries of the bins.

A first feature that emerges from Figure 1 is that probabilistic forecasts are very het-

erogeneous. For each row the respondents are forecasting the same object, and yet their

probabilistic predictions are very different. Second, forecasters often assign zero probabil-

ity to some if not most bins. Forecaster 532 for instance places zero probability on output

growth being between -1 and 1 percent, but positive probability on output being between

-2 and -1 percent, and between 1 and 3 percent. The econometrician could interpret this

information literally, or as an indication that this respondent has a bimodal forecast distri-

bution with some probability on a recession, a larger probability on an expansion, and very

small likelihood of in-between outcomes. Other forecasters, such as respondent 584, place

positive mass on almost all bins, however. A third feature of the data is that almost all

probabilities in Figure 1 are round numbers, with responses for forecaster 584 being again

the only exception. Fourth, forecasters do place mass on open bins and sometimes, as is the

case for respondent who in 2008 was fearing deflation in 2009, most of the mass. Figures A-6

and A-7 in the Appendix show for each output growth and inflation survey the percentage of

respondents placing positive probability on either one open bin or both. These percentages

5Figure A-4 in the Appendix displays the number of respondents n for output growth surveys conducted

in Q1, Q2, Q3, and Q4 of each year (the numbers for inflation are essentially the same). n is about 35 in

the early 1980s, and then drops steadily over time until 1992 when the Philadelphia Fed begins to manage

the survey; n hovers around 35 until the mid-2000s and then starts to increase reaching a peak of about 50

during the Great Recession; it declines steadily thereafter and is about 30 in 2021. Figure A-5 shows survey

participation by respondent, and provides a visual description of the panel’s composition.
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are as high as 70 for output and 90 percent for inflation before 1992, when the bins were

changed, but are on average about 20 percent, with peaks of 40 percent or higher, even

after 1992. Finally, many of these predictive densities appear asymmetric. These examples

display a left skew for output and, at least for forecaster 560, a right skew for inflation.

The econometrician’s problem is to use the information given by the elements of the

survey probability vector zi of the i-th forecaster to address a number of questions of interest:

What is the mean prediction for forecaster i? How uncertain are they? Is there skewness

in their predictive densities? The approach predominantly used so far in the literature

concerning macroeconomic surveys has been to implicitly or explicitly assume that each

forecaster i assigns the bin probabilities zi using a given predictive probability distribution

Fi(y). The task of the econometrician is then to estimate Fi(y) from the data zi, and then use

it to answer the questions of interest. Most existing literature has accomplished this task

by fitting a given parametric distribution to the cumulative distribution function (CDF)

implied by the bin probabilities, respondent by respondent, that is fitting Zij = zi1 + · · ·+zij

j = 1, . . . , J , i = 1, . . . , n using a parametric family of distributions {F (y|θ) : θ ∈ Θ}. The

type of the parametric distribution varies across studies, from a mixture of uniforms/piece-

wise linear CDF (that is, assuming that the probability is uniformly distributed within

each bin; Zarnowitz and Lambros, 1987), to a Gaussian (Giordani and Soderlind, 2003),

a generalized beta (Engelberg et al., 2009),6 and a skew-t distribution (e.g., Ganics et al.,

2020), with the generalized beta assumption arguably being the most popular approach.

The parameters of each distribution are usually estimated using nonlinear least squares,

respondent by respondent; that is, Fi(y) = F (y|θ̂i), where

θ̂i = argmin
θi

J∑
j=1

∣∣∣Zij − F (yj|θi)
∣∣∣2. (1)

These approaches arguably have some limitations that are well understood in the litera-

ture (see Clements et al., forthcoming). First, the assumed parametric distribution may be

misspecified—it may not fit well the individual responses. Moreover, since the width of the

bins can be large (as is obviously the case when the respondent places probability on open

bins), even if the distributions fit the Zij’s, the inference results on moments and quantiles

can be sensitive to the distributional assumption. Second, and related, existing approaches

ignore inference uncertainty, even that concerning θi for a given parametric assumption,

6Engelberg et al. (2009) use a triangular distribution, whenever the number of (adjacent) bins with

positive probability is two or fewer.
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let alone the uncertainty about the shape of Fi(·). This omission implies that confidence

bands and hypothesis testing procedures cannot be derived.7 Third, bounded distributions

such as the beta or the mixture of uniforms take literally the zij that are zero, in that they

place no probability mass on bins where the respondents place no mass. More broadly, the

approach outlined in expression (1) does not directly address the issue of rounding: it solves

the minimization problem taking all the Zij’s literally even though the respondent may be

reporting approximate probabilities (Dominitz and Manski, 1996; D’Amico and Orphanides,

2008; Boero et al., 2008, 2014; Engelberg et al., 2009; Manski and Molinari, 2010; Manski,

2011; Giustinelli et al., 2020; Glas and Hartmann, 2022, among others, discuss the issue of

rounding; Binder, 2017 uses rounding to measure uncertainty).8 There have been attempts

to address some of these issues, e.g., the potential misspecification, by choosing more flexible

families of distributions such as the skew-Student-t distribution (e.g., Ganics et al., 2020).

The possibility of misspecification remains, however. Moreover, if the econometrician does

not account for inference uncertainty this flexibility comes at the price of overparamteriza-

tion.

In the following two sections, we propose a Bayesian model that attempts to overcome

some of these limitations. We first introduce a parametric model for the data. This model

follows the literature in assuming that each forecaster uses a specific predictive distribution

F (·) to assign probabilities ν to the bins, but differs from the literature in that it states that

the data z are noisy versions of the ν’s, where again the noise follows a parametric distribu-

tion. We then relax this parametric model by embedding it into the more general Bayesian

nonparametric approach, thereby amending the potential misspecification associated with

the parametric assumptions.

7Researchers have of course understood the presence of an inference issue especially when the information

provided by the respondent is very limited. The proposed solutions generally amount to either choosing

less heavily parameterized distributions or discarding the respondent: Clements (2010) for instance simply

discards respondents with fewer than three bins, while Engelberg et al. (2009) use a triangle distribution in

these cases. Liu and Sheng (2019) propose a maximum likelihood estimation approach in order to account

for parameter uncertainty for given parametric assumptions.
8Manski and Molinari (2010) and Giustinelli et al. (2020) address the issue of rounding by considering

interval data and using a person’s response pattern across different questions to infer her or his rounding

practice. The inferential approach pursued by these researchers is very different from the one followed by

much of the literature and addresses different questions.
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II.B A parametric model

We assume that the probability vector zi reported by forecaster i is a noise-ridden measure-

ments of an unobserved vector of subjective probabilities over the J bins νi = (νi1, . . . , νiJ),

with νij ≥ 0 and νi1 + . . .+ νiJ = 1. We assume that the bin probabilities νij are computed

using forecaster i’s subjective probability distribution Fi(·):

νij = νij(θi) = F (yj|θi)− F (yj−1|θi), j = 1, . . . , J, (2)

where θi ∈ Θ is the vector of all parameters which includes those describing the CDF

Fi(·) = F (·|θi). For concreteness, in our application the subjective distribution F (·|θ) is a

mixture of two Gaussian distributions, that is

F (y|θ) = (1− ω)Φ(y|µ, σ2
1) + ωΦ(y|µ+ µδ, σ

2
2), (3)

but the approach accommodates any other choice for F (·|θ).

The probability distribution h(·) captures the noise in the mapping between νi and zi

due to approximations or mistakes in reporting:

zi = (zi1, . . . , ziJ)
ind∼ h(zi|νi(θi),θi). (4)

In choosing h(·), one needs to account for the fact that the elements of zi are positive and

sum up to one (zi belongs to the simplex). A convenient choice for a distribution on the

simplex is the Dirichlet distribution. A drawback of this distribution is that it assigns zero

probability to zi’s that have some elements equal to zero, when in fact for the vast majority

of forecasters some zij’s are zero. To specify h(·), we then follow Zadora et al. (2010) and use

a distribution which allows for values of the random vector on the boundary of the simplex.

In order to describe this distribution it is useful to introduce the equivalent representation

of zi given by the couple (zξi, ξi), where ξi = (ξi1, . . . , ξiJ) with ξij = 1 if and only if zij = 0

and ξij = 0 otherwise. zξi is the set of strictly positive zi—that is, zξi = [zij : j ∈ J ∗i ]

for J ∗i = {j = 1, . . . , J : ξij = 0}—and takes values in the open |J ∗i |-dimensional simplex

∆|J
∗
i |, where |J ∗i | is the number of bins with positive mass. Using these definitions we can

write the h(·) distribution as

h(zi|θi) =
1

c(θi)

J∏
j=1

%j(θi)
ξij(1− %j(θi))1−ξijh(zξi|θi), (5)

where %(θi) = (%1(θi), . . . , %J(θi)) are the probabilities that a forecaster will report zero

probability on bin 1 through J , and c(θi) = 1 − (%1(θi) · . . . · %J(θi)) is a normalizing



10

constant. h(zξi|θi) is the standard Dirichlet distribution defined on the elements of zi that

are non zero:

h(zξi|θi) =
Γ
(∑

j∈J ∗i
φ(θi)νj(θi))

)
∏

j∈J ∗i
Γ(φ(θi)νj(θi))

∏
j∈J ∗i

z
φ(θi)νj(θi)−1
j , (6)

where φ(θi)κi is the rescaled precision with κi =
∑
j∈J ∗i

νj(θi), and νj(θi)/κi, j ∈ J ∗i , are the

renormalized ν(θi)’s, which take into account the fact that if a forecaster decides to report

zero probability for one or more bins, they need to adjust the probabilities associated with

the other bins so that they still sum up to one.9

Omitting for ease of notation the dependence on the forecaster index i, the probability of

reporting zero mass in the j-th bin is modeled as %j(θ) = %(νj(θ), ε(θ)) where the function

%(ν, ε) is decreasing in ν such that % → 1 for ν → 0 and % → 0 for ν → 1. ε(θ) measures

the sensitivity of %j(θ) to ν (that is, %→ 1 for ε→ 0 and %→ 0 for ε→ 0). In practice, the

probabilities % are parameterized as:

%j(θ) =

∫ ε(θ)

0

b(x|νj(θ), r)dx (7)

j = 1, . . . , J , where b(x|m, r) is the PDF of a beta distribution Be(m, r) with mean m and

precision r parameters.10 We assume r is fixed at 100 and ε(θ) = ε. The parameter vector

of h(z|θ) in the new parametrization is θ = (µ, µδ, σ1, σ2, ω, φ, ε), where we set φ(θ) = φ.

Some of the parametric assumptions outlined above are less palatable than others. For

instance, the assumption that the noise around the non-zero zij’s takes the form of a Dirichlet

distribution is at odds with the observation on the prevalence of rounding. And even when

the parametric assumption may be more palatable, it can still be wrong. Embedding these

parametric assumptions into a mode general nonparametric model arguably protects us, at

least to some extent, from misspecification. We describe this approach in the next section.

9Note that the conditional Dirichlet satisfies some relevant properties of the unconditional Dirichlet, the

marginal conditional means E(zij |ξi) =
νj(θi)∑

j∈J ∗
i
νj(θi)

, j ∈ J ∗i sum up to one, and their marginal conditional

variances V(zij |ξi) =
νj(θi)(κi − νj)(θi)

κ2i (φ
∑

j∈J ∗
i
νj(θi) + 1)

, j ∈ J ∗i go to zero with φ(θi)→∞.

10We chose the beta distribution because it is the marginal of a Dirichlet, but we could have chosen

any other distribution satisfying the above requirements. Our parametrization of the beta distribution is

b(x|m, r) =
1

B(mr, (1−m)r)
xmr−1(1− x)(1−m)r−1 with x ∈ (0, 1), m ∈ (0, 1) and precision r > 0.
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II.C A Bayesian nonparametric model

The Bayesian nonparametric hierarchical model works as follows. We assume that the pa-

rameter vector θi is sampled from a mixture of forecaster “types” (for concreteness, let us

think of low versus high uncertainty; low versus high mean; left versus right-skewed; low

versus high reporting noise; a combination of all the above, et cetera). For now, imagine

that the number of types K is finite. At the first stage of the hierarchy θi is drawn from

θi
iid∼


θ∗1 with probabilityw1

...

θ∗K with probabilitywK

(8)

where the wegiths wk are positive and sum to one. At the second stage of the hierarchy,

the unknown parameters θ∗k charatcterizing the types, which are referred to as atoms, are

sampled from a common distribution θ∗k
iid∼ G0, called base measure, which can be viewed

as the probability distribution generating the types. The type probabilities wk are drawn

from the prior distribution

(w1, . . . , wK) ∼ Dir
(ψ0

K
, . . . ,

ψ0

K

)
, (9)

where Dir(·) is a Dirichlet distribution whose K parameters are all identical and equal to
ψ0

K
.

Now let the number of types K go to infinity. When this happens, expression (8) is

replaced by the discrete random measure

G(θ) =
∞∑
k=1

wkδ(θ − θ∗k) (10)

where δ(x) denotes a point mass distribution located at 0, the atoms θ∗k are drawn from

G0 as before, and the random weights wk are generated by the stick-breaking representation

SB(ψ0) given by

wk = vk

k−1∏
l=1

(1− vl) (11)

where the stick-breaking components vl are i.i.d. random variables from a beta distribution

Be(1, ψ0) (e.g., see Pitman, 2006). The random measure G is a Dirichlet process DP(ψ0, G0)

(Ferguson, 1973) and our hierarchical model is a Dirichlet process prior θi
iid∼ G, G ∼

DP(ψ0, G0). The precision parameter ψ0 determines how uneven the weights are in the

stick-breaking representation: when ψ0 → 0 all forecasters are assumed to be of the same
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type (w1 → 1) while when ψ0 → +∞ the inference is done forecaster by forecaster (using

the same prior). Outside of this latter limiting case, the Dirichlet process prior generates a

priori dependence among the forecaster-specific parameters θi’s via the formation of clusters

of forecasters of the same type.11

Sethuraman (1994)’s constructive representation (10) implies that our model has the

infinite mixture representation

zi
iid∼ hG(z) =

∫
h(z|θ)G(dθ) =

∞∑
k=1

wkh(z|θ∗k), (12)

where the weights wk come from the same prior distribution (11) for all forecasters. Each

forecaster is modeled a priori as a potentially infinite mixture of types each encoded by

the parametric distribution h(z|θ∗k). The Bayesian nonparametric model is therefore quite

flexible. As such, it can overcome the inherent misspecification implied by the use of specific

parametric assumptions, as shown below in section II.E. The weights of the mixture are given

by (11), implying that some degree of pooling is imposed: most forecasters come from the

same relatively few (depending on ψ0) types. Such pooling mitigates overfitting. Moreover,

the number of types grows naturally as more data becomes available and depends on the

degree of heterogeneity in the sample.12 A posteriori, both the unknown atoms/types θ∗k

and the weights wk are estimated, as described next.

II.D Posterior inference

Since expression (12) is a mixture distribution, it can be reparameterized using auxiliary

allocation variables d’s, which are equal to k if θi is sampled from the kth mixture component:

zi
iid∼

∞∑
k=1

I{d = k}h(z|θ∗d), P r{d = k} = wk, (13)

11As shown in Pitman (2006), the predictive distribution of θi+1 conditional on (θ1, . . . ,θi) can be repre-

sented as a Polya’s urn process θi+1|θ1, . . . ,θi ∼
ψ0

ψ0 + i
G0(θi+1)+

1

ψ0 + i

i∑
k=1

δ(θk−θi+1). With probability

ψ0

ψ0 + i
the new draw θi+1 is generated from G0, but it is otherwise equal to one of the previous i draws.

When ψ0 →∞ we have the same parametric model for each forecaster: zi ∼ h(·|θi) where the θi’s are drawn

independently from G0.
12Given a population of n forecasters’, their distribution can be characterized using Nn different clusters,

where Nn is a random variable with prior mean E[Nn] ≈ ψ0log(
ψ0 + n

ψ0
).
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Thus the posterior distribution of (θ1, . . . ,θn, G) given (z1, . . . , zn) can be expressed in terms

of the posterior distribution Π(d1, . . . , dn,θ
∗
1,θ

∗
2, . . . , w1, w2, . . . |z1, . . . , zn), where a posteri-

ori the allocation variables are naturally forecaster specific. If the mixture (13) were finite,

Bayesian inference would be straightforward. The slice Gibbs sampler algorithm of Walker

(2007) and Kalli et al. (2011) surmounts the issue of infinity using data augmentation, as

explained in detail in Appendix B. The MCMC samples

(d
(m)
1 , . . . , d(m)

n ,θ
∗(m)
1 ,θ

∗(m)
2 , . . . , . . . , w

(m)
1 , w

(m)
2 , . . . )

over m = 1, . . . ,M iterations are used to approximate the posterior distribution for any

quantity of interest. For example, the set of posterior draws {F (y|θ(m)
i ) : y ∈ Y ,m =

1, . . . ,M}, with θ
(m)
i := θ∗(m)

d
(m)
i

approximate the posterior distribution of the subjective CDF

Fi(·) (see Figure 2 below). Analogously, the posterior mean of the standard deviation of the

predictive distribution of the i-th forecaster is approximated by

σ̂i =
1

M

M∑
m=1

σ(θ
(m)
i )

where σ(θ) is the standard deviation of F (·|θ). Finally, quantities involving the whole

population of forecasters can be approximated in a similar way. For example, the posterior

mean of the cross-sectional standard deviation of the individual standard deviations is given

by

σ̂ =
1

M

M∑
m=1

1

n

n∑
i=1

(
σ(θ

(m)
i )− σ̄(m)

)2

with σ̄(m) =
1

n

n∑
i=1

σ(θ
(m)
i ).

II.E Posterior consistency

In this section we discuss asymptotic properties of the posterior distribution as the number

of forecasters goes to infinity. We only state the main result on consistency, leaving all the

details, proofs, and some additional results to Section D of the Appendix.

We formalize asymptotic convergence using the notion of weak consistency of the pos-

terior distribution (Ghosh and Ramamoorthi, 2003), which provides a widely accepted min-

imal requirement for large sample behavior of Bayesian nonparametric models (e.g., Norets

and Pelenis, 2012; Pelenis, 2014; Norets and Pelenis, 2014; Bassetti et al., 2018). Roughly

speaking, posterior consistency means that in a frequentist experiment with a given data

generating density, the posterior distribution concentrates around this density as the sample
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size (number of forecasters) increases. More formally, let H be the set of all possible data

generating densities (with respect to a dominating measure) on the simplex ∆J where the

data z lives. Given a prior Π on H, the posterior is said to be weakly consistent at h0 if

for every i.i.d. sequence z1, . . . , zn of random vectors with common density h0 the posterior

probability Π(U |z1, . . . , zn) converges a.s. to 1 as n→ +∞ for every weak neighborhood U

of h0. In our model, the prior is Π(U) = P{hG ∈ U}, where hG is defined in (12). In order

to prove weak consistency we use the Schwartz theorem (see e.g. Chapter 4 in Ghosh and

Ramamoorthi, 2003), which states that weak consistency at a true density h0 holds if the

prior assigns positive probabilities to Kullback-Leibler neighborhoods of h0.

Before stating the main theorem, it is helpful to clarify the definition of Kullback-Leibler

divergence for densities over ∆J with possible zero elements. We define a σ-finite measure

on ∆J by λ(dz) = c(dξ) ⊗ Lξ(dzξ) where c is the counting measure on the space {ξ ∈
{0, 1}J , s.t. ξ1 + . . .+ ξJ < J}, and Lξ is the Lebesgue measure on ∆|J

∗| (recall that zξ, ξ,

and J ∗ were defined in section II.B). The set of all possible data generating densities H is

the set of all the densities g(z) = g(zξ, ξ) absolutely continuous with respect to λ. Given two

densities h0 and g in H the Kullback-Leibler divergence between h0 and g is then defined as

KL(h0, g) =

∫
∆J

h0(z) log
(h0(z)

g(z)

)
λ(dz). (14)

CallM∗ the set of finite mixtures of densities (5) that define the parametric component

of our model, and H∗0 the set of densities that can be approximated in the Kullback-Leibler

sense by densities in M∗, i.e.

H∗0 = {h0 density w.r.t. λ: ∀ ε > 0 ∃ g ∈M∗ s.t. KL(h0, g) ≤ ε }.

Theorem 1. Assume that θ 7→ (%1(θ), . . . , %J(θ), φ(θ)ν1(θ), . . . , φ(θ)νJ(θ)) is a continuous

function such that νj(θ) > 0 and 0 < %j(θ) < 1 for every j = 1, . . . , J . If G0 has full support,

then the posterior is weakly consistent at any density h0 in H∗0 such that

∫
∆J

∣∣∣∣∣∣log

 ∏
j:zj>0

zj

∣∣∣∣∣∣h0(z)λ(dz) < +∞. (15)

The result guarantees that the posterior distribution concentrates around the true process

generating the histogram data z in the SPF cross-section as the number of forecasters grows

to infinity. In particular, it shows that the Bayesian nonparametric approach is robust to

deviations from the specific parametric assumptions, such as the notion that forecasters’s
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noise is distributed according to a Dirichlet distribution (as opposed to rounding toward

integer numbers) or the particular choice of the F (·) predictive CDF. Hence, even if the

specific form of h(z|θ) is not correct, the true distribution h0 is recovered in the limit as

long as h0 belongs to the very broad class of models H∗0, which includes all the models that

are not “too far” from any finite mixture of h(z|θ). This property is not shared by any of

the current outstanding approaches for inference on probabilistic surveys.

A couple of observations are in order. First, as is always the case for Bayesian non-

parametrics, the consistency results do not apply to individual forecasters, but only to the

data generating process for the entire distribution of forecasters. Concretely, this means

that they apply to any object that involves a suitably large number of forecasters, such

as the consensus distribution. Second, it must be clear that the consistency holds for the

true distribution h0 on the available data z and not for the underlying predictive CDF F (·)
over the entire domain of y. This is due to the fact that the available data do not provide

enough information to fully recover the CDF of y since the number of bins J is taken as

fixed (and finite), even when n goes to infinity: loosely speaking, we can claim consistency

for the value of the predicitve CDF F (·) at the bin edges y1, . . . , yJ , but do not have enough

information about the value of F (·) for y ∈ (yj, yj+1]. This identification issue is overcome

in the case where the number of bins J goes to infinity and the bin size goes to zero, as we

show in Appendix C. Specifically, we show that under these conditions when the number

of forecasters n also goes to infinity the consistency result discussed above applies also to

estimates of the predictive distribution F (·). Since these results are of limited interest for

our application where the number of bins is limited and non negligible mass is often placed

on the open bins, they are relegated to the Appendix.13

In practice in our application both the number of bins, as just mentioned, and of obser-

vations n is not large (e.g., n around 30 in 2020 and the width of some of the bins is as large

as 6 percent for output growth). Still, an advantage of the Bayesian approach is that lack of

information is reflected in the posterior credible intervals. Section III.A below for instance

shows that when forecasters place a large amount of mass on the open bins, the estimates

of their predictive CDF F (·|θi) becomes more uncertain. Still, one needs to be aware that

in these situations the choice of the distribution family F (·), h(·), and the prior distribution

can impact the results. Therefore, a robustness check with respect to these choices should

13Arguably, output growth SPF surveys between the Great Recession and the Covid episode, which dis-

played fairly narrow bins and little mass on the open bins, are the only ones for which these conditions come

close to applying
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be included in all applications of our method.

II.F Priors

In this section we discuss the prior settings used in our application. The parameter vector θ is

composed of (µ, µδ, σ1, σ2, ω, φ, ε). The first four parameters pertain to the F (·) function—

the mixture of two normals (3), which we repeat here for convenience: F (y|θ) = (1 −
ω)Φ(y|µ, σ2

1) + ωΦ(y|µ + µδ, σ
2
2). The parameters φ and ε are used to specify h(·) and %(·)

in (6) and (7), respectively. We should stress that we use the same priors for both output

growth and inflation and for all years in our sample.

The location of the first mixture component is µ ∼ N (2, 52), where the standard devia-

tion of 5 implies that this is a very loose prior. The scales of the mixture components follow

σj ∼ IGa(aσ, bσ)I(σ1)(0,10), j = 1, 2 where aσ, bσ are chosen so that the standard deviation

has mean E[σj] = 2 and a variance V [σj] = 4, and where we truncate the distribution at 10

for numerical reasons. The parameters µδ captures the deviation of the mean of the second

mixture component relative to the first one. Its prior is centered at zero (implying that

the second mixture a priori mainly captures fat tails) and has a standard deviation of 1:

µδ ∼ N (0, 12). Finally, the prior for ω, the weight on the second component of the mixture,

is ω ∼ Be(0.5, 3). Its mode is zero, implying that the prior favors models with one mixture

only. The prior places roughly 20 percent probability on {ω ≥ 0.25}.

For the precision parameter φ of the Dirichlet distribution (6) that determines the amount

of noise around the underlying probabilities ν we assume a gamma distribution Ga(aφ, bφ),

where aφ and bφ are chosen so that both the mean and the variance of φ are equal to 100.

The left panel of Figure A-2 in the Appendix shows the 50 and 90 percent a-priori coverage

intervals for the noise associated with three different values of ν: 0.1, 0.6 and 0.3. The 50

and 90 percent intervals are about 5 and 10 percent wide, respectively. As regards the prior

for the rounding-off-to-zero parameter ε we assume a gamma distribution Ga(aε, bε) and set

aε, bε such that in expectations the probability of reporting a zero, %j, is close to one when

the true mass on the bin νj is less than 1 percent, declining to very small values for any νj

larger than 5 percent. The right panel of Figure A-2 shows the mean, the 50, and the 90

percent coverage intervals of %j(θ) as a function of νj(θ). The a-priori uncertainty is such

that when νj is 2 percent the 90 percent interval for %j ranges from 0 to 25 percent. Finally,

the concentration hyperparameter ψ0 of the Bayesian nonparametric prior, which determines
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the prior number of clusters, we follow the standard choice and set ψ0 = 1. This implies

that the expected number of clusters for a cross-section with n = 30 is roughly 4.

III Results

In this section we first discuss the application of the nonparametric Bayesian approach to

the few selected examples mentioned at the beginning of Section II, so that the reader be-

comes familiar with how the approach works in practice. Next, we document the evolution

from 1982 to 2021 of individual measures of uncertainty obtained using our approach. This

analysis sets the stage for the analysis in the following section where we study the relation-

ship between subjective uncertainty and ex-post forecast errors, and assess whether SPF

predictive densities conform with the noisy rational expectations hypothesis.

III.A Examples

Figure 2 shows the inference results for the four SPF respondents shown in Figure 1. For each

forecaster we show posterior draws (thin gray lines) from the BNP model for the subjective

CDF F (y|θi) (top) and PDF (bottom), and compare it with the results under the generalized

beta (black, dash-and-dotted) and Gaussian (black, dotted) approaches. The CDF plots also

show the observed cumulative probabilities Zij (crosses), while the PDF plots show the step-

wise uniform PDF (gray dashed lines) implied by the histogram probabilities zij.

Figure 2 illustrates a few aspects of the Bayesian nonparametric approach. For starters,

the observed cumulative probabilities (the Zij’s; crosses) belongs to the high posterior density

region for all these respondents, suggesting that the approach is flexible enough to capture

a variety of arguably challenging cases. In contrast, the beta and the normal approaches do

not fit the Zij’s well in these examples and their CDFs and PDFs do not belong to the high

posterior density region obtained from the BNP approach, with the exception of respondent

(584). As a consequence there can be important differences in the objects of interests, such

as the measure of uncertainty, or quantiles, implied by the different approaches.14 Figure 2

also shows that the BNP approach delivers wider posterior coverage intervals that reflect the

higher degree of uncertainty whenever there is less information from the respondent. The

14Bassetti et al. (forthcoming) show that inference using the BNP approach differs from that obtained

using standard approaches for several other examples obtained during the recent Covid episode.
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Figure 2: Inference using the Bayesian nonparametric approach: CDFs and PDFs for

selected examples

Forecasts for output growth in 2020 made in 2019Q2

(532) (584)
CDF

PDF

Forecasts for inflation in 2009 made in 2008Q4

(516) (560)
CDF

PDF

Note: For each forecaster the top and bottom panels show the subjective CDF and PDF, respectively, estimated using the BNP
approach (posterior draws; light gray), as well as the least-squares estimates obtained under the normal (gray, dashed line) and
the beta (black, dash-and-dotted line) parametric assumptions. The CDF panels also show the observed cumulated histogram
probabilities Zij j = 1, . . . , J (crosses), while the PDF panel show the step-wise uniform PDF (gray dashed lines) implied by
such probabilities.
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case of respondent 516, who placed 80 percent probability on the left open bin (see Figure

1), is exemplary. The posterior coverage intervals for both the BNP CDF and PDF reflect

the fact that we know very little about the left-tail behavior of this forecaster, as evidenced

by the fact that the gray lines for both the CDF and the PDF are far less concentrated for

forecaster 576 in the left tail than in other regions or for other forecasters.

III.B Heterogeneity in subjective uncertainty

In this section we document the evolution of individual measures of uncertainty obtained

using our approach in the 1982-2021 sample. We do this for two reasons. First, we set the

stage for the analysis in the next section, where we study the relationship between subjective

uncertainty and ex-post forecast errors. In particular, we follow the literature and show that

professional forecasters differ significantly in terms assessment of uncertainty, and that these

differences vary over time.15 We also show and that while these differences are persistent,

forecasters do change their mind from period to period about their subjective uncertainty—

a variation that we will exploit later. Second, we take advantage of our inference-based

approach and test the extent to which these differences are significant.

Figure 3 shows the evolution of subjective uncertainty by individual respondent for

output growth (top) and inflation (bottom). The left and right panels display uncertainty

for the current and the next year projections, respectively, made in the second quarter of

each year (the Appendix shows that results for other quarters are qualitatively similar). In

each panel the crosses indicate the posterior mean of the standard deviation of the individual

predictive distribution. We use the standard deviation (as opposed to the variance) because

its units are easily grasped quantitatively and are comparable with alternative measures

of uncertainty such as the interquartile range. Thin gray lines connect the crosses across

periods when the respondent is the same, providing information on both whether respondents

15Heterogeneity in macroeconomic probabilistic forecasts was noted long ago. While much of the early liter-

ature focused on disagreement in point projections or central tendencies (see Mankiw et al., 2003; Capistrán

and Timmermann, 2009; Patton and Timmermann, 2010, 2011; Andrade and Le Bihan, 2013, and other

work mentioned in the recent survey by Clements et al., forthcoming) more recent work documents the

fact that forecasters disagree about uncertainty and that these differences are long-lasting (Lahiri and Liu,

2006; D’Amico and Orphanides, 2008; Bruine De Bruin et al., 2011; Boero et al., 2014; Rich and Tracy,

2021, among others). Kozeniauskas et al., 2018, discuss the conceptual differences between macroeconomic

uncertainty and disagreement using a model where forecasters have private information and update their

beliefs using Bayes’ law).
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Figure 3: Subjective uncertainty by individual respondent

H1Q2 H2Q2
Output Growth

Inflation

Note: Each panel displays the posterior mean of the standard deviation of the subjective predictive distribution by individual
respondent (light gray crosses, connected by thin gray line whenever the respondent appears in consecutive surveys), and the
cross-sectional average of the individual standard deviations (dashed black line). Top and bottom panels correspond to output
growth and inflation projections. The left and right column correspond to current and next year projections.
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change their view on uncertainty and whether the composition of the panel affects the cross-

sectional average measure of uncertainty, which is shown by a black dashed line (Manski,

2018, stresses the extent to which the literature has often ignored compositional changes

when discussing the evolution of consensus or average measures). Figure 4 provides a time

series of the differences in individual uncertainty, as measured by the cross-sectional standard

deviation of the individual standard deviations. The solid black line displays the posterior

mean of this measure, while the shaded areas represent the 90 percent posterior coverage.

Figure 3 shows that on average uncertainty for current year output growth projections

declined from the 1980s to the early 1990s, likely reflecting a gradual learning about the

Great Moderation, and then remained fairly constant up to 2020 when the Covid pandemic

struck, and average uncertainty grew threefold. Average uncertainty for next year projections

tends to be in general higher than for current year projections. It follows a similar pattern,

except that it displays a small but very steady upward shift in the aftermath of the Great

Recession. It appears unlikely that changes in survey design, and particularly in the bins,

affect these patterns: for output growth these changes take place in 1992, 2009, and 2020.

Except for 2020, where much of the change in uncertainty is arguably attributed to Covid,

there are no evident breaks associated with the bin changes. Interestingly, we do not see any

upticks in average subjective uncertainty in the run up to recessions, even for current year

forecasts, with the exception of the Covid crisis. Using the interquantile range to measure

uncertainty, as done in Figure A-11 in the Appendix, leads to very similar results. Using

the generalized beta approach to fit histograms (see Figure A-12) also produces similar

overall patterns, although perhaps not surprisingly this approach leads to lower estimates of

subjective uncertainty relative to our approach.

Cross-sectional differences in individual uncertainty are very large, and quantitatively

trump any time variation in average uncertainty. The standard deviation of low uncertainty

individuals remains below 1 throughout the sample, with the sole exception of the Covid

period, while that of high uncertainty individuals is often higher than two. More formally,

the cross-sectional standard deviation of individual standard deviations, shown in Figure 4,

hovers between 0.4 and 0.8 throughout the sample, and then jumps during the Covid period.

The cross-sectional standard deviation is quite tightly estimated indicating that differences

across individuals are significant. The level and the dispersion of uncertainty appear to be

tightly linked, in that the cross-sectional standard deviation is high when the average is high.

From Figure 3 this seems due to the fact that it is mostly high uncertainty respondents who

change their mind about the confidence in their projections, thereby driving both the average
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and the cross-sectional standard deviations. While differences in subjective uncertainty are

persistent, forecasters do revise their assessment of unpredictability and their relative ranking

varies as indicated by the fact that the thin gray lines very often cross one another.

Figure 4: Cross-sectional standard deviation of individual uncertainty—Q2 survey

H1Q2 H2Q2
Output growth

Inflation

Note: Posterior mean of the cross-sectional standard deviation of the individual standard deviations (solid black line) The
shaded areas display the 90 percent posterior credible intervals. Top panels: output growth. Bottom panels: inflation. Left
column: current year; right column: next year.

The bottom panels of Figure 3 shows that on average subjective uncertainty for inflation

in both for current (left) and following (right) year declined from the 1980s to the mid-1990s

and then was roughly flat up until the mid-2000s. Average uncertainty rose in the years

surrounding the Great Recession, but then declined again quite steadily starting in 2011

reaching a lower plateau around 2015. Interestingly, average uncertainty did not really rise

much in 2020 and 2021 in spite of the Covid related disturbances, and in spite of the fact

that for most respondents expected inflation rose sharply, as documented in Figure A-14 in

the Appendix. In the case of inflation changes in the bins, which took place in 1985, 1992,

and 2014 (see Figure A-3 in the Appendix), may have payed some role as we see that the



23

average standard deviation drops markedly in both 1992 and 2014. At the same time it is

arguably not the only explanation since such drops appear to be the continuation of a trend

that had started before the change in survey design.

As was the case for output growth, also for inflation cross-sectional differences in individ-

ual uncertainty are very large. The cross-sectional standard deviation of individual standard

deviations (Figure 4) follows the same pattern of the average standard deviation: it starts

around 0.6 percent in the 1980s, drops to around 0.4 percent in the 1990s, and then drops

a bit further in the 2010s. This measure of cross-sectional heterogeneity in uncertainty is

tightly estimated and its fluctuations appear to be statistically significant. As was the case

for output, high uncertainty respondents becoming less uncertain are mostly driving both

the average and the cross-sectional standard deviations.

III.C Subjective uncertainty and forecast accuracy: Testing the

noisy information hypothesis for density forecasts

In this section we use our approach to assess whether SPF predictive densities conform with

the noisy rational expectations hypothesis (see Coibion and Gorodnichenko, 2012, 2015, for

instance). We do that by subjecting predictive densities to three types of tests. The first

two tests concern the scale of the forecasters’ predictive distribution, while the last test

concerns its location. According to the noisy rational expectations hypothesis, forecasters

receive both public and private signals about the state of the economy, which they do not

observe. Under this hypothesis heterogeneity in the signals, and in their precision, explains

the heterogeneity in both mean predictions Et−q,i[yt] and in their subjective uncertainty

σ2
t|t−q,i = Et−q,i[(yt−Et−q,i[yt])2], where i denotes the forecaster, q the horizon of the forecast,

and Et−q,i[.] the expectation operator under forecaster i’s information set at time t − q. In

the time series, changes in the precision of either the private or public signals—the latter

due, say, to changes in policy or the structure of the economy, a recession approaching, or

some other major event like Covid-19—will be reflected in σ2
t|t−q,i. In the cross-section, if

forecaster i has a more precise signal than forecaster j, then σ2
t|t−q,i ought to be lower than

σ2
t|t−q,j. We have seen in the previous section that σ2

t|t−q,i varies substantially both over time

and in the cross-section.

Regardless, if expectations are rational there needs to be a correspondence between the
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subjective uncertainty σt|t−q,i and the ex-post forecast error |yt − Et−q,i[yt]|. Define

ηi,t|t−q = (yt − Et−q,i[yt])/σt|t−q,i, (16)

the standardized forecast error. Under rational expectations (that is, if the predictive dis-

tribution is consistent with the data generating process for yt) it has to be the case that

E[η2
i,t|t−q] = 1. (17)

We will test whether η2
i,t|t−q = (yt − Et−q,i[yt])2/σ2

t|t−q,i, is equal to 1 on average, and refer

to this test as a scale test. Next, taking logs of the absolute value of both sides of equation

(16) we obtain:

ln |yt − Et−q,i[yt]| = lnσt|t−q,i + ln ηi,t|t−q. (18)

By regressing ln |yt − Et−q,i[yt]| on lnσt|t−q,i we will test whether absolute forecast error

change proportionally to the subjective uncertainty both in the time series and in the cross-

section, and refer to this test as a variation test. While both tests hinge on rational ex-

pectations, they are different. The scale test tells us whether subjective distributions are

properly scaled on average, while the variation test inquires whether variations in subjective

uncertainty map into variations in forecast errors. Aside from testing the noisy rational

expectation hypothesis, this latter test is interesting in itself, as it sheds light on the rela-

tionship between the ex-ante uncertainty expressed by survey respondents and their ex-post

ability to predict macroeconomic outcomes, both in the time series and in the cross-section.

Finally, under rational expectations it has to be the case that the mean projection

Et−q,i[yt] better lead to smaller forecast errors on average than any other forecast, because the

mean projection minimizes the expected squared forecast error under Et−q,i[.] and therefore,

under rational expectations, under E[.] as well:

E[(yt − Et−q,i[yt])2] ≤ E[(yt − yppt,t−q,i)2] for any yppt,t−q,i. (19)

We refer to this test as a location test, as it assesses whether the predictive densities’ mean

fulfills its properties under rational expectations. A strand of literature has investigated

whether point forecasts coincide with means and, to the extent that they do not, whether

this reflects a forecaster’s loss function that is not quadratic (e.g., Engelberg et al., 2009;

Clements, 2010; Elliott et al., 2008; Patton and Timmermann, 2007). Our test is based on

the notion that regardless of the forecaster’s loss function, the mean better minimize the

square loss if forecasters are rational.
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Figure 5: Do forecasters over or under-estimate uncertainty? A scale test
Output growth Inflation

Note: Black dots correspond to OLS estimates of αq from regression (20) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.

III.C.1 A scale test: Do forecasters over or under-estimate uncertainty?

We can assess the hypothesis in (17) by testing whether αq = 1 in the panel regression

(yt − Et−q,i[yt])2/σ2
t|t−q,i = αq + εt,i,q, t = 1, .., T, i = 1, .., N. (20)

where we use the posterior means of Et−q,i[yt] and σ2
t|t−q,i from our approach.16 Estimates of

αq that are significantly greater/lower than 1 indicate that forecasters under/over estimate

uncertainty. Figure 5 shows estimates of αq for different horizons, ranging from q = 8 (H2Q1)

to q = 1 (H1Q4) (recall that the variables being forecasted are the year-over-year growth rates

of output or the price level). The dots indicate the OLS point estimates and the whiskers

the two-standard deviations posterior intervals, computed using robust standard errors (see

Müller, 2013, for a discussion of the use of the sandwich matrix in a Bayesian context).

The figure shows that for horizons between two and one-and-half years (e.g., q = 6, 7 or 8)

αq is significantly larger than 1 for both output growth and inflation. In fact, for output

growth αq is about 3, indicating that forecasters grossly underestimate uncertainty, in line

with the literature on overconfidence (Daniel and Hirshleifer, 2015; Malmendier and Taylor,

2015). For horizons closer to one year (q = 5, 4) αq remains well above 1 for output, but

16In line with most of the literature evaluating forecasting accuracy from surveys in this section we use

the so-called “first final” estimate as a measure for yt, where the first final is the third estimate of GDP or

the GDP deflator. Results obtained using the latest revision are shown in the Appendix. These results are

very similar for longer horizons, but tend to be different for shorter horizons arguably because the revised

series contain methodological changes in measuring GDP that forecasters simply cannot anticipate.
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is not significantly different from 1 for inflation. For shorter horizons (q lower than 3)

αq is significantly lower than 1, indicating that forecasters overestimate uncertainty. The

overestimation is sizable for inflation, with estimates hovering around .5, but less so for

output. For q = 1 the estimate of αq is barely significantly below 1. Figure A-19 in the

Appendix shows that these results do not change much across different sub-samples (eg,

excluding the Covid period and/or the period 1982-1991 when the Philadelphia Fed was not

in charge of the survey).

The idea behind the regression in (20) borrows heavily from existing literature. Clements

(2014) in particular computes values for (yt−Et−q,i[yt])2/σ2
t|t−q,i using the point predictions in

place of the mean Et−q,i[yt], and estimates of σ2
t|t−q,i obtained from fitting a generalized beta

distribution. Clements then computes αiq using a time series regression for each forecaster

i, tests the hypothesis αiq > 1 and αiq < 1, and reports the fraction of forecasters for which

each hypothesis is rejected.17

Figure 6: A scale test—comparison with the generalized beta approach
Output growth Inflation

Note: Black dots correspond to OLS estimates of αq from regression (20) for q = 8, .., 1 using the posterior means for Et−q,i[yt]

and σ2
t|t−q,i from our approach. Gray crosses correspond to OLS estimates when these objects are obtained using the generalized

beta approach. Whiskers indicate 90 percent posterior coverage intervals based on robust standard errors.

Broadly speaking, Clements (2014)’s findings are in line with those reported above: at

longer horizons forecasters generally tend to be overconfident, and this overconfidence di-

minishes as the horizon gets shorter. The benefit of running a panel regression as in (20)

17This exercise is conducted for US SPF surveys for output growth and inflation from 1981Q3 to 2010Q4.

Giordani and Soderlind (2003) also find that forecasters underestimate inflation uncertainty. Similarly,

Diebold et al. (1999) and Rossi and Sekhposyan (2015, 2018) investigated whether uncertainty is over or

underestimated but focus on the consensus (that is, average) predictive density.
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is twofold. First, we explicitly test whether predictive distributions are correctly scaled us-

ing the entire panel, rather than forecaster by forecaster, thereby getting a clear answer on

whether the rational expectation hypothesis is rejected or not for the SPF. Second, we obtain

quantitative estimates of the average degree of over/under-confidence that are not marred

by the small sample problem affecting individual forecasters’ regressions. The finding that

at longer horizons forecasters are as much as 3 times and one and half times as confident as

they should be for output growth and inflation, respectively, for instance, was not known to

our knowledge. Also, previous literature mostly used point forecasts, while of course under

rational expectations equation (17) holds for the mean, but not necessarily for the point

forecast if this differs from the mean (Figure A-17 in the Appendix shows that the results

for the point forecasts are not very different at long horizons, but can be quite different at

short horizons). Finally, Figure 6 shows that it makes a big difference whether one uses the

posterior mean of σ2
t|t−q,i from our approach or that obtained from fitting a generalized beta

distribution, especially at long horizons where forecasters place more probability on the open

bins.18

Figure 7: Do differences in subjective uncertainty map into differences in forecast

accuracy? A variation test
Output growth Inflation

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.

18Glas and Hartmann (2022) conduct Clement’s exercise distinguishing between rounders (respondents who

round up to 0 and/or to round numbers) and non-rounders, and find that rounders tend to underestimate

uncertainty, especially for long horizons, while non-rounders do not. Our approach takes rounding explicitly

into account and in fact we find that the underestimation of uncertainty at long horizons is about half that

implied by the generalized beta approach.
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Figure 8: A variation test—regressions with fixed effects
Output growth Inflation

Time fixed effects

Forecaster fixed effects

Time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) using time (top panels), forecaster fixed effects
(middle panels), or both (bottom panels), for q = 8, .., 1. Solid black whiskers indicate 90 percent posterior coverage intervals
based on robust standard errors.



29

Figure 9: A variation test—accounting for inference uncertainty (baseline vs weighted OLS)

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors. Gray crosses correspond to weighted OLS estimates,
where the weights are inversely proportional to inference uncertainty as measured by the interquantile range of the posterior
distribution of σt|t−q,i. Whiskers indicate 90 percent posterior coverage intervals based on robust standard errors.

III.C.2 A variation test: Do differences in subjective uncertainty map into

differences in forecast accuracy?

Next, we explore a different implication of the noisy rational expectations hypothesis: sub-

jective uncertainty and forecast accuracy should co-move, both across forecasters and over

time, as highlighted by equation (18). We test this hypothesis by testing whether in the

panel regression

ln |yt − Et−q,i[yt]| = β0,q + β1,q lnσt|t−q,i + εt,i,q, t = 1, .., T, i = 1, .., N, (21)

the coefficient β1,q is equal to one. As before, equation (21) is estimated via OLS where

Et−q,i[yt] and σt|t−q,i are measured using the posterior mean of the standard deviation esti-

mated using our approach, and robust standard errors are computed. Figure 7 plots the point

estimates of β1,q for different horizons (crosses) and the whiskers denote the two-standard

deviations posterior intervals.

We observe that, quite strikingly, for output growth there is essentially no relationship

between subjective uncertainty and the size of the ex-post forecast error for horizons above

one year. As the forecast horizon shortens the relationship becomes tighter, and for q = 1

one cannot reject the hypothesis that β1,1 = 1. For inflation the estimates of β1,q hover

around 0.5 for longer horizons, but increase toward 1 as the horizon shortens, with β1,1 that

is also not significantly different from 1.
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Figure 8 shows the estimates of β1,q controlling for time, forecaster, and both time and

forecaster fixed effects in order to ascertain whether the results in Figure 7 are mostly due

to differences across forecasters or over time. The results with time fixed effects (top pan-

els) indicate that for output growth it is generally not the case that for longer horizons

forecasters with lower/higher subjective uncertainty have lower/higher absolute forecast er-

rors on average, although for short horizons the correspondence between the two becomes

tighter. At longer horizons there is little relationship also for inflation, although for q ≤ 2

the coefficient β1,q is one or very close to. Similarly, the results with forecaster fixed effects

(middle panels) suggest that when forecasters change their subjective uncertainty, possibly

because the quality of their private signal has changed, on average this maps one-to-one into

corresponding changes in the absolute forecast errors for horizons close to one quarter, but

not for longer horizons. The bottom panels of Figure 8 show that these findings still hold

when we include both forecaster and time fixed effects. The Appendix shows that all these

results are broadly robust to different samples.

To our knowledge, both the idea of testing the noisy rational expectations hypothesis

using the variation test and this set of results are new to the literature. Clements (2014)

computes time series averages of σt|t−q,i for each forecaster and plots them against the cor-

responding predictive root mean square error (RMSE) computed during the same period.19

Clements concludes that “there is little evidence that more (less) confident forecasters are

more (less) able forecasters.” This exercise compares to our model with time fixed effects,

where we study whether forecasters that are more uncertain also have higher absolute fore-

cast errors. Our results agree with Clements for output growth and inflation at long horizons,

but differ at short horizons. One reason for the difference is that Clements uses point fore-

casts while expression (18) only holds for the mean: if absolute forecast errors are computed

using predictions other than the mean, there is no a priori reason why there should be a

correspondence with the subjective standard deviation, even under rational expectations. In

fact Figure A-20 in the Appendix shows that when we use the point predictions the corre-

spondence between subjective uncertainty and forecast error vanishes at short horizons.20

19Clements adjusts for the unbalanced nature of the sample—that is, the fact that each forecaster’s average

is computed for a different time period—by constructing weighted averages where the weights reflect the

average forecast error or subjective uncertainty during that period.
20A more proper comparison with Clements cross sectional results is in Figure A-21 in the Appendix where

we show the results with time fixed effects and point forecasts. Indeed we find that most coefficients are not

significantly different from 0 for point forecasts. Figure A-22 shows the results obtained using the generalized

beta approach, which are similar to those shown in Figure 7.
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Most important, the purely cross-sectional comparison undertaken so far by the litera-

ture misses the time dimension of our regression, where we investigate whether changes in

subjective uncertainty over time actually map into changes in forecasting performance. This

aspect is particularly important as it sheds light on whether forecasters correctly anticipate

periods of macroeconomic uncertainty. The finding that in the time dimension (that is, us-

ing forecaster fixed effects and both time and forecaster fixed effects) at longer horizons the

mapping between subjective uncertainty and forecast accuracy is just not there for output,

and is only partial for inflation, but is in line with the noisy rational expectations model for

both output and inflation at short horizons, is entirely novel.

Last, one benefit of our approach is that we can measure inference uncertainty about

σt|t−q,i. We can therefore assess to what extent such uncertainty may be driving the results

in Figure 7. We do so by running a weighted OLS panel regression, where the weights are

inversely proportional to inference uncertainty as measured by the interquantile range of the

posterior distribution of σt|t−q,i. Figure 9 shows that the weighted OLS results are nearly

identical to the results in 7, assuaging concerns of a bias driven by inference uncertainty.

The Appendix shows that the weighted results are very similar to the unweighted ones also

whenever we use fixed effects and/or different samples.

III.C.3 A location test: The relative accuracy of mean and point predictions

Last, we turn to the location test, where we use the point forecast as an alternative to the

mean projections in testing (19). The top panels of Figure 10 shows OLS estimates of the

coefficient γq in the panel regression

ln
(yt − Et−q,i[yt])2

(yt − yppt,t−q,i)2
= γq + εt,i,q, t = 1, .., T, i = 1, .., N, (22)

where yppt,t−q,i is the point forecast for yt made by forecaster i in period t − q. Estimates

of γq significantly greater than zero indicate that on average point fare worse than mean

projections in terms of mean squared error. In fact, these estimates can be interpreted

as the percentage improvement/worsening in forecast accuracy for point relative to mean

projections. For horizons longer than one year estimates of γq are not significantly different

from zero for output growth, and only slightly positive for inflation. This result may partly

reflect the fact that for these horizons point and mean predictions are not very different (see
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Figure 10: A location test: Relative accuracy of mean vs point projections
Output growth Inflation

Log Ratio of Squared Forecast Errors (γq)

Fair-Shiller Regressions: Coefficients on Mean (δ1,q, Black) and Point Prediction (δ2,q, Gray)

Fair-Shiller Regressions: Intercept δ0,q

Note: Top panel: Black dots correspond to OLS estimates of γq from regression (22) for q = 8, .., 1. Middle panel: Black dots
and gray crosses correspond to OLS estimates of δ1,q and δ2,q , respectively, from regression (23) for q = 8, .., 1. Bottom panel:
Black dots correspond to OLS estimates of the constant δ0,q from regression (23) for q = 8, .., 1. In all panels, whiskers indicate
90 percent posterior coverage intervals based on robust standard errors.
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Engelberg et al., 2009). As the horizon gets shorter the estimates tend to become much

larger and significantly positive for both output growth and inflation.

The result that point forecasts perform better than mean forecasts in terms of mean

squared error for short horizons is not new to the literature: Clements (2010) reports mean

squared forecast errors for horizons shorter than one year and find that these are lower for

point than for mean projections. As in Clements (2010), we interpret these results explicitly

as an indirect test of the rationality of density projections: under rational expectations, it

better be that the mean of the predictive distribution produces a lower mean squared error

than any other point prediction regardless of the forecasters’ loss function. The fact that for

short horizons this is clearly not the case casts some doubt on explanations for the divergence

between mean and point forecasts that rely on the forecasters’ loss function (e.g., Patton

and Timmermann, 2007; Elliott et al., 2008; Lahiri and Liu, 2009).

As a further test of the rationality of mean projections, we also run the Fair and Shiller

(1990) regression

yt = δ0,q + δ1,qEt−q,i[yt] + δ2,qy
pp
t,t−q,i + εt,i,q, t = 1, .., T, i = 1, .., N. (23)

The rationality of density projections would imply δ0,q = 0, δ1,q = 1, and δ2,q = 0. If point

projections yppt,t−q,i coincide with mean forecasts then the two regressors are multicollinear.

The middle panels of Figure 10 report estimates of δ1,q (black crosses) and δ2,q (gray dia-

monds) for different horizons q, while the bottom panels report estimates for the constant

δ0,q = 1. For horizons longer than one year, estimates of δ1,q are generally larger than those

for δ2,q. Estimates for δ1,q are significantly below 1, and estimates for the constant are signifi-

cantly different from zero. As the horizon shortens, estimates for the constant become closer

to 0, in line with rational expectations, but estimates of δ2,q rise toward 1 while estimates of

δ1,q fall to zero, indicating that point predictions are much closer to actual outcomes than

mean forecasts.

III.C.4 Summing up: Are SPF density forecasts consistent with the noisy ra-

tional expectation hypothesis?

The body of evidence collected in this section suggests that the answer is no. For horizons

close to two years there is strong evidence that 1) forecasters are overconfident, and 2)

there is virtually no relationship between differences in subjective uncertainty both across

forecasters and over time and differences in forecasting performance. For horizons close to
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one year we cannot reject that inflation density forecasts are correctly scaled, while output

growth density forecasts flip from being overconfident to being underconfident. The mapping

between ex-ante uncertainty and ex-post forecast errors is far from one, however, for both

output and inflation projections. For very short horizons, density forecasts are correctly

scaled for output growth, and slightly underconfident for inflation. For both variables there

is (almost) a one-to-one mapping between subjective and ex-post uncertainty, both across

forecasters and over time, in accordance with the noisy rational expectation hypothesis. But

while the second moments of the density projections seems to line up with theory at short

horizons, the first moments do not: mean projections deliver higher mean squared errors

than point projections. In sum, we reach a similar conclusion for density projections as

Patton and Timmermann (2010) reach for point forecasts, namely that differences across

forecasters (and in our case also over time) cannot be explained by differences in information

sets.

IV Conclusions

In this paper we presented a novel approach for conducting inference on data from proba-

bilistic surveys, and used it to investigate whether U.S. Survey of Professional Forecasters

density projections for output growth and inflation are consistent with the noisy rational

expectations hypothesis. We find that for horizons close to two years there is no corre-

spondence between subjective uncertainty and forecast accuracy for output growth density

projections, both across forecasters and over time, and only a very mild correspondence

for inflation projections, in contrast to what rational expectations would predict. As the

horizons shortens, the relationship becomes one-to-one, in accordance with the theory.

While the inference approach we propose arguably several advantages relative to current

practice—for starters, the fact that we explicitly conduct inference—it is important to point

out some limitations of our analysis. We provided some consistency results that take advan-

tage of the nonparametric nature of the approach, but these only apply to the model as a data

generating process for the data that we observe—the bin probabilities. Regarding the ob-

jects we are truly interested in—the underlying continuous predictive densities—consistency

results are only available in the unrealistic case that the number of bins goes to infinity and

the bin width goes to zero. When these conditions are not met, the limited information

provided by forecasters implies that posterior uncertainty regarding the objects of interest

remains even when the number of forecasters goes to infinity, simply because there is not
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enough information to identify the underlying predictive densities. This implies that the

results obtained with our approach may be sensitive to the choice of the base function and

of priors. More work needs to be done in this dimension.

In addition, the approach proposed in this paper deals with one survey (one cross-section)

and one forecast variable at the time. It would be interesting to extend the approach to a

panel context, which would permit joint inference across surveys for any object of interest.

We leave this extension to future research.
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Appendix

A Data description

We focus on the Survey of Professional Forecasters, managed since 1992 by the Federal

Reserve Bank of Philadelphia, and previously by the American Statistical Association and

the National Bureau of Economic Research. The panel of forecasters include university

professors and private-sector macroeconomic researchers, and the composition of the panel

changes gradually over time. The survey, which is performed quarterly, is mailed to panel

members the day after the government release of quarterly data on the national income and

product accounts. We restrict our attention to the two variables for which the SPF has

probabilistic questions, namely year-over-year GDP growth and GDP deflator inflation over

the sample 1982Q1-2021Q4.

B The Gibbs Sampler

The infinite mixture model is

hG(z) =

∫
h(z|θ)G(dθ) =

∞∑
k=1

wkh(z|θ∗k). (A-1)

Our Gibbs sampler applied to the cross section of zi, i = 1, . . . , n uses the convenient

approach proposed by Walker (2007) and Kalli et al. (2011). For each forecaster i, conditional

on the sequence of weights wk’s (w1:∞) and the sequence of atoms θ∗k’s (θ1:∞), expression

(A-1) can be written as the marginal distribution of

h(zi, ui|w1:∞,θ
∗
1:∞) =

∞∑
k=1

I(ui < wk)h(zi|θ∗k) (A-2)

with respect to ui, where ui is uniformly distributed over the interval [0, 1], and independent

across i, and I(·) is an indicator function. This implies that the conditional distribution of

zi given ui, the weights and the atoms, is

h(zi|ui, w1:∞,θ
∗
1:∞) =

1

h(ui|w1:∞)

∑
k∈A(ui|w1:∞)

h(zi|θ∗k), (A-3)
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where the set A(ui|w1:∞) includes all the atoms with a weight wk larger than ui (A(ui|w1:∞) =

{k : ui < wk}), and the marginal h(ui|w1:∞) =
+∞∑
k=1

I(ui < wk) since each h(·|θ∗k) integrates

to one. Unlike expression (A-1), expression (A-3) is a finite mixture where each component

has probability
1

h(ui|w1:∞)
, which is straightforward to draw from using standard methods.

Specifically, we will use the auxiliary indicators di’s, which are equal to k if we draw from

the kth mixture component (note that, given ui, the kth component will only be drawn if it

belongs to the set A(ui|w1:∞)). The resulting complete-data likelihood function is

L(z1:n|u1:n, d1:n, v1:∞,θ1:∞) =
n∏
i=1

I{ui<wdi
}h(zi|θ∗di) (A-4)

with di ∈ {k : ui < wk}, where v1:∞ is the infinite dimensional sequence containing the

stick-breaking components which map into the weights via expression (11).

Let Dk = {i : di = k} denote the set of indexes of the observations allocated to the

k-th component of the mixture. Let D = {k : Dk 6= ∅} denote the set of indexes of the

non-empty mixture components (in the sense that at least one i is using the kth component)

and d̄ = maxD the overall number of stick-breaking components used. The Gibbs sampler

works as follows:

1. v1:∞, u1:n|d1:n,θ
∗
1:∞, ψ, z1:n

Call v1:d̄ the stick-breaking elements associated with the mixture components that are

being used (conditional on d1:n). Following Kalli et al. (2011), drawing from the joint

posterior of v1:d̄, vd̄+1:∞, and u1:n, conditional on all other parameters, is accomplished

by drawing sequentially from: (a) the marginal distribution of v1:d̄, (b) the conditional

distribution of u1:n given v1:d̄, and (c) from the conditional distribution of vd̄+1:∞ given

u1:n and v1:d̄.

(a) v1:d̄|d1:n,θ
∗
1:∞, ψ, z1:n.

After integrating out the ui’s, the posterior of v1:∞ is proportional to

p(v1:∞|d1:n,θ
∗
1:∞, ψ, z1:n) ∝

(
n∏
i=1

wdih(zi|θ∗di)

)(
∞∏
l=1

(1− vl)ψ−1

)

∝

(
n∏
i=1

(
vdi

di−1∏
l=1

(1− vl)

)
h(zi|θ∗di)

)(
∞∏
l=1

(1− vl)ψ−1

)
.



Online appendix A-3

Now note that since vd̄+1:∞ do not enter the likelihood (A-4) – that is, the term

within the first parenthesis – they can be easily integrated out resulting in

p(v1:d̄|d1:n,θ
∗
1:∞, ψ, z1:n) ∝

(
n∏
i=1

(
vdi

di−1∏
l=1

(1− vl)

)
h(zi|θ∗di)

)(
d̄∏
l=1

(1− vl)ψ−1

)
.

Therefore samples for v1:d̄ are obtained by drawing each vk independently from

π(vk|u1:n, d1:n, . . . ) ∝ (1− vk)ψ+bk−1vakk (A-5)

where ak =
n∑
i=1

I(di = k) and bk =
n∑
i=1

I(di > k), that is, vk is drawn from a

Beta(ak + 1, bk + ψ).

(b) u1:n|v1:d̄, d1:n,θ
∗
1:∞, ψ, z1:n.

The likelihood (A-4), seen as a function of each ui, i = 1, . . . , n, is simply a

uniform distribution over [0, wdi ]. Hence

π(ui| . . . ) ∝
1

wdi
I(ui < wdi). (A-6)

(c) vd̄+1:∞|u1:n, v1:d̄, d1:n,θ
∗
1:∞, ψ, z1:n.

Again, vd̄+1:∞ do not enter the likelihood (A-4), so samples from those vk with

k > d̄ are simply obtained by drawing from the prior Beta(1, ψ):

π(vk|u1:n, d1:n, . . . ) ∝ (1− vk)ψ−1. (A-7)

Of course, even if it is straightforward to execute, we do not want to generate

an infinite number of draws. Fortunately we do not need to, as explained in

Walker (2007). Inspection of (A-4) reveals that those mixtures for which wk <

ui will never be used, at least given the the draw for ui. Let n̄i the smallest

integer such that

n̄i∑
k=1

wk > 1 − ui. Since by construction
∞∑
k=1

wk = 1, it must

be that
∞∑
n̄i+1

wk < ui and therefore, a fortiori, wk < ui for k > n̄i. Now define

n̄ = max{n̄i, i = 1, . . . , n}. Conditional on u1:n, at most we will use n̄ mixture

components in the estimation. Hence we only need to draw vd̄+1:n̄.

2. θ∗1:∞|v1:∞, u1:n, d1:n, ψ, z1:n

For the same argument given above, we actually do not have to draw an infinite number

of atoms, but only as many as they may possibly be used (at least given the current

draw of u1:n) – that is, at most n̄. Note also that given the way the ui’s are drawn

(from a uniform distribution over [0, wdi ]), if k ∈ D then k ≤ n̄.
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(a) For k ∈ D draws of θ∗k are obtained from

π(θ∗k| . . . ) ∝

(∏
i∈Dk

h(zi|θ∗k)

)
G0(θ∗k) (A-8)

Since the joint distribution is not tractable, samples have been generated by

Adaptive Metropolis Hastings (AMH) proposed in Andrieu and Thoms (2008)

More specifically, at the j-th iteration of the AMH for a parameter θ∗ of dimension

p the proposal distribution is

θnew ∼ N (θ(j−1)∗ ,Υ(j)) (A-9)

with covariance matrix Υ(j) = exp{ξ(j)}Ip where ξ(j) is adapted over the iterations

as follows

ξ(j) = ξ(j−1) + γ(j)(α̂(j−1) − ᾱ) (A-10)

where ᾱ = 0.3 represents the desired level of acceptance probability, and α̂(j−1) is

the previous iteration estimate of the acceptance probability (i.e. the acceptance

rate). The diminishing adaptation condition is satisfied by choosing γ(j) = j(−a).

In the application we set a = 0.7.

(b) For k /∈ D, k ≤ n̄ draws of θ∗k are obtained via independent draws from the base

measure G0.

We therefore obtained a sequence of draws θ∗1:n̄, which we will use in the next Gibbs

sampler step.

3. d1:n|v1:∞, u1:n,θ
∗
1:∞, ψ, z1:n

Draws for each di, i = 1, . . . , n, are obtained by drawing from a multinomial with

weights proportional to

π(di| . . . ) ∝ I(ui < wdi)h(zi|θ∗di) (A-11)

with di ∈ {1, . . . , n̄i}. Note that in this draw we consider all possible mixture compo-

nents from 1 to n̄i, not only those used so far (that is, those in D). They will be drawn

proportionally to their ability to fit of the data, as measured by h(zi|θ∗k).
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C Further theoretical results

C.A Model properties

In this section, we present some properties which illustrate the flexibility of our nonpara-

metric random histogram model. The behaviour of the model as the number of bins goes to

infinity shows that our framework is theoretically sound since it can be used to approximate

any subjective distribution when (2) holds.

Let zi, i = 1, . . . , n be i.i.d. samples from h(z|θ) and assume the forecasters never report

zero probabilities (that is, conditional on ξij = 0 ∀j), then in expectation zij coincides with

νj: E[zij|θ] = νj(θ). Expression (A-1) then implies that the distribution of each zijwill

be centered at the infinite mixture of the bin probabilities νj’s implied by each mixture

component F (·|θk):

E [zij|G] =
∞∑
k=1

wkνj(θk) =
∞∑
k=1

wk(F (yj|θk)− F (yj−1|θk)). (A-12)

We show that our random histogram (prior) model converges to an infinite dimensional

(prior) model approximating any subjective distribution in the topology of weak convergence.

This flexibility implies that the nonparametric prior alleviates possible misspecification is-

sues.

Introduce a latent Dirichlet process Zi,∞(·)|θi ∼ DP(φ(θi), F (·|θi)) with parameters

φ(θi) and F (·|θi), given θi fromG. This process defines a random measure on the observation

space Y of the variable of interest (inflation), that is the support set of the subjective

distribution F (·|θ), and admits the equivalent stick breaking representation

Zi∞(y) =
∞∑
j=1

wijI{yij ≤ y} (A-13)

where yij j = 1, 2, . . . are i.i.d. random variables with common distribution F (·|θi) and wij

j = 1, 2, . . . are obtained by using a sequence of i.i.d. Be(1, φ(θi)) random variables.

Proposition 1. If %j = 0 for j = 1, . . . , J , the Bayesian model

zi|G
ind∼ hG(z), i = 1, . . . , n

G ∼ DP(ψ,G0)
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where zi = (zi1, . . . , ziJ) admits the following stochastic representation:

(zi1, . . . , ziJ) := (Zi,∞(y1), Zi,∞(y2)− Zi,∞(y1), . . . , 1− Zi,∞(yJ−1)) i = 1, . . . , n

Zi,∞
ind∼ DP(φ(θi), F (·|θi)) i = 1, . . . , n

θi
i.i.d.∼ G i = 1, . . . , n

G ∼ DP(ψ,G0).

The previous Proposition suggests the following interpretation: given the true subjective

probability distribution F (·|θi) of the i-th forecaster and its level of noise φ(θi), the forecaster

reports the weights (zi1, . . . , ziJ) corresponding to the increments of a “noisy” version Zi,∞ of

F (·|θi). This “noisy” version is the CDF obtained by a Dirichlet process with base measure

F (·|θi) and concentration parameter φ(θi).

By (A-13), the latent Dirichlet process Zi,∞ is a random discrete CDF with infinite

number of discontinuity points. To exemplify we depict Zi,∞ by the red stepwise line in

Figure A-1. Despite of its discreteness, the process Zi,∞ ensures that our prior model gives

positive probability to any weak neighbourhood of any distribution defined on the support set

of F (·|θi). A combination of Proposition 1 and Theorem 3.2.4 of Ghosh and Ramamoorthi

(2003) gives the following result.

Corollary 1. Assume that Y ⊂ R is the support set of F (·|θ) for any θ. Let F (·) be a

distribution function with support subset of Y , then P ({Zi,∞ ∈ UF}) > 0 for any weak

neighbourhood UF of F (·).

The random process Zi∞ can be seen as the limit of the histograms zi when the number of

bins goes to infinity. To show this formally, we associate the random histogram zi to a random

CDF ZiJ . For any J we consider the partition PJ = {yJ0 = −∞ < yJ1 < . . . < yJJ = +∞}
and define the following one-to-one mapping between zi and the CDF ZiJ . Without loss

of generality, we assign to the middle point of each interval the bin probability mass, and

account for the two open bins (first and last) by introducing two auxiliary points yJ−, y
J
+,

such that −∞ < yJ− < y1 < yJ−1 < yJ+ < +∞. With this position we define the process

Zi,J(y) (black line in Figure A-1):

ZiJ(y) =



0 if y < yJ−

zi1 if yJ− ≤ y < (yJ1 + yJ2 )/2

zi1 + · · ·+ zij if y ∈ [(yJj−1 + yJj )/2, (yJj + yJj+1)/2) for 2 < j ≤ J − 2

zi1 + · · ·+ zi J−1 if y ∈ [(yJJ−2 + yJJ−1)/2, yJ+)

1 if y ≥ yJ+
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yy− y1 y2 y3 . . . yJ−2 yJ−1 y+

ZiJ(y),Zi,∞(y)

zi1

zi2 + zi1

zi3 + zi2 + zi1

zi J−1 + . . .+ zi1

1

Figure A-1: Mapping between zij, j = 1, . . . , J , ZiJ(y) and Zi,∞(y).

The next theorem shows that ZiJ converges to Zi,∞ with probability one in the topology

of the weak convergence. Moreover, under continuity assupmtions, the asymptotic mean of

ZiJ , conditionally on θi, coincides with the true subjective distribution. Note that, condition-

ally on θi, the mean of Zi,∞ is the true subjective distribution, i.e. E[Zi,∞(·)|θi] = F (·|θi).

Theorem 2. Assume that %j = 0 for all j and the sequence of partitions (PJ)J is such that

y1 → −∞, yJ−1 → +∞ and max{|yj+1 − yj| : 1 ≤ j ≤ J − 2} → 0 for J → +∞. Then,

P{ lim
J→+∞

ZiJ(y) = Zi,∞(y) for any y point of continuity of Zi,∞} = 1.

If F (·|θi) is a continuous CDF, then

lim
J→+∞

E[ZiJ(y)|θi] = E[Zi,∞(y)|θi] = F (y|θi) a.s.

C.B Further asymptotics

C.B.1 Posterior consistency

If %j = 0 for j = 1, . . . , J , i.e. forecasters give non-zero probability to each bin, H is the

set densities (absolutely continuous respect to the Lebesgue measure) on ∆J , that is with
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probability one zj > 0 for all j. In this case, Kullback-Leibler divergence between two

distribution h0, g on ∆J is easily defined as

KL(h0, g) :=

∫
Z
h0(z) log

(h0(z)

g(z)

)
dz.

As a corollary of the main theorem, we get a simpler result for the case in which %j(θ) = 0

for all j = 1, . . . , J . In this case M∗ is replaced by the set M of finite mixtures of

h(z|θ) =

∏J
j=1 Γ(φ(θ)νj(θ))

Γ
(∑J

j=1 φ(θ)νj(θ)
) J−1∏

j=1

z
φ(θ)νj(θ)−1
j

(
1−

J−1∑
j=1

zj

)φ(θ)νJ (θ)−1

.

and H∗0 by the set H0 of densities on ∆J that can be approximated in the Kullback-Leibler

sense by densities in M, i.e.

H0 = {h0 density on ∆J : ∀ ε > 0 ∃ g ∈M s.t. KL(h0, g) ≤ ε }.

Theorem 3. Let Θ be an open subset of Rm for some m and %j(θ) = 0 for all j = 1, . . . , J .

Assume that θ 7→ (φ(θ)ν1(θ), . . . , φ(θ)νJ(θ)) is a continuous function on RJ
+ such that

φ(θ)νj(θ) > 0 for every j = 1, . . . , J . If G0 has full support, then the posterior is weakly

consistent at any density h0 in H0 such that∫
∆J

∣∣∣∣∣log

(
J−1∏
j=1

zj

(
1−

J−1∑
j=1

zj

))∣∣∣∣∣h0(z)dz < +∞. (A-14)

Remark 1. If %j(θ) = 0 for all j = 1, . . . , J , φ(θ) = φ, and a mixture of normal distributions

is assumed for the subjective distribution, that is

F (y|θ) =
M∑
i=1

ωiΦ(y|µi, σ2
i ) (A-15)

then the parameter vector is θ = (µ1, . . . , µM , σ
2
1, . . . , σ

2
M , ω1, . . . , ωM , φ). If G0 has full

support, then the posterior is weakly consistent at any h0 in H0 satisfying (A-14). Indeed,

in this case (φν1(θ), . . . , φνJ(θ)) is a continuous function on RJ
+ and φνj(θ) > 0 for every

j = 1, . . . , J .

The next Proposition gives some conditions ensuring that any continuous density func-

tion belongs to H0.

Proposition 2. Assume %j(θ) = 0 for all j = 1, . . . , J and that θ 7→ (φ(θ)ν1(θ), . . . , φ(θ)νJ(θ))

is a continuous function on RJ
+ such that φ(θ)νj(θ) > 0 for every j = 1, . . . , J . If for every

a = (a1, . . . , aJ) ∈ [1,+∞)J and δ > 0, there is θδ in Θ such that ‖a − aδ‖∞ ≤ δ with

aδ = φ(θδ)(ν1(θδ), . . . , νJ(θδ)), then any continuous density function on ∆J belongs to H0.
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Remark 2. Note that combining Theorem 3 and Proposition 2 one gets that, under the

assumptions of Proposition 2, if G0 has full support, then the posterior is weakly consistent

at any h0 which is continuous on ∆J and satisfies (A-14). An example in which all the

conditions of Proposition 2 are met is the fully nonparametric case

F (y|θ) =
J∑
j=1

ϕjIAj
(y) (A-16)

where Aj = [yj,+∞), j = 1, . . . , J − 1, AJ = [y+,+∞] and νj(θ) = ϕj, j = 1, . . . , J .

Conditions in Proposition 2 are satisfied also in the Gaussian mixture case of (A-15) with

M = J − 1.

C.B.2 Posterior consistency of the consensus distribution

The aggregate subjective distribution, also known as consensus distribution, is defined as

F̄ (y) =
1

n

n∑
i=1

Fi(y)

where Fi(y) is the forecast-specific subjective probability. In what follows, Fn+1 denotes the

posterior predictive distribution of y, defined as

Fn+1(y) := P{yn+1 ≤ y|zi, i = 1, . . . , n}.

The next proposition shows the connection between the two quantities in our model.

Proposition 3. The distributions F̄ and Fn are related by

Fn+1(y) =
n

n+ ψ0

F̄ (y) +
ψ0

n+ ψ0

∫
F (y|θ)G0(dθ).

Using the previous relation one obtain a useful asymptotic properties of the consensus

distribution.

Proposition 4. Under the same assumptions of Theorem 3,

lim
n→+∞

(
Fn+1(yi)− Fn+1(yi−1)

)
= lim

n→+∞

(
F̄ (yi)− F̄ (yi−1)

)
=

∫
zih0(z)dz a.s.

for i = 1, . . . , J . Hence, if there exists F ∗ such that

∫
zih0(z) = F ∗(yi)− F ∗(yi−1), then

lim
n→+∞

Fn+1(yi) = lim
n→+∞

F̄ (yi) = F ∗(yi) a.s..
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As in Subsection C.A, we consider set of nested partitions PJ = {yJ0 = −∞ < yJ1 <

. . . < yJJ = +∞} in such a way PJ+1 is a refinement of PJ . We assume that observations

zJ1 , . . . , z
J
n are available with a “true” distribution h0 = hJ0 inM, i.e. h0(z) =

M∑
i=1

wi,0h(z|θi,0)

for suitable integer M , positive weights (w1,0, . . . , wM,0) and parameters θ1,0, . . . ,θM,0 in Θ.

Note that with these hypotheses zJ1 , . . . , z
J
n are consistent in J , that is if J ′ > J then

zJi =
∑
j∈I(i)

zJ
′

j if the i-th bin in PJ correspond the the union of the bins j ∈ I(i) in PJ ′ . This

allows to consider limit jointly in the number of observations (n→ +∞) and in the number

of bins (J → +∞). Note also that for every J and every bin (yi−1, yi] in PJ∫
zih

J
0 (z) = F ∗(yi)− F ∗(yi−1).

for

F ∗(y) :=
M∑
i=1

wi,0F (y|θi,0).

Proposition 5. In the setting described above, under the same assumptions of Theorem 2

on PJ , then

lim
J→+∞,n→+∞

Fn+1(y) = lim
J→+∞,n→+∞

F̄ (y) = F ∗(y) a.s.

for every y point of continuity of F ∗.

D Proofs

D.A Proofs of Theorem 1 and 3

The proof of Theorem 1 is based on an application of Theorem 1 and Lemma 3 Wu and

Ghosal (2009b,a). In order to prove Theroem we need a slight generalization of these results.

For the shake of clarity we state and prove this generalization.

In what follows, we denote with supp(µ) the weak support of a probability measure µ.

We assume that X0 is a subset the finte set X = {ξ ∈ {0, 1}J : |ξ| < J}. Let Z be the

sample space, i.e. the set of all the pairs (ξ, zξ) where ξ = (ξ1, . . . , ξJ), ξi = I{zi = 0} and

zξ are the non-null elements of z. In what follows we assume that zξ takes values in an open

subset Zξ of RJ−|ξ|−1. In our application Zξ = ∆J−|ξ|. On the sample space Z, one defines

the σ-finte measure λ(dz) = c(dξ) ⊗ Lξ(dzξ) where c is the counting measure on X and,
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given ξ, Lξ is the Lebesgue measure on Zξ ⊂ RJ−|ξ|−1. Let H be the set of all the densities

with respect to λ and note that the densities g factorize as g(z) = g(ξ)g(zξ|ξ). We also

assume that the kernel h(z|θ) factorizes in the same way, i.e.

h(z|θ) = h(ξ|θ)h(zξ|ξ,θ).

Finally, given a probability measure G on Θ, we write

hG(z) =

∫
Θ

h(z|θ)G(dθ). (A-17)

and we assume that Π is the prior on H induced by the map (A-17) when G has prior Π̂.

In our application, hG(z) is given by (5) and Π̂ is the Dirichlet process prior DP(ψ,G0).

Given two densities h0 and g in H the Kullback-Leibler divergence between h0 and g is

defined as

KL(h0, g) =

∫
Z
h0(ξ, z) log

(h0(ξ, z)

g(ξ, z)

)
dλ.

Hence, writing h0(z) = h0(ξ)h0(zξ|ξ) and g(ξ, z) = g(ξ)g(zξ|ξ), by Fubini Theorem one

can re-arrange the previous expression as∑
ξ∈X

h0(ξ)

∫
Zξ

h0(zξ|ξ) log
(h0(zξ|ξ)h0(ξ)

g(zξ|ξ)g(ξ)

)
dzξ

=
∑
ξ∈X

h0(ξ)
(

log
(h0(ξ)

g(ξ)

)
+

∫
Zξ

h0(zξ|ξ) log
(h0(zξ|ξ)

g(zξ|ξ)

)
dzξ

)
.

where for simplicity we write Lξ(dzξ) simply as dzξ

Theorem 4. Let Θ be a Polish space and h0 a density in H. If for any ε > 0 there is a

probability measure Gε ∈ supp(Π̂) and a closed set Dε in Θ such that

(H1) KL(h0, hGε) =
∑
ξ∈X

h0(ξ)

∫
Zξ

log
( h0(zξ|ξ)h0(ξ)

hGε(zξ|ξ)hGε(ξ)

)
h0(zξ|ξ, )dzξ < ε;

(H2) Dε contains supp(Gε) in its interior and for every ξ∫
Zξ

log
( hGε(zξ|ξ)hGε(ξ)

infθ∈Dε h(zξ|ξ,θ)h(ξ|θ)

)
h0(zξ|ξ)dzξ < +∞;

(H3) inf
zξ∈Cξ

inf
θ∈Dε

h(ξ|θ)h(zξ|ξ,θ) > 0 for every ξ and every compact set Cξ in Zξ;

(H4) {θ 7→ h(ξ|θ)h(zξ|ξ,θ) : zξ ∈ Cξ} is uniformly equicontinuous on Dε, for every ξ and

every compact set Cξ in Zξ;
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then Π{KL(h0, hG) ≥ ε} > 0 for every ε > 0 and hene Π is weakly consistent at h0.

Assumption (H1) corresponds to (A1) in Theorem 1 of Wu and Ghosal (2009b). As-

sumptions (H2)-(H3) correspond to assumptions (A7)-(A8) of Lemma 3 of Wu and Ghosal

(2009b), while (H4) is slightly different from the original assumption (A9), see Wu and Ghosal

(2009a). The theorem reduces to Theorem 1 and Lemma 3 of Wu and Ghosal (2009b) when

X0 is the single point ξ = (0, . . . , 0).

Proof of Theorem 4. One has

KL(h0, hG) = KL(h0, hGε) +
∑
ξ∈X

h0(ξ)

∫
∆J−|ξ|

log
(hGε(zξ|ξ)hGε(ξ)

hG(zξ|ξ)hG(ξ)

)
h0(zξ|ξ)dzξ

≤ ε+
∑
ξ∈X

h0(ξ)

∫
∆J−|ξ|

log
(hGε(zξ|ξ)hGε(ξ)

hG(zξ|ξ)hG(ξ)

)
h0(zξ|ξ)dzξ =: ε+ Aε(G).

If we show that there is an open neighbourhood V of Gε such that for every G in V one has

Aε(G) ≤ ε, then Π{KL(h0, hG) ≥ 2ε} > 0 for every ε > 0. To prove the claim, for every ξ

by (H2) we find a compact set Cξ such that∫
Cc

ξ

log
( hGε(zξ|ξ)hGε(ξ)

infθ∈Dε h(zξ|ξ,θ)h(ξ|θ)

)
h0(zξ|ξ)dzξ ≤

ε

4

and ∫
Cc

ξ

h0(zξ|ξ)dzξ ≤
ε

4 log(2)
.

Let V0 := {G : G(Dε) > 1/2}. Since Gε(Dε) = 1, by Portmanteau Theorem V is an open

neighbourhood of Gε. Now

hG(ξ, zξ) =

∫
Dε

h(ξ, zξ|θ)G(dθ) ≥ inf
θ∈Dε

h(ξ|θ)h(zξ|ξ,θ)G(Dε),

hence, for every G in V1,∫
Cc

ξ

log
(hGε(ξ, zξ)

hG(ξ, zξ)

)
h0(ξ, zξ)dzξ

≤
∫
Cc

ξ

log
( hGε(ξ, zξ)

infθ∈Dε h(ξ|θ)h(zξ|ξ,θ)

)
h0(zξ|ξ)dzξ + log(2)

∫
Cc

ξ

h0(zξ|ξ)dzξ ≤
ε

2
.

(A-18)

By condition (H4), for every ξ there are z
(i)
ξ ∈ Cξ i = 1, . . . ,m, such that for every zξ ∈ Cξ

there is i for which

sup
θ∈Dε

|h(ξ|θ)h(zξ|ξ,θ)− h(ξ, z
(i)
ξ |θ)| ≤ cε

12
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where c := inf
zξ∈Cξ

inf
θ∈Dε

h(ξ|θ)h(zξ|ξ,θ) > 0 by (H3). Since Gε(∂Dε) = 0, the set

Vξ := {G :
∣∣∣ ∫

Dε

h(ξ, z
(i)
ξ |θ)Gε(dθ)−

∫
Dε

h(ξ, z
(i)
ξ |θ)G(dθ)

∣∣∣ < cε

12
; i = 1, . . . ,m}

is a weak neighbourhood of Gε. Hence, for G in Vξ∣∣∣ ∫
Dε

h(ξ, zξ|θ)Gε(dθ)−
∫
Dε

h(ξ, zξ|θ)G(dθ)
∣∣∣ ≤ cε

4
(A-19)

Since supp(Gε) ⊂ Dε,∫
Cξ

log
(hGε(ξ, zξ)

hG(ξ, zξ)

)
h0(zξ|ξ)dzξ ≤

∫
Cξ

log
(∫

Dε
h(ξ, zξ|θ)Gε(dθ)∫

Dε
h(ξ, zξ|θ)G(dθ)

)
h0(zξ|ξ)dzξ.

Hence, using log(x+ 1) ≤ x and (A-19), for G in V0 ∩ Vξ one obtains∫
Cξ

log
(hGε(ξ, zξ)

hG(ξ, zξ)

)
h0(zξ|ξ)dzξ ≤

ε

2
. (A-20)

At this stage, combining (A-18) and (A-20), one obtains that Aε(G) ≤ ε for every G in

V = V0 ∩ (∩ξVξ).

We can now prove both Theorem 1 and Theorem 3. We start with the second theorem

because the proof is easier.

Proof of Theorem 3. The proof follows from an application of Theorem 4 for X0 = {(0, . . . , 0)}.
Let

ν̃(θ) := (ν̃1(θ), . . . , ν̃J(θ)) = (φ(θ)ν1(θ), . . . , φ(θ)νJ(θ)) (A-21)

and

Zθ =

∏J
j=1 Γ(ν̃j(θ))

Γ
(∑J

j=1 ν̃j(θ)
) .

Verification of (H1) of Theorem 4. By hypothesis, for every ε > 0 there is gε(z) =
Mε∑
i=1

wi,εh(z|θi,ε) in M such that KL(h0, gε) ≤ ε. To see that (H1) is satisfied, write gε(z) =∫
h(z|θ)Gε(dθ) = hGε(z) for Gε(dθ) =

Mε∑
i=1

wi,εδθi,ε
(dθ). Now supp(Gε) = ∪Mε

i=1{θi,ε}. To

conclude recall that if Π is DP(ψ,G0) and supp(Gε) ⊂ supp(G0), then Gε ∈ supp(Π); see,

for instance, Theorem 3.2.4 of Ghosh and Ramamoorthi (2003).
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Verification of (H2) of Theorem 4. Given Gε as above, one can find a compact set Dε

in Θ such that Dε contains ∪Mε
i=1{θi,ε} = supp(Gε) in its interior.

Now

Iε(z) := inf
θ∈Dε

h(z|θ)

= inf
θ∈Dε

1

Zθ

J−1∏
j=1

z
ν̃j(θ)−1
j

(
1−

J−1∑
j=1

zj

)ν̃j(θ)−1

≥ C1,ε

J−1∏
j=1

z
µj,ε−1
j

(
1−

J−1∑
j=1

zj

)µJ,ε−1

=: I∗ε (z)

where C1,ε = inf
θ∈Dε

Z−1
θ , µj,ε := sup{ν̃j(θ) : θ ∈ Dε}. Now one has that C1,ε > 0 and µj,ε > 0,

since Dε is compact and the νj(θ)s are continuous and strictly positive.

On the one hand hGε(z) ≥ Iε(z) and hence log(hGε(z)/Iε(z)) ≥ 0, on the other hand∫
log
(hGε(z)

Iε(z)

)
h0(z)dz ≤

∫
log
(hGε(z)

I∗ε (z)

)
h0(z)dz

≤
∫ ∣∣∣∣∣∣∣log

 gε(z)∏J−1
j=1 z

µj,ε−1
j

(
1−

∑J−1
j=1 zj

)µJ,ε−1


∣∣∣∣∣∣∣h0(z)dz + | log(C1,ε)|.

Since

C2,ε

J−1∏
j=1

z
Aj,ε−1
j

(
1−

J−1∑
j=1

zj

)AJ,ε−1

≤ gε(z) ≤ C3,ε

J−1∏
j=1

z
Bj,ε−1
j

(
1−

J−1∑
j=1

zj

)BJ,ε−1

for suitable constants C2,ε, C3,ε, A1,ε, . . . , B1,ε, . . . , BJ,ε, it follows that∣∣∣∣∣∣∣log

 gε(z)∏J−1
j=1 z

µj,ε−1
j

(
1−

∑J−1
j=1 zj

)µJ,ε−1


∣∣∣∣∣∣∣ ≤ C4,ε

[
1 +

J−1∑
j=1

| log(zj)|+ | log(1−
J−1∑
j=1

zj)|

]

≤ C4,ε

[
1 +

∣∣∣∣∣log

(
J−1∏
j=1

zj

(
1−

J−1∑
j=1

zj

))∣∣∣∣∣
]

Combining all the estimates, one gets∫
log
(hGε(z)

Iε(z)

)
h0(z)dz ≤ C5,ε

[
1 +

∫ ∣∣∣∣∣log

(
J−1∏
j=1

zj

(
1−

J−1∑
j=1

zj

))∣∣∣∣∣h0(z)dz

]
< +∞

by assumption (A-14). Hence

0 <

∫
log
( hGε(z)

infθ∈Dε h(z|θ)

)
h0(z)dz < +∞.
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Verification of (H3) of Theorem 4. It follows immediately that, for every compact set C

in the open simplex ∆J ,

inf
z∈C

inf
θ∈Dε

h(z|θ) ≥ inf
z∈C

I∗ε (z)

and the right hand side is strictly positive.

Verification of (H4) of Theorem 4. Under the hypotheses, the function (θ, z) 7→ h(z|θ)

is continuous and hence uniformly continuous on the compact set C × Dε. It follows that

the family {(θ, z) 7→ h(z|θ) : z ∈ C} is uniformly equicontinuous on Dε.

Proof of Theorem 1. The proof consists in an application of Theorem 4 for X0 = X and

follows the same line of the proof of Theorem 3. In the present case, everything has an extra

dependence on the fixed ξ in X . In place of Iε(z) one has

Iε(zξ|ξ) := inf
θ∈Dε

1

c(θ)

J∏
j=1

%j(θ)ξj(1− %j(θ))1−ξj 1

Zθ(ξ)

∏
j∈J ∗

z
ν̃j(θ)−1
j

where

Zθ(ξ) =

∏
j∈J ∗(ξ) Γ(ν̃j(θ))

Γ
(∑

j∈J ∗ ν̃j(θ)
) .

Moreover,

Iε(zξ|ξ) ≥ C1,ε(ξ)
∏
j∈J ∗

z
µj,ε−1
j =: I∗ε (zξ|ξ)

where

C1,ε(ξ) = inf
θ∈Dε

1

c(θ)

J∏
j=1

%j(θ)ξj(1− %j(θ))1−ξjZ−1
θ (ξ),

and µj,ε := sup{ν̃j(θ) : θ ∈ Dε}. Also in this case, C1,ε > 0 and µj,ε > 0, since Dε is compact,

νj(θ) and %j(θ) are continuous, 0 < %j(θ) < 1 and νj(θ) > 0, j = 1, . . . , J . Finally,

C2,ε(ξ)
∏
j∈J ∗

z
Aj,ε−1
j ≤ hGε(ξ, z) ≤ C3,ε(ξ)

∏
j∈J ∗

z
Bj,ε−1
j

for suitable constants C2,ε(ξ), C3,ε(ξ), A1,ε, . . . , B1,ε, . . . , BJ,ε. With this minor modifications,

the verification of (H1) and (H2) is exactly as in the proof of Theorem 3. Assumption (H3)

is true since

inf
zξ∈Cξ

inf
θ∈Dε

h(ξ|θ)h(zξ|θ) ≥ inf
z∈Cξ

I∗ε (z|ξ)
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and the right hand side is strictly positive by the assumptions on the νj(θ)s and %j(θ)s.

Analogously,

(θ, zξ) 7→ h(ξ|θ)h(zξ|θ)

is uniformly continuous on the compact set Cξ ×Dε and hence (H4) follows.

D.B Proof of Proposition 2

The proof of Proposition 2 is divided in various Lemmata. For the sake of notational sim-

plicity set

D(z; a1, . . . , aJ) =
Γ
(∑J

j=1 aj

)
∏J

j=1 Γ(aj)

J−1∏
j=1

z
aj−1
j

(
1−

J−1∑
j=1

zj

)aj−1

.

Note that

h(z|θ) = D(z; ν̃(θ))

where ν̃(θ) is defined in (A-21).

Lemma 1. [Barrientos et al. (2015)] Let g0 be a continuous density on ∆J . Then, for every

ε > 0 there is a density gε(z) =
Mε∑
i=1

qi,εD(z; ai,1,ε, . . . , ai,J,ε) where ai,j,ε ≥ 1 for every i and

j, such that

‖g0 − gε‖∞ ≤ ε.

Lemma 2. Let a = (a1, . . . , aJ) ∈ [1,+∞)J . If for any δ > 0 there is θδ ∈ Θ such that

‖a− ν̃(θδ)‖∞ ≤ δ then for any ε > 0 there is θε ∈ Θ such that

‖D(·; a1, . . . , aJ)−D(·; ν̃1(θε), . . . , ν̃J(θε))‖∞ ≤ ε.

Proof. The Proof is left to the reader.

Lemma 3. Assume that, for every a = (a1, . . . , aj) ∈ [1,+∞)J and every δ > 0 there is

θδ ∈ Θ such that ‖a − ν̃(θδ)‖∞ ≤ δ. Then, for every continuous density g0 on ∆J and for

every ε > 0, there is a density g̃ε(z) =
Mε∑
i=1

qi,εD(z; ν̃(θi,ε)) in M such that

‖g0 − g̃ε‖∞ ≤ ε.
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Proof. By Lemma 1, there is a density gε(z) =
Mε∑
i=1

qi,εD(z; ai,1,ε, . . . , ai,J,ε) where ai,j,ε ≥ 1

for every i and j, such that ‖g0 − gε‖∞ ≤ ε/2. Now, by Lemma 2, there are θi,ε such

that ‖D(·; ai,1,ε, . . . , ai,J,ε) − D(·; ν̃1(θi,ε), . . . , ν̃J(θi,ε))‖∞ ≤ ε/2. Hence, setting g̃ε(z) :=
Mε∑
i=1

qi,εD(z; ν̃1(θi,ε), . . . , ν̃J(θi,ε)), one gets

‖g0 − g̃ε‖∞ ≤‖g0 − gε‖∞

+
M∑
i=1

qi‖D(·; ai,1,ε, . . . , ai,J,ε)−D(·; ν̃1(θi,ε), . . . , ν̃J(θi,ε))‖∞ ≤ ε.

Lemma 4. For every densities g1 and g2 in ∆J

KL(g1, g2) ≤ supz |g1(z)− g2(z)|2

infz g2(z)

Proof. By Jensen inequality

KL(g1, g2) ≤ log

(∫
g2

1

g2

)
.

Now, since log(1 + x) ≤ x for every x > 0

log

(∫
g2

1

g2

)
= log

(∫ ((g1 − g2)2

g2

+ 1
))
≤
∫

(g1 − g2)2

g2

≤ supz |g1(z)− g2(z)|2

infz g2(z)

Proof of Proposition 2. We need to prove that, if h0 is a continuous density on ∆J , then, for

every η > 0, there is a density gη in M such that

KL(h0, gη) ≤ η.

Let hε(z) = max(ε, h0(z))C−1
ε where Cε :=

∫
max(ε, h0(z))dz ≤ 1 + ε. Clearly hε > ε and

h0 ≤ Cεhε. Hence, by Lemma 5.1. in Ghoshal et al. (1999), for any density g

KL(h0, g) ≤ (2 + ε) log(1 + ε) + (1 + ε)[KL(hε, g) +
√
KL(hε, g)]. (A-22)

By Lemma 3 there is a density g̃ε in M such that ‖hε − g̃ε‖∞ ≤ ε/2. From the previous

inequality it follows that g̃ε ≥ hε − ε/2 ≥ ε/2. Hence, by Lemma 4

KL(hε, g̃ε) ≤ ε.

The thesis follows by taking η = (2 + ε) log(1 + ε) + (1 + ε)(ε+
√
ε) and gη = g̃ε.
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D.C Proofs of Proposition 1 and Theorem 2

Proof of Proposition 1. Recall that since Zi,∞(dy) is a Dirichlet process with concentra-

tion parameter φi and base measure F (dy|θi), then for any finite partition B1, . . . , BJ of

R it follows that (Zi,∞(B1), . . . , Zi,∞(BJ)) has a Dirichlet distribution on ∆J of parame-

ters (φ(θi)F (B1|θi), . . . , φ(θi)F (BJ |θi). Hence, the random vector zi = (zi1, . . . , ziJ) :=

(Zi,∞(y1)−Zi,∞(y0), . . . , Zi,∞(yJ)−Zi,∞(yJ−1)) has the Dirichlet distribution on the simplex

∆J of parameters (φ(θi)ν1(θi), . . . , φ(θi)νJ(θi)). When %j(·|ε) = 0 for j = 1, . . . , J , our

Bayesian mode is

(zi1, . . . , ziJ) ∼ DirJ(φ(θi)ν1(θi), . . . , φ(θi)νJ(θi))

θi
i.i.d.∼ G

G ∼ DP(ψ,G0),

and the thesis follows.

Proof of Theorem 2. The thesis is easily deduced from Proposition 1.

D.D Proofs of Propositions 3 and 4

Proof of Proposition 3. Note that

Fn+1(y) = E[F (y|θ∗dn+1
)|zi, i = 1 . . . , n]

which yields

E[F (y|θ∗dn+1
)|zi, i = 1 . . . , n] = E[E[F (y|θ∗dn+1

)|θ∗di , zi, i = 1 . . . , n]|zi, i = 1, . . . , n]

= E[E[F (y|θ∗dn+1
)|θ∗di , i = 1, . . . , n]|zi, i = 1, . . . , n]

By Proposition 1, θi := θ∗di are drawn form a DP(ψ,G0), hence the predictive distribution

of θ∗dn+1
given θ∗di , i = 1, . . . , n is

Gn+1(·) =
n

n+ ψ

n∑
i=1

δθ∗di
(dθ) +

ψ

n+ ψ
G0(·),

Hence by the law of iterated expectations

E[F (y|θ)|θ∗di , i = 1 . . . , n] =

∫
F (y|θ)Gn+1(dθ)

=
n

n+ ψ

1

n

n∑
i=1

F (y|θdi) +
ψ

n+ ψ

∫
F (y|θ)G0(dθ)
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Since

E
[ 1

n

n∑
i=1

F (y|θdi)|zi, i = 1, . . . , n
]

= F̄ (y)

we obtain the result

Fn+1(y) := P{Yn+1 ≤ y|zi, i = 1 . . . , n} =
n

n+ ψ
F̄ (y) +

ψ

n+ ψ

∫
F (y|θ)G0(dθ)

Proof of Proposition 4. Recall that posterior consistency yields predictive consistency, see

e.g. Theorem 4.2.1 in Ghosh and Ramamoorthi (2003) since φ(z) = zi is a bounded and

continuous function on the simplex the thesis follows.
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E Additional Results

E.A Priors

Figure A-2: Noise and zero probability

Noise around ν α(ν, ε) =

∫ ε

0

b(x|ν, r)dx as a function of ν

Note: The left panel of Figure A-2 shows the 50 and 90 percent a-priori coverage intervals for the noise associated with three
different values of ν: 0.1, 0.6 and 0.3.

E.B Survey design

Figure A-3: Survey bins

Output growth Inflation

Note: Solid lines show the survey bins. Vertical dotted lines highlight years when bins changed.
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Figure A-4: Number of respondents for H1 Output growth surveys

Q1 Q2

Q3 Q4
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Figure A-5: SPF survey participation by respondent

Note: The light gray crosses indicate when respondents participate in a survey, and are connected by a thin dotted gray line
whenever the respondent appears in consecutive surveys. Respondents are indexed by a number increasing in the year they
joined the survey (y axis).
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Figure A-6: Percentage of respondents for H2 Output growth surveys placing positive

probability on either one open bin (solid line) or both (dash-and-dotted line)

Q1 Q2

Q3 Q4
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Figure A-7: Percentage of respondents for H2 inflation surveys placing positive probability

on either one open bin (solid line) or both (dash-and-dotted line)

Q1 Q2

Q3 Q4
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E.C Heterogeneity in subjective uncertainty

Figure A-8: Subjective uncertainty by individual respondent: Q1 survey

H1Q1 H2Q1
Output growth

Inflation

Note: Each panel displays the posterior mean of the standard deviation of the subjective predictive distribution by individual
respondent (light gray crosses, connected by thin gray line whenever the respondent appears in consecutive surveys), and the
cross-sectional average of the individual standard deviations (dashed black line). Top panels: Output growth projections;
bottom panels: inflation projections. Left column: current year projections; left column: following year projections.
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Figure A-9: Subjective uncertainty by individual respondent: Q3

H1Q3 H2Q3
Output growth

Inflation

Note: Each panel displays the posterior mean of the standard deviation of the subjective predictive distribution by individual
respondent (light gray crosses, connected by thin gray line whenever the respondent appears in consecutive surveys), and the
cross-sectional average of the individual standard deviations (dashed black line). Top panels: Output growth projections;
bottom panels: inflation projections. Left column: current year projections; left column: following year projections.
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Figure A-10: Subjective uncertainty by individual respondent: Q4

H1Q4 H2Q4
Output growth

Inflation

Note: Each panel displays the posterior mean of the standard deviation of the subjective predictive distribution by individual
respondent (light gray crosses, connected by thin gray line whenever the respondent appears in consecutive surveys), and the
cross-sectional average of the individual standard deviations (dashed black line). Top panels: Output growth projections;
bottom panels: inflation projections. Left column: current year projections; left column: following year projections.
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Figure A-11: Subjective uncertainty by individual respondent: IQRs, Q2 survey

H1Q2 H2Q2
Output growth

Inflation

Note: Each panel displays the posterior mean of the interquartile range of the subjective predictive distribution by individual
respondent (light gray crosses, connected by thin gray line whenever the respondent appears in consecutive surveys), and the
cross-sectional average of individual interquartile ranges (dashed black line). Top panels: Output growth projections; bottom
panels: inflation projections. Left column: current year projections; left column: following year projections.
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Figure A-12: Subjective uncertainty by individual respondent: Beta, Q2 survey

H1Q2 H2Q2
Output growth

Inflation

Note: Each panel displays the standard deviation of the subjective predictive distribution by individual respondent when this
is estimated using least-squares under the beta parametric assumption (light gray crosses, connected by thin gray line whenever
the respondent appears in consecutive surveys), and the cross-sectional average of the individual standard deviations (dashed
black line). Top panels: Output growth projections; bottom panels: inflation projections. Left column: current year projections;
left column: following year projections.
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Figure A-13: Mean predictions by individual respondent: Q1 survey

H1Q1 H2Q1
Output growth

Inflation

Note: Each panel displays the posterior mean of the mean of the subjective predictive distribution by individual respondent
(light gray crosses, connected by thin gray line whenever the respondent appears in consecutive surveys), and the cross-
sectional average of the individual means (dashed black line). Top panels: Output growth projections; bottom panels: inflation
projections. Left column: current year projections; left column: following year projections.
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Figure A-14: Mean predictions by individual respondent: Q2 survey

H1Q1 H2Q1
Output growth

Inflation

Note: Each panel displays the posterior mean of the mean of the subjective predictive distribution by individual respondent
(light gray crosses, connected by thin gray line whenever the respondent appears in consecutive surveys), and the cross-
sectional average of the individual means (dashed black line). Top panels: Output growth projections; bottom panels: inflation
projections. Left column: current year projections; left column: following year projections.
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Figure A-15: Mean predictions by individual respondent: Q3 survey

H1Q1 H2Q1
Output growth

Inflation

Note: Each panel displays the posterior mean of the mean of the subjective predictive distribution by individual respondent
(light gray crosses, connected by thin gray line whenever the respondent appears in consecutive surveys), and the cross-
sectional average of the individual means (dashed black line). Top panels: Output growth projections; bottom panels: inflation
projections. Left column: current year projections; left column: following year projections.
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Figure A-16: Mean predictions by individual respondent: Q4 survey

H1Q1 H2Q1
Output growth

Inflation

Note: Each panel displays the posterior mean of the mean of the subjective predictive distribution by individual respondent
(light gray crosses, connected by thin gray line whenever the respondent appears in consecutive surveys), and the cross-
sectional average of the individual means (dashed black line). Top panels: Output growth projections; bottom panels: inflation
projections. Left column: current year projections; left column: following year projections.
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E.D Subjective uncertainty and forecast accuracy: additional re-

sults

A scale test: additional results

Figure A-17: A scale test: mean vs point predictions
Output growth Inflation

Note: Black dots correspond to OLS estimates of αq from regression (20) for q = 8, .., 1. Gray crosses correspond to OLS
estimates when the point prediction yppt−q,i is used in place of Et−q,i[yt]. Whiskers indicate 90 percent posterior coverage

intervals based on robust standard errors.
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Figure A-18: A scale test: first finals vs latest vintage
Output growth Inflation

Note: Black dots correspond to OLS estimates of αq from regression (20) for q = 8, .., 1 using first finals as a measure of actual
realizations yt. Gray crosses correspond to OLS estimates when the latest vintage is used instead. Whiskers indicate 90 percent
posterior coverage intervals based on robust standard errors.
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Figure A-19: A scale test: different samples
Output growth Inflation

1982-2018

1992-2021

1992-2018

Note: Black dots correspond to OLS estimates of αq from regression (20) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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A variation test: additional results (unweighted)

Figure A-20: A variation test—mean vs point projections
Output growth Inflation

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Gray crosses correspond to OLS
estimates when the point prediction yppt−q,i is used in place of Et−q,i[yt]. Whiskers indicate 90 percent posterior coverage

intervals based on robust standard errors.



Online appendix A-38

Figure A-21: A variation test: Regressions with fixed effects—mean vs point projections
Output growth Inflation

time fixed effects

forecaster fixed effects

time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) using time (top panels), forecaster fixed effects
(middle panels), or both (bottom panels), for q = 8, .., 1. Gray crosses correspond to OLS estimates when the point prediction
yppt−q,i is used in place of Et−q,i[yt]. Dotted gray whiskers indicate 90 percent posterior coverage intervals based on robust

standard errors.
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Figure A-22: A variation test: comparison with the generalized beta approach

Note: Black dots correspond to OLS estimates of βq from regression (21) for q = 8, .., 1 using the posterior means for Et−q,i[yt]
and σt|t−q,i from the approach in this paper. Gray crosses correspond to OLS estimates when these objects are obtained using
the generalized beta approach. Whiskers indicate 90 percent posterior coverage intervals based on robust standard errors.

Figure A-23: A variation test: first finals vs latest vintage
Output growth Inflation

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1 using first finals as a measure of
actual realizations yt. Gray crosses correspond to OLS estimates when the latest vintage is used instead. Whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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Figure A-24: A variation test: output growth; 1982-2018 sample
No fixed effects time fixed effects

forecaster fixed effects time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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Figure A-25: A variation test: inflation; 1982-2018 sample
No fixed effects time fixed effects

forecaster fixed effects time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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Figure A-26: A variation test: output growth; 1992-2021 sample
No fixed effects time fixed effects

forecaster fixed effects time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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Figure A-27: A variation test: inflation; 1992-2021 sample
No fixed effects time fixed effects

forecaster fixed effects time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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Figure A-28: A variation test: output growth; 1992-2018 sample
No fixed effects time fixed effects

forecaster fixed effects time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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Figure A-29: A variation test: inflation; 1992-2018 sample
No fixed effects time fixed effects

forecaster fixed effects time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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A variation test: Additional Results (weighted)

Figure A-30: A variation test: Mean vs Point Projections–weighted
output growth inflation

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Gray crosses correspond to OLS
estimates when the point prediction yppt−q,i is used in place of Et−q,i[yt]. Whiskers indicate 90 percent posterior coverage

intervals based on robust standard errors.
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Figure A-31: A variation test: regressions with fixed effects for both mean and point

forecasts–weighted
output growth inflation

time fixed effects

forecaster fixed effects

time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) using time (top panels), forecaster fixed effects
(middle panels), or both (bottom panels), for q = 8, .., 1. Gray crosses correspond to OLS estimates when the point prediction
yppt−q,i is used in place of Et−q,i[yt]. Whiskers indicate 90 percent posterior coverage intervals based on robust standard errors.
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Figure A-32: A variation test: output growth; 1982-2018 sample–weighted
No fixed effects time fixed effects

forecaster fixed effects time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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Figure A-33: A variation test: inflation; 1982-2018 sample–weighted
No fixed effects time fixed effects

forecaster fixed effects time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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Figure A-34: A variation test: output growth; 1992-2021 sample–weighted
No fixed effects time fixed effects

forecaster fixed effects time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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Figure A-35: A variation test: inflation; 1992-2021 sample–weighted
No fixed effects time fixed effects

forecaster fixed effects time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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Figure A-36: A variation test: output growth; 1992-2018 sample–weighted
No fixed effects time fixed effects

forecaster fixed effects time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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Figure A-37: A variation test: inflation; 1992-2018 sample–weighted
No fixed effects time fixed effects

forecaster fixed effects time and forecaster fixed effects

Note: Black dots correspond to OLS estimates of β1,q from regression (21) for q = 8, .., 1. Solid black whiskers indicate 90
percent posterior coverage intervals based on robust standard errors.
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