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Abstract
While regular exposure to infectious disease is inevitable for most preschool-aged chil-
dren, their sickness might exert important externalities on more vulnerable family mem-
bers, such as their infant siblings. We use Danish population-level administrative data
on 35 birth cohorts of children to document a striking difference in the likelihood of
severe respiratory illness by birth order: younger siblings have two to three times higher
rates of hospitalization for respiratory conditions before age one than older siblings at
the same age. The hospitalization gap is larger if the younger sibling is born during
seasons of high respiratory disease spread and for siblings with shorter birth spacing,
who are prone to close contact. These patterns suggest that the family unit is central in
virus transmission, with older children “bringing home” viruses to their younger siblings.
We then combine the birth order variation with within-municipality variation in respira-
tory disease prevalence among preschool-aged children to identify differential long-term
impacts of early-life respiratory illness between younger and older siblings. We find that
moving from the 25th to the 75th percentile in the local disease prevalence distribution
is associated with a 32.4 percent differential increase in the number of respiratory illness
hospitalizations in the first year of life for younger compared to older siblings. In the
long term, for younger relative to older siblings, we find reductions in educational at-
tainment and earnings at ages 25–32. Lastly, we find a 9.6 percent differential increase
in the likelihood of having at least one annual hospitalization for mental health-related
causes during adolescence and young adulthood for younger relative to older siblings.
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1 Introduction

Children get sick frequently, especially when they are in group childcare settings at young ages,

and during the fall and winter seasons when common viruses circulate. While regular exposure

to infectious diseases is inevitable and beneficial for training their immune systems (Holt and

Jones, 2000; M’Rabet et al., 2008; Côté et al., 2010; Van den Berg and Siflinger, 2020; Fink

et al., 2021), preschoolers’ sickness might exert important externalities within their families,

especially on younger infant siblings who are in a vulnerable period of rapid brain development

(Eppig et al., 2010; Bhalotra and Venkataramani, 2013). Yet despite the universality of this

experience among families with young children, there is limited empirical evidence quantifying

such within-family externalities.

This paper focuses on the spread of respiratory illnesses among young children and studies

the magnitudes of these externalities over the short and long-run. We use population-level

Danish administrative data covering 35 birth cohorts to study: (i) how respiratory illnesses

spread from older to younger siblings during their first year of life, when they are particularly

vulnerable to severe disease and complications, and (ii) how respiratory disease exposure

during infancy affects the younger siblings’ long-term health, human capital, and economic

outcomes.

We begin by documenting a striking disparity in the likelihood of severe respiratory disease

in early childhood by birth order. Using data on all first- and second-born siblings born in

Denmark between 1981 and 2015, we find that younger siblings have two to three times higher

rates of hospitalization for respiratory conditions during their first year of life compared to

the older siblings at the same age, and that this gap is particularly large when hospitaliza-

tions are measured in the first three months of life.1 Moreover, the hospitalization disparity

is larger if the younger sibling is born in the fall or winter, when respiratory viruses circulate

more frequently. The hospitalization gap is also larger for siblings with shorter birth spacing,

who may be more prone to close contact that facilitates virus transmission. These patterns

highlight the family unit as being central in virus transmission, and the hitherto under-studied
1Note that this finding builds on several prior studies that document that higher-order siblings have better

health outcomes at birth than first-borns (e.g., Brenøe and Molitor, 2018; Pruckner et al., 2021). Thus, it
appears that younger siblings are more susceptible to severe respiratory infection, despite having better health
at birth than their older counterparts.
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mechanism by which birth order might influence children’s longer-term outcomes—older chil-

dren “bring home” common viruses (e.g., from group childcare environments), putting their

younger siblings at heightened risk of severe respiratory illness in the first few months of life.

While younger siblings are more likely to experience severe respiratory illness in the first few

months of life than their older counterparts, the long-term impacts of this differential likelihood

of illness are ambiguous. On the one hand, the expansive literature on a wide range of adverse

shocks in early childhood documents lasting damages to human capital formation and other

measures of adult well-being (Currie and Almond, 2011; Almond et al., 2018). On the other

hand, evolutionary biology studies highlight the importance of physiological adaptation—i.e.,

that adverse shocks can lead to beneficial biological adaptations in humans (Bateson et al.,

2014; Gluckman and Hanson, 2006)—and identify a high rate of immune system learning in

the first year of life (Holt and Jones, 2000; M’Rabet et al., 2008; Côté et al., 2010). Thus,

exposure to an infectious disease in infancy may increase immunity for an individual if they

are exposed to the same virus at older ages, suggesting a potentially non-linear relationship

between early-life exposure and long-term outcomes (Van den Berg and Siflinger, 2020; Fink

et al., 2021). This type of immunity formation is particularly important for understanding

the impacts of endemic viruses to which children are exposed on a regular basis throughout

their lives.

To identify the long-term causal impacts of early-life respiratory disease exposure, we

combine the birth order variation in the likelihood of severe respiratory infection together

with variation in local disease prevalence. Local respiratory disease prevalence among chil-

dren is largely driven by highly infectious conditions, such as the Respiratory Syncytial Virus

(RSV), which spread across locations in irregular waves (Pitzer et al., 2015).2 We construct

a municipality-level index, which is designed to capture respiratory disease exposure during

each child’s first year of life from slightly older children in the community. We calculate the

number of hospitalizations for respiratory conditions per 100 children aged 13 to 71 months

in each municipality, and then assign to each child the cumulative child hospitalization rate
2As demonstrated by Pitzer et al. (2015), climatic factors—including temperature, vapor pressure, precipita-

tion, and potential evapotranspiration—are important predictors of geographic variation in RSV transmission
rates. While these factors may have impacts on long-term outcomes through channels unrelated to respiratory
disease spread (see, e.g., Isen et al., 2017a, for evidence on early-life exposure to extreme temperature), we
note that such channels are unlikely to differentially influence first versus second-born children.
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in their municipality over their first 12 months of life.3 We then use our sample of siblings

to estimate the differential effect of the disease index for younger compared to older siblings.

Our regressions control for birth order, municipality, birth year, and birth month fixed effects,

thus accounting for other differences between older and younger siblings, time-invariant dif-

ferences across municipalities that might drive differences in disease exposure, and aggregate

and seasonal trends in respiratory illness.

We show that the local respiratory disease index strongly predicts the likelihood that a

child is hospitalized for a respiratory illness during the first year of life, and that this impact

is much larger for younger relative to older siblings. We find that moving from the 25th to the

75th percentile in the disease index distribution is associated with a 0.022 differential increase

in the number of respiratory illness hospitalizations in the first year of life for younger relative

to older children, representing an additional 32.4 percent increase at the sample mean. This

effect is in part driven by a differential increase in hospitalizations for RSV, which is a mild

illness in most older children but can be extremely serious among infants.4

In the long run, increased exposure to severe respiratory illness during infancy among

second-born children impacts their health, human capital, and labor market outcomes. We

find that, for the younger siblings, moving from the 25th to the 75th percentile in the disease

index distribution exposure in the first year of life is associated with a 0.01 of a standard

deviation penalty in ninth grade Danish test scores. We also find some evidence of a delay

in high school graduation—younger siblings are 0.5 percentage points less likely to graduate

by age 20, although there is some indication that they may catch up at older ages. We see

similarly negative impacts on college graduation around ages 23–25. When it comes to adult

labor market outcomes, we find that moving from the 25th to the 75th percentile in the disease

index distribution leads to a 0.7 percent reduction in income conditional on employment at

ages 25–32 and a 0.3 percentage point decline in income percentile rank at the same ages
3If a given child has an older sibling who is between 13 and 71 months of age during their first year of life,

we exclude the older sibling from the hospitalization rate.
4In most healthy individuals, RSV causes mild, cold-like symptoms. But in infants, RSV can cause severe

respiratory infections, including bronchiolitis and pneumonia. Recent estimates suggest that approximately
14.7 per 1,000 infants under six months of age and 2.9 per 1,000 children under age five are hospitalized with
RSV every year (Rha et al., 2020). For comparison, the highest COVID-19 hospitalization rate for children
ages 0–4 so far (in January 2022, at the height of the Omicron wave) is estimated to be 0.16 per 1,000 (see:
https://gis.cdc.gov/grasp/covidnet/covid19_3.html).
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among younger relative to older siblings (and we do not find any significant impacts on the

extensive margin of labor force participation). The magnitudes of our estimated effects on

long-term earnings are comparable to the effects of an 8 percent reduction in birth weight

(Black et al., 2007) or a 7 percent increase in ambient air pollution in one’s year of birth (Isen

et al., 2017b); they are smaller than the impacts of in utero exposure to the 1918 Spanish

Influenza pandemic (Almond, 2006) or in utero exposure to a maternal influenza infection

that requires hospitalization (Schwandt, 2018).

We additionally examine the impacts of respiratory illness exposure in the first year of life

on hospitalizations for respiratory conditions in later childhood. We find that higher respira-

tory disease exposure before age one is associated with a lower likelihood of hospitalization

for all respiratory conditions at ages three to four, consistent with the hypothesis of immunity

formation.5 This protective effect disappears after age four, when infancy disease exposure

stops being associated with hospitalizations for respiratory diseases. Thus, while the protec-

tive effects of infancy exposure to respiratory diseases are limited to the first few years of

childhood, there also does not appear to be an adverse impact on respiratory health in later

childhood or early adulthood.

A likely biological mechanism for the long-term effects on human capital and labor mar-

ket outcomes that we find is the impairment of brain development during infancy (Adams-

Chapman and Stoll, 2006; Bilbo and Schwarz, 2012; O’Shea et al., 2013). As summarized by

Bhalotra and Venkataramani (2013), the biomedical literature emphasizes the importance of

fast neural development during that period coupled with a high degree of neural plasticity.

During infancy, about 85 percent of calorie intake is used for neural growth (Eppig et al.,

2010), and severe illness can both reduce calorie intake as well as divert calories away from

brain development to fighting the disease. Deverman and Patterson (2012) argue that inflam-
5At the same time, we do not observe a protective effect on the likelihood of subsequent hospitalization for

RSV. This result is consistent with RSV being only a partially immunizing disease—that is, an RSV infection
does not provide full immunity against future illness (Lambert et al., 2014; Fuentes et al., 2016). This lack of
immunity formation, combined with the fact that RSV accounts for a large share of all respiratory hospital-
izations during infancy (30 percent among second-born children), suggests that RSV might be a particularly
important driver of the adverse long-term impacts on educational and economic outcomes. Unfortunately, we
cannot measure the long-term effects of RSV illness directly, as RSV is not contained in the International
Classification of Disease version 8 (ICD-8) coding system that was used in Denmark until 1994. Thus, we
can only measure RSV exposure for cohorts born in 1994 and later, when Denmark switched to the ICD-10
system, and these cohorts are too young to measure adult outcomes through age 32 in our data.
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matory responses to illness can also directly impair brain development.6 These illness-driven

disruptions of brain development in infancy can go on to impact later-life cognitive and men-

tal health outcomes, both of which are important inputs into human capital attainment and

economic productivity (see, e.g., Bütikofer et al., 2020; Biasi et al., 2021).

To further investigate the mechanisms driving the estimated long-term impacts on adult

human capital and economic outcomes, we study mental health care utilization in adolescence

and young adulthood. We show that moving from the 25th to the 75th percentile in the

respiratory disease index distribution during the first year of life is associated with a 0.04

percentage point (9.6 percent) increase in the likelihood of experiencing any hospitalizations

with a (primary or non-primary) mental health-related diagnosis at ages 16–26, and a 0.06

percentage point (5.0 percent) increase in the likelihood of having any visits to psychiatrists at

the same ages. These mental health impacts are within the range of estimates of the impacts

of fetal and early childhood shocks on later mental health outcomes in the existing literature,

including exposure to Ramadan (Almond and Mazumder, 2011), maternal stress (Persson and

Rossin-Slater, 2018), and changes in economic conditions (Adhvaryu et al., 2019).

Lastly, we analyze heterogeneous impacts on both respiratory hospitalizations during in-

fancy and long-run outcomes along a variety of dimensions, including parental socio-economic

status, the younger sibling’s gender and health at birth, child birth spacing, and whether the

older sibling is in a childcare center. When it comes to the short-run effects on respiratory

hospitalizations, we find that the effects are disproportionately concentrated among low birth

weight younger siblings (those with birth weight less than 2,500 grams). Further, younger

male siblings experience a larger differential increase in respiratory hospitalizations than their

female counterparts, which is consistent with the “fragile male” hypothesis (i.e., the idea that

male fetuses and infants are biologically more vulnerable to various shocks and stressors, see,

e.g. McCarthy, 2019; Sanders and Stoecker, 2015; Kraemer, 2000). The effect on hospitaliza-

tions also seems to be monotonically decreasing with birth spacing—that is, younger siblings

in families with a shorter birth spacing gap have a larger differential increase in hospitaliza-

tions before age one. The estimated impact on respiratory hospitalizations is also larger in
6Medical treatment occurring during hospitalization for severe respiratory illness has the potential to addi-

tionally harm brain development, e.g., when infants are put into medically induced coma to allow for prolonged
ventilation (Vliegenthart et al., 2017).
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sibling pairs in which the older child is attending a childcare center compared to pairs in which

the older child is not. These patterns support the conjecture that intra-family spread is a key

mechanism in driving higher rates of respiratory illness among younger siblings.7

When it comes to heterogeneity in long-run impacts, we do not find evidence of significant

differences in effects on test scores or educational attainment. The adverse effects on adult

income appear to be larger among males than females, consistent with what we see for respi-

ratory hospitalizations during the first year of life. At the same time, we find that the effects

on mental health care utilization in adolescence and young adulthood are concentrated among

females. One potential explanation for this pattern could be that while respiratory disease

exposure in infancy affects underlying mental health among both genders, young women may

be more likely to seek care and treatment than young men (Pattyn et al., 2015). This dispro-

portionate use of mental health care might in turn buffer against the adverse impacts on later

economic productivity among women more than men.8

This study contributes to an expansive body of work on the human capital impacts of early

life circumstances (Barker, 1990; Currie and Almond, 2011; Black et al., 2017; Almond et al.,

2018). This literature includes estimates of the impacts of a vast range of prenatal and early

childhood factors—from economic resources (e.g., Hoynes et al., 2016; Adhvaryu et al., 2019;

Bailey et al., 2020) to nutrition (e.g., Almond and Mazumder, 2011) to environmental condi-

tions (e.g., Almond et al., 2009; Isen et al., 2017b; Black et al., 2019) to maternal stress (e.g.,

Black et al., 2016; Persson and Rossin-Slater, 2018). The literature on infectious diseases in

early childhood has focused on severe infectious diseases, such as malaria, measles, and polio,

that have been largely eliminated in high-income countries but still exist in the developing

world (Bleakley, 2010; Barreca, 2010; Cutler et al., 2010; Lucas, 2010; Venkataramani, 2012;

Chang et al., 2014; Barofsky et al., 2015; Gensowski et al., 2019; Kuecken et al., 2021; Fink

et al., 2021; Chuard et al., 2022), and on large-scale pandemics like the 1918 Spanish Flu
7Further, the heterogeneous results by birth spacing suggest that our effects are not driven by differences

in parental investments between older and younger siblings (and the potential interactions between these
investments and our disease indices). Price (2008) finds that in the U.S., the difference in parent-child quality
time between first- and second-born children is larger when the birth spacing gap is longer. Our pattern of
a monotonically decreasing effect with birth order is the opposite of what would be predicted if differential
parental time investment were the main channel.

8Given that we do not have any way to observe underlying (untreated) mental illness in our data, however,
we unfortunately cannot provide any additional empirical support for this conjecture.
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(Almond, 2006; Almond and Mazumder, 2005; Lin and Liu, 2014) and the 1957 Asian Flu

(Kelly, 2011). Schwandt (2018)’s analysis is an exception in that it focuses on the impacts

of exposure to an endemic respiratory virus—the seasonal influenza—but only during the in

utero period. Our study builds on this work by studying a range of respiratory illnesses that

circulate among young children on a regular basis, and by focusing on the first year of life

instead of the prenatal stage.9 Our novel estimates of long-term impacts of severe respira-

tory disease can inform household behaviors and cost-benefit evaluations of policies designed

to curb transmission of common viruses, including vaccination mandates, drug distribution

programs, and sick pay regulations (Bhalotra and Venkataramani, 2015; White, 2019; Pichler

and Ziebarth, 2020; Bütikofer and Salvanes, 2020; Atwood, 2022; van den Berg et al., 2023).

Our analysis further contributes to the literature on birth order and sibling spillovers,

which has documented worse human capital and life outcomes for later-born children relative

to first-borns (Black et al., 2005; De Haan, 2010; Buckles and Kolka, 2014; Brenøe and Molitor,

2018; Lehmann et al., 2018; Breining et al., 2020; Black et al., 2021). This literature typically

points to family resources and uneven parental investments as drivers of younger siblings’

disadvantage (Price, 2008). Our results suggest that the disease environment during infancy

is an additional source of disadvantage for later-born children, and that the older sibling likely

serves as a vector of transmission. Importantly, the long-term effects we measure are net of

any parental responses to the health shocks. To the extent that parents may respond to one

child’s sickness in a compensatory way—as found by Yi et al. (2015) and Daysal et al. (2020)—

the sibling differences in long-run outcomes that we find represent lower bound estimates of

the uncompensated (i.e., “biological”) impacts of respiratory illness during infancy on later

well-being.

Finally, this study is also relevant for the assessment of the costs of the COVID-19 pandemic

for young children. While children have been considered to be a low-risk group for infection
9Studies in the medical literature have analyzed the health impacts of RSV infection, with a focus on

asthma as an outcome. These studies use relatively small samples of children to correlate RSV infection (or
RSV hospitalization) with later health conditions (e.g., Kneyber et al., 2000; Korppi et al., 2004; Kusel et
al., 2007; Régnier and Huels, 2013; Zomer-Kooijker et al., 2014; Carbonell-Estrany et al., 2015). Related, a
recent study using data from Finland reports on the association between being hospitalized for any infection
at ages 0–18 and adult economic outcomes (Viinikainen et al., 2020). We are not aware of studies using quasi-
experimental designs to isolate causal impacts of early life RSV exposure, or those using population-level
administrative data.
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with the SARS-CoV-2 virus, the pandemic may have lasting and dynamic impacts on children

through its effects on other infectious diseases. Policies implemented during the pandemic—

including travel restrictions and school closures—have reduced the spread of other respiratory

viruses, such as RSV (Leung et al., 2020; Cowling et al., 2020). At the same time, the spread

of RSV and other common respiratory viruses surged in 2021 and 2022 once the restrictions

were lifted, reflecting a larger than usual susceptible population of young children who had

been shielded during the early stages of the pandemic. Our results suggest that infants with

older siblings may have benefited from the pandemic-induced muted disease spread during

the first year of the pandemic, while those born during the following two years might have

experienced stronger than usual disease exposure. Thus, the COVID-19 pandemic may have

differential long-term effects on children born before and during the pandemic through its

dynamic impacts on the spread of other infectious diseases that are more serious in early life

than COVID itself, including RSV.

2 Data and Sample

We use several population-level administrative data sets from Denmark in our analysis. These

data include individual-level records with unique personal identifiers that allow us to follow

individuals over time and to link family members to one another.

Outcomes. Our key short-run outcome is the number of hospitalizations with a primary

diagnosis of a respiratory illness during the first year of life. We measure this outcome using

the National Patient Register, which is available to us for years 1981–2016 and includes all

inpatient admissions to public and private hospitals, along with International Classification

of Disease (ICD) diagnosis and procedure codes (Lynge et al., 2011). Denmark used the

International Classification of Disease version 8 (ICD-8) coding system until 1994, and then

switched to the ICD-10 system for all years going forward.

We classify inpatient visits with the following primary diagnosis codes as respiratory

disease-related: ICD-8 codes starting with “46,” “47,” “48,” “490,” “079,” and “783”; and

ICD-10 codes starting with “B974” or “J” (excluding “J4”). In additional models, we examine

hospitalizations for RSV, using data on cohorts born in 1994 and later, which we identify with

8



ICD-10 codes J12.1 (respiratory syncytial virus pneumonia), J20.5 (acute bronchitis due to

respiratory syncytial virus), J21.0 (acute bronchiolitis due to respiratory syncytial virus), and

B97.4 (respiratory syncytial virus as the cause of diseases classified elsewhere).10

To study human capital outcomes in later life, we consider ninth grade Danish (reading) and

mathematics test scores from the Academic Achievement Register for years 2001–2019, which

we standardize within subject and test year such that they have a mean of zero and a standard

deviation of one. We also use information on the highest level of completed schooling, which

comes from the Education Register for years 1981–2019, and is drawn from administrative

school records. We study two long-run educational outcomes: indicators for having graduated

from high school and from college, respectively, measured by ages 18 through 32.

We use two registers to measure labor market outcomes. We use the Register-Based Labour

Force Statistics available for years 1980–2019 to characterize labor force participation. This

data set is based on tax records, and records the labor market status of the entire Danish

population (observed on January 1st) as of November of the preceding year (Petersson et al.,

2011). We construct an indicator equal to one if an individual is in the labor force and zero

otherwise (i.e., those who are employed and unemployed but searching are both coded as 1;

those out of the labor force are coded as 0). We also use the Income Statistics Register for

years 1980-2019 to calculate the natural log of gross personal income, converted into 2010

$USD. Lastly, we create a variable that denotes the percentile rank of an individual’s gross

personal income in the overall Danish population (i.e., not just our sample) in each birth

cohort and at each observed age. We study these labor market outcomes at ages 18 through

32.

Finally, we consider two outcomes capturing mental health care utilization at ages 16

through 26. First, we study mental health-related hospitalizations using inpatient admissions

that have either a primary or non-primary diagnosis code starting with “29,” “30,” or “31” in

ICD-8 format or “F” in ICD-10 format. Second, we use the Health Insurance Register to study

visits to psychiatrists. These data, available to us for years 1997–2015, provide information on

reimbursements to private-practice physicians – both general practitioners and specialists – for

all patient-related services covered by the national health insurance. We identify psychiatrist
10We can only measure RSV from 1994 onward (when ICD-10 was used in Denmark) because the ICD-8

system did not have any codes specific to RSV.
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visits based on the physician’s specialty code (“24” or “26”).

Control variables. We observe a rich set of child and parent characteristics, using the

previously described registers as well as the Population Register and the Birth Register. The

Population Register provides a snapshot of demographics on all Danish residents as of January

1st of each year (Pedersen, 2011). The Birth Register includes the universe of births, with

information on the exact date of birth, gender, plurality, and birth weight. It also has unique

parental identifiers, allowing us to link siblings and determine birth order.11

We include the following variables as controls, measured at the time of childbirth: child

gender, maternal age, maternal foreign-born status, maternal education level, and parental

marital/cohabitation status.12 We also include controls for the natural log of the mother’s,

father’s, and the family’s total income, as well as each parent’s employment status, all mea-

sured in the year before childbirth. Lastly, we include the birth spacing between siblings in

months, as well as an indicator for being the younger sibling interacted with birth spacing.

Finally, in some of our heterogeneity analyses, we make use of a data set containing in-

formation on children’s enrollment in Danish childcare centers, which is reported annually in

September of each year. This information is available to us over the period of September 1995

to September 2013.

Analysis sample. To construct our analysis sample, we begin with the universe of 2,221,433

children born between 1981 and 2015 in Denmark and make the following restrictions. First,

we exclude families with only one child. Second, we only keep the first and second-born

children in every family, and further, we only keep families in which the first and second-born

children are singletons. Third, we only keep children in sibling pairs with a birth spacing gap

of at least 11 months, which ensures that there is no overlap in the first year of life of the

two children. Fourth, we only keep children with non-missing information on municipality of

birth and who are born in municipalities that have an average of at least 1,000 children aged
11Specifically, the birth records contain identifiers for all mothers. If the mother is married at the time of

childbirth, then her husband is automatically registered as the biological father. If the mother is unmarried,
then the biological father’s identifier is listed if he establishes paternity. Fathers’ identifiers are missing for
only 0.58% percent of observations in our analysis period.

12Information on parental marital/cohabitation status is collected from the year after birth, due to the lag
in administrative record.
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13–71 months over the sample period, which ensures that we have sufficient observations to

calculate the respiratory disease exposure index as described in Section 3 below.13 Finally,

we drop children with missing parental control variables, and keep sibling pairs in which both

children remain in the sample after these restrictions. Appendix Table A1 shows how our

sample size evolves as we make these various restrictions to arrive at our final analysis sample.

Our final analysis sample consists of 1,163,982 children, which we use to analyze short-

term impacts of respiratory disease exposure on hospitalizations in the first year of life. When

studying long-term outcomes, our sample sizes differ depending on the ages at which outcomes

are measured. To study test scores, we use children born between 1986 and 2003 because test

score data begin in 2001 and we need to observe children when they are in ninth grade (around

age 16). To study mental health care at ages 16–26 and educational attainment and labor

market outcomes at ages 18–32, we analyze children born in cohorts who can be observed in

our outcome data at those ages.

3 Descriptive Analysis and Empirical Design

3.1 Differences in Respiratory Disease Hospitalizations between

Older and Younger Siblings

We begin with a descriptive analysis of respiratory disease hospitalization patterns among

children in our sample, comparing first- and second-born siblings. This analysis sheds light on

a likely mechanism through which respiratory diseases spread within families—older children,

most of whom interact with same-age peers in group childcare settings and are therefore fre-

quently exposed to infectious viruses, “bring home” diseases that infect their younger siblings.

Raw sibling differences. Panel (a) of Figure 1 plots the average number of respiratory

disease hospitalizations (per 100 children) by child age in months during the first year of
13Denmark changed its administrative municipality structure in 2007, which led to a reduction in the total

number of municipalities from 275 to 98. We use the current municipality structure in our analysis, and use
a crosswalk that matches each pre-2007 municipality to the appropriate municipality code used from 2007
onward. When dropping municipalities with an average of fewer than 1,000 children aged 13–71 months over
the sample period, we drop 7 municipalities, such that our final analysis sample contains 91 municipalities in
total.
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life. It shows that, compared to first-born children, younger siblings have two to three times

higher rates of hospitalization for respiratory disease, and that the difference is especially

large when children are two and three months of age. Panel (b) of Figure 1 extends the time

horizon on the x−axis to 60 months (i.e., age five), and demonstrates that the difference in

hospitalization rates between older and younger siblings disappears after age one. This pattern

is consistent with the vast majority of Danish children staying home with their mothers during

their first year of life, and only starting to attend group childcare after they turn one year

old.14 Thus, after age one, younger and older siblings are similarly likely to be exposed to

infectious viruses in group care environments, whereas non-first-borns have exposure before

they turn one through their older siblings bringing viruses home.15

Seasonal differences. In Figure 2, we explore the role of respiratory disease seasonality in

driving the observed hospitalization gap between siblings. The two graphs in Figure 2 show

the average number of respiratory disease hospitalizations for older and younger siblings,

respectively, separately by season of birth. These graphs reveal three facts. First, children

are more likely to be hospitalized for respiratory disease during the winter when common

respiratory disease outbreaks (such as RSV) are more prevalent—children born in November,

December, and January have the highest hospitalization rates in the first three months of life;

those born in August, September, and October have the highest hospitalization rates at 3 to

6 months old; those born in May, June, and July have the highest hospitalization rates at 7 to

9 months old; and those born in February, March, and April have the highest hospitalization

rates at 10 to 12 months old. Second, younger siblings have higher hospitalization rates than

older siblings regardless of season of birth. Third, out of all sub-groups considered, younger

siblings born in the winter months have the highest hospitalization rates when they are two
14In Denmark, some form of maternity leave has been available since the beginning of the 20th century. In

1980, mothers had access to 14 weeks of nearly fully paid leave following the birth of a child, and this leave
benefit was extended to 24 weeks (and also began to include fathers) in 1985 (Rasmussen, 2010). Subsequently,
additional weeks of leave were added with reduced benefit compensation. By 2002, new parents could receive
up to 52 weeks of parental leave with partial pay. The majority of this leave is used by mothers (see, e.g.,
Beuchert et al., 2016).

15Appendix Figure A1 plots the share of children enrolled in a group childcare center, nursery, or preschool
by age in months. Virtually no children attend childcare before they turn one year old, and the share increases
rapidly over ages one to two. There is a small jump at age three, when children are eligible to attend formal
preschool centers (as opposed to less formal nurseries for younger children). More than three-quarters of
children are enrolled in a center by the time they are three years old.
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to three months old, suggesting that they are particularly susceptible to severe respiratory

infections during early infancy.

Birth spacing differences. Lastly, in Figure 3, we examine differences in these patterns

across siblings with different birth spacing gaps. Each graph plots the average number of

respiratory disease hospitalizations per 100 children by age in months of the older siblings (on

the left) and the younger siblings (on the right), separately by season of birth and for different

birth spacing gaps. The graphs demonstrate that younger siblings born in winter months

have the highest hospitalization rates regardless of birth spacing, and that the difference

in hospitalizations between younger and older siblings gets much smaller as birth spacing

increases. This pattern is consistent with siblings having more interactions that facilitate

disease spread when their age difference is smaller, and with the older siblings—i.e., the

ones who “bring home” disease—being more susceptible to infection when they are younger

themselves (since the age of the older siblings observed in the right-hand graphs in Figure 3

falls when the birth spacing gap is smaller).

In sum, the observed patterns in the data—(i) higher hospitalization rates among younger

siblings than older siblings, (ii) a larger sibling hospitalization gap during the winter season,

and (iii) a larger hospitalization gap for more closely spaced siblings—are consistent with the

idea that respiratory disease spreads within the family because older children “bring home”

viruses that they pick up in their local community (e.g., at their childcare center). This analysis

informs our empirical strategy for estimating the causal effects of early childhood respiratory

disease exposure: We focus on exposure during the first year of life, leverage variation in local

respiratory disease outbreaks among slightly older children, and analyze differential effects

across older versus younger siblings.

3.2 Empirical Strategy for Estimating Causal Effects of Early Life

Respiratory Disease Exposure

Our main independent variable is designed to capture respiratory disease exposure during the

first year of life from slightly older children in the local community. We begin by using the

National Patient Register data to obtain the number of respiratory disease hospitalizations
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per 100 children aged 13 to 71 months in each municipality and calendar year-month over

our analysis time frame.16 To allow for an informative visualization of the variation in this

respiratory hospitalization rate, in Appendix Figure A2, we plot the raw month-by-month

values of the rate in each of Denmark’s 10 most populated municipalities, separately over four

time periods during our sample time frame: 1980–1989, 1990–1999, 2000–2009, and 2010–

2016. Consistent with our descriptive analysis above, we observe a strong seasonal pattern,

with a higher hospitalization rate during the winter months in all locations and across all time

periods. At the same time, there is a substantial amount of variation in children’s respiratory

hospitalizations across municipalities in any given month, as well as within each municipality

over time. In Appendix Figure A3, we demonstrate the central source of variation used to

identify the key estimates in our empirical model (described in more detail below)—we use

data for all municipalities in Denmark for the entire sample period, regress the hospitalization

rate on municipality, year, and month fixed effects, and plot the distribution of the residuals.

The figure demonstrates that there remains a substantial amount of variation in respiratory

disease hospitalizations even after location and time fixed effects are partialled out.

Next, for each child in our sibling analysis sample, we assign this monthly respiratory

hospitalization rate to each month of their first year of life based on their municipality of

residence in that month. Importantly, if a given child has an older sibling who is between 13

and 71 months of age at any point during their first year of life, we exclude the older sibling

from the hospitalization rate. Finally, we define the disease exposure index as the sum of the

monthly hospitalization rates over the 12 months of each child’s first year of life. Thus, our

index captures a child’s cumulative respiratory disease exposure before age one from slightly

older children in their municipality.

Our empirical models estimate the differential effect of the respiratory disease exposure

index on younger versus older siblings. Specifically, our regression models take the form:

Yitkm = β0+β1Y oungeri+β2Indexitkm+β3Y oungeri×Indexitkm+µm+θt+ρk+γ′Xi+ϵitkm (1)

for each child i born in year t, month k, and municipality m. Yitkm is an outcome such as the
16We use 71 months (i.e., 5 years and 11 months) as the upper age limit to capture respiratory disease spread

among preschool-aged children, most of whom are in group childcare environments. Children start primary
school at age 6 in Denmark.
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number of hospitalizations during the first year of a child’s life that have a primary diagnosis of

a respiratory condition, or an indicator for having graduated high school by age 20. Y oungeri

is an indicator set to 1 for younger siblings, and captures the “main” effects of birth order

on our outcomes of interest. Indexitkm is the respiratory disease exposure index described

above. µm are municipality fixed effects that account for time-invariant geographic differences

in exposure to infectious diseases and in other determinants of our outcomes. θt and ρk are

year and month of birth fixed effects, respectively, that control for cohort and seasonal trends.

Xi is a vector of individual and family background control variables measured in the year of

birth: indicator for the child being male, the birth spacing between siblings in months and

birth spacing interacted with the younger siblings indicator, mother’s age and age squared,

indicator for mother’s foreign-born status, indicators for mother’s education level (high school

degree, college degree or higher), and an indicator for parents being married or cohabiting.

We also control for the natural log of the mother’s, father’s, and total family income, as well as

indicators for each parent being employed, in the year before childbirth. We cluster standard

errors at the municipality level.

Identifying assumption. The key coefficient of interest in model (1), β3, measures the

differential impact on younger siblings relative to older siblings of an additional respiratory

disease hospitalization per 100 children aged 13–71 months in the child’s municipality during

their first year of life. Interpreting this coefficient as representing a causal impact of respiratory

disease exposure relies on an assumption that there are no unobserved municipality-specific

time-varying factors that are (a) correlated with respiratory disease prevalence, (b) influence

children’s outcomes, and (c) differentially impact younger versus older children in a family.

While this assumption is not directly testable, we assess its plausibility in several ways.

First, we investigate the sensitivity of our main results across specifications that include

various controls, including municipality-specific linear trends, and mother fixed effects. As we

show below, our results are fairly robust across these models.

Second, we estimate model (1) without the controls in Xi and instead using the Xi variables

as outcomes (Pei et al., 2019). We additionally consider two other relevant placebo outcomes

in this context: indicators for low birth weight (less than 2,500 grams) and very low birth
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weight (less than 1,500 grams) births. Results are presented in Appendix Table A2. We find

that three out of the 14 interaction coefficients reported in this table are statistically significant

but very small in magnitude—mothers of younger siblings are slightly older and the parents

are slightly less likely to be married or cohabiting in municipalities with higher respiratory

disease exposure indices; additionally a higher disease index during the younger child’s first

year of life is correlated with a slightly longer birth spacing of about 1 month. We control for

birth spacing interacted with the younger child indicator, as well as maternal age and parental

marital/cohabitation status in all of our analyses.

Third, we construct two alternative indices, in which instead of using children’s hospitaliza-

tions for respiratory conditions, we use: (i) non-infectious digestive diseases, and (ii) injuries

and poisonings. If the differential likelihood of hospitalization for respiratory conditions for

younger compared to older children reflects differences in parental healthcare-seeking behavior

(i.e., parents are more likely to go to the hospital with their second-born than their first-born

at the same level of underlying illness), then we might expect similar patterns to emerge for

other non-infectious childhood health shocks, such as those stemming from digestive issues

or accidents. Yet when we estimate model (1) using the two alternative indices and hospi-

talizations in the first year of life for these causes, we do not find evidence in support of this

hypothesis (see Appendix Tables A3 and A4). If anything, we find that younger children are

less likely to be hospitalized for these causes, and there is no evidence of significant positive

interactions between the alternative indices and the younger child indicator.17

Overall, these analyses support our identifying assumption, and suggest that our model

is likely to yield causal estimates of the differential effects of respiratory disease exposure in

early childhood for younger relative to older siblings.

Sample means. Table 1 presents means of some of the key variables in our analysis, sepa-

rately for the older and younger siblings in the sample. The table highlights some important

differences in child outcomes by birth order. Compared to older siblings, younger siblings have

higher average birth weight (3589 versus 3431 grams for younger versus older siblings, respec-
17Note that the significant main effect of the injury index on hospitalizations for the same causes is plausible,

as they are likely driven by underlying local and seasonal factors (e.g., icy conditions may increase the local
injury rate among children).
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tively). The average values of the respiratory disease exposure index for older and younger

siblings are similar: 2.8 and 2.9 hospitalizations per 100 children, respectively. However, de-

spite the slight advantage in health at birth (which has been found in other settings, see, e.g.

Brenøe and Molitor, 2018; Pruckner et al., 2021) and similar local exposure to respiratory

disease, younger siblings’ average number of hospitalizations for respiratory conditions during

their first year of life is nearly twice the average for older siblings (9.0 and 4.7 per 100 chil-

dren for younger and older siblings, respectively). The relative difference is even larger for

RSV hospitalizations during the first year of life, with younger siblings’ average number of

hospitalizations three times higher relative to older siblings.18 Moreover, consistent with prior

literature on the impacts of birth order (e.g., Black et al., 2005), younger siblings have worse

educational and economic outcomes than their older counterparts. Additionally, younger sib-

lings have higher rates of mental health care utilization, as measured by hospitalizations for

mental health-related conditions and visits to psychiatrists.

The table shows that mothers are on average aged 26.8 years at the time of their first birth

and 30.3 years at the time of their second birth. Approximately 4.5 percent of mothers in our

sample are foreign-born. About 75.0 and 78.9 percent of mothers have a high school degree at

the time of the first and second birth, respectively, while 30.2 and 36.7 percent have a college

degree, respectively. Approximately 93.7 percent of parents are married or cohabiting at the

time of the first birth, while 95.0 percent are married or cohabiting at the time of the second.

Household income is slightly higher at the time of the second than the first birth.

4 Results

In this section, we first discuss our results on the relationship between the respiratory disease

index and hospitalizations for respiratory conditions during childhood, for younger versus

older siblings. We then discuss our results on long-run educational and labor market out-

comes, which we can measure through age 32 in our data. We additionally present our results

on mental health care utilization in adolescence and young adulthood. We follow up by bench-
18The average number of hospitalizations for all respiratory conditions among the 1994+ cohorts, for whom

we observe RSV-specific hospitalizations, is similar to the overall sample that includes older cohorts: 9.9 and
4.5 per 100 children for younger and older siblings, respectively.
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marking the magnitudes of our long-run estimates against those found in the prior literature,

and provide some additional sensitivity analyses.

4.1 Short-Term Effects of Respiratory Disease Exposure on Respi-

ratory Hospitalizations

Table 2 presents results from estimating equation (1) using as the outcome the number of hos-

pitalizations during the first year of a child’s life that have a primary diagnosis of a respiratory

condition. We report the coefficients on the indicator denoting the younger sibling, the respi-

ratory disease exposure index (expressed as the number of respiratory disease hospitalizations

per 100 children aged 13 to 71 months), and the interaction of these two variables. Column

(1) shows that, consistent with the graphical evidence in Figures 1 through 3, younger siblings

on average have 0.039 more (57.4 percent relative to the sample mean) hospitalizations for a

respiratory condition before age one than their older counterparts. Column (2) shows that

there is a positive correlation between the disease exposure index and the likelihood of hospi-

talization before age one in the overall siblings sample, and column (3) demonstrates that the

coefficients on the younger sibling indicator and the disease exposure index do not change when

they are both included in the same regression model. Once we include the interaction term in

columns (4) and (5), we find that there is a significant differential effect of local respiratory

disease exposure on younger siblings relative to older siblings. In particular, we find that an

additional respiratory hospitalization per 100 children aged 13–71 months in a municipality

increases the younger sibling’s number of hospitalizations during the first year of life by an

average of 0.012 (17.6 percent), as compared to the older sibling. This relationship is robust

across specifications without and with family background control variables (columns 4 and

5, respectively). In the bottom row of the table, we report the magnitude of the differential

effect on younger siblings relative to older siblings of an increase in the disease exposure index

from the 25th to the 75th percentile of the index distribution. This magnitude amounts to

a 0.022 differential increase in the number of respiratory disease hospitalizations in the first

year of life, which represents an additional 32.4 percent relative to the sample mean.

In Figure 4, we explore heterogeneity in our estimates. We estimate our baseline model

(1), and include subgroup indicators interacted with the younger sibling indicator, the dis-
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ease index, and the younger sibling indicator × disease index interaction. We then plot the

coefficients and 95% confidence intervals from estimates of the triple interaction terms. We

consider differences in effects by: parental socio-economic status (defined as the mother’s

years of education being above or below the median in the distribution), child health at birth

(low-birth-weight and non-low-birth-weight children), child gender, the birth spacing between

the siblings, and whether or not the older child is enrolled in a childcare center (limited to

siblings with a birth spacing gap of no more than 2 years).19 We find that the effects on res-

piratory hospitalizations are much larger for younger siblings who are low birth weight than

those who are not. Additionally, consistent with the “fragile male” hypothesis regarding the

biological vulnerability of male fetuses and infants (McCarthy, 2019; Sanders and Stoecker,

2015; Kraemer, 2000), we find larger impacts on younger male than female siblings.

We also observe that the impact on respiratory hospitalizations appears to be monotoni-

cally decreasing with birth spacing—that is, younger siblings in families with a shorter birth

spacing period experience larger differential impacts on hospitalizations in the first year of

life. This pattern is consistent with the descriptive evidence presented in Figure 3, and speaks

in favor of the mechanism of intra-family spread as being a key driver of respiratory disease

among younger infant siblings. Further, these results suggest that our effects are not driven

by differences in parental investments between older and younger siblings (and the potential

interactions between these investments and our disease indices). As documented by Price

(2008) in the U.S. setting, there are important differences in parent-child quality time be-

tween first- and second-born children, but this difference is larger when the birth spacing gap

is longer. Thus, our pattern is the opposite of what would be predicted if differential parental

time investment were the main channel.

Lastly, we find that the effects on respiratory hospitalizations among younger siblings are

larger in sibling pairs with a short birth spacing in which the older child is in a childcare

center than in pairs in which the older child is not. This result provides further support

for our hypothesized mechanism of spread—that the older sibling gets exposed to respiratory
19Because a large share of children are enrolled in a childcare center from age 3 onward (see Appendix Figure

A1), we do not study heterogeneity along this margin for siblings with a birth spacing gap that is longer than 2
years (given that the older children are 3 or older when their younger siblings are one year old). Additionally,
the heterogeneity by childcare enrollment analysis sample is limited to sibling pairs born between September
1995 and September 2013, which is the period of time covered by our childcare enrollment data.
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disease while in group childcare, and then “brings it home” to their more vulnerable younger

brother or sister.

In Figure 5, we examine the effects of respiratory disease exposure in infancy on respiratory

hospitalizations at later ages. Here, we plot the coefficients and 95% confidence intervals on

our key interaction treatment variable from separate models that use as outcomes the annual

number of respiratory disease hospitalizations, measured at different ages denoted on the

x−axis. The graphs indicate that the large differential effect on hospitalizations before age

one among younger siblings dissipates as they age. If anything, it appears that respiratory

disease exposure in the first year of life is associated with a reduction in the number of overall

respiratory hospitalizations at ages 3 to 4. These findings are consistent with the immunity

formation hypothesis (Holt and Jones, 2000; M’Rabet et al., 2008; Côté et al., 2010; Fink et

al., 2021), at least for some respiratory conditions. Moreover, our findings suggest that any

differential effects on long-term educational and economic outcomes of early-life respiratory

disease exposure among younger siblings are not driven by worse respiratory health in later

childhood.

In Appendix Table A5, we explore the extent to which RSV contributes to the overall

impact of respiratory disease. The table is identical to Table 2, except that we study the

number of hospitalizations during the child’s first year of life with an RSV diagnosis as the

outcome (using cohorts born in 1994 or later), and we use an RSV-specific index instead

of an index capturing all respiratory-related hospitalizations. We estimate that an additional

RSV hospitalization per 100 children aged 13–71 months in a municipality increases a younger

child’s number of RSV hospitalizations in the first year of life by an average of 0.044 more

than their older sibling’s RSV hospitalizations at the same age. Moving from the 25th to

the 75th percentile of the RSV index distribution amounts to a 0.005 differential increase

in the number of RSV hospitalizations, or 27.8 percent at the sample mean. In Appendix

Figure A4, we analyze the differential effects on RSV hospitalizations by age. Unlike what

we saw for overall respiratory hospitalizations in Figure 5, we do not see a reduction in RSV

hospitalizations at older ages, which makes sense as a prior RSV infection provides limited

protection against future infections (Lambert et al., 2014; Fuentes et al., 2016). Thus, not

all respiratory infections provide benefits in terms of immunity formation, and early-life RSV
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exposure may be an important driver of the adverse impacts on long-term outcomes that we

describe next.

4.2 Long-Term Effects of Infancy Respiratory Disease Exposure on

Educational and Economic Outcomes

Having established that local respiratory disease exposure among slightly older children pre-

dicts children’s own hospitalizations for respiratory conditions before age one, and that this

effect is much larger for younger relative to older siblings, we proceed to analyze children’s

long-term educational and economic outcomes.

We first present results using as outcomes the standardized 9th grade Danish and math-

ematics test scores in Tables 3 and 4, respectively. We find that an additional respiratory

hospitalization in the municipality per 100 children aged 13–71 months reduces the 9th grade

Danish test score by about 0.008 of a standard deviation more for younger siblings than older

siblings, and this coefficient is marginally significant at the 10% level. The 25th to 75th per-

centile increase in the disease index amounts to an additional 0.013 of a standard deviation

penalty on the Danish test score for the younger siblings relative to the older siblings. We

do not observe a statistically significant impact on math test scores, although the interaction

coefficient is similarly negative in sign.

Figure 6 presents results for the outcomes of high school and college graduation, by ages

18–32, respectively. We plot the coefficients and 95% confidence intervals on our key interac-

tion term from separate models that use outcomes measured at the ages listed on the x−axis

as dependent variables. For both high school and college graduation (Panels (a) and (b),

respectively), consistent negative impacts are noticeable starting at the age when these out-

comes can be affected (i.e., starting around age 19 for high school graduation, and age 23 for

college graduation). For high school graduation, there appears to be some “catch-up” with

age, suggesting that part of the overall effect stems from a delay in high school completion

rather than a reduction in ever completing high school. The magnitude of the negative effect

on college graduation, on the other hand, is quite stable between ages 24 and 32, although

not always statistically significant at any given age.

Figure 7 reports results for our three main labor market outcomes: labor force partici-
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pation, log income (conditional on being employed), and relative income rank, all measured

at ages 18–32. As with the educational outcomes, we show the interaction term from sepa-

rate regression models with outcomes measured at the ages listed on the x−axis. Panel (a)

shows that the effects on labor force participation are not statistically significant at any age

measured. That said, the pattern of coefficients suggests that there could be some positive

impacts in early adulthood, followed by some negative impacts in late 20s, which may reflect

the shift away from (or delay in) higher education that we just discussed.

When we analyze income among those who are employed in Panel (b) of Figure 7, we find

an adverse differential effect of early life respiratory disease exposure among younger siblings,

concentrated in their late 20s and early 30s. Pooling across income measured at ages 25–32,

we estimate that an additional respiratory hospitalization per 100 children aged 13–71 months

in an individual’s municipality in the first year of life is associated with a 0.5 percent decline

in income (see Table 5).20 The 25th to 75th percentile effect size amounts to a 0.7 percent

reduction in income at these ages. Similarly, we see a negative differential effect on relative

income rank in Panel (c) of Figure 7. Here, the effect appears to materialize at younger ages

and persist into the 30s.

Figure 8 explores the distributional impacts of early life exposure to respiratory illness

further. We show coefficients and 95% confidence intervals on our key interaction treatment

variable from models that use as outcomes indicators for being in different bins of the Danish

income distribution within each birth cohort (where income is measured over ages 25–32): the

1–10th percentiles, the 11–25th percentiles, the 26–50th percentiles, the 51–75th percentiles,

the 76–90th percentiles, and the 91–100th percentiles. We find a shift down from the top

of the distribution: younger siblings exposed to more respiratory disease in the first year of

life are significantly less likely to be in the top decile of the Danish income distribution. The

coefficient for being in the 76–90th percentiles is also negative, but not statistically significant.

At the same time, we see positive coefficients on the likelihoods of being in the lowest three

bins of the income distribution.

The distributional impacts that we find differ somewhat from those identified in prior
20Table 5 reports results from our baseline models. Here, we use data at the person-by-age level, and

study the outcome at ages 25–32. These models include age fixed effects and cluster standard errors on the
municipality and individual level.
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research on other types of early childhood shocks. For example, Isen et al. (2017b) find that

reduced exposure to air pollution in the first year of life is associated with a shift from the

bottom to the middle of the earnings distribution among US adults. While there are many

mechanisms that could account for the difference in these patterns, one possibility is that the

early life shock that we study—exposure to common respiratory viruses in infancy—is more

universally prevalent across families with from different socio-economic backgrounds than a

shock like air pollution, which disproportionately affects disadvantaged populations. Thus,

our results suggest that even for children born in families that are relatively protected from

adverse shocks due to their advantaged position in society, severe respiratory illness in early

infancy can lower the likelihood that they end up at the top of the income distribution as

adults. At the same time, as discussed more below, the magnitudes of our long-run effects are

smaller than those documented in prior work, which may reflect both the lower severity of the

shock that we study and the more advantaged population that it impacts.

Appendix Figures A5 and A6 explore heterogeneity in the long-run effects on educational

and labor market outcomes. To reduce the number of estimates, we do not study outcomes at

individual ages, and instead analyze high school and college graduation by age 30, and average

labor market outcomes across ages 25–32. For the latter set of models, we use data at the

person-by-age level, include age fixed effects, and cluster standard errors on the municipality

and individual level. As with the heterogeneity analysis studying respiratory hospitalizations

before age one in Figure 4, we use interaction models, in which subgroup indicators are inter-

acted with the younger sibling indicator, the disease index, and the younger sibling indicator

× disease index interaction. We then plot the coefficients and 95% confidence intervals from

estimates of the triple interaction terms. While we mostly do not see much statistically sig-

nificant heterogeneity—perhaps due to the smaller sample sizes used in studying long-run

outcomes—we do find some suggestive evidence of differential effects by the younger sibling’s

gender. Specifically, the adverse negative effects on adult income are larger for males than

females, which echoes our result of larger increases in respiratory hospitalizations by age 1

among younger brothers compared to younger sisters.
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4.3 Effects on Mental Health Care Outcomes in Adolescence and

Young Adulthood

Figure 9 presents results for the mental health care utilization outcomes, observed at ages

16–26.21 We again plot the coefficients and 95% confidence intervals on our key interaction

term from separate models that use outcomes measured at the ages listed on the x−axis as

dependent variables.

The first two panels of Figure 9 focus on hospitalizations involving a mental health di-

agnosis. We find mostly elevated rates of mental health-related hospitalizations from age 16

through 26, both in terms of the extensive margin (Panel a) and in terms of the total number

of hospitalizations (Panel b). Positive coefficients are observed consistently between age 16

and 26 (with the exception of age 25), with an average increase of 0.025 percentage point

in the likelihood of having any mental health-related hospitalizations in a given age between

16 and 26 for each additional respiratory hospitalization per 100 children aged 13–71 months

in an individual’s municipality in the first year of life (see Appendix Tables A14 and A15,

column (1)).22 The 25th to 75th percentile effect size at these ages is a 9.6 percent increase in

the likelihood of having any mental health-related hospitalizations and a 12.0 percent increase

in the annual number of mental health-related hospitalizations, relative to each outcome’s

sample mean.

Panels (c) and (d) of Figure 9 present results for psychiatrist visits, which are somewhat

less precise and appear a little later than the hospitalization effects (around ages 18 to 19).

However, significantly positive effects are observed at many ages and the overall effect pattern

is consistent with the increase in mental health-related hospitalizations shown in the first

two panels. The 25th to 75th percentile effect size corresponds to a 5.0 percent increase in

psychiatrist visits (see Appendix Table A16, column 1).

Appendix Figure A7 presents the heterogeneity analysis of mental health care outcomes

averaged over ages 16–26. We use the same approach as we do for studying labor market
21The more limited age range of mental health care outcomes as compared to educational and labor market

outcomes stems from the fact that we observed psychiatrist visits for a more limited set of years.
22Appendix Tables A14 and A15, column (1), report results from our baseline model. Here we use data at

the person-by-age level, and study each outcome at ages 16–26. These models include age fixed effects and
cluster standard errors on the municipality and individual level.
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outcomes—we use data at the person-by-age level, include age fixed effects, and cluster stan-

dard errors on the municipality and individual level. We present triple interaction coefficients

and 95% confidence intervals on the interaction term between each subgroup indicator, the

younger sibling indicator, and the respiratory disease index. We do not observe strong ev-

idence of heterogeneous effects. There is some suggestive indication that the increases in

mental health care utilization are stronger among female than male younger siblings, which is

consistent with other research suggesting that women are more likely than men to seek mental

health care (Pattyn et al., 2015).

4.4 Magnitudes

How do our estimated long-run effects on economic and mental health outcomes compare to

those in the prior literature? As noted above, we find that moving from the 25th to the 75th

percentile of the respiratory disease index distribution is associated with an additional 0.7

percent reduction in adult income for second-born children. This effect size is slightly lower

than the earnings impact of an 8 percent reduction in birth weight (Black et al., 2007) or a

7 percent increase in ambient air pollution in one’s year of birth (Isen et al., 2017b). It also

corresponds to about half of the effect of in utero exposure to the 1918 Spanish Influenza pan-

demic (Almond, 2006) and one-fifth of the effect of in utero exposure to a maternal influenza

infection that requires hospitalization (Schwandt, 2018).23

It is additionally helpful to compare our estimates to those found in studies evaluating poli-

cies that reduce disease prevalence in the population. For example, Bhalotra and Venkatara-

mani (2015) find that moving from the 75th to the 25th percentile in the pneumonia infection

rate following the introduction of sulfa drugs leads to a 2.1 percent increase in adult income

among exposed cohorts. Atwood (2022) and Chuard et al. (2022) find that the introduction of

universal childhood measles vaccine lead to a 1.7 to 2.7 percent increase in adult family income

among cohorts who benefited from the vaccine. Bütikofer and Salvanes (2020) document a

0.8 percent increase in adult income for cohorts who were in school during and after a tuber-

culosis control campaign in Norwegian municipalities that had above-median pre-campaign
23Note that our estimates represent intent-to-treat effects as not every child gets sick in response to exposure

to a higher respiratory disease index.
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tuberculosis levels.

We can also benchmark our estimates against the literature on birth order. In seminal

work, Black et al. (2005) find an earnings disadvantage of 1.2 to 4.2 percent for second-born

siblings compared to those who are first-born. Our birth order effect is within this range—we

find a 1.6 percent income penalty for younger compared to older siblings in regressions that

exclude the interaction term between the respiratory disease index and the younger sibling

indicator (see Columns (1) and (3) of Table 5). However, when the interaction term is included,

the main effect of birth order substantially decreases in magnitude and becomes statistically

insignificant. This result suggests that an important part of the overall birth order effect

on income could be explained by the second-born child’s higher vulnerability to respiratory

disease during infancy.

The effects on mental health that we estimate echo conclusions of other work documenting

impacts of fetal and early childhood shocks on later mental health outcomes. For example,

Almond and Mazumder (2011) find that exposure to Ramadan in utero leads to a near doubling

of the incidence of mental and learning disabilities in adulthood in Uganda, and increases the

rate of psychological disabilities in adulthood by 63 percent in Iraq. Persson and Rossin-

Slater (2018) use data from Sweden, and find that experiencing the death of a close maternal

relative while in utero is associated with a 25 percent increase in the likelihood of using ADHD

medications around age 10, as well as 13 and 8 percent increases in the likelihoods of using

drugs to treat depression and anxiety, respectively, around age 35. Adhvaryu et al. (2019) use a

nationally-representative survey from Ghana, and show that a one standard deviation increase

in the price of cocoa in one’s year of birth—which improves the economic circumstances of

Ghanaian families in cocoa-producing regions—reduces the likelihood of severe mental distress

in adulthood by 3 percentage points, or about 50 percent at the mean prevalence rate. Our

results on mental health are thus within the range of these estimates from studies based on a

variety of contexts and types of shocks.

4.5 Additional Results

We examine the sensitivity of our results on short- and long-run outcomes across different

specifications and different ways of measuring respiratory disease exposure in Appendix Tables
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A6 through A17. For tractability, as with the heterogeneity analyses, we study high school

and college graduation by age 30, average labor market outcomes across ages 25–32, and

average mental health care utilization outcomes at ages 16–26. For the latter two sets of

models, we use data at the person-by-age level, include age fixed effects, and cluster standard

errors on the municipality and individual level. Then, we estimate different versions of model

(1). Column (1) of each table presents the baseline model in which we include municipality,

birth year, and birth month fixed effects and family background controls. Column (2) adds

municipality-specific linear time trends to account for differential trends in outcomes across

municipalities, while column (3) adds mother fixed effects that eliminate potential bias from

unobserved genetic and family characteristics common among siblings.

In our baseline analysis, our respiratory disease index is based on the number of hospital-

izations with a primary diagnosis of a respiratory condition. Columns (4) and (5) check the

robustness of the results to alternative ways of constructing the disease index. Column (4)

calculates the disease index based on number of hospitalizations including both primary and

non-primary diagnoses for respiratory conditions, while in column (5) we construct it based

on the number of children with at least one primary respiratory disease diagnosis (i.e., we

count the number of children rather than the total number of hospitalizations). Our results

on respiratory hospitalizations before age one are highly robust across these different modeling

choices. Moreover, the effects on long-run educational, economic, and mental health outcomes

in Appendix Tables A7 through A17 are largely consistent in terms of coefficient signs and

magnitudes, although not every specification yields a statistically significant result for each

outcome.

5 Conclusion

Respiratory illnesses are very common among young children, especially in families with more

than one child. Despite their regular occurrence, there is limited population-level evidence

on the role of intra-family transmission, or on the long-term causal impacts of exposure to

endemic respiratory disease during infancy. This paper uses linked administrative data from

Denmark spanning four decades to document the importance of birth order in driving sus-
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ceptibility to respiratory infection. We find that younger siblings are two to three times more

likely to be hospitalized for respiratory conditions during their first year of life compared to

the older siblings at the same age, and this disparity is especially large when hospitaliza-

tions are measured in the first three months of life. Additional analyses of the seasonality in

hospitalizations and heterogeneity across siblings with different birth spacing gaps point to

the importance of intra-family transmission in explaining this birth order effect: older chil-

dren “bring home” common respiratory viruses (such as RSV), making their younger siblings

susceptible to severe illness early in life.

We then combine the birth order variation with variation in local respiratory disease preva-

lence to study long-term effects of early-life disease on health, human capital, and economic

outcomes. We show that exposure to severe respiratory illness during infancy has negative

consequences on both educational and economic outcomes in adulthood. Our results show

that moving from the 25th to the 75th percentile in the local respiratory disease prevalence

distribution reduces the likelihood of on-time high school and college graduation, and leads to

a 0.7 percent additional reduction in age 25–32 earnings for younger compared to older siblings.

While we do not find that infancy exposure to respiratory disease adversely affects respiratory

health at older ages, our analysis of mental health care outcomes suggests that impaired brain

development could be an important channel driving the effects on human capital and labor

market productivity. We find evidence of elevated rates of mental health-related hospitaliza-

tions and visits to psychiatrists at ages 16–26 resulting from infancy disease exposure among

younger siblings.

The long-term effects that we estimate represent the overall net impacts of respiratory

disease exposure during infancy. Thus, these estimates incorporate any potential benefits

associated with increased immunity, as well as parental responses to the health shocks. In

sum, our findings suggest that policies mitigating the spread of respiratory diseases among

young children may have large long-term benefits, which are likely not incorporated into

current cost-benefit evaluations.
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6 Figures

Figure 1: Number of Respiratory Hospitalizations per 100 Children, by Child Age in Months,
Older versus Younger Siblings

(a) During First Year of Life

(b) During First Five Years of Life

Notes: These figures plot the number of hospitalizations with respiratory illness diagnoses (per 100 children)
by month of age, separately for older and younger siblings in our data.
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Figure 2: Number of Respiratory Hospitalizations per 100 Children, by Child Age in Months
and Season of Birth, Older versus Younger Siblings

Notes: These figures plot the number of hospitalizations with respiratory illness diagnoses (per 100 children)
by month of age and by the season of birth of the child, separately for older and younger siblings in our data.
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Figure 3: Number of Respiratory Hospitalizations per 100 Children, by Child Age in Months,
Season of Birth, and Birth Spacing, Older versus Younger Siblings

Notes: These figures plot the number of hospitalizations with respiratory illness diagnoses (per 100 children)
by month of age and by the season of birth of the child, separately for older and younger siblings with different
birth spacing gaps in our data.
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Figure 4: Heterogeneous Effects of the Respiratory Disease Exposure Index on the Annual
Number of Younger Siblings’ Respiratory Hospitalizations

Notes: This figure plots the heterogeneity effects of the respiratory disease exposure on younger siblings
respiratory hospitalizations among different sub-populations. The baseline coefficient and 95% confidence
intervals are from the interaction term between the overall respiratory disease index and the younger sibling
indicator from model (1). The respiratory disease exposure index is the number of inpatient admissions with
any respiratory disease primary diagnosis among children aged 13–71 months per 100 children in each child’s
municipality of birth during the first year of life, excluding any hospitalizations of an older sibling. Effects
by sub-groups are from 5 separate regressions: 1) high vs. low socioeconomic status (SES), grouped based
on the mother’s education level in the year of birth being above or below the median level among mothers in
the same year; 2) low birth weight (LBW) status; 3) child gender; 4) birth spacing; and 5) whether the older
child is in a childcare center during the first year of life of the younger child, restricting to sibling pairs born
within 2 years of each other, and between September 1995 and September 2013 (the period of time covered
by our childcare enrollment data). In each regression, the full set of sub-group indicators are interacted with
the younger sibling indicator, the disease index, and the younger sibling indicator × disease index interaction.
Coefficients and 95% confidence intervals of the triple interaction term are plotted accordingly. All regressions
include municipality, year of birth, month of birth fixed effects, and family background controls, including
indicator for child gender, the sibling pair’s birth spacing (in months) and the birth spacing interacted with
the indicator for the younger child, mother’s age and age squared, indicator for the mother being foreign-born,
indicators for mother’s education level (high school degree, college degree or higher), and an indicator for
the parents being married or cohabiting at the time of childbirth. Confidence intervals are constructed from
standard errors clustered on the child’s municipality of birth.
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Figure 5: Effects of the Respiratory Disease Exposure Index on the Annual Number of Younger
Siblings’ Respiratory Hospitalizations, by Age of Observation

Notes: This figure plots the coefficients and 95% confidence intervals on the interaction term between the
overall respiratory disease index and the younger sibling indicator from model (1), using as the outcome the
annual number of hospitalizations with all respiratory diagnoses, measured at ages specified on the x-axis. The
respiratory disease exposure index is the number of inpatient admissions with any respiratory disease primary
diagnosis among children aged 13–71 months per 100 children in each child’s municipality of birth during the
first year of life, excluding any hospitalizations of an older sibling. All regressions include municipality, year
of birth, month of birth fixed effects, and family background controls, including indicator for child gender, the
sibling pair’s birth spacing (in months) and the birth spacing interacted with the indicator for the younger
child, mother’s age and age squared, indicator for the mother being foreign-born, indicators for mother’s
education level (high school degree, college degree or higher), and an indicator for the parents being married
or cohabiting at the time of childbirth. . Confidence intervals are constructed from standard errors clustered
on the child’s municipality of birth.
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Figure 6: Effects of the Respiratory Disease Exposure Index on Younger Siblings’ Educational
Outcomes, by Age of Observation

(a) High School Graduation

(b) College Graduation

Notes: These figures plot the coefficients and 95% confidence intervals on the interaction term between the
disease index and the younger sibling indicator from model (1), using outcomes measured at ages specified
on the x-axes. At each age, we require both of the siblings are observed in the data. All regressions include
municipality, year of birth, month of birth fixed effects, and family background controls. See notes under
Figure 5 for more details about the specifications and variables. Confidence intervals are constructed from
standard errors clustered on the child’s municipality of birth.
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Figure 7: Effects of the Respiratory Disease Exposure Index on Younger Siblings’ Labor
Market Outcomes, by Age of Observation

(a) Labor Force Participation

(b) Income (conditional on employed)

(c) Income Percentile

Notes: These figures plot the coefficients and 95% confidence intervals on the interaction term between the
disease index and the younger sibling indicator from model (1), using outcomes measured at ages specified
on the x-axes. At each age, we require both of the siblings are observed in the data. All regressions include
municipality, year of birth, month of birth fixed effects, and family background controls. See notes under
Figure 5 for more details about the specifications and variables. Confidence intervals are constructed from
standard errors clustered on the child’s municipality of birth.
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Figure 8: Effects of the Respiratory Disease Exposure Index on Younger Siblings’ Income
Distribution

Notes: This figure plots the coefficients and 95% confidence intervals on the interaction term between the
disease index and the younger sibling indicator from model (1) with age fixed effects. The sample includes
sibling pairs at age 25-32, with each observation at person-by-age level. The outcome is an indicator for the
income percentile falling into each percentile bin denoted on the x-axis among population of the same age
in the same year. All regressions include municipality, year of birth, month of birth, age fixed effects, and
family background controls. Confidence intervals are constructed from two-way clustered standard errors at
the individual and municipality of birth levels.
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Figure 9: Effects of the Respiratory Disease Exposure Index on Younger Siblings’ Mental
Health Care Outcomes, by Age of Observation

(a) Any Mental Health-Related Hospitalizations (b) Num. of Mental Health-Related Hospitalizations

(c) Any Psychiatrist Visits (d) Num. of Psychiatrist Visits

Notes: These figures plot the coefficients and 95% confidence intervals on the interaction term between the
disease index and the younger sibling indicator from model (1), using the mental health care outcomes measured
at ages specified on the x-axes. At each age, we require both of the siblings are observed in the data. All
regressions include municipality, year of birth, month of birth fixed effects, and family background controls.
See notes under Figure 5 for more details about the specifications and variables. Confidence intervals are
constructed from standard errors clustered on the child’s municipality of birth.
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7 Tables

Table 1: Variable Means

Older Siblings Younger Siblings

Disease Exposure Indices (Per 100 Children Aged 13–71 Months)

Respiratory Disease Exposure Index 2.792 2.876
Respiratory Disease Exposure Index (post-1993 cohorts) 3.026 3.016
RSV Exposure Index (post-1993 cohorts) 0.107 0.102

Child Characteristics

Male Child 0.514 0.514
Birth Weight (grams) 3431.059 3588.840
Birth Spacing (months) 41.961 41.961

Respiratory Disease Hospitalizations by Age 1 (*100)

Number of Respiratory Disease Hospitalizations by Age 1 4.638 8.955
Number of Respiratory Disease Hospitalizations by Age 1 (post-1993 cohorts) 4.457 9.888
Number of RSV Hospitalizations by Age 1 (post-1993 cohorts) 0.848 2.733

Hospitalizations and Mental Health Outcomes, Ages 15-25 (*100)

Number of Mental Health-related Hospitalizations 0.412 0.486
Number of Psychiatrist Visits 6.381 6.451
Any Mental Health-related Hospitalizations 0.353 0.403
Any Psychiatrist Visit 0.893 0.933

Educational and Labor Market Outcomes

High School Degree, Age 30 0.849 0.840
College Degree, Age 30 0.447 0.427
Danish Test Score, Grade 9 0.152 0.048
Math Test Score, Grade 9 0.207 0.077
Log Income (conditional on employed), Age 25-32 10.901 10.871
Income Percentile, Age 25-32 56.925 55.119
In Labor Force, Age 25-32 0.650 0.647

Family Background Characteristics

Mother’s Age at Childbirth 26.819 30.318
Mother is Foreign-Born 0.045 0.045
Mother has High School Degree 0.750 0.789
Mother has College Degree 0.302 0.367
Parents are Married/Cohabiting (Year after birth) 0.937 0.950
Log Household Income 11.424 11.600

Observations 581991 581991

Notes: This table presents the means of key variables in our analysis separately for older and younger siblings. The respiratory
disease exposure index is the number of inpatient admissions with a respiratory disease primary diagnosis among children aged
13–71 months per 100 children in the focal child’s municipality of birth during the first year of life, excluding any hospitalizations
of an older sibling. Average labor market outcomes are calculated from siblings pairs at age 25-32. At each age, we require both
of the siblings are observed. Income is reported in 2010 $USD. Income percentile is calculated among each year-age group. Test
scores are converted into z−scores, which are standardized within each subject and test year. Test score data are only available
for children born in 1986–2003. Average long-term health outcomes are calculated from siblings pairs at age 15-25. At each age,
we also require both of the siblings are observed. Maternal educational attainment and parental marital/cohabiting status are
measured at the time of childbirth, while household income is measured in the year before childbirth.

47



Table 2: Effect of Respiratory Disease Exposure Index on Respiratory Disease Hos-
pitalizations in First Year of Life, Younger versus Older Siblings

All Respiratory Hospitalizations in First Year of Life

(1) (2) (3) (4) (5)
Younger 0.039∗∗∗ 0.039∗∗∗ 0.007∗∗∗ 0.041∗∗∗

(0.002) (0.002) (0.002) (0.003)
Disease index 0.017∗∗∗ 0.017∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(0.001) (0.001) (0.001) (0.001)
Younger x disease index 0.011∗∗∗ 0.012∗∗∗

(0.001) (0.001)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls No No No No Yes
Observations 1,163,982 1,163,982 1,163,982 1,163,982 1,163,982
Mean 0.068 0.068 0.068 0.068 0.068
25th to 75th pctile effect size 0.021 0.022

Notes: Each column in the table presents results from estimating different versions of model (1).
The outcome is the number of hospitalizations with any respiratory disease primary diagnosis dur-
ing the first year of the child’s life. We report the coefficients on the indicator variable denoting the
younger sibling (“Younger”), the respiratory disease exposure index (“Disease index”), and the in-
teraction of these two variables. The respiratory disease exposure index is the number of inpatient
admissions with any respiratory disease primary diagnosis among children aged 13–71 months per
100 children in each child’s municipality of birth during the first year of life, excluding any hospi-
talizations of an older sibling. All specifications include municipality, year of birth, and month of
birth fixed effects. Column (5) also includes the following family background controls: indicator
for child gender, the sibling pair’s birth spacing (in months) and the birth spacing interacted with
the indicator for the younger child, mother’s age and age squared, indicator for the mother being
foreign-born, indicators for mother’s education level (high school degree, college degree or higher),
and an indicator for the parents being married or cohabiting at the time of childbirth. Standard er-
rors are clustered on the child’s municipality of birth in all models. The “25th to 75th pctile effect
size” row reports the magnitude of the differential effect of an increase in the disease exposure index
from the 25th to the 75th percentile of the distribution for younger siblings. Significance levels: *
p<0.1 ** p<0.05 *** p<0.01.
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Table 3: Effect of Respiratory Disease Exposure Index in First Year of
Life on 9th Grade Danish Test Score, Younger versus Older Siblings

9th Grade Danish Test Score

(1) (2) (3) (4)
Younger -0.140∗∗∗ -0.140∗∗∗ -0.118∗∗∗

(0.007) (0.007) (0.014)
Disease index -0.002 -0.002 0.002

(0.004) (0.004) (0.005)
Younger x disease index -0.008∗

(0.005)
Municipality FEs Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes
Observations 469,170 469,170 469,170 469,170
Mean 0.100 0.100 0.100 0.100
25th to 75th pctile effect size -0.013

Notes: See notes under Table 2 for more details about the specifications and vari-
ables. The outcome is the 9th grade Danish test score, which is converted into a
z−score, standardized within each subject and test year. Test score data are only
available for children born in 1986–2003. We require both of the siblings are ob-
served in the data. Standard errors are clustered on the child’s municipality of
birth. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table 4: Effect of Respiratory Disease Exposure Index in First Year of
Life on 9th Grade Math Test Score, Younger versus Older Siblings

9th Grade Math Test Score

(1) (2) (3) (4)
Younger -0.146∗∗∗ -0.146∗∗∗ -0.135∗∗∗

(0.009) (0.009) (0.015)
Disease index -0.000 -0.000 0.002

(0.004) (0.004) (0.004)
Younger x disease index -0.004

(0.006)
Municipality FEs Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes
Observations 470,896 470,896 470,896 470,896
Mean 0.142 0.142 0.142 0.142
25th to 75th pctile effect size -0.006

Notes: See notes under Table 2 for more details about the specifications and vari-
ables. The outcome is the 9th grade math test score, which is converted into a
z−score, standardized within each subject and test year. Test score data are only
available for children born in 1986–2003. We require both of the siblings are ob-
served in the data. Standard errors are clustered on the child’s municipality of
birth. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table 5: Effect of Respiratory Disease Exposure Index in First Year of
Life on Log Income (Conditional on Employment) at Ages 25–32, Younger
versus Older Siblings

Log Income at Age 25-32

(1) (2) (3) (4)
Younger -0.016∗∗∗ -0.016∗∗∗ -0.005

(0.003) (0.003) (0.004)
Disease index -0.000 -0.000 0.002

(0.001) (0.001) (0.002)
Younger x disease index -0.005∗∗∗

(0.001)
Municipality FEs Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes
Age FEs Yes Yes Yes Yes
Observations 1,613,376 1,613,376 1,613,376 1,613,376
Mean 10.923 10.923 10.923 10.923
25th to 75th pctile effect size -0.007

Notes: See notes under Table 2 for more details about the specifications and variables.
The sample includes sibling pairs at ages 25–32, with each observation at the person-
by-age level. The outcome is the natural log of gross income (conditional on employed),
converted into 2010 USD$. Age fixed effects are included in all regressions. Standard
errors are clustered on the individual and municipality of birth level. Significance lev-
els: * p<0.1 ** p<0.05 *** p<0.01.
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A Appendix Figures

Figure A1: Share of Children Attending Group Childcare by Child Age in Months

Notes: This graph shows the share of children who are attending childcare by age in months. We use data on
enrollment in Danish childcare centers, which is reported annually in September of each year. This information
is available to us over the period of September 1995 to September 2013.
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Figure A2: Variation in the Respiratory Disease Index Over Time, 10 Largest Municipalities

Notes: This figure shows the monthly variation in the respiratory disease index over time for each of the
10 largest municipalities (in terms of population size) in Denmark, separately for time periods of 1980-1989,
1990-1999, 2000-2009, and 2010-2016. The respiratory disease index refers to the number of respiratory disease
hospitalizations per 100 children aged 13 to 71 months in each calendar year-month.
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Figure A3: Distribution of Respiratory Disease Index Residuals from Municipality, Year, and
Month Fixed Effects

Notes: This histogram plots the residuals after regressing the respiratory disease index on municipality, year,
and month fixed effects. The respiratory disease index refers to the number of respiratory disease hospitaliza-
tions per 100 children aged 13 to 71 months in each calendar year-month.
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Figure A4: Effects of the RSV Index on the Annual Number of Younger Siblings’ RSV Hos-
pitalizations, by Age of Observation

Notes: This figure plots the coefficients and 95% confidence intervals on the interaction term between the
RSV index and the younger sibling indicator from model (1), using as the outcome the annual number of
hospitalizations with RSV diagnoses, measured at ages specified on the x-axis. At each age, we require both
of the siblings are observed in the data. All regressions include municipality, year of birth, month of birth
fixed effects, and family background controls. See notes under Figure 5 for more details about the definition
of each subgroups and variables used in the specification. Confidence intervals are constructed from standard
errors clustered on the child’s municipality of birth.
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Figure A5: Heterogeneous Effects of the Respiratory Disease Exposure Index on Younger
Siblings’ Education Outcomes

(a) 9th Grade Danish Test Score (b) 9th Grade Math Test Score

(c) Graduated High School by Age 30 (d) Graduated College by Age 30

Notes: These figures plot the heterogeneity effects of the respiratory disease exposure on younger siblings
education outcomes among different subgroups. The baseline coefficient and 95% confidence intervals are
from the interaction term between the overall respiratory disease index and the younger sibling indicator
from model (1). Effects by subgroups are from 3 separate regressions: 1) high vs. low socioeconomic status
(SES); 2) low birth weight (LBW) status; and 3) child gender. In each regression, the full set of subgroup
indicators are interacted with the younger sibling indicator, the disease index, and the younger sibling indicator
× disease index interaction. Coefficients and 95% confidence intervals of the triple interaction term are
plotted accordingly. All regressions include municipality, year of birth, month of birth fixed effects, and family
background controls. See notes under Figure 4 for more details about the definition of each subgroups and
variables used in the specification. Confidence intervals are constructed from standard errors clustered on the
child’s municipality of birth.
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Figure A6: Heterogeneous Effects of the Respiratory Disease Exposure Index on Younger
Siblings’ Labor Market Outcomes

(a) Labor Force Participation

(b) Income (conditional on employed)

(c) Income Percentile

Notes: These figures plot the heterogeneity effects of the respiratory disease exposure on younger siblings
labor market outcomes among different sub-populations. The baseline coefficient and 95% confidence intervals
are from the interaction term between the overall respiratory disease index and the younger sibling indicator
from model (1). Effects by subgroups are from 3 separate regressions: 1) high vs. low socioeconomic status
(SES); 2) low birth weight (LBW) status; and 3) child gender. In each regression, the full set of sub-group
indicators are interacted with the younger sibling indicator, the disease index, and the younger sibling indicator
× disease index interaction. Coefficients and 95% confidence intervals of the triple interaction term are
plotted accordingly. All regressions include municipality, year of birth, month of birth fixed effects, and family
background controls. See notes under Figure 4 for more details about the definition of each subgroups and
variables used in the specification. Confidence intervals are constructed from standard errors clustered on the
child’s municipality of birth. 6



Figure A7: Heterogeneous Effects of the Respiratory Disease Exposure Index on Younger
Siblings’ Mental Health Care Outcomes

(a) Any Mental Health-Related Hospitalizations (b) Num. of Mental Health-Related Hospitalizations

(c) Any Psychiatrist Visits (d) Num. of Psychiatrist Visits

Notes: These figures plot the heterogeneity effects of the respiratory disease exposure on younger siblings
mental health outcomes during ages 16-26 among different sub-populations. The sample includes sibling pairs
at ages 16-26, with each observation at person-by-age level. The baseline coefficient and 95% confidence
intervals are from the interaction term between the overall respiratory disease index and the younger sibling
indicator from model (1) with age fixed effects. Effects by subgroups are from 3 separate regressions: 1) high
vs. low socioeconomic status (SES); 2) low birth weight (LBW) status; and 3) child gender. In each regression,
the full set of sub-group indicators are interacted with the younger sibling indicator, the disease index, and
the younger sibling indicator × disease index interaction. Coefficients and 95% confidence intervals of the
triple interaction term are plotted accordingly. All regressions include municipality, year of birth, month of
birth, age fixed effects, and family background controls. See notes under Figure 4 for more details about the
definition of each subgroups and variables used in the specification. Confidence intervals are constructed from
two-way clustered standard errors at the individual and municipality of birth levels.
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Figure A8: Effects of the Respiratory Disease Exposure Index on Younger Siblings’ Hospital-
izations for All Causes, by Age of Observation

(a) Any Hospitalization (b) Number of Hospitalizations

Notes: These figures plot the coefficients and 95% confidence intervals on the interaction term between the
disease index and the younger sibling indicator from model (1), using the hospitalization outcomes measured
at ages specified on the x-axes. At each age, we require both of the siblings are observed in the data. All
regressions include municipality, year of birth, month of birth fixed effects, and family background controls.
See notes under Figure 5 for more details about the specifications and variables. Confidence intervals are
constructed from standard errors clustered on the child’s municipality of birth.
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B Appendix Tables

Table A1: Sample Construction Process

Sample Restriction Observations

Birth cohort 1980-2015 2,221,433

Singleton first and second-born 1,373,056

Birth spacing gap at least 11 months 1,368,780

Drop sibling pairs with missing municipality of birth information,
or born in municipalities with less than 1,000 children aged 13-71 months on average 1,335,548

Drop sibling pairs with missing parental control variables 1,163,982

Notes: This table shows how our sample size changes as we make various restrictions to arrive at our final anal-
ysis sample.
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Table A2: Disease Exposure Index and Family Background Characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Male Birth Spacing LBW VLBW Mother’s Age Mother Foreign-Born Mother High School Graduated Mother College Graduated Parents Married/Cohabiting Father Log Income Mother Log Income Household Log Income Father Employed Mother Employed

Younger -.002 -1.95∗ -.0175∗∗∗ -.00257∗∗∗ 2.78∗∗∗ -.00693∗ .00976 .0414∗∗∗ .0174∗∗∗ .135∗∗∗ .165∗∗∗ .132∗∗∗ .052∗∗∗ .0162
(.00288) (1.04) (.00125) (.000291) (.0506) (.00405) (.00889) (.00495) (.00371) (.026) (.0177) (.0196) (.0147) (.0152)

Disease index -.00105 -.155 -.000468 -.0000908 -.139∗∗∗ -.000031 .00314 -.0151∗∗ -.00175 -.0141∗∗∗ -.00914∗∗∗ -.0124∗∗∗ -.00674∗∗∗ -.00122
(.00079) (.421) (.000354) (.000132) (.034) (.00149) (.0021) (.00615) (.00128) (.00411) (.00311) (.0037) (.00237) (.00277)

Younger x disease index .000383 1.03∗∗ .000743 .000148 .111∗∗∗ .000894 -.00172 .000783 -.00329∗∗ .00494 .0029 .00337 -.00192 -.00168
(.000949) (.422) (.000469) (.0000986) (.0324) (.00199) (.00408) (.00119) (.00136) (.00674) (.0057) (.00519) (.0038) (.00392)

Municipality FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,163,982 1,163,982 1,163,982 1,163,982 1,163,982 1,163,982 1,163,982 1,163,982 1,163,982 1,163,982 1,163,982 1,163,982 1,163,982 1,163,982
Mean 0.514 41.961 0.033 0.004 28.569 0.045 0.770 0.335 0.944 10.899 10.605 11.512 0.870 0.754
25th to 75th pctile effect size 0.001 1.866 0.001 0.000 0.201 0.002 -0.003 0.001 -0.006 0.009 0.005 0.006 -0.003 -0.003

Notes: Each column in the table presents results from estimating model (1), separately for each of the dependent variables listed at the top. We report the coefficients on the indicator variable denoting the younger sibling (“Younger”), the respiratory disease exposure index (“Disease index”), and the interaction of these two variables. The disease exposure
index is the number of inpatient admissions with a respiratory disease primary diagnosis among children aged 13–71 months per 100 children in each child’s municipality of birth during the first year of life, excluding any hospitalizations of an older sibling. See notes under Table 2 for more details about the specifications. Standard errors are clustered on the
child’s municipality of birth in all models. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A3: Effect of Non-Infectious Digestive Disease Exposure Index on Non-Infectious Digestive Disease Hospi-
talizations in First Year of Life, Younger versus Older Siblings

Non-infectious Digestive Disease Hospitalizations in First Year of Life (*1000)

(1) (2) (3) (4) (5)
Younger -0.243∗∗ -0.242∗∗ -0.175 -0.046

(0.096) (0.096) (0.109) (0.216)
Non-infectious digestive disease index 0.940 0.935 1.700 1.748

(1.097) (1.098) (1.526) (1.529)
Younger x Non-infectious disease index -1.352 -1.371

(1.426) (1.411)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls No No No No Yes
Observations 687,914 687,914 687,914 687,914 687,914
Mean 0.968 0.968 0.968 0.968 0.968
25th to 75th pctile effect size -0.093 -0.094

Notes: See notes under Table 2 for more details about the specifications and variables. The outcome is the number of hospitalizations
with any non-infectious digestive disease primary diagnosis during the first year of the child’s life (only available for children born after
1993). Standard errors are clustered on the child’s municipality of birth in all models. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A4: Effect of Injury (incl. Poisoning) Exposure Index on Injury (incl. Poisoning) Hospital-
izations in First Year of Life, Younger versus Older Siblings

Injury (incl. Poisonings) Hospitalizations in First Year of Life (*1000)

(1) (2) (3) (4) (5)
Younger -0.264 -0.273 -1.279 -0.050

(0.277) (0.278) (0.992) (1.129)
Injury index 3.541∗∗∗ 3.544∗∗∗ 3.063∗∗∗ 3.020∗∗∗

(0.606) (0.607) (0.740) (0.750)
Younger x injury index 0.871 0.891

(0.928) (0.940)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls No No No No Yes
Observations 687,914 687,914 687,914 687,914 687,914
Mean 7.326 7.326 7.326 7.326 7.326
25th to 75th pctile effect size 0.343 0.351

Notes: See notes under Table 2 for more details about the specifications and variables. The outcome is the num-
ber of hospitalizations with any injury (incl. poisoning) primary diagnosis during the first year of the child’s life
(only available for children born after 1993). Standard errors are clustered on the child’s municipality of birth in
all models. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A5: Effect of RSV Index on RSV Hospitalizations in the First Year of
Life, Younger versus Older Siblings

RSV Hospitalizations in First Year of Life

(1) (2) (3) (4) (5)
Younger 0.018∗∗∗ 0.018∗∗∗ 0.014∗∗∗ 0.029∗∗∗

(0.001) (0.001) (0.001) (0.001)
RSV index 0.040∗∗∗ 0.040∗∗∗ 0.016∗∗∗ 0.017∗∗∗

(0.004) (0.004) (0.003) (0.003)
Younger x RSV index 0.045∗∗∗ 0.044∗∗∗

(0.003) (0.004)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls No No No No Yes
Observations 687,914 687,914 687,914 687,914 687,914
Mean 0.018 0.018 0.018 0.018 0.018
25th to 75th pctile effect size 0.005 0.005

Notes: See notes under Table 2 for more details about the specifications and variables. The
outcome is the number of hospitalizations with an RSV primary diagnosis during the first
year of the child’s life (only available for children born after 1993). The disease index is con-
structed using hospitalizations for RSV only (rather than all hospitalizations for respiratory
conditions). Standard errors are clustered on the child’s municipality of birth in all models.
Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A6: Robustness of Results on Respiratory Disease Hospitalizations in First Year of Life

Respiratory Disease Hospitalizations in First Year of Life

(1) (2) (3) (4) (5)
Younger 0.041∗∗∗ 0.040∗∗∗ 0.037∗∗∗ 0.039∗∗∗ 0.040∗∗∗

(0.003) (0.003) (0.005) (0.003) (0.003)
Disease index 0.010∗∗∗ 0.007∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.002)
Younger x disease index 0.012∗∗∗ 0.012∗∗∗ 0.013∗∗∗

(0.001) (0.001) (0.001)
Disease index (# Diagnosis) 0.005∗∗∗

(0.001)
Younger x disease index (# Diagnosis) 0.009∗∗∗

(0.000)
Disease index (# Kids) 0.011∗∗∗

(0.001)
Younger x disease index (# Kids) 0.013∗∗∗

(0.001)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes Yes
Municipality Trends No Yes No No No
Mother FEs No No Yes No No
Observations 1,163,982 1,163,982 1,163,982 1,163,982 1,163,982
Mean 0.068 0.068 0.068 0.068 0.068
25th to 75th pctile effect size 0.022 0.022 0.023 0.022 0.022

Notes: Each column in the table presents results from estimating different versions of model (1). The outcome
is the number of hospitalizations with a respiratory disease primary diagnosis. Column (1) presents results using
the baseline model. Column (2) adds municipality-specific linear time trends, while column (3) adds maternal
fixed effects. Column (4) uses a disease index in which we count number of diagnoses for respiratory condi-
tions in hospitalizations including both primary and non-primary diagnoses. Column (5) uses a disease index
in which we calculate the number of children with at least one respiratory disease diagnosis (i.e., counting the
number of children and not the total number of diagnoses). See notes under Table 2 for more details about our
baseline model and control variables. Standard errors are clustered on the child’s municipality of birth in all
models. The “25th to 75th pctile effect size” row reports the magnitude of the differential effect of an increase
in the disease exposure index from the 25th to the 75th percentile of the distribution for younger siblings. Sig-
nificance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A7: Robustness of Results on 9th Grade Danish Test Score

9th Grade Danish Test Score

(1) (2) (3) (4) (5)
Younger -0.118∗∗∗ -0.129∗∗∗ -0.115∗∗∗ -0.123∗∗∗ -0.117∗∗∗

(0.014) (0.013) (0.013) (0.013) (0.014)
Disease index 0.002 -0.003 0.001

(0.005) (0.006) (0.006)
Younger x disease index -0.008∗ -0.005 -0.009∗∗

(0.005) (0.005) (0.004)
Disease index (# Diagnosis) -0.000

(0.004)
Younger x disease index (# Diagnosis) -0.004

(0.003)
Disease index (# Kids) 0.003

(0.006)
Younger x disease index (# Kids) -0.009∗

(0.005)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes Yes
Municipality Trends No Yes No No No
Mother FEs No No Yes No No
Observations 469,170 469,170 469,170 469,170 469,170
Mean 0.100 0.100 0.100 0.100 0.100
25th to 75th pctile effect size -0.013 -0.008 -0.015 -0.011 -0.014

Notes: See notes under Appendix Table A6 for more details about the specifications and variables. The
outcome is the 9th grade Danish test score, which is converted into a z−score, standardized within each
subject and test year. Test score data are only available for children born in 1986–2003. We require both
of the siblings are observed in the data. Standard errors are clustered on the child’s municipality of birth.
Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A8: Robustness of Results on 9th Grade Math Test Score

9th Grade Math Test Score

(1) (2) (3) (4) (5)
Younger -0.135∗∗∗ -0.123∗∗∗ -0.136∗∗∗ -0.141∗∗∗ -0.135∗∗∗

(0.015) (0.020) (0.013) (0.014) (0.015)
Disease index 0.002 0.009∗ 0.008∗

(0.004) (0.005) (0.005)
Younger x disease index -0.004 -0.008 -0.003

(0.006) (0.008) (0.004)
Disease index (# Diagnosis) 0.001

(0.002)
Younger x disease index (# Diagnosis) -0.001

(0.004)
Disease index (# Kids) 0.001

(0.004)
Younger x disease index (# Kids) -0.004

(0.006)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes Yes
Municipality Trends No Yes No No No
Mother FEs No No Yes No No
Observations 470,896 470,896 470,896 470,896 470,896
Mean 0.142 0.142 0.142 0.142 0.142
25th to 75th pctile effect size -0.006 -0.013 -0.005 -0.003 -0.007

Notes: See notes under Appendix Table A6 for more details about the specifications and variables. The
outcome is the 9th grade math test score, which is converted into a z−score, standardized within each sub-
ject and test year. Test score data are only available for children born in 1986–2003. We require both of the
siblings are observed in the data. Standard errors are clustered on the child’s municipality of birth. Signif-
icance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A9: Robustness of Results on High School Graduation by Age 30

Graduated High School by Age 30

(1) (2) (3) (4) (5)
Younger -0.016∗∗∗ -0.020∗∗∗ -0.008 -0.015∗∗ -0.016∗∗∗

(0.006) (0.007) (0.008) (0.006) (0.006)
Disease index 0.005∗∗ 0.005∗ 0.010∗

(0.003) (0.003) (0.005)
Younger x disease index -0.002 -0.000 -0.005∗

(0.001) (0.002) (0.003)
Disease index (# Diagnosis) 0.005∗∗∗

(0.002)
Younger x disease index (# Diagnosis) -0.002∗

(0.001)
Disease index (# Kids) 0.006∗

(0.003)
Younger x disease index (# Kids) -0.002

(0.002)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes Yes
Municipality Trends No Yes No No No
Mother FEs No No Yes No No
Observations 148,288 148,288 148,288 148,288 148,288
Mean 0.844 0.844 0.844 0.844 0.844
25th to 75th pctile effect size -0.002 -0.000 -0.005 -0.003 -0.002

Notes: See notes under Appendix Table A6 for more details about the specifications and variables. The
outcome is an indicator for graduating high school by age 30. We require both of the siblings are ob-
served in the data. Standard errors are clustered on the child’s municipality of birth. Significance levels:
* p<0.1 ** p<0.05 *** p<0.01.
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Table A10: Robustness of Results on College Graduation by Age 30

Graduated College by Age 30

(1) (2) (3) (4) (5)
Younger -0.045∗∗∗ -0.046∗∗∗ -0.037∗∗∗ -0.045∗∗∗ -0.045∗∗∗

(0.009) (0.010) (0.011) (0.008) (0.009)
Disease index 0.002 0.002 0.005

(0.003) (0.004) (0.005)
Younger x disease index -0.002 -0.002 -0.003

(0.002) (0.003) (0.003)
Disease index (# Diagnosis) 0.003

(0.002)
Younger x disease index (# Diagnosis) -0.002

(0.002)
Disease index (# Kids) 0.001

(0.004)
Younger x disease index (# Kids) -0.002

(0.003)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes Yes
Municipality Trends No Yes No No No
Mother FEs No No Yes No No
Observations 148,288 148,288 148,288 148,288 148,288
Mean 0.437 0.437 0.437 0.437 0.437
25th to 75th pctile effect size -0.002 -0.002 -0.004 -0.003 -0.002

Notes: See notes under Appendix Table A6 for more details about the specifications and variables. The
outcome is an indicator for graduating college by age 30. We require both of the siblings are observed in
the data. Standard errors are clustered on the child’s municipality of birth. Significance levels: * p<0.1 **
p<0.05 *** p<0.01.
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Table A11: Robustness of Results on Labor Force Participation at Ages 25–32

Labor Force Participation at Age 25-32

(1) (2) (3) (4) (5)
Younger -0.012∗∗∗ -0.012∗∗∗ -0.003 -0.012∗∗∗ -0.012∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
Disease index 0.005∗∗∗ 0.003∗ 0.004∗∗

(0.002) (0.002) (0.002)
Younger x disease index -0.001 -0.001 -0.001

(0.001) (0.001) (0.001)
Disease index (# Diagnosis) 0.004∗∗∗

(0.001)
Younger x disease index (# Diagnosis) -0.001

(0.001)
Disease index (# Kids) 0.005∗∗

(0.002)
Younger x disease index (# Kids) -0.001

(0.001)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes Yes
Municipality Trends No Yes No No No
Mother FEs No No Yes No No
Age FEs Yes Yes Yes Yes Yes
Observations 2,391,872 2,391,872 2,372,143 2,391,872 2,391,872
Mean 0.693 0.693 0.695 0.693 0.693
25th to 75th pctile effect size -0.001 -0.001 -0.001 -0.001 -0.001

Notes: See notes under Appendix Table A6 for more details about the specifications and variables. The sam-
ple includes sibling pairs at ages 25–32, with each observation at the person-by-age level. The outcome is an
indicator for being in the labor force. Age fixed effects are included in all regressions. Standard errors are
clustered on the individual and municipality of birth level. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.

19



Table A12: Robustness of Results on Log Income (Conditional on Employed) at Ages 25–32

Log Income at Age 25-32

(1) (2) (3) (4) (5)
Younger -0.005 -0.010∗∗∗ 0.005 -0.005 -0.005

(0.004) (0.003) (0.004) (0.004) (0.004)
Disease index 0.002 0.000 0.006∗∗∗

(0.002) (0.001) (0.002)
Younger x disease index -0.005∗∗∗ -0.003∗∗∗ -0.008∗∗∗

(0.001) (0.001) (0.001)
Disease index (# Diagnosis) 0.002

(0.001)
Younger x disease index (# Diagnosis) -0.003∗∗∗

(0.001)
Disease index (# Kids) 0.002

(0.002)
Younger x disease index (# Kids) -0.005∗∗∗

(0.002)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes Yes
Municipality Trends No Yes No No No
Mother FEs No No Yes No No
Age FEs Yes Yes Yes Yes Yes
Observations 1,613,376 1,613,376 1,589,702 1,613,376 1,613,376
Mean 10.923 10.923 10.927 10.923 10.923
25th to 75th pctile effect size -0.007 -0.004 -0.011 -0.007 -0.007

Notes: See notes under Appendix Table A6 for more details about the specifications and variables. The sample
includes sibling pairs at ages 25–32, with each observation at the person-by-age level. The outcome is the nat-
ural log of gross income (conditional on employed), converted into 2010 USD$. Age fixed effects are included
in all regressions. Standard errors are clustered on the individual and municipality of birth level. Significance
levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A13: Robustness of Results on Income Percentile at Ages 25–32

Income Percentile at Age 25-32

(1) (2) (3) (4) (5)
Younger -0.805∗∗∗ -0.961∗∗∗ -0.086 -0.792∗∗∗ -0.804∗∗∗

(0.215) (0.201) (0.212) (0.218) (0.218)
Disease index 0.266∗∗ 0.095 0.412∗∗∗

(0.123) (0.102) (0.116)
Younger x disease index -0.211∗∗ -0.149∗ -0.301∗∗∗

(0.093) (0.079) (0.081)
Disease index (# Diagnosis) 0.221∗∗

(0.095)
Younger x disease index (# Diagnosis) -0.157∗∗

(0.067)
Disease index (# Kids) 0.267∗∗

(0.133)
Younger x disease index (# Kids) -0.222∗∗

(0.100)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes Yes
Municipality Trends No Yes No No No
Mother FEs No No Yes No No
Age FEs Yes Yes Yes Yes Yes
Observations 2,391,872 2,391,872 2,372,143 2,391,872 2,391,872
Mean 56.337 56.337 56.370 56.337 56.337
25th to 75th pctile effect size -0.306 -0.215 -0.433 -0.311 -0.306

Notes: See notes under Appendix Table A6 for more details about the specifications and variables. The sam-
ple includes sibling pairs at ages 25–32, with each observation at the person-by-age level. The outcome is the
income percentile (calculated using the population of the same age in each year). Age fixed effects are included
in all regressions. Standard errors are clustered on the individual and municipality of birth level. Significance
levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A14: Robustness of Results on Any Mental Health-Related Hospitalizations Annually at
Ages 16–26

Any Mental-Related Hospitalizations Annually 16-26 * 100

(1) (2) (3) (4) (5)
Younger 0.035∗ 0.058∗∗∗ -0.022 0.031 0.033∗

(0.019) (0.019) (0.022) (0.020) (0.019)
Disease index 0.020∗ 0.010 -0.000

(0.011) (0.009) (0.014)
Younger x disease index 0.025∗∗∗ 0.017∗∗∗ 0.042∗∗∗

(0.006) (0.006) (0.007)
Disease index (# Diagnosis) 0.009

(0.008)
Younger x disease index (# Diagnosis) 0.019∗∗∗

(0.004)
Disease index (# Kids) 0.021∗

(0.012)
Younger x disease index (# Kids) 0.027∗∗∗

(0.006)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes Yes
Municipality Trends No Yes No No No
Mother FEs No No Yes No No
Age FEs Yes Yes Yes Yes Yes
Observations 5,204,048 5,204,048 5,184,713 5,204,048 5,204,048
Mean 0.405 0.405 0.406 0.405 0.405
25th to 75th pctile effect size 0.039 0.027 0.066 0.042 0.041

Notes: See notes under Appendix Table A6 for more details about the specifications and variables. The sample
includes sibling pairs at ages 16–26, with each observation at the person-by-age level. The outcome is an indi-
cator for having at least one mental health-related hospitalization during the observed age. Age fixed effects are
included in all regressions. Standard errors are clustered on the individual and municipality of birth level. Sig-
nificance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A15: Robustness of Results on the Number of Mental Health-Related Hospitalizations Annually
at Ages 16–26

Number of Mental-Related Hospitalizations Annually 16-26 * 100

(1) (2) (3) (4) (5)
Younger 0.041 0.070∗∗ -0.037 0.037 0.036

(0.029) (0.028) (0.036) (0.029) (0.030)
Disease index 0.034∗∗ 0.014 0.007

(0.014) (0.013) (0.026)
Younger x disease index 0.037∗∗∗ 0.026∗∗∗ 0.062∗∗∗

(0.011) (0.010) (0.015)
Disease index (# Diagnosis) 0.016∗

(0.009)
Younger x disease index (# Diagnosis) 0.028∗∗∗

(0.008)
Disease index (# Kids) 0.037∗∗

(0.015)
Younger x disease index (# Kids) 0.040∗∗∗

(0.012)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes Yes
Municipality Trends No Yes No No No
Mother FEs No No Yes No No
Age FEs Yes Yes Yes Yes Yes
Observations 5,204,048 5,204,048 5,184,713 5,204,048 5,204,048
Mean 0.484 0.484 0.484 0.484 0.484
25th to 75th pctile effect size 0.058 0.041 0.098 0.061 0.061

Notes: See notes under Appendix Table A6 for more details about the specifications and variables. The sample includes
sibling pairs at ages 16–26, with each observation at the person-by-age level. The outcome is the number of mental
health-related hospitalizations during the observed age. Age fixed effects are included in all regressions. Standard errors
are clustered on the individual and municipality of birth level. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A16: Robustness of Results on Any Psychiatrist Visits Annually at Ages 16–26

Any Psychiatrist Visit Annually 16-26 * 100

(1) (2) (3) (4) (5)
Younger -0.106∗∗∗ -0.087∗∗ -0.166∗∗∗ -0.116∗∗∗ -0.114∗∗∗

(0.040) (0.040) (0.049) (0.039) (0.040)
Disease index -0.005 0.017 -0.023

(0.022) (0.025) (0.027)
Younger x disease index 0.035∗∗∗ 0.029∗∗ 0.058∗∗∗

(0.012) (0.012) (0.016)
Disease index (# Diagnosis) -0.013

(0.015)
Younger x disease index (# Diagnosis) 0.028∗∗∗

(0.009)
Disease index (# Kids) -0.009

(0.024)
Younger x disease index (# Kids) 0.040∗∗∗

(0.013)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes Yes
Municipality Trends No Yes No No No
Mother FEs No No Yes No No
Age FEs Yes Yes Yes Yes Yes
Observations 4,779,471 4,779,471 4,760,527 4,779,471 4,779,471
Mean 1.093 1.093 1.095 1.093 1.093
25th to 75th pctile effect size 0.055 0.045 0.090 0.062 0.059

Notes: See notes under Appendix Table A6 for more details about the specifications and variables. The sam-
ple includes sibling pairs at ages 16–26, with each observation at the person-by-age level. The outcome is an
indicator for visiting the psychiatrist for at least once during the observed age. Age fixed effects are included
in all regressions. Standard errors are clustered on the individual and municipality of birth level. Significance
levels: * p<0.1 ** p<0.05 *** p<0.01.
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Table A17: Robustness of Results on the Number of Psychiatrist Visits Annually at Ages 16-26

Number of Psychiatrist Visits Annually 16-26 * 1000

(1) (2) (3) (4) (5)
Younger -1.091∗∗∗ -0.758∗ -1.588∗∗∗ -1.201∗∗∗ -1.164∗∗∗

(0.393) (0.428) (0.434) (0.378) (0.394)
Disease index -0.059 0.141 -0.210

(0.204) (0.223) (0.243)
Younger x disease index 0.265∗∗ 0.148 0.491∗∗∗

(0.113) (0.126) (0.105)
Disease index (# Diagnosis) -0.118

(0.138)
Younger x disease index (# Diagnosis) 0.225∗∗∗

(0.081)
Disease index (# Kids) -0.074

(0.220)
Younger x disease index (# Kids) 0.309∗∗

(0.122)
Municipality FEs Yes Yes Yes Yes Yes
YoB+MoB FEs Yes Yes Yes Yes Yes
Family Background Controls Yes Yes Yes Yes Yes
Municipality Trends No Yes No No No
Mother FEs No No Yes No No
Age FEs Yes Yes Yes Yes Yes
Observations 4,779,471 4,779,471 4,760,527 4,779,471 4,779,471
Mean 7.658 7.658 7.676 7.658 7.658
25th to 75th pctile effect size 0.413 0.231 0.766 0.485 0.457

Notes: See notes under Appendix Table A6 for more details about the specifications and variables. The sample
includes sibling pairs at ages 16–26, with each observation at person-by-age level. The outcome is the number of
psychiatrist visits during the observed age. Age fixed effects are included in all regressions. Standard errors are
clustered on the individual and municipality of birth level. Significance levels: * p<0.1 ** p<0.05 *** p<0.01.
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