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1 Introduction

Since Baldwin (1988) and Baldwin and Krugman (1989), a large literature focuses on modeling

the dynamics of firms in export markets; see Alessandria et al. (2021a) for a review. This litera-

ture nearly unanimously assumes a firm’s export decisions in a foreign country are unaffected by

its decisions in other countries. There is however growing evidence questioning this assumption,

supporting instead the hypothesis that there are cross-country complementarities in firm exports,

such that exporting to a country makes a firm more likely to export to other countries (Chaney,

2014; Morales et al., 2019; Albornoz et al., 2021b).

The idea of cross-country export complementarities resonates often in policy discussions of trade

agreements. First, it is behind claims that preferential trade agreements (PTAs) increase exports

from their members to non-member countries.1 Second, the belief the regulatory convergence deep

PTAs impose on their members is a source of complementarities between them (Grossman et al.,

2021) has supported claims that these agreements attract exports from third countries (Baldwin,

2011; Mattoo et al., 2022), thus counteracting the trade diversion effect of shallow PTAs predicted

by models à la Eaton and Kortum (2002) or Anderson and van Wincoop (2003). Specifically, the

potential trade creation effect of deep PTAs has featured prominently in analyses of Brexit.2

These policy discussions and the prior evidence supporting the existence of cross-country export

complementarities raise the question of how quantitatively important these are in determining firm

exports, in particular in reaction to trade policy changes. In a first step towards answering this

question, we extend a canonical partial equilibrium model of firm export dynamics featuring fixed

and sunk export costs (as in Das et al., 2007) to allow for complementarities in a firm’s export

decision across countries. In our model, the firm chooses its per-period set of export destinations as

the solution to a single-agent dynamic combinatorial discrete choice problem, and we build on Jia

(2008) and Arkolakis et al. (2021) to develop a new algorithm to solve such problems. We estimate

our model using firm-country-year level data on the universe of exports from Costa Rica during

2005-2015 and, using the estimated model, we show that, in the absence of complementarities, the

number of firm-country-year combinations with positive exports in our sample would have been

close to 12% smaller, and total exports would have decreased in approximately 5%. When evaluat-

ing the impact on Costa Rica of a Brexit-driven hypothetical regulatory divergence between the UK

and the EU, our model predicts total exports and the number of exporters to the UK to decrease

in around 4% on average in the ten year window post Brexit. Analogous predictions for the EU

as a whole are below 0.5%, reflecting that, everything else equal, cross-country complementarities

1In an example involving Costa Rica, whose data we use in our analysis, its government has argued that the
PTA with Singapore lets Costa Rica increase its exports throughout Asia (Ruiz, 2013). Similarly, the Australian
government has defended the PTA with Peru asserting it “provides Australian businesses a gateway to Latin America”
(Australian Government, 2020). Similar claims have been made in relation to, e.g., the PTAs between India and the
UAE (Jayaswal, 2021), China and Uruguay (Werner, 2021), or Canada and Morocco (Canadian Government, 2022),
the last two currently under negotiation.

2For e.g., UNCTAD (2020) claims that “the positive third-country effect could be diminished by increasing regu-
latory divergence. If the UK’s regulations divert over time from the EU’s, trade costs would rise for third countries
due to production process adjustment costs and potential duplication of proofs of compliance.”
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have a larger impact on exports to smaller markets. Finally, we predict the impact of Costa Rica

joining the Comprehensive and Progressive Agreement for Trans-Pacific Partnership (CPTPP),

and show that researchers using a model analogous to ours but that excludes the possibility of

complementarities would have predicted an increase in Costa Rican exports to CPTPP members

only slightly smaller than that implied by our model. The difference would however be larger if the

CPTPP included a large potential export destination, such as the US, among its members, as in

this case the increase in exports to this large destination that would result from Costa Rica joining

the CPTPP would have significant spillovers on the other members.3

Consistently with findings in the prior literature, the firm in our sample tends to export to coun-

tries geographically or linguistically close to, or that share a deep PTA with, its other concurrent

export destinations. This correlation in export choices decreases only marginally when controlling

for sector-destination-year and firm-year fixed effects and, thus, is mostly due to factors varying

at the firm-country level. Although cross-country complementarities in firm exports could explain

this correlation pattern, it may be caused instead by firm- and country-specific unobserved export

profit (e.g., demand) shifters that are positively correlated across countries. To guide the sepa-

rate identification of cross-country complementarities and correlation in unobserved export profit

shifters, and to quantify the role the former play in determining firm exports, we build a model of

export dynamics that allows for cross-country complementarities in firm choices.

In our model, monopolistically competitive firms featuring constant marginal production costs

face destination- and period-specific variable, fixed, and sunk export costs. We model variable costs

as “iceberg” costs and, building on Roberts and Tybout (1997), assume firms face a sunk entry cost

if they export to a destination to which they did not export in the previous period. All export costs

in a destination are allowed to depend on its geographic and linguistic distance to, and the deepness

of its PTAs with, the firm’s home country. The fixed cost a firm faces in a country and period

may additionally depend on the firm’s other export destinations in the same period. Specifically,

a firm may face a smaller fixed cost in a country if it concurrently exports to other countries, and

the extent of this cost reduction may depend on the geographic or linguistic proximity between

both countries, as well as on the deepness of the PTAs of which both are members. To discipline

the estimation of the parameters determining the extent to which a firm’s fixed cost in a country

depend on the firm’s export choices in other countries, our model also allows this cost to depend

on a term unobserved to the researcher and potentially correlated across destinations according to

a correlation coefficient that may also depend on their geographic or linguistic proximity, or on the

deepness of the PTAs of which they are members.

The inclusion of sunk costs and our modeling of fixed costs imply a firm’s static export profits

in a country and period are weakly larger if the firm exported to the same country in the previous

period, or if it exports to other countries in the same period. The firm internalizes the impact its

export choice in a country and period has on profits in other countries and periods. Specifically,

3Costa Rica formally requested in 2022 to join the CPTPP. This is an agreement among Australia, Brunei, Canada,
Chile, Japan, Malaysia, Mexico, New Zealand, Peru, Singapore, and Vietnam. It evolved from the Trans-Pacific
Partnership (TPP), which had the US among its members and never entered into force due to the US withdrawal.
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firms select each period’s optimal set of export destinations after solving an infinite-horizon dynamic

combinatorial discrete choice problem. We assume for tractability firms have perfect foresight on

most payoff-relevant variables, but allow for firm uncertainty about future realizations of a country-

and period-specific “blocking” or “exit” shock that, if realized, prevents the firm from exporting

to a country in a period. As in Eaton et al. (2016) and Caliendo et al. (2019), we assume all

payoff-relevant variables on which firms have perfect foresight are constant after a terminal period.

Given commonly available computational capabilities, the optimization problem determining

the firm’s export path cannot be solved using standard dynamic programing algorithms. The reason

is that the cardinality of the per-period choice set and state space grow exponentially in the number

of possible export destinations: given J feasible destinations, the choice set includes 2J elements

(each element being a J-dimensional vector of binary variables indicating the set of countries to

which the firm exports) and the state space includes 22J elements (each element indicating the

firm’s export bundle in the previous period and the current realization of the blocking shocks in

every country). To compute the firm’s optimal export path, we develop a novel algorithm that

solves a series of increasingly complex problems that put gradually tighter bounds on the firms’

optimal decision. Our algorithm exploits the supermodularity of the firm’s objective function; i.e.,

exporting to a country in a period and state weakly increases the returns to exporting in every

other country, future period, and possible state. It thus builds on previous work that has leveraged

the supermodularity of the objective function to solve otherwise intractable static optimization

problems (see, e.g., Jia, 2008, Antràs et al., 2017, Arkolakis et al., 2021), and it extends the set

of supermodular problems that are computationally feasible to solve to a family of optimization

problems featuring dynamics and firms’ uncertainty about future payoffs.

The problem of separately identifying the parameters governing the sensitivity of a firm’s

country-specific fixed costs to its concurrent export destinations from the parameters determin-

ing the cross-country correlation in fixed costs’ unobserved determinants is an instance of the

general problem of separately identifying “path” dependence from correlated unobservables; in our

case, across countries within a period. For any given measure of proximity between countries, be

it geographic or linguistic proximity, or whether they share a deep PTA, we show these may be

separately identified combining two types of moment conditions. First, moments capturing how the

correlation in firms’ export choices in any two countries depends on their proximity. Second, mo-

ments capturing the impact exogenous determinants of the firm’s export participation in countries

close to a potential destination have on the probability the firm exports to such destination.4 While

the first type of moments is particularly sensitive to the parameters determining the correlation in

unobserved fixed cost shocks, the second type is specially sensitive to the parameters determining

the impact exporting to a country has on fixed costs in other countries. In our model, both types

of moments identify the parameters of interest.

4We use a country’s export potential as exogenous determinant of firms’ export participation in it; thus, the second
type of moments relates the firm’s export participation in a country to the aggregate export potential of the countries
close to it. To measure a country’s export potential, we use the importer fixed effect in a standard gravity equation
estimated using sectoral trade data for all country pairs that do not include Costa Rica as importer or exporter.
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Our estimates reveal there is a large heterogeneity across country pairs in the impact exporting

to one of them has on fixed costs in the other one. This heterogeneity reflects geographic and

linguistic distances between countries, as well as the deepness of the PTAs tying together their

regulations. For e.g., exporting to Korea reduces fixed costs in China in 0.3%, exporting to Canada

brings down fixed costs in the US in 3.5%, and exporting to France reduces fixed costs in Germany in

9%. These cost savings accumulate as the firm incorporates more destinations to its export bundle;

e.g., for a firm exporting to France, adding Switzerland to its export bundle increases the reduction

in fixed costs in Germany from 9% to 16%. More generally, members of the European Common

Market, being geographically close to each other and sharing a deep PTA, have fixed export costs

that are particularly sensitive to firms’ other export destinations among their members.

We use our estimated model to perform three types of analysis. First, to quantify the role cross-

country complementarities play in determining firm exports, we compare the choices of all sample

firms during 2005-2015 predicted by our estimated model to those predicted by an alternative model

that differs from ours only in that a firm’s fixed costs in a country no longer depend on the firm’s

other export destinations. Complementarities increase the total number of firm-country-periods

with positive exports in 11.8%, and total export revenues in 5.1%. Of the three possible sources of

cross-country complementarities we account for, geographical proximity plays a larger role, causing

by itself a 2.7% increase in export sales, while allowing deep PTAs to generate cross-country

complementarities increases exports in 1.6%, and linguistic proximity does so in only 0.9%. These

numbers mask a large heterogeneity across destinations: most EU members see exports from Costa

Rica increase in at least 10% (with some countries in Central and Eastern Europe experiencing

increases above 25%), and exports to large countries such as the US, China, or Russia, are largely

unaffected by the complementarities implied by our estimated model.

Second, to measure the third-country effect of cross-country complementarities arising from

deep PTAs, we quantify the impact of Brexit on exports from Costa Rica to the UK and the EU.

Specifically, we use our estimated model to compare firms’ exports in a setting in which the UK

and the EU share no deep PTA post Brexit to those in a counterfactual setting in which the UK is

still a member of the European Common Market and, thus, still shares a deep PTA with the EU.

Trade barriers between Costa Rica and every other country are kept the same in both scenarios;

thus, our analysis captures only the third-country effect of Brexit, and a partial-equilibrium model

such as ours that rules out cross-country complementarities would predict identical export flows in

both scenarios. In our model, in the four years between the Brexit referendum and the effective

UK withdrawal from the EU, firms anticipate the future reduction in UK-EU complementarities,

causing the number of firm-periods with positive exports to the UK to decrease in 1.4%, and total

exports to decrease in 0.5%. In the ten years subsequent to the effective withdrawal, both the

number of firm-periods with positive exports and total exports to the UK drop in close to 4%.

Conversely, the impact on export flows to the EU is minimal.

Third, and finally, we study the impact of Costa Rica joining the CPTPP on its exports, and

compare the predictions of our estimated model to those of a re-estimated model analogous to ours
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in every aspect except in that it assumes away the possibility of cross-country complementarities.

According to our estimated model, exports to CPTPP members are predicted to increase in 28%.

Researchers using a model analogous to ours but that excludes the possibility of complementarities

would have predicted a slightly smaller increase of 25.7%. The reason why both models yield similar

predictions for this counterfactual analysis is that, given our estimates, CPTPP members either

exhibit low levels of complementarities with every other country or the impact of Costa Rica joining

CPTPP on its exports to them is too small to generate significant spillovers in other countries.

To illustrate this point, we also compare the predictions of both models for the impact of Costa

Rica joining a counterfactual CPTPP that additionally includes the US among its members. In

this case, the two models yield different predictions. While the prediction of the model without

complementarities for the increase in exports to actual CPTPP members is unaffected by the

addition of the US to this trade bloc, the model with complementarities now predicts a much larger

increase in exports (close to 40%) to actual CPTPP members. Intuitively, in this counterfactual

scenario, there is an increase in exports to the US and, in the model with complementarities, this

itself causes a large increase in exports to actual CPTPP members. Thus, whether models that

allow for complementarities yield counterfactual predictions similar to models that do not depends

on the particular change in trade policy being studied.

Our paper is related to several strands of the literature. First, it relates to the literature on

firm export dynamics. This one has traditionally studied the firm’s decision in an aggregate export

market (Roberts and Tybout, 1997; Das et al., 2007; Alessandria and Choi, 2007; Arkolakis, 2016;

Ruhl and Willis, 2017) or in independent foreign markets (Fitzgerald et al., 2022).5 Exceptions are

Schmeiser (2012), Chaney (2014), Albornoz et al. (2016), and Morales et al. (2019), which allow

for cross-country complementarities in firm exports. Our approach differs from that in Chaney

(2014) in that we model firms’ export decisions as the outcome of combinatorial binary-choice

optimization problems. Albornoz et al. (2016) study analytically the implications of cross-country

complementarities for export survival. The models in Schmeiser (2012) and Morales et al. (2019) are

closer to ours, but while the latter does not attempt to solve the model, the former does so only for a

small number of destinations.6 Our contribution is twofold: first, we provide an algorithm to solve a

partial-equilibrium model of firm export dynamics that allows for cross-country complementarities

in firm export decisions; second, we use the estimated model to quantify the role complementarities

play in determining firms’ responses to trade policy changes.

Second, our paper also relates to the reduced-form literature that identifies interdependencies

in firm sales across markets. While there is a large literature documenting non-zero correlation pat-

terns in firm sales across markets (e.g., Evenett and Venables, 2002; Lawless, 2009, 2013; Albornoz

5Other work studying firm export dynamics in aggregate or independent markets includes Eaton et al. (2008,
2021a,b); Impulliti et al. (2013); Alessandria and Choi (2014a,b); Timoshenko (2015); Albornoz et al. (2016); Fitzger-
ald and Haller (2018); Dickstein and Morales (2018); Berman et al. (2019); Gumpert et al. (2020); Piveteau (2021);
Alessandria et al. (2021b). There is also work studying dynamics in firm imports and in multinational production in
independent markets; e.g., Conconi et al. (2016); Ramanarayanan (2017); Garetto et al. (2021); Lu et al. (2022).

6Besides Morales et al. (2019), other papers using moment inequalities to measure interdependencies across firms’
decisions, without solving the underlying dynamic model, are Holmes (2011), Houde et al. (2022), and Hoang (2022).
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et al., 2012, 2016; Morales et al., 2019; Albornoz et al., 2021a), there is a more recent literature

using instrumental variables to separately identify cross-market interdependencies in firm sales

from cross-market correlation in unobserved determinants of these sales (e.g., Defever et al., 2015;

Berman et al., 2015; Almunia et al., 2021; Albornoz et al., 2021b; Mattoo et al., 2022). Our con-

tribution is to allow for complementarities in a dynamic firm entry model, to estimate the model

parameters determining the strength of these complementarities using an approach that builds on

the literature using instruments for the identification of these complementarities, and to quantify

the role these complementarities play in determining the firm’s export decisions.

Third, our paper relates to the literature studying combinatorial discrete choice problems. This

literature has focused nearly exclusively on static problems and, to solve them, has implemented

several approaches: evaluating all choices (Tintelnot, 2017); modeling combinatorial choices as an

aggregation of multinomial ones (Hendel, 1999); approximating the discrete problem as a choice

over a continuous variable (Oberfield et al., 2022); or, devising algorithms that exploit the super- or

sub-modularity of the objective function (Jia, 2008; Antràs et al., 2017; Arkolakis et al., 2021).7 We

build on this last approach, and introduce a novel algorithm to solve rational-expectations single-

agent combinatorial dynamic discrete choice problems in which all choices are complements.8

The rest of the paper proceeds as follows. Section 2 describes our data. Section 3 documents

correlation patterns in firm exports. Section 4 introduces a dynamic model that allows for cross-

country export complementarities, and sections 5 and 6 describe how we solve and estimate the

model, respectively. In Section 7, we present the model estimates, and we discuss counterfactual

results in Section 8. Section 9 concludes.

2 Data

Our analysis relies mainly on two types of data: firm-level data on the domestic sales and exports

of firms located in Costa Rica, and data on the characteristics of foreign countries as potential

export destinations of Costa Rican firms.

Our firm-level data covers the years 2005 to 2015, and comes from three sources. The first

one is the Costa Rican customs database, which we use to measure export revenue by foreign

country for the universe of Costa Rican firms. The second one is an administrative dataset that,

for all firms located in Costa Rica, contains information on the firm’s sector, total revenue, and

expenditure in materials. We combine the information on these two datasets and construct our

measure of firm domestic revenue by subtracting total export revenue from total revenue. The

third one was built by Alfaro-Ureña et al. (2022), who use information from different sources to

identify the Costa Rican firms that belong to a foreign multinational corporation. We merge these

three datasets using firm identifiers provided by Alfaro-Ureña et al. (2022), and restrict the set of

7For a paper that incorporates dynamics, see Zheng (2016), who groups choices in clusters such that, within each
cluster, the choice depends only on an aggregate of the choices made in other clusters.

8Problems exhibiting both complementarities and substitutabilities across choices are relatively unexplored even
in static settings; see Antràs et al., 2022 and Castro-Vincenzi et al., 2022.
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firms in our sample to include only manufacturing firms (firms whose main activity is in sectors 10

to 33 according to ISIC Rev. 4) that are not part of a multinational corporation.

The resulting dataset includes 7,203 firms. Approximately 8% of these firms export in a typical

year. While exporting firms often export to a single destination (this being the case for approx-

imately 40% of exporters), approximately 25% of them export to at least four destinations, 10%

of them export to at least seven, and 5% of them export to at least ten. By sector, most export

participation events are concentrated in the manufacturing of other food products (sector 1079 in

the ISIC Rev. 4 classification) and of plastic products (sector 2220). The most popular destinations

are either countries that are geographically close to Costa Rica (e.g., Nicaragua) or relatively large

(e.g., the United States). We provide additional descriptive statistics in Appendix B.1.

We complement our firm-level data with data on country characteristics. We obtain informa-

tion on the languages spoken in each country from Ethnologue (Eberhard et al., 2021), on the

geographical distance between countries from CEPII’s GeoDist (Mayer and Zignago, 2011), on the

tariffs applied to exports from Costa Rica from Barari and Kim (2021), on the content of PTAs

from Hofmann et al. (2019), and on countries’ GDP from the World Bank. Among other purposes,

we use these data to build geographical, linguistic, and regulatory distances between countries.

We denote the geographical distance between two countries j and j1 as ngjj1 . As in Head and

Mayer (2002), we construct ngjj1 as a weighted average of the distances between largely populated

cities located in countries j and j1; i.e.,

ngjj1 �
¸
kPj

¸
k1Pj1

popk
popj

popk1

popj1
distkk1 , (1)

where k and k1 respectively index cities in countries j and j1, popk and popk1 denote the population

of cities k and k1, popj and popj1 denote the total population of the cities in countries j and j1 used

to calculate ngjj1 , and distkk1 is the distance between k and k1 in thousands of kilometers. Two

features of the measure ngjj1 are worth noting. First, it accounts for the distribution of population

within a country; e.g., according to this measure, Russia is closer to Germany (2,290 km) than to

China (4,984 km). Second, large countries tend to appear isolated; e.g., while the distance between

Switzerland and the UK is 872 km, that between the US and Canada is 1,154 km.

We denote the linguistic distance between countries j and j1 as nljj1 , and measure it as the

probability two randomly selected individuals from j and j1 do not speak a common language; i.e.,

nljj1 � max
!
0, 1�

Ķ

k�1

sjksj1k

)
, (2)

where sjk is the share of country j’s population that speak language k as either their first or

second language, and K is the total number of languages considered in Ethnologue.9 Relative to

9Ethnologue provides information by country on the population shares speaking a language as their first or second
language, but it does not provide information on the distribution of second language speakers conditional on their
first language. The measure nl

jj1 assumes a joint distribution of first and second languages in each country such that
the distance between countries is minimized. See Desmet et al. (2012) for another application of Ethnologue data.
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distance measures relying only on the commonality of official languages between countries, nljj1

reflects the actual prevalence of each language in each country, and thus accounts for the fact that

certain languages are popular in countries in which they are not official; e.g., although the UK and

Denmark share no official language, they are linguistically close according to our measure, as a

large share of the Danish population reports speaking English as their second language.10

Our third distance measure between countries j and j1 in a year t is an inverse measure of the

breadth of the regulatory harmonization imposed by the PTAs of which j and j1 are members in

t, if any. We denote this measure as najj1t, refer to it as the regulatory distance between j and j1 in

t, and build it using the data in Hofmann et al. (2019), which indicates whether a PTA contains

provisions in each of 52 policy areas. We focus on the seven (out of the 52) areas that concern

regulatory harmonization, and count in how many of them a PTA includes some provision.11 When

two countries are cosignatories of more than one PTA in a year t, we consider only the agreement

containing provisions in the largest number of harmonization-focused policy areas, and compute:

najj1t � 1�
1

7

#
number harmonization-focused policy areas in which

the PTA between j and j1 in t includes some provision

+
. (3)

This measure is between zero and one. For e.g., the European Common Market contains provisions

in all seven harmonization areas of interest and, thus, najj1t � 0 between their members. Conversely,

NAFTA contains provisions in five of the seven areas and, thus, najj1t � 0.29 between their members.

In Appendix sections B.2 to B.4, we provide additional information on the distance measures

introduced in equations (1) to (3).

3 Cross-country Correlation in Export Participation Decisions

If geographical, linguistic, or regulatory proximity are sources of cross-country complementarities

in firm exports, a firm’s export probability in a country j and year t will, all else equal, be larger

if it concurrently exports to countries close to j according to any of these three distance measures.

To explore whether firm exports in our sample exhibit these correlation patterns, for each firm i,

country j, and year t, and for each of the three distance measures above, we compute a dummy

variable that equals one if firm i exports in year t to at least one country close to j. For e.g., for

the case of geographical distance, we compute

Y g
ijt � 1

 ¸
j1�j

1tngjj1 ¤ n̄guyij1t ¡ 0
(
, (4)

where 1t�u is an indicator function, ngjj1 is defined in equation (1), n̄g is a threshold determining

whether we classify two countries as geographically close to each other, and yij1t is a dummy variable

10The linguistic distance between the UK and Denmark is 0.11; i.e., we measure the probability a randomly selected
individual from Denmark does not understand a randomly selected individual from the UK to be 11%.

11These areas cover the harmonization of: sanitary or phytosanitary measures; technical barriers to trade; intel-
lectual property rights; environmental standards; consumer protection laws; statistical methods; competition laws.

8



Table 1: Conditional Export Probabilities

Panel A: Panel B:
No Controls Controlling for Firm-Year Fixed Effects

(1) (2) (3) (4) (1) (2) (3) (4)

Y g
ijt 0.2622a 0.2082a 0.2226a 0.1957a

(0.0092) (0.0079) (0.0089) (0.0081)

Y l
ijt 0.1617a 0.0752a 0.1220a 0.0718a

(0.0076) (0.0054) (0.0067) (0.0055)

Y a
ijt 0.0857a 0.0386a 0.0517a 0.0259a

(0.0037) (0.0021) (0.0026) (0.0018)

Obs. 3,859,618 3,859,618

Panel C: Panel D:
Controlling for Sector-Country-Year Fixed Effects Controlling for Firm-Year & Sector-Country-Year

Fixed Effects

(1) (2) (3) (4) (1) (2) (3) (4)

Y g
ijt 0.2462a 0.1955a 0.2043a 0.1809a

(0.0089) (0.0076) (0.0086) (0.0078)

Y l
ijt 0.1572a 0.0764a 0.1160a 0.0720a

(0.0074) (0.0052) (0.0066) (0.0054)

Y a
ijt 0.0809a 0.0363a 0.0473a 0.0207a

(0.0035) (0.0019) (0.0026) (0.0018)

Obs. 3,859,618 3,859,618

Note: a denotes 1% significance. Standard errors are clustered by firm. The dependent variable is a dummy that
equals 1 if firm i exports to country j in year t. The covariates of interest are Y x

ijt � 1t
°

j1�j 1tn
x
jj1 ¤ n̄xuyij1t ¡ 0u

for x P tg, lu, and Y a
ijt � 1t

°
j1�j 1tn

a
jj1t ¤ n̄auyij1t ¡ 0u, with n̄g � 790 km, n̄l � 0.11 and n̄a � 0.43.

that equals one if firm i exports to country j1 in year t. Thus, Y g
ijt is a dummy that equals one if

i exports in t to at least one country whose geographical distance to j is smaller than n̄g. In our

baseline analysis, we set n̄g such that we classify two countries as close if their distance is less than

790 km, which is the 2.5 percentile of the distribution of distances across all country pairs.

We use expressions analogous to that in equation (4) to define two dummy variables, Y l
ijt

and Y a
ijt, that equal one if firm i exports in year t to at least one country sufficiently close to j

according to the distance measures nljj1 or n
a
jj1t, respectively. In our baseline analysis, we classify

two countries as linguistically close if the probability two randomly selected individuals from both

countries speak a common language is at least 0.89 (i.e., if nljj1   0.11, where 0.11 is the 2.5

percentile of the distribution of linguistic distances across all country pairs), and we classify two

countries as regulatory close if they are cosignatories of a PTA including provisions in at least four

of the seven areas listed in footnote 11 (i.e., if najj1t   0.43).12 In Appendix B.5, we present results

analogous to those in this section, but that rely on looser thresholds for classifying two countries

as close to each other on the basis of their geographical, linguistic, or regulatory distance.

Table 1 presents OLS estimates of regressions of a dummy variable that equals one if firm i

exports to a country j in a year t on the covariates Y g
ijt, Y

l
ijt, and Y

a
ijt, controlling for different sets of

12According to these thresholds, e.g., Argentina and Spain (but not France and Switzerland) are linguistically
close; and all members of the EU, NAFTA, CAFTA, or Mercosur are close in their regulations.
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fixed effects. In Panel A, we include estimates of regression specifications that do not include fixed

effects. The results in column (1) indicate exporting in year t to a destination geographically close

to a country j increases in 26.2% the probability the firm exports to j in t. The results in columns

(2) and (3) indicate this probability increase is 16.2% when the destination is linguistically close to

j, and 8.6% when it shares a sufficiently deep PTA with j, respectively. As the results in column

(4) show, these point estimates decrease only slightly when including all three covariates of interest

in a regression, and they all remain significant at the 1% significance level. Quantitatively, these

estimates reflect a very strong correlation in firm export participation decisions across countries

close to each other, as the average probability a firm exports to a country in a year is below 1%.

In panels B, C, and D in Table 1, we present estimates analogous to those in Panel A but for

regression specifications that control for firm-year fixed effects, sector-country-year fixed effects,

or both, respectively. The estimates in these panels are only moderately smaller than those in

Panel A. The results in Table 1 thus show that firms’ export participation decisions in countries

geographically or linguistically close to each other, or cosignatories of a deep PTA, are positively

correlated, and that factors varying at the firm-year level (e.g., firm productivity) or at the sector-

destination-year level (e.g., market size, or total number of exporters, potentially by origin, in a

destination) are not the main drivers of this correlation.

Although consistent with them, the correlation patterns described in Table 1 are not evidence

of the presence of cross-country complementarities in firm exports, as these patterns may be due

instead to firm-country specific export profit shifters (e.g., demand shifters) being positively corre-

lated across countries geographically or linguistically close to each other, or that are cosignatories

of a deep PTA. To guide the identification of cross-country complementarities, and to quantify

the role these play in determining firms’ export choices, we present below a model of firm exports

that accounts for potential cross-country export complementarities as well as for cross-country

correlation in unobserved export determinants.

4 Dynamic Export Model With Complementarities

We present here a partial-equilibrium model in which firms choose every period the bundle of

countries they export to among a large set of potential destinations. When exporting to a country,

firms face variable, fixed, and sunk costs. We allow the fixed costs a firm faces in a destination and

period to be smaller if the firm also exports to other countries in the same period. The model thus

allows for static cross-country complementarities in firm exports: a firm’s profits when exporting

to multiple countries in a period may be higher than the sum of the profits of exporting to each of

them individually. Consistently with the correlation patterns in Section 3, we allow the strength

of the complementarities between any two countries to depend on the geographical and linguistic

proximity between them, as well as on the deepness of any PTA of which they are both members.

Sunk costs make a firm’s export choice in a country and period impact export profits in that

country in the subsequent period. This creates dynamic within-country complementarities in firm

10



exports: a firm’s profits when exporting two consecutive periods to a destination are higher than

the sum of the profits of exporting in each of the two periods individually.

In the presence of static and dynamic complementarities, a firm’s export choice in a country

and period impacts its export profits in other countries and periods. When choosing its export

bundle in a period, we assume the firm takes into account how its choice impacts export profits

across countries and periods. Specifically, firms determine their optimal export bundle in any given

period after solving an infinite-horizon dynamic combinatorial discrete-choice problem.

We incorporate into our model several shocks that allow export profits to vary flexibly across

firms, countries and periods. To make the optimization problem of potential exporters computa-

tionally tractable, we assume firms have perfect foresight on most (but not all) of these shocks,

and follow Eaton et al. (2016) and Caliendo et al. (2019) in assuming all payoff-relevant variables

on which firms have perfect foresight stay constant after a terminal period T .13

4.1 Setup

Firms produce in a country h. Time and locations are discrete. We index periods by t ¥ 0, firms

by i, and foreign countries by j. Firm i is born exogenously at period ti and, once born, is active

forever. We denote the first and last sample periods as t and t, respectively, and assume T ¡ t.

4.2 Marginal Costs, Demand Function, and Market Structure

Firm i has at period t constant marginal production costs wit. Selling in a market requires incurring

in extra variable “iceberg” costs. Specifically, firm i must ship τijt units of output for a unit to

reach country j at period t, and its marginal export cost in j at t is thus τijtwit. The marginal cost

of selling in the home market is τhtwit.

Firms face an isoelastic demand in every country. Conditional on exporting to country j at

period t, the quantity sold by firm i, qijt, depends on the price pijt it sets, the price index, Pjt,

and the total market expenditure, Yjt, according to the function qijt � p�ηijtP
η�1
jt Yjt. Firms face an

analogous demand at home. Firms set optimal prices in every market taking as given the market’s

total expenditure and price index and, thus, prices equal a constant markup over the marginal cost

of selling in a market; e.g., firm i’s price in country j at period t is pijt � pη{pη � 1qqτijtwit.

4.3 Potential Export Revenues

The assumptions in Section 4.2 imply that the potential export revenue of firm i in country j at

period t is

rijt �
� η

η � 1

τijtwit
Pjt

�1�η
Yjt. (5)

13Our approach is similar to that in Kehoe et al. (2018), who assume that, after a terminal period, all variables
on which agents have perfect foresight converge deterministically to a balance growth path. Our approach is also
similar to that in Igami (2017, 2018) and Igami and Uetake (2019), who solve a finite-horizon model with a terminal
value analogous to the continuation value firms in our model have in terminal period T .
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We model the impact of variable trade costs on potential export revenues as

pτijtq
1�η � exppξyyijt�1 � ξs � ξjt � ξa lnpasjtq � ξw lnpwitqq, with ξy ¥ 0, (6)

where yijt�1 is a dummy variable that equals one if firm i exports to country j at period t� 1, ξs

is a term specific to the sector s to which firm i belongs, ξjt is a country-period term that accounts

for trade barriers common to all firms located in country h, asjt equals one plus the average tariffs

country j imposes at period t on exports from h in sector s, and, as indicated above, wit denotes

marginal production costs. By allowing pτijtq
1�η to depend on wit, we account for determinants of

variable trade costs that may vary across firms of different productivities in a systematic way.14

Equations (5) and (6) imply we can write potential export revenues as

rijt � exppαyyijt�1 � αs � αjt � αa lnpasjtq � αr lnprihtqq, (7)

where αs and αjt are sector and country-period specific terms, respectively, and riht is firm i’s

domestic sales at t. The dependency of rijt on the export participation dummy yijt�1 accounts for

the limited sales firms often obtain upon entering a new market.15 The term αs accounts for the

impact of the sector-specific trade cost component ξs, and the country-period term αjt accounts

for the impact of the foreign price index Pjt, market size Yjt, and variable trade cost component

ξjt. The term αa lnpasjtq accounts for the impact of tariff barriers, and domestic sales riht proxy

for the impact of the firm’s marginal production cost, wit. See Appendix C for details.

According to equation (7), potential export revenues in a country and period depend on the

lagged export participation dummy yijt�1 and four exogenous variables: the time-invariant term

αs and three time-varying terms comprising of the country-period component αjt, log domestic

sales lnprihtq, and tariff barriers asjt. The time-invariant term and the in-sample realized values of

the three time-varying terms are either observed or consistently estimated (see sections 2 and 6.1).

Out-of-sample, we impose the following restrictions on the distribution of the three time-varying

exogenous determinants of export revenues.16

Concerning αjt and lnprihtq, we assume they are constant after terminal period T and, for all

t ¤ T , follow stationary AR(1) processes with iid normal shocks and intercepts that may vary

by country and firm, respectively. Formally, for any country j and period t ¤ T , we assume

αjt � pXα
jtq

1βα�ρααjt�1�e
α
jt, where X

α
jt is a vector including a constant, market j’s log GDP at t,

and the geographic, linguistic, and regulatory distances between h and j; βα and ρα are unknown

parameters with |ρα|   1; and, eαjt is iid normally distributed with mean zero and variance σ2α.

Similarly, for any firm i and period t ¤ T , lnprihtq � pXr
i q

1βr � ρr lnpriht�1q � eriht, where X
r
i is

14This could be due to more productive firms having larger buyer networks in a destination (Bernard et al., 2018).
15These limited sales may be due to a lack of information or limited customer capital in the destination (see, e.g.,

Eaton et al., 2008; Albornoz et al., 2012; Ruhl and Willis, 2017; Berman et al., 2019; Piveteau, 2021; Fitzgerald et
al., 2022) or to partial-year effects (see, e.g., Bernard et al., 2017; Gumpert et al., 2020).

16The need to restrict the out-of-sample distribution of the exogenous determinants of export revenues is due to
our model featuring sunk export costs and forward-looking firms with rational expectations, which implies firms’
optimal export choices in-sample depend on their expected potential export revenues out-of-sample (see Section 4.6).
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a vector including dummies for firm i’s sector and region of location in country h; βr and ρr are

unknown parameters with |ρr|   1; and erit is iid normally distributed with mean zero and variance

σ2r . Concerning asjt, we assume it is constant out-of-sample; i.e., for all j and s, asjt � asjt if t ¤ t,

and asjt � asjt if t ¥ t. Finally, we assume the time series of these three time-varying determinants

of revenues are independent of each other and of any other determinant of firm export profits.

4.4 Fixed and Sunk Export Costs

Firms may face fixed and sunk export costs, which differ from variable costs in that, conditional

on selling in a market, are independent of the quantity sold. Fixed and sunk costs differ in that

the former are paid every period a firm exports to a country, and the latter are only paid if the

firm did not export to it in the previous period. We model fixed costs as the sum of four terms:

fijt � gjt � egijt � νijt � ωijt. (8)

The first term captures the impact of all distance measures between countries h and j,

gjt � γF0 �
¸

x�tg,lu

γFx n
x
hj � γFa n

a
hjt. (9)

The second term captures static complementarities in export destinations:

egijt �
¸
j1�j

yij1tcjj1t, (10)

where the complementarities between countries j and j1 are modeled as

cjj1t �
¸

x�tg,lu

γEx p1� φEx n
x
hjq expp�κ

E
x n

x
jj1q � γEa p1� φEa n

a
hjtq expp�κ

E
a n

a
jj1tq, (11)

with γEx p1�φ
E
x n

x
hjq ¥ 0 for x � tg, l, au and every foreign country j. For all three distance measures

we consider, equation (11) allows the static complementarities a firm enjoys in a market j if it also

exports to a market j1 to depend on the distance between j and j1 and between j and the firm’s

home market h. For e.g., for x � g, a firm exporting to country j1 experiences a reduction in fixed

costs in country j equal to the product of a constant γEg , a function 1 � φEg n
g
hj of the distance

between countries h and j, and a function expp�κEg n
g
jj1q of the distance between j and j1.

Imposing γEx p1 � φEx n
x
hjq ¥ 0 for x � tg, l, au implies cjj1t ¥ 0 for any markets j and j1 and

period t, ruling out the possibility that adding an export destination may increase fixed export

costs in other countries. As discussed in Section 5.1, in conjunction with the rest of the model,

this sign restriction on cjj1t for all pj, j1, tq implies the firm’s country-specific export participation

decisions are not substitutable, and is a necessary assumption for our algorithm to correctly solve

the optimization problem determining firms’ export bundles.17

17Blum et al. (2013) and Almunia et al. (2021) show evidence of within-firm substitutabilities between the domestic
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The third determinant of fixed export costs, νijt, is an unobserved firm-country-period variable

whose distribution in all periods prior to terminal period T is independent of all other determinants

of firms’ export profits and satisfies the following restrictions:

νijt � Np0, σ
2
νq, for all i, j, and t, (12a)

νijt KK νi1j1t1 , if i � i1 or t � t1, (12b)

ρjj1t �
¸

x�tg,lu

γNx exppκNx n
x
jj1q � γNa exppκNa n

a
jj1tq, if j � j1, (12c)

where ρjj1t is the correlation coefficient between νijt and νij1t for period t and countries j and j1.

From T onwards, νijt is constant; i.e., νijt � νijT for t ¥ T . By allowing for a firm-country specific

unobserved fixed cost term potentially correlated across countries, we allow for the correlation pat-

terns in firm exports discussed in Section 3 to be due not to cross-country export complementarities

but to correlated unobserved determinants of export profits.

The fourth term in equation (8), ωijt, is an iid unobserved variable whose distribution is inde-

pendent of all other determinants of profits and has two points of support, ω and ω. Formally,

ωijt KK ωi1j1t1 if i � i1, j � j1 or t � t1, (13a)

P pωijt � ωq �

#
p if ω � ω,

1� p if ω � ω.
(13b)

To simplify the model estimation, we set pω, ωq � p0,8q and, thus, we model ωijt as a “blocking”

shock preventing firm i from exporting to country j in period t. Equation (13) characterizes the

distribution of ωit � pωi1t, . . . , ωiJtq in all periods; thus, ωit may vary over time even after T .

We model sunk export costs in a more parsimonious way than fixed costs. Specifically, we

assume sunk costs in a market j and period t only depend on distance between countries h and j:

sjt � γS0 �
¸

x�tg,lu

γSxn
x
hj � γSa n

a
hjt. (14)

Sunk costs allow for possible dynamic complementarities in firms’ export decisions within a country.

4.5 Static Export Profits

The assumptions in Section 4.2 imply potential export revenues net of variable trade costs equal

η�1rijt. Netting out also fixed and sunk export costs, and using the expressions in equations (7),

(8) and (10), potential export profits of firm i in country j at period t may be written as

πijtpyit, yijt�1, ωijtq � uijtpyijt�1, ωijtq �
¸
j1�j

yij1tcjj1t, (15)

and aggregate export markets. We know of no work showing evidence of within-firm export substitutabilities across
foreign countries. Conversely, Eaton et al. (2008), Albornoz et al. (2012, 2021a), Chaney (2014), Morales et al. (2019)
and, specially, Albornoz et al. (2021b) provide evidence of complementarities in these decisions.
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with

uijtpyijt�1, ωijtq � η�1rijt � pgjt � νijt � ωijtq � p1� yijt�1qsjt, (16)

where yit � pyi1t, . . . , yiJtq identifies the bundle of export destinations of firm i at period t. Denoting

by J the number of feasible export destinations, total export profits of firm i at period t are

πitpyit, yit�1, ωitq �
J̧

j�1

yijtπijtpyit, yijt�1, ωijtq. (17)

Equations (15) and (17) highlight two model properties. First, for any yit, total profits depend on

all export destinations at t�1, yit�1, and all blocking shocks at t, ωit, but profits in a country j only

depend on the lagged export status, yijt�1, and blocking shock, ωijt, in that country j. Second, as

cjj1t ¥ 0 for any j, j1 and t, potential export profits in a country j at t are weakly increasing in yit.

4.6 Optimal Export Choice

Firms choose every period the bundle of export destinations maximizing their expected discounted

sum of current and future profits. The information set of firm i at period t is

Jit � ptxit1ut1¥t, yit�1, ωitq with xit1 � pνit1 , αt1 , ast1 , riht1q for all t
1. (18)

The vector xit includes all period-t export profit shocks whose realizations are known to firm i at

any period prior to t. Every firm i thus knows at any t the value of all exogenous determinants of

current and future potential export profits except for the future fixed costs shocks tωit1ut1¡t.
18 The

problem firm i solves when choosing its period t export bundle may thus be written as

Vitpyit�1, ωitq � max
yitPt0,1uJ

Eit
�
πitpyit, yit�1, ωitq � δVit�1pyit, ωit�1q

�
, (19)

where δ   1 is the discount factor, Eitr�s is the expectation operator with respect to the data

generating process conditional on Jit (i.e., firms’ expectations are rational), and Vitpyit�1, ωitq �

V ptxit1ut1¥t, yit�1, ωitq is firm i’s value function at t. Given the profit function in equation (15) and

the information set Jit in equation (18), we rewrite the firm’s problem as

Vitpyit�1, ωitq � max
yitPt0,1uJ

! J̧

j�1

yijtpuijtpyijt�1, ωijtq �
¸
j1�j

yij1tcjj1tq � δEitVit�1pyit, ωit�1q
)
. (20)

For all possible values of txit1ut1¥t, Vitp�q is bounded and, thus, a solution to the problem in equation

(20) exists (see Appendix E.2.2). We denote firm i’s optimal policy function at t as

oitpyit�1, ωitq � poi1tpyit�1, ωitq, . . . , oiJtpyit�1, ωitqq (21)

18Additionally, the firm knows the relevant distance measures between all countries and the value of all parameters.
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where oijtp�q is a function that equals one if firm i exports to country j at t (and zero otherwise)

depending on the vectors yit�1 and ωit. The subindex it reflects the dependency of the optimal

export bundle on txit1ut1¥t. As xit is constant from period T onwards (see sections 4.3 and 4.4), it

holds that oitp�q � oiT p�q and Vitp�q � ViT p�q for all t ¥ T . The problem is thus non-stationary until

terminal period T , and stationary henceforth.

5 Solution Algorithm

We describe here the computational challenges entailed in solving the problem in equation (20), and

present a solution algorithm that overcomes them. We discuss formally the algorithm’s properties

in Appendix A. In Appendix D.2, we illustrate in a simple setting how the algorithm works.

For any arbitrary sequence of export profit shocks txit1ut1¥t, the firm’s optimization prob-

lem in equation (20) has three properties that make solving for the value of the policy function

oitpyit�1, ωitq in equation (21) at every possible state vector pyit�1, ωitq computationally challenging:

P.1 Large discrete choice set. The choice set t0, 1uJ is discrete and has cardinality 2J .

P.2 Integration over a discrete random variable with many points of support. For any choice yit,

evaluating the firm’s objective function requires integrating numerically next period’s value

function, Vit�1pyit, ωit�1q, over ωit�1, whose support includes 2J points.

P.3 Large state space. As yit�1 and ωit may take 2J values, the state space includes 22J points.

These properties imply the choice set, the support of the random variable one must integrate

over, and the state space grow exponentially in J . Incorporating into the analysis a reasonable set of

countries thus makes solving the firm’s optimization problem computationally challenging. Specif-

ically, given the non-stationarity of the firm’s problem prior to T , property P.3 implies one must

solve 22J
°M
i�1pT � ti � 1q distinct problems to obtain the optimal export bundles of a set of firms

i � 1, . . . ,M in all periods in which they are active and in all points in the state space. Properties

P.1 and P.2 make finding the solution to each of these problems computationally challenging.19

Given the large dimensionality of the state space, for each firm i and period t, we compute

the value of the policy function oitpyit�1, ωitq only at a particular state py̌it�1, ω̌itq. Specifically,

we consider each firm i in a set (e.g., those in our estimation sample) independently and, for any

two periods tI and tF (e.g., the first and last sample periods), determine the value of the functions

toitp�qu
tF
t�tI

only at the states tpy̌it�1, ω̌itqu
tF
t�tI

the firm reaches if it chooses the optimal export

bundle at every period and all exogenous determinants of export profits follow specific paths of

interest tx̌it1ut1¥ti and tω̌it1u
tF
t1�ti

(e.g., the observed or simulated paths). Formally, given tx̌it1ut1¥ti
and tω̌it1u

tF
t1�ti

, our algorithm yields for every t P rtI , tF s the value of oitpy̌it�1, ω̌itq, where y̌it�1 is

y̌it1 � oit1py̌it1�1, ω̌it1q, for t1 � ti, . . . , t� 1, with initial condition equal to 0J . (22)

19If firms’ discount factor was zero, one could compute firms’ optimal export bundles using the tools in Jia (2008)
and Arkolakis et al. (2021). These tools have been applied to static discrete choice problems with large choice sets
featuring complementarities (Jia, 2008; Arkolakis et al., 2021) and substitutabilities (Arkolakis et al., 2021).
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Thus, given paths of exogenous determinants of a firm’s potential export profits, our algorithm

evaluates the firm’s policy function only at the states reached along the firm’s optimal export path.

As discussed in sections 6 and 8, we use this algorithm in the estimation of the model parameters

and to compute model predicted export choices in counterfactual scenarios.

As our model features dynamic complementarities and forward-looking firms uncertain about

future values of the blocking shocks ωit, solving the optimization problem of firm i at period t at

a state py̌it�1, ω̌itq requires some knowledge of how the firm will subsequently behave at any state

reached with positive probability from py̌it�1, ω̌itq. However, solving the optimization problem of

firm i at t at py̌it�1, ω̌itq may not require knowing exactly the firm’s optimal export bundle in all

states that may be subsequently reached; e.g., if a firm’s potential export profits in a market j

and period t are sufficiently high, its optimal decision may be to export to j at t regardless of its

optimal export bundle at any state that may be reached in the future. Our algorithm uses this idea

and yields the optimal chice of a firm i, period t, and state py̌it, ω̌itq using information on bounds

on the firm’s optimal choice at every future state that is reached with positive probability.

Our algorithm consists of several steps. In each step, we compute upper and lower bounds on

the solution to the firm’s optimization problem at the periods and states of interest. If both bounds

coincide, they must coincide with the solution as well. If they do not, we move on to the next step.

As we advance through steps, our bounds become tighter but harder to compute. We describe here

the first two steps, and the remaining ones in Appendix D.1.

Step 1. Consider a hypothetical scenario in which we knew firm i’s optimal policy function oij1tp�q for

every country j1 � j and period t ¥ ti. Absent computational constraints, we could then compute

country j’s optimal policy oijtp�q for every t ¥ ti by solving the following country j-specific problem

Vijtpyit�1, ωitq � max
yijtPt0,1u

!
yijtpuijtpyijt�1, ωijtq �

¸
j1�j

oij1tpyit�1, ωitqpcjj1t � cj1jtqq

� δEitVijt�1ppoi1tpyit�1, ωitq, . . . , yijt, . . . , oiJtpyit�1, ωitqq, ωit�1q
)
. (23)

In every period and state, the value of yijt solving this problem coincides with that implied by

the solution to the general optimization problem in equation (20).20 However, we cannot solve the

problem in equation (23) for two reasons. First, we do not know the firm’s optimal policy function

in any country or period. Second, even if we knew, solving the problem in equation (23) requires

overcoming some of the computational challenges affecting the original problem in equation (20):

it requires integrating over ωit�1 and dealing with a state space of dimension 22J .

Assume now we know for every country j1 � j and period t ¥ ti a constant upper bound b̄ij1t

such that b̄ij1t ¥ oij1tpyit�1, ωitq for all pyit�1, ωitq. We may then solve the following problem

V̄ijtpyijt�1, ωijtq �

max
yijtPt0,1u

!
yijtpuijtpyijt�1, ωijtq �

¸
j1�j

b̄ij1tpcjj1t � cj1jtqq � δEitV̄ijt�1 pyijt, ωijt�1q
)
. (24)

20In equation (23), we include in period-t’s expected static profits only the terms relevant to the choice of yijt.
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The static and dynamic complementarities in our model imply the solution to this problem is, for all

periods and states, an upper bound on the firm’s optimal export choice in country j. Formally, at

any t, the solution to the problem in equation (24) is a function ōijtp�q such that ōijtpyijt�1, ωijtq ¥

oijtpyijt�1, ωijtq for all feasible pyijt�1, ωijtq. Importantly, the problem in equation (24) does not have

any of the three properties that makes solving the original problem in equation (20) computationally

challenging: the control variable yijt is binary, one only needs to integrate over the binary variable

ωijt�1, and the vector pyijt�1, ωijtq only takes four values.21 Given constant upper bounds b̄it �

pb̄i1t, . . . , b̄iJtq for all t ¥ ti, we may solve the problem in equation (24) for every country j �

1, . . . , J , and obtain in this way for each ti ¤ t ¤ T an upper-bound policy function

ōitpyit�1, ωitq � pōi1tpyi1t�1, ωi1tq, . . . , ōiJtpyiJt�1, ωiJtqq. (25)

The upper-bound policy function we obtain depends on the values of the constant upper bounds

we use: the tighter these are, the tighter the resulting upper-bound policy function will be.

To initialize our algorithm, we use constant upper bounds for all countries and periods implying

the firm always exports. We denote these bounds with a zero superscript (i.e., b̄
r0s
it � 1J for all t)

and use them to solve the problem in equation (24) for every country, obtaining in this way upper

bound policies ō
r0s
it pyit�1, ωitq for all ti ¤ t ¤ T and all values of pyit�1, ωitq in the state space. Using

these policies, we compute new constant upper bounds, which we use to solve again the problem

in equation (24) and obtain new upper-bound policy functions. Generally, for all n ¥ 1, we use

the policies computed at iteration n� 1 to compute new constant upper bounds, and we use these

bounds to solve the problem in equation (24) and obtain the iteration-n policies. Specifically, to

compute the iteration-n constant upper bounds for a period t, we evaluate the iteration-pn � 1q

upper-bound policy at the feasible state at which the firm is most likely to export at t. This is the

state reached if the blocking shocks equal the smallest point in their support (i.e., ωit1 �
¯
ωJ) for

all t1 ¤ t and the firm chooses the bundle prescribed by the policy ō
rn�1s
it1 p�q in all t1   t. Formally,

b̄
rns
it1 � ō

rn�1s
it1 pb̄

rns
it1�1, ¯

ωJq, for t1 � ti, . . . , t, with initial condition equal to 0J . (26)

These bounds get tighter with every iteration and converge after a finite number of iterations;

see Appendix A. We denote as ō�itp�q the converged upper-bound policies, and similarly obtain

lower-bound policies
¯
o�itp�q. We use these policies to obtain upper and lower bounds on the optimal

choices along a specific path tω̌it1u
tF
t1�ti

. Formally, for any t, we compute bounds ˇ̄yit and ˇ
¯
y
it
as

ˇ̄yit1 � ō�it1pˇ̄yit1�1, ω̌it1q, for t1 � ti, . . . , t, with initial condition equal to 0J , (27a)

ˇ
¯
y
it1
�

¯
o�it1pˇ

¯
y
it1�1

, ω̌it1q, for t1 � ti, . . . , t, with initial condition equal to 0J . (27b)

If both bounds coincide for all t P rtI , tF s, they identify the firm’s optimal export path along the

21These are p0, ωq, p0, ωq, p1, ωq, and p1, ωq. We use value function iteration to solve for period T value and policy
functions VijT p�q and ōijT p�q, and backward induction to solve for tV̄ijtp�qu

T�1
t�ti

and tōijtp�qu
T�1
t�ti

. As ω � 8 in our
application, oijtp0, ωq � oijtp1, ωq � 0 for all i, j and t, and we only need to compute oijtp0, ωq and oijtp1, ωq.
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path of interest tω̌itu
tF
t�ti

. If they differ for at least one period, we proceed to step 2.

Step 2. Denote by τ the smallest t with ˇ̄yit ¡ ˇ
¯
y
it
. In step 2, we tighten our bounds at τ . Our

procedure here differs from that in step 1 in that we now condition on the state the firm reaches at

τ at the path of interest. Specifically, when solving the problem in equation (24) for every country,

we now do so only for t ¥ τ and condition on the state py̌iτ�1, ω̌iτ q. This means that, for all t ¥ τ ,

the step 2 initial constant upper bounds, which we denote as b̄
r0s
it|τ , equal the firm’s choice if: (a) its

state at τ is py̌iτ�1, ω̌iτ q; (b) for t
1 P rτ � 1, ts, the blocking shocks equal the smallest value in their

support; and, (c) for t1 P rτ, ts, the firm makes the choices prescribed by the step 1 upper-bound

policy functions after convergence; i.e., ō�it1p�q. Formally, b̄
r0s
iτ |τ � ō�iτ py̌iτ�1, ω̌iτ q and, for all t ¡ τ ,

b̄
r0s
it1|τ � ō�it1pb̄

r0s
it1�1|τ , ωJq, for t1 � τ � 1, . . . , t, with initial condition equal to b̄

r0s
iτ |τ . (28)

Solving for all countries the problem in equation (24) with these constant upper bounds, we obtain

new upper-bound policies ō
r0s
it|τ p�q for all t ¥ τ . As in step 1, we use these policies to compute new

constant upper bounds, which we use to solve again the problem in equation (24) and obtain in this

way new upper-bound policies. Specifically, for all n ¥ 1, the iteration-n constant upper bounds

for a period t ¥ τ equal the firm’s choice when: (a) the state at τ is py̌iτ�1, ω̌iτ q; (b) for τ   t1 ¤ t,

the blocking shocks equal the smallest value in their support; and, (c) for τ ¤ t1 ¤ t, the firm makes

the choices prescribed by iteration-pn�1q upper-bound policies. Formally, b̄
rns
iτ |τ � ō

rn�1s
iτ py̌iτ�1, ω̌iτ q

and, for all t ¡ τ ,

b̄
rns
it1|τ � ō

rn�1s
it1|τ pb̄

rns
it1�1|τ , ωJq, for t1 � τ � 1, . . . , t, with initial condition equal to b̄

rns
iτ |τ . (29)

We implement this procedure until the guaranteed convergence (see Appendix A), denoting as

ō�it|τ p�q the resulting upper-bound policy for any t ¥ τ . We then use these upper-bound policies in

combination with similarly computed lower-bound policies
¯
o�it|τ p�q to obtain bounds on the firm’s

optimal choice at period τ at the path of interest. Specifically, we compute

ˇ̄yiτ |τ � ō�iτ |τ py̌iτ�1, ω̌iτ q, and ˇ
¯
y
iτ |τ

�
¯
o�iτ |τ py̌iτ�1, ω̌iτ q. (30)

If these bounds coincide, they also equal the optimal choice at τ at py̌iτ�1, ω̌iτ q. If so, we proceed

to the next period τ 1 at which the bounds in equation (27) differ, implementing again the step 2

procedure to tighten the bounds at τ 1. If the bounds in equation (30) do not coincide, we implement

additional steps that we describe in Appendix D.1.

5.1 Discussion

Two features of the model described in Section 4 are necessary for the algorithm introduced in

Section 5 to provide valid and computationally feasible bounds on the firm’s optimal choices at a

path of interest.

First, the function the firm maximizes when making choices at any period and state is super-
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modular; i.e., the objective function in the optimization problem in equation (20) is supermodular.

Supermodularity of the objective function implies we can compute upper and lower bounds on

the firm’s optimal policy function by iteratively solving for the firm’s optimal policy in a subset

of countries while conditioning on upper and lower bounds, respectively, on the firm’s optimal

choices in all other countries. In our model, the objective function is supermodular because of

possible complementarities in export choices across countries within a period (due to fixed costs

being weakly smaller when firms concurrently export to several destinations) and across periods

within a country (due to weakly positive sunk costs). The specific source of complementarities is

however irrelevant for the validity of the solution algorithm.

Second, given bounds on the firm’s optimal choices in all other countries, the firm’s dynamic

optimization problem for one country (or a small set of them) is computationally tractable. For

this, the dimensionality of the state vector in the country-specific problem in equation (24) must

be small. In our model, this vector takes only four values, as yijt�1 P t0, 1u and ωijt P t
¯
ω, ω̄u for

all i, j, and t. Conditional on the state space of the country-specific problem being small, our

solution algorithm is however still feasible if, e.g., ωijt has a distribution with more than two points

of support; export profits in a country j and period t depend on multiple lags of the firm’s export

participation in j; and, the firm’s information is more limited than indicated in equation (18).

As discussed in Appendix D.3, for our sample of firms, periods, and potential destinations, the

share of export choices solved in each step of the algorithm, and the associated computing time,

depend on the model parameter values. When these equal the baseline estimates (see Section 7),

our algorithm finds in less than 13 minutes the solution to 99.89% of the more than 22 million

choices we solve for when computing the model’s predictions in our sample.22 The unsolved choices

are concentrated in countries sharing complementarities with a large number of other potential

destinations; i.e., according to our estimates, those sharing deep PTA with many other countries

(e.g., members of the EU). At each step of the algorithm, the share of choices solved increases,

and the computing time decreases, as the gravity component in fixed or sunk costs gets larger

(i.e., as the value of the parameters entering equations (9) or (14) increase) and as cross-country

complementarities get smaller (i.e., as γEx or φEx decrease, or as κEx increases, for x � tg, l, au).

6 Estimation Procedure

We estimate the model in two steps. In the first one, we estimate the demand elasticity and time

series process of potential export revenues. In the second step, we estimate fixed and sunk costs.

6.1 First Step

We assume robsijt � prijt � ϵijtqyijt, where r
obs
ijt denotes observed export revenues, ϵijt accounts for

measurement error and, as a reminder, rijt is the potential export revenue of firm i in country j at t,

22The algorithm takes close to two minutes to find the solution to 99.72% of all choices. These times are measured
at Princeton University’s Della cluster using 44 processors with 20 GB of memory each.
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and yijt is a dummy variable that equals one if i exports to j at t. Using ds and djt to denote vectors

of sector and country-year dummies, respectively, we assume Erϵijt|yijt�1, ds, djt, asjt, riht, yijt �

1s � 0 and use a Poisson pseudo-maximum likelihood estimator and data on the sample of firms,

countries, and years for which yijt � 1 to obtain consistent estimates of the parameters entering

the expression for potential export revenues in equation (7); i.e., pαy, αa, αr, tαjtujt, tαsusq.
23

We also assume robsit � rit�εit, where r
obs
it denotes the observed total sales of firm i in year t, rit

is this variable’s true value, and εit accounts for measurement error. As firms are monopolistically

competitive and face in all markets a demand function with constant elasticity equal to η, it holds

that rit � pη{pη�1qqvcit, where vcit is the total variable costs of firm i in year t, which we measure

as the sum of the wage bill and total expenditure in materials. Assuming Erεit|vcits � 0, we use a

non-linear least squares estimator to obtain a consistent estimate of η.

Finally, given estimates of αjt for all sample countries and years, and data on domestic sales,

riht, for all sample firms and years, we use OLS to compute consistent estimates of the parameters

of the first-order autoregressive models for αjt and lnprihtq imposed in Section 4.3.

6.2 Second Step

Given first-step estimates, we use a Simulated Method of Moments (SMM) estimator to obtain con-

sistent estimates of the fixed and sunk cost parameters; see equations (9) to (14). In Section 6.2.1,

we use a simple example to illustrate the approach we follow to separately identify the parameters

that, according to equation (11), determine the strength of cross-country complementarities from

those that, according to equation (12c), determine the strength of the cross-country correlation in

unobserved export determinants. In Section 6.2.2, we describe in detail our SMM estimator.

6.2.1 Identification of Cross-Country Export Complementarities

Without loss of generality, consider a setting with one sector and three foreign countries. Firms

are heterogeneous only in their fixed export costs; countries 1 and 2 are identical in their export

revenue shifters and distance to the firm’s home country, but different in their distance to country

3. Specifically, country 3’s export complementarities and correlation in the fixed cost term νijt

equal zero with country 1, but equal possibly nonzero values c̄ and ρ̄, respectively, with country 2.

See Appendix F.1 for extra details on this simple setting.

To focus the identification of c̄ and ρ̄, consider a researcher that knows the value of all other

parameters and, in addition to the variables described in Section 2, observes potential export

revenues for all firms, countries, and periods. Then, the parameters c̄ and ρ̄ are identified by:

m1 � Eryi2t � yi1ts and m2 � Cryi2t, yi3ts, (31)

23We assume firms’ export participation decisions do not depend on unobserved determinants of potential export
revenues. Instead, we may assume firms select into exporting on the basis of such unobserved determinants, but
computational reasons would force us in this case to limit the number of parameters entering potential export
revenues; e.g., we would need to substitute the fixed effects tαjtujt and tαsus by random effects and functions of
observed covariates and a small number of parameters.
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where, generally, m1 is a moment that captures the difference in export probabilities in two export

destinations that differ only in the size of the countries “connected” to each of them (i.e., country

2 is connected to other countries while country 1 is not), and m2 is a moment that captures the

correlation in the firm’s export choices in “connected” countries (i.e., countries 2 and 3). As Table

F.1 in Appendix F.1 shows, both moments equal zero when there are no export complementarities

and the term νijt is independent across countries (i.e., when c̄ � ρ̄ � 0). Correlation in unobserv-

ables in the absence of complementarities (i.e., ρ̄ ¡ 0 and c̄ � 0) yields correlated export choices

without affecting the difference in export probabilities between connected and isolated countries

(i.e., m2 ¡ 0 and m1 � 0). Conversely, export complementarities alone (i.e., c̄ ¡ 0 with ρ̄ � 0)

make both moments positive. This seems to suggest an identification strategy in which m1 iden-

tifies the strength of cross-country complementarities and, given these, m2 identifies the strength

of the correlation in unobserved determinants of export profits. This logic is however incorrect, as

m1 is also affected by the strength of the correlation in unobserved determinants of export profits

whenever export complementarities are non-zero; i.e., m1 is also affected by ρ̄ whenever c̄ ¡ 0.

What is true is that m1 and m2 are differentially affected by c̄ and ρ̄, and jointly identify them; see

Figure F.1 in Appendix F.1. When estimating the model described in Section 4, we use moments

analogous to m1 and m2, but adjusted to account for many foreign countries, for firms that are

heterogeneous not only in fixed costs but also in productivity, and for the fact that no two countries

in the data are identical in every dimension except the size of their “connected” countries.

6.2.2 Details on SMM Estimator

Consider a vector zi that includes all first-step estimates (see Section 6.1) and all observed (to the

researcher) firm i’s payoff-relevant variables. That is, besides first-step estimates, zi includes, for all

sample years, firm i’s domestic sales and exports by destination, tariffs by sector and destination,

and, for all country pairs, the distance measures in equations (1) to (3). Consider also a vector χi

including all unobserved firm i’s payoff-relevant variables: all fixed cost shocks νit � pνi1t, . . . , νiJtq

and ωit and, for non-sample years, foreign countries’ export revenue shifters αt � pα1t, . . . , αJtq

and firm i’s domestic sales. Finally, consider vectors yobsi and ysi pθq of observed and model-implied,

respectively, export choices in all countries and sample years. Specifically, ysi pθq includes the choices

implied by the model described in Section 4 given the vector of observed covariates and first-step

estimates zi, a vector θ of values for all parameters estimated in the second step, and a draw χsi
from the distribution of χi conditional on zi.

24 We can then write each of the k � 1, . . . ,K moments

we use in our SMM estimator as

1

M

M̧

i�1

 
mkpy

obs
i , zi, xq �

1

S

Ş

i�1

mkpy
s
i pθq, zi, xq

(
� 0, (32)

where M is the number of sample firms, mkp�q is k’s moment function, and x is a vector that

includes an exogenous measure of market size for every sector, foreign country and sample year.

24The vector of second-step parameters is defined as θ � pγF
0 , γ

S
0 , σν , p, tpγ

F
x , γ

E
x , ψ

E
x , κ

E
x , γ

N
x , κ

N
x , γ

S
x qux�tg,l,auq.
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By allowing the generic formulation of the moments in equation (32) to depend on x, we account

for moments that capture how the probability of exporting to a country j depends on the total

market size of other foreign countries that are geographically or linguistically close to j, or that

share a deep PTA with j. As discussed in Section 6.2.1, this type of moments allow us to identify

the parameters determining the strength of cross-country export complementarities separately from

those determining the strength of the cross-country correlation in unobserved export determinants.

As market size measure included in x, we use the export potential of a country in a sector and

year, measured as the importer fixed effect in a gravity equation estimated using sectoral trade

data for all country pairs that do not include Costa Rica as importer or exporter. See Appendix

F.2.2 for more information on these export potentials and for reduced-form evidence showing that,

controlling for the export potential of a foreign country, firms are indeed more likely to export to

those countries whose neighbors’ (geographical, linguistic or regulatory) export potential is larger.

In our estimation, we use 89 moments that, for expositional purposes, can be organized in three

blocks. In a first block, with the goal of identifying the parameters that determine the level of

fixed and sunk costs and the impact on them of the distance between the firm’s home country

and each destination (i.e., γF0 , γ
S
0 , and tpγ

F
x , γ

S
x qux�tg,l,au), we use moments capturing firms’ export

participation and export survival probabilities by groups of destinations that differ in their distances

to the firm’s home country. In a second block, with the goal of identifying the parameters that

determine the strength of cross-country complementarities (i.e., tpγEx , ψ
E
x , κ

E
x qux�tg,l,au), we use

moments, similar to m1 in the previous subsection, capturing firms’ export probabilities by groups

of destinations that are similar in their distances to the firm’s home country but different in the

total export potential of the other countries that are close to them geographically or linguistically,

or that share with them a deep PTA. Finally, with the goal of identifying the parameters of the

distribution of the unobserved fixed cost terms νit and ωit (i.e., σν , p, and tpγNx , κ
N
x qux�tg,l,au), we

use moments, in the spirit of m2, that capture the correlation across firms and countries in firms’

export participation decisions, and moments that capture the frequency with which we observe

short-lived changes in a firm’s export status in a destination.

We include in Appendix F.3 the full list of moments we use in our estimation. We provide in

Appendix F.4 additional details on our SMM estimator. In Appendix F.5, we explore the robustness

of our estimates to alternative realizations of the simulation draws χsi we use to build our moments.

7 Estimation Results

We summarize here our parameter estimates. Additional details are presented in Appendix F.6.

7.1 First-step Estimates: Potential Export Revenue Parameters

We estimate the parameters entering equation (7) using information on the 13,293 firm-country-

year sample observations with positive export revenues. The estimate of αy is 1.856 (robust s.e.

equal to 0.066), implying firms’ potential export revenues grow approximately 6 times between the
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first and second year of exports to a destination. The estimate of αa, which equals the elasticity of

potential export revenues to tariffs, is �3.832 (s.e. equal to 0.066). If trade costs moved one-to-one

with tariffs, this estimate would imply that the demand elasticity η equals 4.832. When estimating

η as described in Section 6.1 (i.e., using information on total revenues and variable costs for all

44,785 firm-year sample observations), we obtain an estimate of 5.713 (robust s.e. equal to 0.489).

As this estimate does not rely on assuming the passthrough of tariffs to trade costs is perfect, we

adopt it as our baseline. The estimate of αr, the elasticity of potential export revenues to domestic

sales, is 0.285 (s.e. equal to 0.041), reflecting that firms that are larger in the domestic market also

tend to have larger potential export revenues.

The estimation of the parameters in equation (7) also yields estimates of the sector and country-

year specific effects tαsus and tαjtujt. As shown in Figure F.8, countries with large estimated values

of αjt tend to be geographically close to Costa Rica (e.g., Guatemala) or large economies (e.g., the

United States), and countries with small estimated values tend to be geographically far from Costa

Rica (e.g., Russia) or small economies (e.g., Oman). When using the 467 estimated values tα̂jtujt

to estimate the parameters of the stochastic process of αjt assumed in Section 4.3, we obtain an

estimate of its autocorrelation parameter ρα equal to 0.686 (s.e. clustered by destination equal to

0.059), an estimate of the standard deviation σα of its innovations equal to 0.630, and estimates

implying the mean of αjt for each country j increases in its GDP and geographical proximity to

Costa Rica (with the effect of linguistic and regulatory distances not statistically significant at the

5% level). Similarly, when using information on the 44,785 sample observations of firms’ domestic

sales trihtuit to estimate the parameters of its autoregressive process according to Section 4.3, we

obtain an estimate of its autocorrelation parameter ρr equal to 0.857 (s.e. clustered by firm equal

to 0.012), and an estimate of the standard deviation σr of its innovations equal to 0.865.

7.2 Second-step Estimates: Fixed and Sunk Costs Parameters

As shown in Figure 1, the estimates of the fixed and sunk cost parameters (reported in Table F.4)

imply mean fixed costs for single-destination exporters (as modeled in equation (9)) and sunk costs

are well approximated by a constant (which equals $63,000 in the case of fixed costs and $115,000

in the case of sunk costs) plus a term that increases in the geographical distance between the firm’s

home country and each destination. The estimated impact of linguistic distance is small and not

statistically significant, while the differences in fixed and sunk costs between a destination with

whom Costa Rica has a deep PTA and one with whom it has no agreement are only $29,000 and

$22,000, respectively. Adding all terms, for single-destination exporters, the estimated mean fixed

and sunk costs to, e.g., the US are close to $125,000 and $200,000, respectively. The estimates for,

e.g., Mexico are $100,000 and $175,000, and for China these are $180,000 and $400,000. Comparing

these estimates to the distribution of observed export revenues in those countries, mean fixed costs

in the US and Mexico are between the median and the 75 percentile (and below average), while

they are between the 75 and the 95 percentile (and close to the mean) in China. One should bear

in mind that the actual fixed cost a firm faces in a destination (as modeled in equation (8)) will
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Figure 1: Estimates of Fixed and Sunk Export Costs

(a) Fixed Export Costs
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(b) Sunk Export Costs
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Note: In both figures, countries are identified by their ISO 3166-1 alpha-3 code, and placed in the horizontal axis by their
distance to Costa Rica. The vertical axis indicates the estimated cost in thousands of 2010 USD.

differ from the mean fixed cost for single-destination exporters due to the unobserved term νijt and

the effect of cross-country export complementarities. Everything else equal, firms exporting to a

country j at a period t will on average have relatively low values of νijt. As νijt is normal and its

estimated standard derivation is close to $81,000 (see Table F.4), there is a large firm heterogeneity

in fixed costs, and actual exporters to a destination (even if they do not export anywhere else in

the same period) likely face realized fixed costs that are much below their mean level.

In Figure 2, we represent the estimated cross-country export complementarities. In each panel,

we plot, for the corresponding index x in tg, l, au, the function γ̂Ex p1 � φ̂Ex n
x
hjq expp�κ̂

E
x n

x
jj1q for

three different destinations j (i.e., the US, Germany, and China) against their distance to any

other country j1, nxjj1 . Panel (a) shows that complementarities arising from geographic proximity

are large between countries that are close to each other (they imply a reduction in fixed costs in

up to $90,000 for firms simultaneously exporting to countries that are 200 km apart) but decrease

quickly, being close to zero between countries whose distance is 800 km or more. The strength

of these geographical complementarities is heterogeneous across destinations depending on their

distance to the firm’s home country: for any given value of ngjj1 , complementarities are larger for

China than for Germany, and for Germany than for the US, reflecting their ranking in terms of

distance to Costa Rica. Panel (b) shows that linguistic complementarities are always small, reaching

a maximum of close to $8,000 for country pairs whose linguistic distance is zero; i.e., country

pairs whose residents understand each other with probability one. Finally, panel (c) shows that

complementarities due to common participation in PTAs are close to zero unless these agreements

are sufficiently deep; i.e., the complementarities between members of a PTA that does not impose

any regulatory harmonization are the same as if they did not belong to any common PTA. Among

members whose regulatory distance is zero, the reduction in fixed costs in one of them for a firm

that also exports to the other is nearly $8,000 if the destination does not share any PTA with Costa

Rica, and below $4,000 if the destination also has a deep PTA with Costa Rica.

The estimates in Figure 2 are compatible with complementarities due to geographical, linguistic,
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Figure 2: Estimates of Sources of Static Complementarities

(a) Due to Geographical Proximity
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(b) Due to Linguistic Proximity
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(c) Due to Regulatory Proximity
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Note: In panels (a) to (c), the horizontal axis corresponds to the distance measures defined in equations (1) to (3),
respectively. The vertical axis indicates the estimated reduction in fixed export costs in thousands of 2010 USD.

and regulatory proximity potentially playing an important role in firm exports. This is true even

if, as shown in panels (b) and (c), linguistic and regulatory complementarities between any two

countries are never large. As each country may share language or deep PTAs with many other

countries, a firm may export to several destinations that are linguistically or regulatory close

to each other and, in this case, benefit from large cumulated reductions in fixed costs in each

of these destinations. This is captured in Figure 3. In panel (a), we show a firm’s fixed costs

in a destination are up to 73% smaller if the firm simultaneously exports to the country with

whom complementarities are the largest; for complementarities between two countries to be this

strong, both must be geographically close and share a deep PTA (e.g., Austria and Slovakia). In

panel (b), we show there are certain countries (e.g., Mexico) that, although do not share strong

complementarities with any one country in particular (as shown in panel (a), Mexico’s closest

neighbor reduces fixed costs in it in less than 10%), benefit from sharing a moderate level of

Figure 3: Implications of Estimated Static Complementarities
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Note: In panel (a), we illustrate, for each destination j, the percentage reduction in fixed export costs a firm would enjoy if
it also exports to its closest neighbor j1; i.e., the country for which the value of cjj1t in equation (11) is the largest. In panel
(b), we illustrate, for each destination country j, the number of other foreign countries j1 � j for whom cjj1t{gjt ¥ 5%.
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complementarities with many other countries (Mexico shares common language and membership in

deep PTAs with many other countries). Thus, a firm exporting simultaneously to several countries

that share common language or deep PTAs with, e.g., Mexico may ultimately be able to export to

this country while facing very small fixed costs in it. In Figure F.9, for the case of the US, China,

Germany and Spain, we illustrate their bilateral complementarities with any other country.

In Figure 4, we represent the estimated cross-country correlation in the fixed cost term νijt

within a firm-period. In each panel, we plot, for the corresponding index x in tg, l, au, the function

γNx exppκNx n
x
jj1q against the distance nxjj1 . The figure shows there is a large correlation in νijt, and

the key determinant of the correlation coefficient between any two countries is their geographic

proximity, although their linguistic proximity also plays a role. It is thus potentially important

to allow for possibly correlated unobserved export profit shifters when estimating cross-country

export complementarities. For the US, China, Germany and Spain, we illustrate in Figure F.9 the

correlation coefficient in νijt vis-a-vis any other country.

Figure 4: Estimates of Correlation Coefficient in Fixed Export Cost Shock
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Note: In panels (a) to (c), the horizontal axis indicates the distance measures defined in equations (1), to (3), respectively.
The vertical axis indicates the estimated correlation in νijt.

8 Counterfactual Analysis

We perform three counterfactual experiments. In Section 8.1, we quantify the importance of cross-

country complementarities in firm exports by comparing the predictions of the estimated model to

versions of the model in which some or all of the complementarities between countries are set to

zero. In sections 8.2 and 8.3, we use the estimated model to compute the impact on Costa Rican

exports of a Brexit-induced increase in the regulatory distance between the UK and current EU

members, and of Costa Rica joining the CPTPP, respectively.

8.1 Quantitative Importance of Cross-country Complementarities

To quantify the impact of complementarities on exports, we compute for each firm in the sample

and all sample years model-implied export decisions for 200 simulations of the vector χi of un-
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observed payoff-relevant variables (see Section 6.2.2). We do so for the estimated model and for

models that differ from it only in that some or all of the parameters determining the strength of

the complementarities according to equation (11) are set to zero, and report in Table 2 the dif-

ferences across models in the predicted number of firm-country-years with positive exports (i.e.,

export events) and total export revenue. The results in the column “All” show that including all

complementarities causes the number of export events and total exports to increase in 12% and 5%,

respectively, vis-a-vis a model that sets all tpγEx , ψ
E
x , κ

E
x qux�tg,l,au � 0. The results in the remaining

columns show that the most important source of cross-country complementarities is spatial prox-

imity: setting γEg , ψ
E
g and κEg to their estimated values, while keeping all the other parameters at 0,

causes export events and total exports to increase in 7% and 3%, respectively. Complementarities

due to linguistic and regulatory proximity explain each around 2.5% of the export events predicted

by the estimated model, and around 0.9% and 1.6%, respectively, of total exports.

Table 2: Impact of Cross-country Complementarities

Sources of Complementarities Included:

Percentage Increase in: All
Geographic Linguistic Common
Proximity Proximity Deep PTA

Number of Export Events: 11.78% 6.57% 2.35% 2.57%

Export Revenues: 5.14% 2.74% 0.86% 1.58%

Note: In the column labeled All, we report the percentage difference in the number of export
events and export revenues between our estimated model and a model in which the parameters
tpγEx , ψ

E
x , κ

E
x qux�tg,l,au are all set to zero. In the other three columns, we compare models in

which only the subset of these parameters indicated by the corresponding label is set to their
estimated values, whereas the other ones are set to 0, with a model in which the parameters
tpγEx , ψ

E
x , κ

E
x qux�tg,l,au � 0.

The smaller impact of complementarities on total exports relative to its impact on the number

of export events in Table 2 is partly due to complementarities having, all else equal, a larger impact

on smaller countries. To gain intuition on this model property, consider a setting with two foreign

countries A and B identical except for one of them having larger revenue shifters than the other;

e.g., assume αAt ¡ αBt for all t. As shown in Appendix G, introducing complementarities in this

context increases exports to B more than to A. The reason is that, without complementarities,

exports to A are larger than to B and, with complementarities, firms benefit from a reduction in

fixed costs in B only if they also export to A. Thus, complementarities push firms to export to

both countries, but this implies the growth in exports to the smaller country must be larger, as it

started from a lower baseline level of exports in the setting without complementarities.

Besides size, the geographical, linguistic, and regulatory proximity of each foreign country to

every other country also matters for the impact complementarities have on exports to it. As

a result, as shown in Figure 5, there is a large heterogeneity across countries in the impact of

complementarities. In a large number of them, these play a minimal role; conversely, for some,

several of which are located in Central Europe, complementarities cause the number of export

events and total exports from Costa Rica to increase in more than 50%. The reason is that these
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Figure 5: Impact of Eliminating Cross-country Complementarities
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Note: In Panel (a), we illustrate, for each destination and all firms and years in the sample, the percentage reduc-
tion in the total number of firm-year pairs with positive exports predicted by our model when we set the parameters
tpγEx , ψ

E
x , κ

E
x qux�tg,l,au to zero. In Panel (b), we provide analogous information for the total predicted export revenues.

Central European countries are typically small, geographically close to many other destinations,

and members of deep PTAs that also include many other countries.

8.2 Third-Market Effects of Regulatory Differences Due to Brexit

A possible implication of Brexit is that regulations in the UK and in the EU will drift apart. To

quantify the third-country effect of this Brexit implication, we use our estimated model to evaluate

the impact on Costa Rican exports of a permanent increase in 2021 (expected since the 2017

referendum, but unexpected before) in the regulatory distance, najj1t, between the UK and all EU

members from zero (its pre-Brexit actual value) to one (its maximum value). Specifically, for all

sample firms and these two sets of values of the regulatory distances, we compute model-implied

export choices for 200 simulations of the vector χi, and report in Table 3 the relative differences in

the expected number of export events and total exports for the period 2021-2030; i.e., the 10 years

subsequent to the UK withdrawal from the EU.

As shown in Table 3, our model predicts exports from Costa Rica to the UK will fall as a

consequence of the increase in the regulatory distance between the UK and the EU. Specifically,

the predicted fall both in export events and total exports in the 10 years subsequent to Brexit is

around 4%. In the four years between the Brexit referendum and the UK’s effective withdrawal

from the EU, firms anticipate the subsequent change in policy, and the number of export events and

total exports to the UK fall in approximately 1.4% and 0.5%, respectively. Although the reduction

in complementarities between the UK and the EU is symmetric, the effect on exports to the UK is

much larger than that on exports to the EU, where the drop is always below 0.5%.

Zooming in on the impact on individual EU members, our model predicts that the countries

geographically close to the UK will be more affected than those further away; e.g., in comparison to

the 0.45% reduction in total exports to the EU as a whole, total exports fall between 2021 and 2030

in 1.96% and 0.87% in Belgium and Ireland, respectively. To understand the large effects on these
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Table 3: Impact of Regulatory Differences Due to Brexit

Countries:
Percentage Reduction in:

Export Events Export Revenues

2017-20 2021-30 2017-20 2021-30

United Kingdom -1.38% -4.13% -0.52% -3.81%
European Union -0.19% -0.46% -0.07% -0.45%

In particular:
Belgium -0.58% -1.66% -0.23% -1.96%
Ireland -0.19% -0.80% -0.09% -0.87%

Note: For the geographic area indicated in the column “Countries,” we report the relative
change for the periods 2017-20 and 2021-30 in the number of export events and total
exports of all sample firms caused by a permanent change in 2021 (expected since 2017)
in the regulatory distances between the UK and every EU member from zero to one.

two countries, one should bear in mind that the cross-country complementarities we have estimated

imply that the reduction in exports to the UK as a result of its regulatory isolation from the EU

will have subsequent effects on all countries geographically close to the UK, such as Belgium and

Ireland. For the same reason, exports to countries other than the UK with large English-speaking

populations will also be affected by the increase in the UK-EU regulatory distance, but these effects

will be small as linguistic complementarities are estimated to be small (see Section 7.2).

A partial-equilibrium model (such as ours) without cross-country export complementarities

would predict Costa Rican exports to be unaffected by changes in trade barriers (regulatory or

otherwise) between the UK and the EU. Standard general equilibrium trade models à la Eaton and

Kortum (2002) or Anderson and van Wincoop (2003) imply exports of different origins are substi-

tutes and, thus, predict Costa Rican exports to the UK and the EU to increase in reaction to the

increase in the UK-EU trade barriers.25 The third-market effects implied by the complementarities

in our model are thus different from those in standard trade models.

8.3 Impact of Costa Rica Becoming a CPTPP Member

In 2022, Costa Rica applied for membership in the CPTPP. To quantify the impact of Costa

Rica joining this trade bloc, we use the estimated model to evaluate the effect on Costa Rican

exports of a permanent reduction in the tariffs and regulatory barriers Costa Rican firms face when

exporting to CPTPP members. Specifically, for all sample firms, the ten-year period 2025-35, and

200 simulations of the vector χi, we compute model-implied firm exports in a setting in which trade

barriers do no change and in one in which, from 2025 onwards (expected since 2022), we set to

zero the tariffs Costa Rica faces in CPTPP members, and to 0.143 the regulatory distance between

Costa Rica and these members: for any member j and t ¥ 2025, we set asjt � 0 and nahjt � 0.143.

25Adão et al. (2017) and Lind and Ramondo (2022) allow for more flexible elasticities of substitution across export
countries, but maintain the assumption that different export countries are substitutes in any given destination. For
a framework that allows for positive third-market effects, see Fajgelbaum et al. (2021).
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As shown in columns (1) and (2) of Panel (a) in Table 4, the estimated model predicts the

number of firm-year pairs with positive exports and total exports to CPTPP members to increase

in 18.3% and 28%, respectively. As illustrated by the results in columns (3) and (4), these effects are

mostly due to the drop in tariffs Costa Rican exporters experience if their home country becomes

a CPTPP member; the reduction in the regulatory distance between Costa Rica and CPTPP

members is predicted to cause only a 5.7% and 2.3% increase in export events and total exports,

respectively. Columns (5) to (8) reveal that a researcher using a model analogous to ours but in

which cross-country complementarities are assumed away (see Appendix F.7) would have predicted

a growth in Costa Rican exports to CPTPP members only slightly smaller than that predicted

by our model. The reason why cross-country complementarities play a small role in determining

the impact of Costa Rica becoming a CPTPP member is that current members exhibit small

complementarities both with each other and with non-members. Thus, the growth in exports in

any member country has small spillovers on other countries.

In other contexts, the predictions of a model that assumes away cross-country complementarities

may differ from those of our estimated model. To illustrate this point, we compute in Panel (b) the

impact of Costa Rica joining a hypothetical CPTPP that also includes the US among its members.

In this case, while the estimated model predicts the number of export events and total exports in

current member countries to grow in 22.8% and 40.1%, respectively, the re-estimated model without

complementarities predicts these growth rates to be approximately a third smaller. The reason for

Table 4: Impact of Costa Rica Becoming a CPTPP Member

Model With Cross-Country Model Without Cross-Country
Complementarities Complementarities

With Without With Without
Tariff Changes Tariff Changes Tariff Changes Tariff Changes

Countries:
Export Export Export Export Export Export Export Export
Events Revenues Events Revenues Events Revenues Events Revenues
(1) (2) (3) (4) (5) (6) (7) (8)

Panel (a): If Costa Rica Joins the CPTPP

Members 18.30% 28.01% 5.67% 2.33% 15.56% 25.73% 4.80% 1.92%
Others 0.24% 0.30% 0.20% 0.28% 0% 0% 0% 0%

United States 0.17% 0.08% 0.13% 0.06% 0% 0% 0% 0%

Panel (b): If Costa Rica Joins the CPTPP (with the US as member)

Members 22.88% 40.10% 6.49% 3.13% 15.56% 25.73% 4.80% 1.92%
Others 0.24% 0.32% 0.21% 0.30% 0% 0% 0% 0%

United States 10.03% 15.67% 6.02% 2.82% 5.63% 8.43% 4.42% 1.46%

Note: “Members” denotes current CPTPP members, which are Australia, Brunei, Chile, Japan, Malaysia, Mexico, New
Zealand, Peru, Singapore and Vietnam; “Others” denotes all other countries The results in columns (1) to (4) are computed
using our estimated model; those in columns (5) to (8) are computed using the model described in Appendix F.7. The
results in columns (1), (2), (5), and (6) determine the impact of counterfactual changes both in tariffs (set to zero in every
CPTPP member) and regulatory distances (set to 0.143 for every CPTPP member). The results in columns (3), (4), (7),
and (8) only evaluate the impact of the counterfactual changes in regulatory distances.
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the significant disparity in model predictions in this case is that the US is a large destination, and

the spillovers to current CPTPP members of the 15.7% growth in exports to the US (see column (2))

imply a large growth in exports to those members. The model without complementarities assumes

away these spillovers and, thus, predicts a much smaller export growth to CPTPP members.

9 Conclusion

We estimate and solve a partial-equilibrium dynamic model of firm exports featuring cross-country

complementarities. In our model, the firm has rational expectations and chooses every period the

bundle of export destinations that maximizes its expected discounted sum of current and future

profits. We introduce a novel algorithm to solve the firm’s combinatorial dynamic discrete choice

optimization problem. Our estimates reveal substantial heterogeneity in complementarities across

country pairs. Fixed export costs in several Central European countries are reduced in more than

50% if the firm also exports to these countries’ closest neighbors. Conversely, for the US or China,

exporting to their closest neighbor reduces fixed costs in these countries in less than 5%.

We quantify the impact of the estimated cross-country complementarities to be non-negligible.

We predict Costa Rica’s total exports are approximately 5% larger due to these complementarities,

reflecting a 12% increase in the number of firm-country-period triplets with positive exports. We

also use our estimated model to quantify the impact Brexit has on Costa Rican exports to the UK

and the EU as a result of both countries no longer sharing a deep PTA: although bilateral trade

barriers between Costa Rica and every foreign country are held constant in this counterfactual

experiment, exports to the UK and the EU drop in 4% and 0.5%, respectively, illustrating that

deep PTA generate significant positive trade creation effects, specially towards smaller destinations.

Finally, using Costa Rica’s request to join CPTPP as motivating example, we show that researchers

that assume away the presence of complementarities when predicting the impact of counterfactual

changes in trade policy will obtain predictions similar to those of our estimated model when the

policy changes affect isolated countries, and quite different predictions when the policy changes

affect a large destination that exhibits important complementarities with other destinations.

We provide a first quantification of the role cross-country complementarities play in firms’

optimal export decisions in a dynamic framework, and develop tools that have the potential to

help quantify the relevance of complementarities across alternatives in other dynamic discrete-

choice settings. Our paper is an early step towards merging two literatures, the literature on

firm export dynamics, which has a long tradition within international trade, and the more recent

literature exploring interdependencies across countries in firm exports. Natural next steps in this

literature are to further depart from the perfect foresight assumption when modeling firms’ choices,

to allow for sources of cross-country interdependencies beyond those in our framework (e.g., non-

constant marginal production costs), or to study the impact complementarities have in a general-

equilibrium framework. In the context of dynamic models, these extra steps involve potentially

substantial methodological contributions beyond those in our paper.
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Almunia, Miguel, Pol Antràs, David Lopez-Rodriguez, and Eduardo Morales, “Venting
Out: Exports During a Domestic Slump,” American Economics Review, 2021, 111 (11), 3611–
3662. [6, 13]

Anderson, James E. and Eric van Wincoop, “Gravity with Gravitas: A Solution to the
Border Puzzle,” American Economic Review, 2003, 93 (1), 170–192. [1, 30]
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A General Optimization Problem and Solution Algorithm

In Appendix A.1, we characterize an optimization problem encompassing that in equation (20). In Appendix
A.2, we propose a solution algorithm covering those used in the steps described in Section 5 and Appendix
D.1, and state several of its properties when applied to problems of the kind characterized in Appendix A.1.
To simplify notation and without loss of generality, we focus on an agent born at period t � 0.

A.1 General Optimization Problem

Consider an agent that, in every period t ¥ 0, makes J simultaneous binary choices with the goal of
maximizing the expected discounted sum at birth of infinite per-period (static) payoffs.

Per-period payoffs in any t depend on a shock ωt taking values in a set Ωt according to a distribution
Qtpωt|ωt�1, . . . , ω0q. We denote as zt � tωt1u

t
t1�0 the history of shocks in all periods t1 ¤ t, and as Zt �

�t
t1�0Ωt1 the set of all possible period-t histories. We denote as yjpz

tq P t0, 1u a generic choice at zt for
alternative j, as ypztq P t0, 1uJ a generic vector of choices at zt for all J alternatives, and as y P Y a generic
vector of choices for all t ¥ 0, all zt P Zt, and all alternatives; i.e.,

Y � �8
t�0,ztPZtt0, 1uJ . (A.1)

Considering only optimization problems where the solution exists and is unique, we can write

o � argmax
yPY

Π0pyq, (A.2)

where Π0pyq is the agent’s objective function and o is the optimal choice for all t ¥ 0, all zt P Zt, and all
alternatives.26 Thus, using opztq to denote the agent’s optimal choice at zt for all alternatives, it holds

o � topztqu8t�0,ztPZt . (A.3)

The following assumption establishes a list of sufficient conditions on the objective function Π0p�q.

Assumption 1 Assume:

1. (Additive separability) The function Π0p�q satisfies

Π0pyq � π0pypz
0q, 0J , ωpz

0qq �
8̧

t�1

δtE
�
πtpypz

tq, ypzt�1q, ωpztqq
�
, (A.4)

where the expectation is over tztu8t�1, 0J is a J � 1 vector of zeros, δ P p0, 1q and, for all t ¥ 0,

πtpypz
tq, ypzt�1q, ωpztqq �

J̧

j�1

�
π̂jtpyjpz

tq, yjpz
t�1q, ωpztqq � π̃jtpypz

tq, ypzt�1qq
�

(A.5)

where π̂jt : t0, 1u � t0, 1u � Ωt ÝÑ RY t�8u and π̃jt : t0, 1u
J � t0, 1uJ ÝÑ R.

2. (Supermodularity) For all t ¥ 0 and ωt P Ωt, πt is supermodular in pypztq, ypzt�1qq on t0, 1uJ�t0, 1uJ .

3. (Inaction) For all j � 1, . . . , J , t ¥ 0, and zt P Zt, there exists yjpz
tq P t0, 1u such that, defining the

set Xt � t0, 1u � Ωt, it holds that π̂jtpyjpz
tq, xq ¥ �K for all x P Xt and a real number K ¥ 0.

4. (Markov with finite state space) For all t ¥ 0, Ωt is finite and Qtpωt|ωt�1, . . . , ω0q � Qtpωt|ωt�1q.

5. (Stationarity) There exists T such that, for all t ¥ T and all j � 1, . . . , J , it holds that Ωt � ΩT ,
Qt � QT , π̂jt � πjT and π̃jt � π̃jT .

As shown in Appendix E.1, equating agents to firms and alternatives to potential export destinations, the
model described in Section 4 satisfies all restrictions in Assumption 1.

26The restrictions in Section 4 imply the solution to the problem in equation (20) exists and is unique almost surely.
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A.2 General Solution Algorithm

We describe here an iterative algorithm that yields upper bounds on the solution to the problem in equation
(A.2) when the function Π0p�q satisfies the restrictions listed in Assumption 1. An algorithm that yields
lower bounds may be devised in an analogous fashion.

As a preliminary step, partition the J alternatives into U groups indexed by u. Denote asMu � t1, . . . , Ju
the set of altenatives included in group u, and denote as M c

u the complement of Mu; i.e., the set including
all alternatives not in Mu. E.g., if J � 4 and U � 3, we can form the subsets M1 � t1, 2u, M2 � t3u, and
M3 � t4u, and the corresponding complements are M c

1 � t3, 4u, M c
2 � t1, 2, 4u, and M c

3 � t1, 2, 3u.
For each set Mu and each iteration n � 1, 2, 3, . . . of the algorithm, we solve

ō
pnq
Mu

� argmax
yMuPYMu

Π0pyMu
, ȳ

pnq
Mc

u
q, (A.6)

where yMu
is a generic vector of export choices for every alternative in the set Mu, all periods t ¥ 0, and

every history zt that may be reached at t, and the set YMu
includes all feasible values of yMu

; i.e.,

YMu
� �8

t�0,ztPZtt0, 1uJu ,

where Ju isMu’s cardinality. The second argument of the function Π0p�q in equation (A.6) is an upper bound
on the firm’s optimal choice in every alternative not in Mu, all periods t ¥ 0, and all histories zt P Zt; i.e.,

ȳ
pnq
Mc

u
� tȳ

pnq
Mc

u
pztqu8t�0,ztPZt , with ȳ

pnq
Mc

u
pztq ¥ oMc

u
pztq for all t ¥ 0 and zt P Zt,

where oMc
u
pztq is the vector of optimal choices at period t and history zt in all alternatives not in Mu.

Solving the problem in equation (A.6) for any group u at any iteration n requires specifying first the
upper-bounds included in the vector

ȳ
pnq
Mc

u
.

For computational reasons (see discussion in Section 5), we set the upper bound corresponding to any country
j, period t, and history zt, to a value that does not vary across histories; i.e., we set

ȳ
pnq
j pztq � b̄

pnq
jt for all zt P Zt, (A.7)

In the first iteration (i.e., for n � 1), we set each of these upper bounds to its largest value within the feasible
choice set; i.e., for every j, every t ¥ 0, and every zt P Zt, we set

b̄
p1q
jt � 1. (A.8)

In all subsequent iterations (for all n ¡ 1), we set

b̄
pnq
jt � max

ztPZt
ō
pn�1q
j pztq, (A.9)

where ō
pn�1q
j pztq is the element corresponding to alternative j, period t, and history zt of the vector ō

pn�1q
Mu

for the set of alternatives Mu including j. Equation (A.9) shows that, to compute the iteration-n upper
bound on the firm’s optimal choice in alternative j at history zt, we use the outcome of the optimization
problem in equation (A.6) at iteration n � 1 for the set Mu including j. Specifically, as shown in equation
(A.9), we assign to every j, t, and zt, the max of the outcomes obtained for j and t across every zt P Zt.

Theorem 1 establishes certain properties of the iterative algorithm defined in equations (A.6) to (A.9)

Theorem 1 Let b̄
pnq
jt be defined by equations (A.6) to (A.9), and let ojpz

tq be the element of the vector

o defined in equation (A.2) that corresponds to alternative j and history zt. Then, for all j � 1, . . . , J ,
t � 1, 2, . . . , zt P Zt, and n � 1, 2, 3, . . . , it holds that

1. b̄
pnq
jt ¥ ojpz

tq.
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2. b̄
pnq
jt ¤ b̄

pn�1q
jt .

3. There exists N   8 such that b̄
pnq
jt � b̄

pn�1q
jt for all n ¥ N .

Theorem 1 establishes that the values tb̄
pnq
jt u

J,8
j�1,t�0 computed according to equations (A.6) to (A.9) are

an upper bound on the firm’s optimal choice at any feasible history, get tighter with every iteration; and,
converge after a finite number of iterations. See Appendix E for a proof of Theorem 1.

Property 3 of Theorem 1 does not imply that the upper bound defined by equations (A.6) to (A.9) (nor
the analogous lower bound) converges to the solution of the firm’s optimization problem in equation (A.2).
However, as the partition of the J alternatives into U subgroups gets coarser, the upper bound defined
by equations (A.6) to (A.9) (and the analogous lower bound) gets tighter. In the limiting case in which
U � 1 and, therefore, Mu � t1, 2, . . . , Ju, the optimization problem in equation (A.6) coincides with that in
equation (A.1) and, thus, solving this optimization problem is equivalent to solving the firm’s problem.

The algorithms implemented in each of the steps described in Section 5 and Appendix D.1 are special
cases of the algorithm defined in equations (A.6) to (A.9). For e.g., the algorithm implemented in step 1 is a
case in which: (a) U � J and, for u � 1, . . . , J , the set Mu is a singleton; and (b) period t � 0 corresponds
to the birth year of the firm (i.e., t �

¯
ti). The algorithm implemented in step 2 is a case in which: (a) U � J

and, for u � 1, . . . , J , Mu is a singleton; and, (b) period t � 0 corresponds to the first period at which the
step 1 upper and lower bounds differ. The algorithm implemented in step 5 is a case in which: (a) U   J ,
and for some u � 1, . . . , U , the set Mu includes more than one country; and, (b) period t � 0 corresponds
to the first period at which the upper and lower bounds computed in previous steps differ.
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B Additional Reduced-Form Results

B.1 Firm-level Data: Sample Descriptive Statistics

We provide here descriptive statistics for the firm-level data introduced in Section 2. In Table B.1, we report
information for every sample year on total manufacturing exports, total number of exporting firms, and total
number of foreign countries to which Costa Rican manufacturing firms exported in the corresponding year.
Total manufacturing exports are measured in thousands of 2013 dollars. While the total number of exporters
remained stable at a number between approximately 400 and 450 (with a minimum of 395 exporters in 2015
and a maximum of 459 exporters in 2012), and the total number of export destinations remained stable at
around 90 destinations, the total export volume grew significantly in real terms between 2005 and 2015.

Table B.1: Aggregate Statistics

Years Total Exports Number of Number of
Exporters Destinations

2005 262,549.6 400 95
2006 303,344.6 415 96
2007 332,929.1 422 91
2008 371,202.9 419 91
2009 328,435.2 438 87
2010 347,235.1 432 96
2011 431,820.7 456 91
2012 479,806.0 459 90
2013 450,472.3 437 84
2014 494,083.5 436 84
2015 479,485.1 395 90

Notes: Total Exports are reported in thousands of 2013 dollars.
All numbers in this table are obtained by aggregating the firm-
level data introduced in Section 2.

In Table B.2, we report the mean and median domestic sales across all firms and across exporters. We
measure domestic sales by subtracting total export revenue (from the Customs dataset) from total revenue.
As it is common in datasets similar to ours, the distribution of domestic sales is skewed to the right (mean
domestic sales are much larger than median domestic sales), and exporters are larger on average than non-
exporters (mean domestic sales in the subpopulation of exporters is larger than in the overall population).

Table B.2: Firm-level Statistics

Years Domestic Sales Domestic Sales Exports Number of Destinations
(All Firms) (Exporters) (Exporters)

Average Median Average Median Average Median Average Median 95th/99th perc.

2005 684.4 119.4 3,312.0 822.9 656.4 63.4 3.38 2 10/17
2006 695.4 118.4 3,553.2 772.6 731.0 63.1 3.28 2 10/18
2007 782.4 131.7 3,864.6 904.3 788.9 63.7 3.35 2 10/16
2008 889.6 147.0 4,693.6 1,160.0 885.9 66.4 3.30 2 9/18
2009 839.1 126.4 4,682.5 1,033.4 749.9 43.4 3.19 2 10/18
2010 937.2 139.2 5,256.7 1,161.1 803.8 56.7 3.28 2 9/18
2011 1,031.9 147.4 5,601.4 1,201.7 947.0 56.3 3.25 2 9/19
2012 1,067.5 154.1 5,663.2 1,091.7 1,045.3 65.9 3.22 2 9/19
2013 1,098.9 158.1 5,922.9 1,178.6 1,030.8 78.2 3.35 2 10/17
2014 1,043.8 147.4 5,793.3 1,208.3 1,133.2 59.7 3.28 2 10/18
2015 1,166.0 155.8 6,809.5 1,566.5 1,213.9 80.5 3.62 2 11/20

Notes: Domestic sales and Exports are reported in thousands of 2013 dollars.

2



In Table B.2, we also report export revenues for the mean and median exporters in each sample year.
Consistently with the fact that, between 2005 and 2015, total exports grew significantly while the total
number of exporters remained roughly constant, we observe that the aggregate export revenue of the mean
exporting firm also grew during the same period. Specifically, while total exports grew by 82% between 2005
and 2015, total export revenues for the average exporter grew at nearly the same rate, 85%.

The last three columns in Table B.2 report several statistics of the distribution of the number of export
destinations across firms. Three features of this distribution are apparent. First, it is very skewed. Note that
the difference in the number of destinations between the median exporter and that at the 95th percentile
(approximately 8 destinations) is the same as the difference between the exporter at the 95th percentile and
that at the 99th percentile. Second, some firms export to a large number of destinations; the 95% percentile
of the distribution of the number of export destinations is approximately 10, and the 99th percentile oscillates
between 17 and 20. Third, the distribution of the number of export destinations is very stable over time.
Consequently, the growth in average and median exports documented in Table B.2 is not explained by a
hypothetical growth in the number of export destinations.

Figure B.1: Export Activity by Destination Country During Period 2005-2015

(a) Total Number of Export Events

(1.50,2.00]
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(0.15,0.25]
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(0.01,0.05]
[0.00,0.01]
0 or No Data

(b) Total Volume of Exports
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0 or No Data

Notes: Panel (a) shows the total number of firm-year pairs with positive exports relative to that in the United
States. Panel (b) shows the total volume of manufacturing exports relative to that in the United States.
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In terms of the distribution of export activity across destinations, the maps in Figure B.1 reflect the
total number of export events (i.e., firm-year pairs with positive exports) and the total volume of exports
by destination during the sample period 2005-2015, in both cases relative to the corresponding magnitude
in the United States. Both maps show that the most popular destination for Costa Rican manufacturing
exports are countries in North and Central America, followed by China, Australia, and countries in Western
Europe. Specifically, the top 5 destinations by total volume of exports during the sample period are the
United States, Guatemala, Panama, Nicaragua and Honduras.

In Table B.3, we present the mean and several percentiles of the distribution of annual firm-level exports
to several countries over the period 2005-2015. The distribution of annual firm-level exports by market is
very skewed to the right; e.g., while median exports to the US are approximately $28,000, mean exports
are close to $600,000. The second feature to remark is that there is a large dispersion in annual firm-level
exports by destination over the sample period; while the 25th percentile of the distribution of annual firm-
level exports is below $10,000 for all destinations considered in Table B.3, the 95th percentile is either above
$1,000,000 or close to it.

Table B.3: Distribution of Export Sales in Several Markets

Country Average Percentiles
5 25 50 75 95 99

United States 597.6 0.4 5.0 28.1 227.4 3,477.9 9,615.9
Panama 271.4 1.2 7.4 32.5 138.6 1,013.6 5,022.9
Germany 350.8 0.3 6.3 54.0 419.5 1,844.9 3,015.5
Nicaragua 209.8 1.2 8.7 37.6 134.5 879.5 3,013.9
Mexico 295.4 0.4 9.0 51.0 284.2 1,224.8 2,637.1
China 128.8 0.2 3.9 21.8 68.9 713.7 1,584.0

Notes: All numbers in this table are reported in thousands of 2013 dollars.

B.2 Geographical Distance

In Figure B.2, we present a histogram of the geographical distance, computed according to the formula in
equation (1), between any pair of countries. As Figure B.2 reveals, the most typical distance is approximately
7,000 kilometers, but there is a wide disparity in geographical distance across country pairs.

Figure B.2: Histogram of Bilateral Geographic Distances
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Notes: The vertical axis indicates the number of country pairs whose geographical distance according to equation
(1) falls in the corresponding bin. The horizontal axis denotes geographical distance in thousands of kilometers.
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In Figure B.3, we represent in maps the geographical distance from Costa Rica (in Figure B.3a), the
United States (in Figure B.3b), France (in Figure B.3c) and China (in Figure B.3d), respectively, to any
other country of the world.

Figure B.3: Geographical Distances From Certain Countries
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(d) From China

CHN
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Notes: Each of the panels in this figure indicate the geographical distance (computed according to the expression
in equation (1)) between a particular country (Costa Rica in Panel (a), the US in Panel (b), France in Panel (c),
and China in Panel (d)) and any other country in the world. All distances are reported in thousands of kilometers.

B.3 Linguistic Distance

The value of the linguistic distance measure nljj1 introduced in equation (2) depends on the language defini-
tion. Ethnologue defines languages according to 15 aggregation levels; e.g., at the 1st level, all Indo-European
languages are considered the same language; at the 15th level, Spanish and Extremaduran are distinct. We
use the 9th aggregation level, the first one classifying Portuguese and Spanish as distinct. In Figure B.4,
we present a histogram of the implied bilateral linguistic distance measures. As Figure B.4 reveals, for
most country pairs, a randomly selected resident of one of the two countries will not share either first or
second language with a randomly selected resident of the other country. Therefore, for most country pairs,
their linguistic distance equals 1, which is the maximum possible value of the linguistic distance measure
introduced in equation (2).

Figure B.4: Histogram of Bilateral Linguistic Distances
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Notes: The vertical axis indicates the number of country pairs whose linguistic distance according to the formula
in equation (2) falls in the corresponding bin. The horizontal axis denotes the corresponding linguistic distance.
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In Figure B.5, we represent bilateral linguistic distance measures from Costa Rica (in Figure B.5a), the
US (in Figure B.5b), France (in Figure B.5c) and China (in Figure B.5d) to any other country of the world.

Figure B.5: Bilateral Linguistic Distances From Certain Origin Countries

(a) From Costa Rica

CRI
[0.0-0.1)
[0.1-0.2)
[0.2-0.3)
[0.3-0.4)
[0.4-0.5)
[0.5-0.6)
[0.6-0.7)
[0.7-0.8)
[0.8-0.9)
[0.9-1.0]

(b) From the United States

USA
[0.0-0.1)
[0.1-0.2)
[0.2-0.3)
[0.3-0.4)
[0.4-0.5)
[0.5-0.6)
[0.6-0.7)
[0.7-0.8)
[0.8-0.9)
[0.9-1.0]

(c) From France

FRA
[0.0-0.1)
[0.1-0.2)
[0.2-0.3)
[0.3-0.4)
[0.4-0.5)
[0.5-0.6)
[0.6-0.7)
[0.7-0.8)
[0.8-0.9)
[0.9-1.0]
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(d) From China

CHN
[0.0-0.1)
[0.1-0.2)
[0.2-0.3)
[0.3-0.4)
[0.4-0.5)
[0.5-0.6)
[0.6-0.7)
[0.7-0.8)
[0.8-0.9)
[0.9-1.0]

Notes: Each of the four panels in this figure indicate the linguistic distance (computed according to the expression
in equation (2)) between a particular country (Costa Rica in Panel (a), the US in Panel (b), France in Panel (c),
and China in Panel (d)) and any other country in the world.

The distance measures in Figure B.5a reflect the extent of the network of countries where Spanish is the
most commonly spoken language; as the map illustrates, with the only exception of Spain, these countries
are geographically close to Costa Rica. The measures in Figure B.5b reveal that the popularity of the English
language as second language in many European countries implies that, according to the distance measure
in equation (2), countries such as the Netherlands, Denmark, or Sweden, are linguistically very close to the
US. Interestingly, as Figure B.5c reveals, the popularity of the English language as second language makes
that certain countries that do not have English as official language (e.g., France and Sweden, France and
Denmark) are linguistically close, the main reason being their residents can often communicate in English.
Finally, Figure B.5d reveals that countries such as China, in which a large share of their residents speake
neither English nor Spanish, will be generally isolated from a linguistic perspective. Specifically, China only
exhibits some linguistic proximity with Malaysia.

As discussed in footnote 9, Ethnologue provides information by country on the population shares that
speak any given language as first and second language, but it does not provide information on the distribution
of second language speakers conditional on their first language. The measure in equation (2) assumes a joint
distribution of first and second languages in each country such that the linguistic distance between any two
countries is minimized. To illustrate this point, consider a simplified setting in which there are only two
languages in the world, k1 and k2. In this setting, the probability that two individuals i and i1 randomly
selected from any two given countries j and j1, respectively, speak a common language is:

P pp{i speaks k1} X {i1 speaks k1}q Y p{i speaks k2} X {i1 speaks k2}qq
�

P p{i speaks k1} X {i1 speaks k1}q � P p{i speaks k2} X {i1 speaks k2}q�
P pp{i speaks k1} X {i1 speaks k1}q X p{i speaks k2} X {i1 speaks k2}qq.

Using the notation in the main text, we can rewrite this expression as

P pp{i speaks k1} X {i1 speaks k1}q Y p{i speaks k2} X {i1 speaks k2}qq �
sjk1

sj1k1
� sjk2

sj1k2
� P pp{i speaks k1} X {i1 speaks k1}q X p{i speaks k2} X {i1 speaks k2}qq,

and we can thus write the probability that two randomly selected individuals from countries j and j1 do not
speak a common language as

1� sjk1
sj1k1

� sjk2
sj1k2

� P pp{i speaks k1} X {i1 speaks k1}q X p{i speaks k2} X {i1 speaks k2}qq.

As the Ethnologue data does not contain information on the joint distribution of first and second languages
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within a country, we cannot compute

P pp{i speaks k1} X {i1 speaks k1}q X p{i speaks k2} X {i1 speaks k2}qq.

Given information on sjk1
, sjk2

, sj1k1
, and sj1k2

, we can however obtain a lower bound on this probability;
denoting this lower bound as LBjj1 , it holds that

LBjj1 �

"
0 if sjk1

sj1k1
� sjk2

sj1k2
¤ 1,

sjk1
sj1k1

� sjk2
sj1k2

� 1 if sjk1
sj1k1

� sjk2
sj1k2

¡ 1,

or, equivalently,

LBjj1 � maxt0, sjk1
sj1k1

� sjk2
sj1k2

� 1u.

Consequently, we can obtain a lower bound on the probability that two randomly selected individuals from
countries j and j1 do not speak a common language as

1� sjk1
sj1k1

� sjk2
sj1k2

� LBjj1 � 1� sjk1
sj1k1

� sjk2
sj1k2

�maxt0, sjk1
sj1k1

� sjk2
sj1k2

� 1u

or, equivalently,

maxt0, 1� sjk1
sj1k1

� sjk2
sj1k2

u.

This expression corresponds to that in equation (2) for the simple case in which there are only two languages
in the world, k1 and k2.

B.4 Measures of Regulatory Distance

In Figure B.6, we present a histogram of an inverse measure of the breadth of the regulatory harmonization
imposed by preferential trade agreements (PTAs), computed according to the formula in equation (3).

Figure B.6: Histogram of Bilateral Distances in PTAs
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Notes: The vertical axis indicates the number of country pairs whose distance according to the formula in equation
(3) falls in the corresponding bin. The horizontal axis denotes the value of the distance measure in equation (3).

As Figure B.6 reveals, most country pairs do not share any PTA that contains a provision in at least
one of the seven policy areas listed in footnote 11. Therefore, for most country pairs, the distance measure
introduced in equation (3) equals one, which is the maximum possible value this distance measure may take.
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In Figure B.7, we illustrate the countries with which Costa Rica, the United States, France, and China,
respectively, share in 2015 a PTA containing provisions in at least one of the seven policy areas listed in
footnote 11. Whenever two countries had signed a PTA with a provision in one of these seven areas, Figure
B.7 also indicates in how many of these areas the corresponding PTA includes a provision.

Figure B.7: Bilateral Regulatory Distances From Certain Origin Countries

(a) From Costa Rica

CRI
All Areas
6 Areas
5 Areas
4 Areas
3 Areas
2 Areas
1 Area
No Areas/No FTA

(b) From the United States

USA
All Areas
6 Areas
5 Areas
4 Areas
3 Areas
2 Areas
1 Area
No Areas/No FTA

(c) From France

FRA
All Areas
6 Areas
5 Areas
4 Areas
3 Areas
2 Areas
1 Area
No Areas/No FTA
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(d) From China

CHN
All Areas
6 Areas
5 Areas
4 Areas
3 Areas
2 Areas
1 Area
No Areas/No FTA

Notes: Each of the four panels in this figure illustrate the countries with which Costa Rica (in panel (a)), the
United States (in panel (b)), France (in panel (c)), and China (in panel (d)) share in 2015 a PTA containing
provisions in at least one of the seven policy areas listed in footnote 11. If it does, it indicates in how many of the
seven policy areas listed in footnote 11 the corresponding preferential trade agreement contains some provision.

Figure B.7a reveals that Costa Rica has very deep integration agreements with Canada, members of the
European Common Market, Panama, the Dominican Republic, and Peru, and slightly less deep agreements
with China, Chile, and other Central and North American countries. Figure B.7b shows that the US has
a relatively deep PTA with Canada and Mexico (the NAFTA agreement), as well as with Colombia, Peru,
Chile and Australia (these four are bilateral trade agreements), and a relatively less deep agreement with
Central American countries (the CAFTA agreement). In the case of France, Figure B.7c illustrates that it
has deep trade integration agreements not only with the other members of the European Common Market,
but also with countries in North America (Mexico), Central America (e.g., Guatemala, Honduras, or Costa
Rica), South America (e.g., Colombia, Peru, or Chile), Africa (e.g., Morocco, Tunisia, Egypt, or South
Africa), and Asia (South Korea). Conversely, Figure B.7d illustrates that China has deep trade integration
agreements with comparatively few and smaller countries (e.g., Iceland, Switzerland, Peru, or New Zealand).

In sum, the four panels in Figure B.7 show that countries differ significantly in the number and identity
of the potential trade partners with whom they have signed deep PTAs. Furthermore, it is common for
countries to sign deep PTAs with other countries that are neither geographically nor linguistically close
(e.g., Costa Rica and China, the US and South Korea, France and South Africa, or China and Iceland).

B.5 Correlation in Export Participation Decisions: Additional Results

We present here estimates analogous to those in Section 3, but for alternative threshold values n̄g, n̄l, and
n̄a. While we set n̄g � 0.79 (or 790 km), n̄l � 0.11, and n̄a � 0.43 in the main text, we set here instead
n̄g � 1.153 (or 1,153 km), n̄l � 0.5 and n̄a � 0.78. The values of n̄g and n̄l we use here equal the 5th
percentile of the distribution of the corresponding distance measure between any pair of countries in our
sample; the value n̄a � 0.72 is equivalent to characterizing as deep any PTA that contains a provision in at
least two of the seven policy areas listed in footnote 11.

In Table B.4, we present OLS estimates analogous to those in Table 1. A comparison of the estimates
in these two tables reveals that, as we increase the set of countries classified as being geographically or
linguistically close to a destination j, or as being cosignatories of a deep PTA with j, the impact that
exporting to at least one of these countries has on the probability of exporting to destination j decreases.

Comparing the estimate of the parameter on Y g
ijt in column (4) of Panel D in Table 1 to that in Table

B.4, we observe that the difference in the predicted export probability to any given destination is 18.1%
when comparing firms that export to at least one country that is less than 790 km away from it to those
that do not, but only 11.2% when comparing firms that export to at least one country that is less than
1153 km away from it to those that do not. This is consistent with the correlation between a firm’s export
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Table B.4: Conditional Export Probabilities

Panel A: Panel B:
No Controls Controlling for Firm-Year Fixed Effects

(1) (2) (3) (4) (1) (2) (3) (4)

Y g
ijt 0.1904a 0.1345a 0.1529a 0.1217a

(0.0072) (0.0059) (0.0068) (0.0060)

Y l
ijt 0.1334a 0.0733a 0.1091a 0.0760a

(0.0057) (0.0038) (0.0050) (0.0041)

Y a
ijt 0.0825a 0.0297a 0.0517a 0.0222a

(0.0037) (0.0016) (0.0026) (0.0018)

Obs. 3,859,618 3,859,618

Panel C: Panel D:
Controlling for Sector-Country-Year Fixed Effects Controlling for Firm-Year & Sector-Country-Year

Fixed Effects

(1) (2) (3) (4) (1) (2) (3) (4)

Y g
ijt 0.1785a 0.1269a 0.1384a 0.1116a

(0.0069) (0.0057) (0.0065) (0.0057)

Y l
ijt 0.1277a 0.0706a 0.1013a 0.0721a

(0.0054) (0.0035) (0.0048) (0.0039)

Y a
ijt 0.0779a 0.0283a 0.0431a 0.0169a

(0.0035) (0.0015) (0.0025) (0.0017)

Obs. 3,859,618 3,859,618

Note: a denotes 1% significance. Standard errors clustered by firm. The dependent variable in all specifications
is a dummy that equals one if firm i exports to country j in year t. The covariates are Y x

ijt � 1t
°

j1�j 1tn
x
jj1 ¤

n̄xuyij1t ¡ 0u for x P tg, lu, and Y a
ijt � 1t

°
j1�j 1tn

a
jj1t ¤ n̄auyij1t ¡ 0u, with n̄g � 1.153, n̄l � 0.5 and n̄a � 0.78.

participation decisions in any two countries decreasing in the geographic distance between both countries.
Similarly, comparing the estimate of the parameter on Y a

ijt in column (4) of Panel D in Table 1 to that
in Table B.4, we observe that the difference in the predicted export probability to any given destination
between firms that export to at least one country that shares a deep PTA with it and those that do not
decreases from 2.1% to 1.7% as we loosen the requirements that a PTA must satisfy for us to classify it as
“deep.” This is consistent with the correlation between a firm’s export participation decisions in any two
countries increasing in the deepness of the PTAs linking both countries.

Finally, the estimate of the parameter on Y l
ijt in column (4) of Panel D in Table 1 is very similar to that

in Table B.4. In this case, the correlation between a firm’s export participation decisions in any two countries
seems not to vary much depending on whether the probability that two randomly chosen individuals, one
from each country, understand each other is at least 0.89 (i.e., n̄l � 0.11, the threshold imposed in Table
1) or 0.5 (i.e., n̄l � 0.5, the threshold imposed in Table B.4). A possible explanation for this fact is that
exporters select into their workforce workers knowledgeable of the languages spoken in the countries where
they export and, consequently, the general prevalence of a language in a country is an imperfect predictor
of the language barriers that exporting firms experience.
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C Equation for Potential Export Revenues: Details

We derive in three steps the expression in equation (7).

First Step. As firm i’s marginal cost of selling in the home market h at period t is τhtwit (see Section 4.2),
the revenue firm i obtains in h at a period t is

riht �
� η

η � 1

τhtwit

Pht

�1�η

Yht. (C.1)

Combining equations (5) and (C.1), we rewrite the potential export revenues of firm i in country j at period
t as a function of its revenue in the domestic market:

rijt �
�τijt
τht

Pht

Pjt

�1�η Yjt
Yht

riht. (C.2)

Second Step. Substituting pτijtq
1�η in equation (C.2) by its expression in equation (6), we obtain

rijt � exppξyyijt�1 � ξ̌jt � αs � αa lnpasjtq � ξw lnpwitq � lnprihtqq, (C.3)

with αs � ξs, αa � ξa, and

ξ̌jt � ξjt � p1� ηq lnpPht{Pjtq � lnpYjt{Yhtq � p1� ηq lnpτhtq. (C.4)

Third Step. Taking the logarithm of both sides of equation (C.1) and rearranging terms, we obtain

lnpwitq �
1

1� η
plnprihtq � lnpYhtqq � lnpη � 1q � lnpηq � lnpPhtq � lnpτhtq.

Plugging this expression into equation (C.3), we obtain the expression for rijt in equation (7) with

αjt � ξ̌jt � ξwp�p1{p1� ηqq lnpYhtq � lnpη � 1q � lnpηq � lnpPhtq � lnpτhtqq, (C.5a)

αr � 1� ξw{p1� ηq. (C.5b)
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D Solution Algorithm: Additional Details

D.1 Additional Steps

We discuss here how we tighten the upper bounds on firm choices at a period τ ; the procedure for the lower
bound being analogous. Once the optimal choice at the path of interest at τ is determined, we proceed to
apply the step 2 algorithm to the next period τ 1 at which the bounds in equation (27) differ.

Step 3. In this step, we tighten further the bounds at period τ . To do so, for every country j for which the
bounds in equation (30) do not coincide, we solve a problem that differs from that in equation (24) in that,
for period τ � 1 and a subset of countries M that does not include j, we condition on functional (instead of
constant) upper bounds. Specifically, for any j such that ˇ̄yijτ |τ ¡ ˇ

¯
y
ijτ |τ

, we find the solution to

max
yijτ

!
yijτ puijτ py̌ijτ�1, ω̌ijτ q �

¸
j1�j

ˇ̄yij1τ |τ pcjj1t � cj1jtqq � δEiτ Ṽijτ�1pyijτ , ωijτ�1, tωij1τ�1uj1PM q
)
, (D.1)

with

Ṽijτ�1pyijτ , ωijτ�1, tωij1τ�1uj1PM q � max
yijτ�1

!
yijτ�1puijτ�1pyijτ , ωijτ�1q � δEiτ�1V̄ijtτ�2pyijτ�1, ωijτ�2q

�
¸

j1PM

b̄ij1τ�1|τ pωij1τ�1qpcjj1τ�1 � cj1jτ�1q �
¸

j1RM

1tj � j1ub̄�ij1τ�1|τ pcjj1τ�1 � cj1jτ�1qq
)
. (D.2)

The function Ṽijtτ�2pyijτ�1, ωijτ�2q is country j’s value function when the firm’s choice in every period
t ¥ τ � 2 and every country other than j is set to the constant upper bounds obtained in the last iteration
of the step 2 procedure. For every country j1 other than j, equation (D.2) imposes the upper bounds

b̄ij1τ�1|τ pωij1τ�1q � ō�ij1τ�1|τ pˇ̄yijτ |τ , ωij1τ�1q, if j1 PM, (D.3a)

b̄�ij1τ�1|τ � ō�ij1τ�1|τ pˇ̄yijτ |τ , ¯
ωq, if j1 RM, (D.3b)

where ō�ij1τ�1|τ p�q and ˇ̄yijτ |τ are computed in step 2. By definition, b̄ij1τ�1|τ pωij1τ�1q ¤ b̄�ij1τ�1|τ for any j1,

and, thus, the bounds computed in step 3 are tighter than those computed in step 2, and they will be tighter
the larger the setM . However, solving the problem in equation (D.1) requires computing an expectation over
the vector pωijτ�1, tωij1τ�1uj1PM q, a step that is computationally more complicated the larger the cardinality
of M . In our application, for each country j, we choose M as the 16 countries that are geographically closer
to j. If the step 3 upper and lower bounds do not coincide at py̌iτ�1, ω̌iτ q at τ , we proceed to step 4.

Step 4. In this step, we tighten further the bounds at period τ . To do so, we solve an optimization problem
that differs from those solved in steps 1 to 3 in that, instead of computing policy functions iteratively country
by country, we do so for several countries simultaneously.

Consider a set M of countries for which step 3 upper and lower bounds on the firm’s optimal choices at
the path of interest do not coincide at τ . For any t ¥ τ , define vectors yiMt and ωiMt that, for t and all
countries j in M , include firm i’s export choice yijt and blocking shock ωijt, respectively. Define also

V̄iMτ�hpyiMτ�h�1, ωiMτ�hq �
¸
jPM

V̄ijτ�hpyijτ�h�1, ωijτ�hq, (D.4)

where, as above, V̄ijτ�hp�q is the country j’s value function that results from equating the firm’s choice in all
periods t ¥ τ � h and all countries other than j to the constant upper bounds obtained in the last iteration
of the step 2 procedure. In step 4, we solve by backward induction for all t P rτ, τ � h� 1s the problem

V̄iMtpyiMt�1, ωiMtq � max
yiMtPt0,1uM

! ¸
jPM

 
yijtpuijtpyijt�1, ωijtq �

¸
j1PM

yij1tcjj1t� (D.5)

¸
j1RM

1tj � j1ub̄�ij1τ |τ pcjj1t � cj1jtqq
(
� δEitV̄iMt�1 pyiMt, ωiMt�1q

)
,
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with b̄�ij1τ |τ and V̄iMτ�hp�q defined as in equations (D.3b) and (D.4), respectively. Solving this problem is

computationally more complicated the larger the set M and the horizon h are. In our application, if there
are less than ten countries for which step 3 upper and lower bounds on the optimal choice at the path of
interest at period τ differ, we include them all in M . If there are more than ten countries for which the
step 3 bounds differ, we solve the problem in equation (D.5) repeatedly for different sets of ten countries,
grouping together in these sets countries that are geographically close to each other. Concerning h, we solve
first the problem for h � 1, and increase progressively the value of h until h � 10.

Step 5. In this step, we tighten further the bounds at τ . To do so, we compute the firm’s optimal export
paths in a set M of countries fixing the firm’s choices in all countries not in M to constant upper bound.
Specifically, in step 5, we first solve the following period-T problem for every value of pyiMT�1, ωiMT q:

V̄iMT pyiMT�1, ωiMT q � max
yiMT Pt0,1uM

! ¸
jPM

 
yijT puijT pyijT�1, ωijT q �

¸
j1PM

yij1T cjj1T� (D.6)

¸
j1RM

1tj � j1ub̄�ij1T |τ pcjj1T � cj1jT qq
(
� δEiT V̄iMT�1 pyiMT , ωiMT�1q

)
.

As this problem is stationary, we use value-function iteration to solve for the value function V̄iMT p�q. Given
V̄iMT p�q, we use backward induction to solve for the optimal policy function in M for all t P rτ, T s.

If M includes all J foreign countries, the problem in equation (D.6) coincides with that in equation
(20) and, thus, its solution yields the firm’s optimal policy function. Solving the problem in equation (20)
for a large set M is however computationally infeasible. In our application, we choose M according to the
following rules. If there are less than six countries for which step 4 upper and lower bounds on the optimal
choice at the path of interest at period τ differ, we include them all inM . If there are more than six countries
for which the step 4 bounds differ, we implement the step 5 algorithm repeatedly for different sets of six
countries grouping together countries that are geographically close to each other.

Closing the algorithm. If there are countries for which the upper and lower bound on the optimal choice at
the path of interest at period τ differ after step 5, we assume the optimal choice is to not export to those
countries at τ at the state of interest.

D.2 Illustration of Algorithm in a Two-Country and Three-Period Setting

We illustrate here our algorithm in an example with two countries (A and B) and three periods. We use trees
to represent graphically all possible paths of ωijt. With the letters L (with stands for low) and H (which
stands for high), we denote the events in which the blocking shock ωijt respectively equals the smallest,

¯
ω,

and largest, ω̄, values in their support. For e.g., in Figure D.1, the orange path is one in which blocking
shocks in A are low in all three periods while, in B, these are low in periods 1 and 3, and high in period 2.

Figure D.1: Possible Paths of Fixed Cost Shocks
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Figure D.2: Initial Upper-Bound Policy Functions
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Step 1. In Figure D.2, we illustrate the first iteration of step 1 of the algorithm (see Section 5). The left panel
illustrates the solution to the optimization problem in equation (24) for country A when setting b̄iBt � 1
for all three time periods; the right panel is analogous but for country B. Using the notation in Section 5,
Figure D.2 thus illustrates the upper-bound policy function

ō
r0s
it pyit�1, ωitq � pō

r0s
iAtpyiAt�1, ωiAtq, ō

r0s
iBtpyiBt�1, ωiBtqq, for all t � t1, 2, 3u. (D.7)

Specifically, in all figures in this section, we use green to identify branches at which the firm exports, and
red to identify branches at which it does not. The left panel in Figure D.2 thus shows that, conditional on
the firm exporting to B in all periods and states (as reflected by the three green segments under “Assuming
that in country B. . . ”), the firm chooses not to export to A at t � 1 regardless of whether ωiA1 is high or low
(as reflected by the two red segments branching out from the “Country A” label), and chooses to export to
A at t � 2 and t � 3 if and only if ωiAt in the corresponding period t is low (as reflected by the L-segments
being green and the H-segments being red). Similarly, the right panel in Figure D.2 shows that, if the firm
exports to A in all periods and states (as reflected by the three green segments under “Assuming that in
country A. . . ”), the firm chooses to export to B in any given period if and only if ωiBt in the corresponding
period t is low (as reflected by the L-segments being green and the H-segments being red).

In Figure D.3, we evaluate the upper-bound policy in equation (D.7), as represented in Figure D.2, at
the path of shocks in which these equal their lowest possible value in every country and period (i.e., the
path marked by thick lines in each tree’s top branch). Doing so, we obtain new constant upper bounds on
the firm’s choice in all countries and periods. E.g., as the upper-bound policy represented in Figure D.2
prescribes the firm not to export to A at t � 1 even ωiA1 �

¯
ω, we update from one to zero the constant

upper bound in A at t � 1 (as reflected in the change in color of the segment labeled “Update”). Using the
notation in Section 5, it is thus the case that

pb̄
r1s
iA1, b̄

r1s
iA2, b̄

r1s
iA3q � p0, 1, 1q and pb̄

r1s
iB1, b̄

r1s
iB2, b̄

r1s
iB3q � p1, 1, 1q. (D.8)

We represent in Figure D.4 the new upper-bound policy function we obtain by solving again the opti-
mization problem in equation (24) but now conditioning on the constant upper bounds illustrated at the
bottom of both Figure D.3 and Figure D.4, and listed in equation (D.8). Comparing figures D.2 and D.4,
we observe that the change in the constant upper bound in country A at period t � 1 drives a change in
the upper-bound policy function in country B at t � 1 at the low fixed cost shock segment, whose color
switches to red. As country B’s constant upper bounds in figures D.2 and D.4 coincide, the upper-bound
policy function in country A remains the same.
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Figure D.3: Updated Constant Upper Bounds
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Figure D.4: Updated Upper-Bound Policy Functions
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In Figure D.5, we evaluate the updated upper-bound policy illustrated in Figure D.4 at the path of
shocks in which these equal their lowest possible value in every country and period, represented in Figure
D.3 by the thick lines in each tree’s top branch. Comparing figures D.3 and D.5, we observe that the update
in the upper-bound policy in Figure D.4 with respect to that in Figure D.2 allows to update from one to
zero the constant upper bound in B at t � 1 (as reflected in the change in color of the segment labeled
“Update”). Using the notation in Section 5, it is then the case that

pb̄
r2s
iA1, b̄

r2s
iA2, b̄

r2s
iA3q � p0, 1, 1q and pb̄

r2s
iB1, b̄

r2s
iB2, b̄

r2s
iB3q � p0, 1, 1q. (D.9)

Continuing with the iterative procedure prescribed by our algorithm, we solve again the optimization
problem in equation (24) but now conditioning on the updated constant upper bounds illustrated at the
bottom of Figure D.5 and listed in equation (D.9). The solution is an upper-bound policy function identical
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Figure D.5: Updated Constant Upper Bounds
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Figure D.6: Upper-Bound Policy Functions After Convergence
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Figure D.7: Lower-Bound Policy Functions After Convergence
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Figure D.8: Evaluating Upper-Bound Policy Functions at Path of Interest
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to that obtained in the previous iteration; i.e., that in Figure D.4. Intuitively, as the upper-bound policy in
Figure D.4 already prescribes the firm not to export to A at t � 1 regardless of the value of ωiA1, the update
in the constant upper bound in B at t � 1 does not change the upper-bound policy function in A. Thus,
after two iterations, the step 1 upper-bound policy function has converged to that represented in Figure D.6.

We follow analogous steps to compute lower-bound policy functions. Assume for simplicity the converged
lower-bound policies prescribe the firm not to export to any country in any period regardless of the value of
ωijt for any j and t. The converged lower-bound policy thus corresponds to that in Figure D.7.

The final stage in step 1 of our algorithm is to evaluate the converged lower- and upper-bound policy
functions at a specific path of interest. Assume, e.g., this path is:

pω̂iA1, ω̂iA2, ω̂iA3q � pω̄,
¯
ω,

¯
ωq and pω̂iB1, ω̂iB2, ω̂iB3q � p

¯
ω, ω̄,

¯
ωq, (D.10)

where, as a reminder,
¯
ω and ω̄ are represented by L and H, respectively, in all figures in this section.

Figure D.8 is identical to Figure D.6 except that the path of interest is highlighted. The colors of the
highlighted branches indicate the upper bounds on the firm’s optimal choices at the path of interest; i.e.,

pˇ̄yiA1, ˇ̄yiA2, ˇ̄yiA3q � p0, 1, 1q and pˇ̄yiB1, ˇ̄yiB2, ˇ̄yiB3q � p0, 0, 1q. (D.11)

Similarly, given the converged lower-bound policy function in Figure D.7, the lower bounds on the firm’s
optimal choices at the path of interest are

pˇ
¯
y
iA1

, ˇ
¯
y
iA2

, ˇ
¯
y
iA3

q � p0, 0, 0q and pˇ
¯
y
iB1

, ˇ
¯
y
iB2

, ˇ
¯
y
iB3

q � p0, 0, 0q. (D.12)

Upper and lower bounds coincide at t � 1 for both countries; thus, the optimal choices at t � 1 at the path
of interest are py̌iA1, y̌iB1q � p0, 0q. At t � 2, both bounds differ in their prescribed choice in country A.

Step 2. In this step, we tighten the bounds at t � 2. To do so, we first compute new constant upper bounds
that condition on the state reached at t � 2 at the path of interest; i.e., we evaluate the policy function in
Figure D.6 along a path that, for j � tA,Bu, sets ωijt � ω̌ijt for t ¤ 2, and ωijt �

¯
ω for t ¡ 2. In Figure

D.9, we recover the upper-bound policy in Figure D.6, fade all branches that cannot be reached from the
path of interest at t � 2 and mark with a wide line the relevant path. Conditioning on the path of interest
up to t � 2 permits updating the constant upper bound in B at t � 2 (as reflected in the change in color of
the segment labeled “Update” in Figure D.9). Using the notation in Section 5, it then holds that

pb̄
r0s
iA2|2, b̄

r0s
iA3|2q � p1, 1q and pb̄

r0s
iB2|2, b̄

r0s
iB3|2q � p0, 1q. (D.13)

We represent in Figure D.10 the upper-bound policy function obtained by solving the optimization
problem in equation (24) for t ¥ 2 with the new constant upper bounds represented at the bottom of Figure
D.9 and listed in equation (D.13). Figure D.10 shows that the upper-bound policy in A at t � 2 is updated.
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Figure D.9: Initial Constant Upper Bounds That Condition on Path of Interest for t ¤ 2
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Figure D.10: Upper-Bound Policy Functions That Condition on Path of Interest for t ¤ 2
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Next, we evaluate the updated upper-bound policies in Figure D.10 along the path that, for j � tA,Bu,
sets ωijt � ω̌ijt for t ¤ 2 and ωijt �

¯
ω for t ¡ 2, represented in Figure D.11 by thick lines. Comparing

figures D.9 and D.11, we observe that the update in the upper-bound policy in Figure D.10 relative to that
in Figure D.8 allows us to update the constant upper bound in A at t � 2 (see the red segment over the
label “Update” in Figure D.11). In the notation introduced in Section 5, it is then the case that

pb̄
r1s
iA2|2, b̄

r1s
iA3|2q � p0, 1q and pb̄

r1s
iB2|2, b̄

r1s
iB3|2q � p0, 1q. (D.14)

Continuing with this iterative procedure, we solve again the optimization problem in equation (24) for
periods t ¥ 2, but now conditioning on the new constant upper bounds in equation (D.14) (see also bottom
of Figure D.11). The solution to this problem yields upper-bound policy functions identical to those obtained
in the previous iteration. Intuitively, as the upper-bound policy in Figure D.10 already prescribes the firm
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Figure D.11: Updated Constant Upper Bounds That Condition on Path of Interest for t ¤ 2
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Figure D.12: Upper-Bound Policy Functions That Condition on Path for t ¤ 2 After Convergence
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not to export to B at t � 2 at the path of interest, the change in the constant upper bound in A at t � 2 does
not change the upper-bound policy function. Thus, at this point, the step 2 upper-bound policy functions
has converged; we represent it in Figure D.12.

We follow similar steps to compute a lower-bound policy function that conditions on the path of interest
up to t � 2. As the lower-bound policy that converged in step 1 (see Figure D.7) prescribe the firm not to
export to any country at any period or state, the resulting constant lower bounds are

p
¯
b
r0s
iA2|2,¯

b
r0s
iA3|2q � p0, 0q and p

¯
b
r0s
iB2|2,¯

b
r0s
iB3|2q � p0, 0q. (D.15)

Given these, the lower-bound policy function cannot be updated further; we represent it in Figure D.13.
Evaluating the lower- and upper-bound policy functions in figures D.12 and D.13 at the path of interest

at period t � 2, we obtain the following bounds on the firm’s optimal export choices

ˇ̄yiA2|2 � ˇ
¯
y
iA2|2

� 0 and ˇ̄yiB2|2 � ˇ
¯
y
iB2|2

� 0. (D.16)

As the bounds coincide, the firm’s optimal choice at t � 2 at the path of interest is py̌iA2, y̌iB2q � p0, 0q.
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Figure D.13: Lower-Bound Policy Functions That Condition on Path at t � 2 After Convergence
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Additional steps. At this point in the algorithm, we have computed the firm’s optimal choice at the path of
interest for t ¤ 2. However, the step 1 bounds, described in equations (D.11) and (D.12), also differ at the
path of interest at t � 3. Our algorithm thus proceeds by trying to tighten these bounds. To do so, we first
implement a step 2 procedure analogous to the one just described, but now conditioning on the state reached
at t � 3 along the path of interest. To save on space, we do not describe here how the step 2 algorithm is
applied at t � 3. It suffices to say that it is not successful at tightening further the bounds on the firm’s
optimal choice along the path of interest at t � 3. Thus, we proceed to implement the extra steps described
in Appendix D.1. Specifically, computing the firm’s optimal choice at the state of interest at t � 3 requires
solving jointly for the firm’s optimal choices in A and B at this period.

D.3 Performance of the Algorithm

We present here summary statistics of the performance of the algorithm described in Section 5 and Appendix
D.1. For all 4,709 firms in the sample, all 74 foreign countries we use in our estimation, 13 periods, and
5 simulation draws of ωijt for each i, j and t, we measure at the end of each step of the algorithm the
percentage of all 22,650,290 (4, 709� 74� 13� 5) choices solved and the cumulated running time (measured
at Princeton University’s Della cluster using 44 processors with 20 GB of memory per processor).

The statistics in Table D.1 are computed setting all parameter values to the baseline estimates reported
in tables F.3 and F.4 in Appendix F.6. As reported in the first row in Table D.1, the step 1 of the algorithm
(see Section 5 for a description) runs in slightly over two minutes, and provides the solution to 99.72% of
the 22,650,290 choices considered. The 0.28% of choices that remain unsolved after step 1 of the algorithm
are concentrated in a few countries but dispersed across firms and simulation draws; thus, the number of
firms and draws whose choices in every country and period are solved in step 1 is only 78.51%.

Steps 2 and 3 increase the overall share of choices solved to 99.85%, and the share of firms and draws
whose complete set of choices is solved to 93.07%. Furthermore, this is attained with a relatively small cost
in terms of computing time, as step 3 is completed after less than 4 minutes of running time. In steps 4
and 5, we solve optimization problems that consider multiple countries simultaneously. As the last row in
Table D.1 reveals, these steps are the slowest ones: approximately 70% of the 741 seconds it takes to run
completely our algorithm are spent in steps 4 and 5. These steps are however useful at raising the share of
choices solved to nearly 99.9%, and the share of firms and simulations entirely solved to nearly 96%.

The choices that remain unsolved after step 5 of the algorithm is finished are concentrated in countries
that share cross-country complementarities with a large set of other potential export destinations. E.g., of
all unsolved choices, nearly 7% are for Mexico, close to 6.5% are for Belgium, between 5% and 6% correspond
to The Netherlands and Germany, and between 4% and 5% correspond to Sweden and France. These are
all countries that share deep PTA (or regulatory proximity) with a number of other countries larger than
the cardinality of the sets of destinations that we solve jointly in steps 4 and 5 of our algorithm: while we
consider sets of 10 and 6 destinations in steps 4 and 5, respectively, both Mexico and all members of the
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Table D.1: Performance of Algorithm at Baseline Estimates

Percentage of Percentage of Time
Firms Solved Choices Solved (in seconds)

Step 1 78.51% 99.72% 131
Step 2 82.74% 99.75% 163
Step 3 93.07% 99.85% 218
Steps 4 & 5 95.80% 99.89% 741

European Common Market share deep PTA with more than 10 destinations.
In Table D.2, we present statistics analogous to those presented in the last row of Table D.1, but

for alternative parameterizations in which we change the value of the model parameters one at a time.
Specifically, we present results for parameterizations in which we increase in 20% the value of the parameter
indicated in the column labeled “Parameter,” leaving all other parameters at their baseline estimates.

The results in Table D.2 show the performance of the algorithm improves (i.e., the percentage of firms
and simulations for which all choices are solved increases, and the running time decreases) as we increase
the value of those parameters that have a positive impact on the gravity component of fixed and sunk costs;
i.e., the parameters entering the expressions in equations (9) and (14). Conversely, the performance of the
algorithm worsens as we increase the value of the parameters that have a positive impact on the magnitude
of the complementarities between countries (i.e., pγEx , φ

E
x q for x � tg, l, au), and improves as we increase the

value of the parameters that determine the speed at which the complementarities between any two countries
decay in the distance between them (i.e., κEx for x � tg, l, au). The performance of the algorithm varies very
little with the value of the parameters that determine the cross-country correlation in the fixed cost shock
νijt; i.e., the parameters entering the expression in equation (12c). Finally, when we increase the standard
deviation of νijt or the probability that ωijt equals

¯
ω � 0 (i.e., when we increase σν or p), the performance

of the algorithm worsens.

Table D.2: Performance of Algorithm at Estimates 20% Higher than Baseline Ones

Parameter
Percentage of Time

Parameter
Percentage of Time

Firms Solved (in seconds) Firms Solved (in seconds)

γF
0 97.18% 606 κE

l 96.03% 703
γF
g 97.25% 479 γE

a 91.28% 1256
γF
l 95.89% 710 φE

a 94.70% 935
γF
a 96.21% 628 κE

a 96.35% 647
γS
0 96.77% 582 γN

g 95.67% 795
γS
g 96.59% 569 κN

g 95.86% 742
γS
l 95.80% 719 γN

l 95.67% 687
γS
a 95.96% 692 κN

l 95.83% 689
γE
g 93.27% 1119 γN

a 95.77% 702
φE

g 93.59% 1070 κN
a 95.81% 686

κE
g 97.33% 479 σν 93.88% 841
γE
l 95.52% 790 p 82.29% 2841
φE

l 95.65% 749

Note: The Percentage of Firms Solved and Time are measured after Step 5 of the algorithm has concluded.
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E General Optimization Problem: Mapping to Model and Proofs

E.1 Mapping Between Framework in Appendix A.1 and Model in Section 4

We show in this section that, equating agents to firms and alternatives to potential export destinations, the
model described in Section 4 satisfies all restrictions in Assumption 1.

As part of the first restriction, equation (A.4) assumes agents maximize the expected infinite-horizon
discounted sum of a sequence of static payoffs that exhibit one-period dependence. Equation (A.5) restricts
these payoffs to be additively separable across alternatives and, in every alternative j, additively separable
in the vector of shocks ωpztq and in the vector of choices in every alternative other than j. Finally, the
restriction that the domain of the functions π̂jt and π̃jt is finite and that these never equal infinity in their
domain implies both π̂jt and π̃jt are bounded from above. Additionally, π̃jt is also bounded from below.

Our model satisfies the first restriction in Assumption 1. Specifically, equation (A.4) is satisfied as
equation (19) implies firms maximize the infinite-horizon expected discounted sum of static profits. Equation
(A.5) is also satisfied as equations (15) to (17) imply that model-implied static profits are

πtpypz
tq, ypzt�1q, ωpztqq �

J̧

j�1

�
yjpz

tqujtpyjpz
t�1q, ωjpz

tqq �
J̧

j1�1

yjpz
tqyj1pz

tqcjj1t
�
, (E.1)

where ωpztq equals a vector pω1pz
tq, . . . , ωJpz

tqq, cjj1t is defined in equation (11) for j1 � j (with cjj � 0),
and ujt is defined in equation (16). Static profits may thus be written as in equation (A.5) with

π̂jtpyjpz
tq, yjpz

t�1q, ωpztqq � yjpz
tqpη�1 exppαyyjpz

t�1q � αjt � αs � αa lnpasjtq � αr lnprihtqq

� pgjt � νijt � ωjpz
tqq � p1� yjpz

t�1qqsjtq, (E.2a)

π̃jtpypz
tq, ypzt�1qq �

J̧

j1�1

yjpz
tqyj1pz

tqcjj1t. (E.2b)

Finally, these model-implied functions π̂jt and π̃jt satisfy the restrictions on their domain and range imposed
in Assumption 1. Specifically, as yjpz

tq P t0, 1u, yjpz
t�1q P t0, 1u and ωjpz

tq P t0,8u for all j and t, π̂jt and
π̃jt are bounded from above for any realization of νjt as long as the parameter space is finite.27

The second restriction in Assumption 1 imposes the function πt is supermodular on the sets of choices at
t�1 and t. As these sets are finite, Corollary 2.6.1 in Topkis (1998) implies one can prove πt is supermodular
by proving it has increasing differences in ypztq and ypzt�1q. For any alternative j and period t, we denote as
Djt the change in πt when changing the value of the choice in j at t, yjt, from zero to one. Given equations
(E.1) and (E.2), the expression for Djt in the model described in Section 4 is

Djt � η�1 exppαyyjpz
t�1q � αjt � αs � αa lnpasjtq � αr lnprhtqq

� pgjt � νjt � ωjpz
tqq � p1� yjpz

t�1qqsjt � 2
¸
j1�j

yj1pz
tqcjj1t.

Since αy ¥ 0 and sj ¥ 0 for every j, Djt is increasing in yjpz
t�1q. Since cjj1t ¥ 0 for any j, j1, and t, Djt

is also increasing in tyj1pz
tquj1�j . Finally, Djt is invariant to yj1pz

t�1q if j1 � j. Thus, πt has increasing
differences on the sets of export choices at t� 1 and t and, consequently, πt is supermodular on these sets.
The second restriction in Assumption 1 is thus satisfied by the model described in Section 4.

The third restriction in Assumption 1 imposes that there exists a feasible strategy such that, if chosen
by the agent, the functions tπ̂jtuj entering static profits are bounded from below no matter the value of the
shock ωt. In the model in Section 4, not exporting to country j ensures π̂jt equals zero; i.e., π̂jtp0, x, ωq � 0
for any x P t0, 1u and ω P Ωt. Thus, the third restriction in Assumption 1 is satisfied.

The fourth restriction imposes Ωt is finite and the sequence of shocks tωjtut¥0 is Markovian. In the

27As equation (E.2a) shows, the model-implied function π̂jt depends on ωpz
tq only through a scalar ωjpz

tq. While
this is not relevant for the algorithm’s theoretical properties (and, thus, is not imposed in Assumption 1), it is critical
for its computational tractability.
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model in Section 4, Ωt includes only two elements and ωt is independent over time (see equation (13)); thus,
this fourth restriction is satisfied.

Finally, the fifth restriction imposes that the firm’s problem becomes stationary after a terminal period
T ; i.e., the functions tπ̂jtuj and tπ̃jtuj , the distribution of ωt, and the set Ωt become constant at T . In the
model described in Section 4, Ωt and the distribution of ωt are time-invariant, and the functions π̂jt and π̃jt
become constant at T for every country j. Thus, the fifth restriction in Assumption 1 is satisfied.

E.2 Proof of Theorem 1: Preliminary Results

We prove here two preliminary results that we use in Appendix E.3 as part of the proof of Theorem 1. First,
we show that restrictions 1 and 2 in Assumption 1 imply that the solution to the optimization problem in
equation (A.6) for any given set of alternatives Mu is increasing in the second argument of the objective
function Π0; i.e., increasing in the upper bounds on the firm’s optimal choice in every alternative not in Mu.
Second, we show restrictions 1 and 3 to 5 in Assumption 1 imply there exists a solution to the optimization
problem in equation (A.6), and that it attains the maximum. Additionally, we provide an algorithm to
compute this solution. Finally, as a corollary, we show the solution of the optimization problem in equation
(A.2) exists and the maximum is attained.

In our proofs, we use Lemma 2.6.1 and Theorem 2.8.1 in Topkis (1998), which we re-state here.

Lemma E.1 (Topkis, 1998, Lemma 2.6.1) Suppose X is a lattice. Then,

1. If fpxq is supermodular on X and α ¡ 0, then αfpxq is supermodular on X.

2. If fpxq and gpxq are supermodular on X, then fpxq � gpxq is supermodular on X.

3. If fkpxq is supermodular on X for k � 1, 2, . . . and limkÑ8 fkpxq � fpxq for each x P X, then fpxq is
supermodular on X.

Theorem E.1 (Topkis, 1998, Theorem 2.8.1) If X is a lattice, T is a partially ordered set, St is a subset
of X for each t in T , St is increasing in t on T , fpx, tq is supermodular in x on X for each t in T , and
fpx, tq has increasing differences in px, tq on X � T , then argmaxxPSt

fpx, tq is increasing in t on tt : t P
T, argmaxxPSt

fpx, tq is non-emptyu.

E.2.1 First Preliminary Result

We prove here that, for any set of alternatives Mu and iteration n, if it exists, the solution ō
pnq
Mu

to the
optimization problem in equation (A.6) is increasing in the set of upper bounds on alternatives not in Mu;
i.e., the solution to the optimization problem in equation (A.6) is increasing in

ȳ
pnq
Mc

u
� tȳ

pnq
Mc

u
pztqu8t�0,ztPZt , with ȳ

pnq
Mc

u
pztq ¥ oMc

u
pztq for all t ¥ 0 and zt P Zt.

Our proof has two steps. First, we show the agent’s objective function according to equation (A.2), Π0pyq,
is supermodular in y on Y ; see equation (A.1) for the definition of Y . Second, we show this implies that
the solution to the optimization problem in equation (A.6) is increasing in the set of upper bounds on
alternatives not in Mu.

Lemma E.2 Assumption 1 implies Π0pyq is supermodular in y on Y .

Proof. The second restriction in Assumption 1 in Appendix A.1 states that, for every period t and every
feasible history zt, πtpypz

tq, ypzt�1q, ωpztqq is supermodular in pypztq, ypzt�1qq on t0, 1uJ � t0, 1uJ . Define
π̌tpy, z

tq � πtpypz
tq, ypzt�1q, ωpztqq, where, as indicated in Appendix A.1, y is a generic vector of agent

choices at every history zt P Zt and every period t ¥ 0. Therefore, π̌tp�q is identical to πtp�q, but written as
a function of the whole vector of choices in every period and feasible history.

First, we show that π̌tpy, z
tq is supermodular in y. More specifically, we show that, for any two vectors

y1 P Y and y2 P Y , it holds that π̌tpy
1, ztq � π̌tpy

2, ztq ¤ π̌tpy
1 _ y2, ztq � π̌tpy

1 ^ y2, ztq, where the “join”
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_ takes the maximum element by element, and the “meet” ^ takes the minimum element by element. To
prove this result, note that

π̌tpy
1, ztq � π̌tpy

2, ztq � πtpy
1pztq, y1pzt�1q, ωpztqq � πtpy

2pztq, y2pzt�1q, ωpztqq

¤ πtpy
1pztq _ y2pztq, y1pzt�1q _ y2pzt�1q, ωpztqq

� πtpy
1pztq ^ y2pztq, y1pzt�1q ^ y2pzt�1q, ωpztqq

� π̌tpy
1 _ y2, ztq � π̌tpy

1 ^ y2, ztq,

where the two equalities follow from the relationship between the functions πt and π̌t, and the inequality
follows from the supermodularity of πtpy

1pztq, y1pzt�1q, ωpztqq in typzsq, ypzs�1qu on t0, 1uJ � t0, 1uJ .
Second, we define a function Πτ

0pyq as the expected discounted sum of static profits between periods
t � 0 and t � τ , and show that the supermodularity of π̌tpy, z

tq in y on Y implies Πτ
0pyq is supermodular

in y on Y . As the set Ωt is finite for every period t (see restriction 4 in Assumption 1), we can write

Πτ
0pyq � π0pypz

0q, 0J , ωpz
0qq �

τ̧

t�1

¸
ztPZt

δtπtpypz
tq, ypzt�1q, ωpztqqPrpztq,

� π̌0py, z
0q �

τ̧

t�1

¸
ztPZt

δtπ̌tpy, z
tqPrpztq.

Since π̌tpy, z
tq is supermodular in y on Y for every period t and history zt, and the finite sum of supermodular

functions is supermodular (see part 2 of Lemma E.1), then Πτ
0pyq is supermodular in y on Y .

Finally, noting restriction 1 in Assumption 1 implies Π0pyq � limτÑ8Πτ
0pyq, we apply part 3 in Lemma

E.1 to conclude that the supermodularity of Πτ
0pyq in y on Y implies Π0pyq is supermodular in y on Y . ■

Lemma E.3 Assumption 1 implies that, for every set of alternatives Mu and every iteration n of the
algorithm described in Appendix A.2, if the solution to the optimization problem in equation (A.6) exists, it
is increasing in the export strategy in every alternative not in Mu.

Proof. This lemma states that, if it exists, ō
pnq
Mu

is increasing in ȳ
pnq
Mu

. This lemma is thus implied by Theorem
E.1 and the supermodularity of Πpyq in y on Y . ■

E.2.2 Second Preliminary Result

We prove here that, for every subset of alternatives Mu and iteration n, the solution ō
pnq
Mu

to the optimiza-
tion problem in equation (A.6) exists and the maximum is attained. More specifically, Lemma E.4 below
establishes the existence of the solution to the problem in equation (A.6), and that the maximum is attained,
for every t ¥ T ; that, is, for all periods after the terminal period T , when the problem of the firm becomes
stationary according to the restriction 5 in Assumption 1. Given Lemma E.4, establishing the existence of
the solution to the problem in equation (A.6), and that the maximum is attained, for every 0 ¤ t   T is
straightforward by backward induction, as there are a finite number of feasible choices.

For any set of alternativesMu and any vector b̄Mc
u
P t0, 1uJ�Ju , we define the firm’s expected discounted

sum of static payoffs at T conditional on setting ȳMc
u
pztq � b̄Mc

u
for all t ¥ T and all zt P Zt as

ΠT

�
yMu

, b̄Mc
u
, ypzT�1q, ωpzT q

�
� πT

�
pyMu

pzT q, b̄Mc
u
q, pyMu

pzT�1q, yMc
u
pzT�1qq, ωpzT q

�

�
8̧

t�T�1

δt�TET

�
πT

�
pyMu

pztq, b̄Mc
u
q, pyMu

pzt�1q, b̄Mc
u
q, ωpztq

��
,

where πT p�q equals the payoff function in equation (A.5) for t � T , ypzT�1q � pyMu
pzT�1q, yMc

u
pzT�1qq, and

yMu
includes a generic set of choices for all alternatives in Mu, all t ¥ T , and all zt P Zt. We can then

define the period-T value function

VTMu

�
b̄Mc

u
, ypzT�1q, ωpzT q

�
� sup

yMu

ΠT

�
yMu

, b̄Mc
u
, ypzT�1q, ωpzT q

�
. (E.3)
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Lemma E.4 For any set of alternatives Mu and any vector b̄Mc
u
P t0, 1uJ�Ju , Assumption 1 implies the

solution to the problem in equation (E.3) exists and the maximum is attained.

Proof. For any set of alternatives Mu and any vector b̄Mc
u
P t0, 1uJ�Ju , we define the payoff function

Π̌T

�
yMu

,b̄Mc
u
, ypzT�1q, ωpzT q

�
�

¸
jPMu

π̂jT
�
yjpz

T q, yjpz
T�1q, ωpzT q

�
�

J̧

j�1

π̃jT
�
pyMu

pzT q, b̄Mc
u
q, pyMu

pzT�1q, yMc
u
pzT�1qq

�
�

8̧

t�T�1

δt�TET

� ¸
jPMu

π̂jT
�
yjpz

tq, yjpz
t�1q, ωpztq

�
�

J̧

j�1

π̃jT
�
pyMu

pztq, b̄Mc
u
q, pyMu

pzt�1q, b̄Mc
u
q
��
,

and the associated value function

V̌TMu

�
b̄Mc

u
, ypzT�1q, ωpzT q

�
� sup

yMu

Π̌T

�
yMu

, b̄Mc
u
, ypzT�1q, ωpzT q

�
. (E.4)

The functions Π̌T p�q and ΠT p�q differ from each other in that the former only includes those terms entering
the latter that depend on yMu

. Thus, Π̌T p�q and ΠT p�q differ in a term that is invariant to the choice of yMu

and, consequently, a vector yMu
will solve the optimization problem in equation (E.4) if and only if it also

solves the optimization problem in equation (E.3).
Restriction 1 in Assumption 1 implies the functions π̂jT p�q and π̃jT p�q are bounded from above. As δ   1,

we can then conclude that the value function V̌TMup�q in equation (E.4) is bounded from above. Restriction
3 in Assumption 1 implies there is a feasible value of the choice vector yMu

such that π̂jT p�q is bounded from
below for all j PMu. As restriction 1 in Assumption 1 also implies that the function π̃jT p�q is bounded from
below, we can then conclude that the value function V̌TMu

p�q in equation (E.4) is bounded from below. In
sum, restrictions 1 and 3 in Assumption 1 imply that V̌TMu

p�q is bounded from above and from below.
Theorem 4.2 in Stokey and Lucas Jr. (1989) implies we can write V̌TMup�q as the solution to the following

functional equation,

V̌TMupb̄Mc
u
, pyMu , yMc

u
q, ωq �

sup
y1Mu

! ¸
jPMu

π̂jT py
1
j , yj , ωq �

J̧

j�1

π̃jT
�
py1Mu

, b̄Mc
u
q, pyMu

, yMc
u
q
��
� δE

�
V̌TMu

pb̄Mc
u
, py1Mu

, b̄Mc
u
q, ωq

�)
(E.5)

Since V̌TMu
p�q is bounded from above and from below, equation (E.5) maps bounded functions into bounded

functions. Additionally, it also satisfies the monotonicity and discounting properties of Blackwell’s sufficient
conditions for a contraction of modulus δ. Therefore, there is a unique bounded function V̂TMu

p�q that solves
the problem in equation (E.5); see Theorem 3.3 in Stokey and Lucas Jr. (1989). Since the solution to the
problem in equation (E.5) is unique, then it must also be a solution to the sequence problem in equation
(E.4). Furthermore, as the solution to the sequence problems in equations (E.3) and (E.4) coincide, we
can conclude that the solution to the optimization problem in equation (E.3) exists. Finally, as the choice
variable y1Mu

in equation (E.5) may only take finitely many values, the maximum is attained. ■

Lemma E.5 Assumption 1 implies the solution to the problem in equation (A.2) exists and the maximum
is attained.

Proof. It is an implication of Lemma E.4 when applied to the specific set Mu that includes all possible
alternatives; i.e., Mu � t1, . . . , Ju. ■

E.3 Proof of Theorem 1

E.3.1 Proof of Part 1 of Theorem 1

We prove part 1 of Theorem 1 by induction.
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As the base case, note that, according to equation (A.8), b̄
p1q
jt � 1 for all j � 1, . . . , J and, therefore,

b̄
pnq
jt ¥ ojpz

tq for n � 1, j � 1, . . . , J , t ¥ 0, and zt P Zt.

As the step case, suppose that, for some arbitrary n, b̄
pnq
jt ¥ ojpz

tq for all j � 1, . . . , J , t ¥ 0, and zt P Zt.
For any group of alternatives Mu, denote as

b̄
pnq
Mu

the vector that assigns the value of b̄
pnq
jt to every alternative j in Mu, every t ¥ 0, and every zt P Zt; i.e.,

b̄
pnq
Mu

� tȳ
pnq
j pztqu8t�0,ztPZt,jPMu

, with ȳ
pnq
j pztq � b̄

pnq
jt for all t ¥ 0, all j PMu, and all zt P Zt.

Thus, b̄
pnq
Mu

¥ oMu
, where oMu

is the vector containing the agent’s optimal choice for every j P Mu, every
t ¥ 0, and every zt P Zt. For any alternative j and period t, equations (A.6) and (A.9) further imply that

b̄
pn�1q
jt � max

ztPZt
ō
pnq
j pztq,

where, for a set Mu including alternative j, ō
pnq
j pztq is the corresponding element of ō

pnq
Mu

, defined as

ō
pnq
Mu

� argmax
yMu

PYMu

Π0pyMu
, b̄

pnq
Mc

u
q.

To prove that b̄
pn�1q
jt ¥ ojpz

tq for all j � 1, . . . , J , t ¥ 0, and zt P Zt, it is thus enough to prove that

ō
pnq
Mu

¥ oMu
. (E.6)

For any group of destinations Mu, we can write oMu
as

oMu � argmax
yMu

PYMu

Π0pyMu
,oMc

u
q. (E.7)

Lemma E.4 implies ō
pnq
Mu

and oMu
exist, and Lemma E.3 implies ō

pnq
Mu

¥ oMu
. Thus, it holds that

b̄
pn�1q
jt ¥ ojpz

tq,

for all j � 1, . . . , J , t ¥ 0, and zt P Zt. ■

E.3.2 Proof of Part 2 of Theorem 1

We prove part 2 of Theorem 1 by induction.

As base case, note that equation (A.8) implies b̄
p1q
jt � 1 for every alternative j and period t. As, naturally,

ō
p1q
j pztq P t0, 1u

for every alternative j, period t ¥ 0, and history zt P Zt, it must be the case that b̄
p2q
jt , defined according to

equation (A.9), is also either 0 or 1 for every alternative j and period t. Consequently,

b̄
p2q
jt ¤ b̄

p1q
jt , for all j � 1, . . . , J and t ¥ 0.

As the step case, suppose that, for some arbitrary n, b̄
pnq
jt ¤ b̄

pn�1q
jt for all j � 1, . . . , J and t ¥ 0. Given
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the definition of ȳ
pnq
Mu

in equation (A.7), it is then the case that, for any set of alternatives Mu, it holds that

y
pnq
Mu

¤ y
pn�1q
Mu

. (E.8)

Given the definition of ō
pnq
Mu

in equation (A.6), Lemma E.4 guarantees ō
pnq
Mu

and ō
pn�1q
Mu

exist. Given equations
(A.6) and (E.8), Lemma E.3 implies that

ō
pnq
Mu

¤ ō
pn�1q
Mu

.

Since, according to equation (A.9), b̄
pn�1q
jt � maxztPZt ō

pnq
j pztq for every t, j, and zt, it then holds that

b̄
pn�1q
jt ¤ b̄

pnq
jt ,

for all j � 1, . . . , J , t ¥ 0, and zt P Zt. ■

E.3.3 Proof of Part 3 of Theorem 1

As shown in the proof of Lemma E.4, Assumption 1 implies that, for any arbitrary iteration n, b̄
pnq
jt � b̄

pnq
jT

for every alternative j and period t ¥ T ; this is a consequence of the agent’s optimization problem becoming
stationary after period T . Therefore, we can summarize the infinite set of upper bounds

tb̄
pnq
jt u

J
j�1,t¥T

in a vector that belongs to the set t0, 1uJ ; i.e., in a vector with a finite number of coordinates. For every
period t   T and an arbitrary iteration n, it is the case that

b̄
pnq
jt P t0, 1uJ .

Therefore, for any arbitrary iteration, computing the full set of upper-bounds tb̄
pnq
jt u

J
j�1,t¥0 implies computing

the value of pT � 1qJ unknowns, each of whom may equal either 0 or 1.
Part 2 of Theorem 1 indicates that, at every iteration n, the value of each of these upper bounds either

decreases or remains constant. As there is a finite number pT � 1qJ of upper bounds to solve for at each
iteration n, and each of these upper bounds may equal either 0 or 1 (i.e., they are bounded from below by
0), it must then be the case that these bounds converge in a finite number of steps.
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F Estimation: Additional Details

F.1 Identification of Cross-Country Complementarities: Details

Consider a simplified version of the model described in Section 4 in which we impose the following restrictions.
First, there are only three foreign countries. Second, in terms of the parameters entering the expression for
potential export revenues in equation (7), assume that αy � αa � αr � 0, αs � 0 for every sector s, and, for
every period t, α1t � α2t � ᾱ � lnp20q and α3t � α3. Third, in terms of the fixed export costs determined
in equations (8) to (13), assume that

fi1t � γF0 � νi1t � ωi1t,

fi2t � γF0 � yi3tc̄� νi2t � ωi2t,

fi3t � γF0 � yi2tc̄� νi3t � ωi3t,

with γF0 � 80, c̄ � 15, νijt drawn according to the distribution in equation (12) with σν � 80 and, for every
period t,

ρ12t � ρ13t � 0, and ρ23t � ρ̄,

and ωijt drawn according to the distribution in equation (13) with p � 0.7. Fourth, in terms of the
sunk export cost determined in equation (14), assume that, for every country j P t1, 2, 3u and period t,
sjt � γ0s � 120.

In this simplified framework, we first show how the values of the moments m1 and m2 in equation (31)
change as we change the market size of country 3 (i.e., α3) and the values of the parameters determining
the strength of export complementarities between countries 2 and 3 (i.e., the value of c̄), and the strength
of the correlation in νijt between countries 2 and 3 (i.e., the value of ρ̄). With that goal in mind, for any
value of interest of pα3, c̄, ρ̄q, we simulate the model for over 2,351,500 firms, set terminal period T � 120,
and compute moments m1 and m2 using the information on yijt for all firms and periods 50 ¤ t ¤ 64.

In Table F.1, we set α3 � ᾱ and compute the values of m1 � Eryi2t � yi1ts and m2 � Cryi2t, yi3ts for
four different combinations for the parameters pc̄, ρ̄q.

In the first row in Table F.1, we set pc̄, ρ̄q � p0, 0q, obtaining in this case that m1 � m2 � 0. Intuitively,
as countries 1 and 2 are identical in every respect except in their potential export complementarities with
country 3, export probabilities in both countries must be equal when the parameter that determines the
strength of those export complementarities is set to 0; i.e., when c̄ � 0. Similarly, as all firms are identical
in every respect except in the fixed cost unobserved terms νijt and ωijt, the within-firm covariance in export
choices in countries 2 and 3 will equal zero when the parameter determining the potential correlation in
these unobserved terms for these two countries equals zero; i.e., when ρ̄ � 0.

In the second row, we introduce positive export complementarities between countries 2 and 3 by setting
c̄ � 30. These export complementarities increase the export probability in country 2 (and in country 3,
although this is not relevant for Table F.1), while they do not affect the export probability in country 1
(as country 1 is isolated from any other potential export destination); therefore, moment m1 increases as
c̄ increases. Even if c̄ ¡ 0, firms will enjoy a reduction in fixed export costs in country 2 if and only if
they export in the same time period to country 3 (and vice versa); therefore, an increase in the strength of
the export complementarities, as determined by the value of the parameter c̄, makes firms more likely to
simultaneously export to countries 2 and 3 and, consequently, moment m2 also increases as c̄ increases.

In the third row in Table F.1, we set the value of the parameter c̄ back to zero (as in the first row) but
introduce positive correlation in νijt between countries 2 and 3. When there are no cross-country export
complementarities, the within-firm positive correlation between countries 2 and 3 in fixed export costs does
not affect the (marginal) export probability in any country; therefore, moment m1 does not depend on the
value of ρ̄ when c̄ � 0. However, the within-firm positive correlation between countries 2 and 3 in fixed
export costs affects the joint probability that firms export simultaneously to those two countries, which
increases; therefore, moment m2 increases in the value of ρ̄ when c̄ � 0.

In the fourth row in Table F.1, we set both c̄ and ρ̄ to positive values. When comparing the results in
the second and fourth rows, we observe that introducing positive correlation in νijt between countries 2 and
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3 in a baseline setting with cross-country export complementarities (i.e., in a baseline setting with c̄ ¡ 0)
affects not only the joint probability that firms export simultaneously to countries 2 and 3 (i.e., the value of
m2) but also the difference in the export probabilities between countries 2 and 3 (i.e., the value of m1).

In unreported simulation results, we observe that the features described in Table F.1 hold generally as
we change the values of the parameters c̄ and ρ̄ between different numbers and as we set the size of country
3, α3, to different values.

Table F.1: Impact of Complementarities and Correlation in Unobservables on Moment Conditions

Parameters Moments

c̄ ρ̄ Eryi2t � yi1ts Cryi2t, yi3ts

0 0 0 0
Positive 0 0.15 0.05

0 Positive 0 0.02
Positive Positive 0.17 0.07

Note: by the label “Positive” in the first column, we
denote cases in which c̄ � 30. By the label “Positive”
in the second column, we denote cases in which ρ̄ � 0.8.

In Figure F.1, we perform a different exercise that more directly illustrates the capacity of moments
m1 and m2 to identify the parameters c̄ and ρ̄. We simulate data from a “true” model in which we set
α3 � ᾱ, c̄ � 15, and ρ̄ � 0.4, and we then compare how the values of moments m1 and m2 corresponding
to the “true” model compare to those generated under alternative values of the parameters c̄ and ρ̄. More
specifically, the green dot represents the true values of the parameters ρ̄ and c̄, and the blue and the orange
lines represent all values of pρ̄, c̄q for which moments m1 and m2, respectively, equal their respective values
in the “true” model. The slope of the orange line, e.g., shows we can keep momentm2 at its true value as we
increase the value of the parameter ρ̄ if we simultaneously decrease the value of the parameter c̄. The blue
line indicates the same is true for moment m1. Thus, neither moment alone allows to identify the parameter
vector pρ̄, c̄q, but the fact that the orange and blue lines have different slopes implies that both moments
jointly identify pρ̄, c̄q.

In unreported simulation results, we observe that the features described in Figure F.1 hold generally as
we change the true values of the parameters c̄ and ρ̄ and as we set the size of country 3, α3, to different
values.

Figure F.1: Impact of Complementarities and Correlation in Unobservables on Moment Conditions

Notes: The axis labeled “Correlation in Unobservables” includes values of the parameter ρ̄. The axis labeled
“Cross-country Complementarities” includes values of the parameter c̄. The green dot represents the true values
of the parameters ρ̄ and c̄; i.e., pρ̄, c̄q � p15, 0.4q. The blue and the orange lines represent all values of pρ̄, c̄q for
which the moments m1 and m2, respectively, equal their respective values in the “true” model.

31



F.2 Export Potential Measures

We define export potential in Appendix F.2.1. In Appendix F.2.2, we present summary statistics on the
gravity equation estimates used to compute these export potentials, on the resulting export potential mea-
sures, and on the aggregate export potential of the countries geographically or linguistically close to each
foreign country j, or that share a deep PTA with it. In Appendix F.2.3, we present reduced-form evidence
showing firm export participation choices in a foreign country correlate with the aggregate export potential
of the other countries that are geographically or linguistically close to it, or that share a deep PTA with it.

F.2.1 Definiton and Estimation of Export Potential Measures

We use country-to-country sector-specific trade flows, and the distance measures in equations (1) to (3), to
compute measures of the export potential of Costa Rica in each sector, destination and year.28 Specifically,
we first compute Poisson pseudo-maximum-likelihood estimates of the parameters of the gravity equation

Xs
odt � exppΨs

ot � Ξs
dt � λsgn

g
od � λsln

l
od � λsan

a
odtq � usodt, (F.1)

where Xs
odt denotes the export volume from origin o to destination d in sector s and year t; Ψs

ot and Ξs
dt

are sector-origin-year and sector-destination-year unobserved effects, respectively; ngod, n
l
od, and n

a
odt are the

distance measures described in equations (1) to (3); λsg, λ
s
l , and λ

s
l are sector-specific parameters; and usodt

is an unobserved term. Denoting parameter estimates with a hat, we measure Costa Rica’s export potential
in a sector s, destination j, and year t as

Es
jt � exppΞ̂s

jt � λ̂sgn
g
hj � λ̂sln

l
hj � λ̂san

a
hjtq, (F.2)

where nghj , n
l
hj , and n

a
hjt denote distances between Costa Rica and country j.29

F.2.2 Gravity-Equation Estimates and Export Potential Measures: Statistics

In Figure F.2, we include boxplots summarizing the distribution across sectors of the parameter estimates
λ̂sg (in green), λ̂sl (in orange), and λ̂sa (in blue). The estimates of λsg are negative for all sectors and centered
around �1. The estimates of λsl and λsa are also nearly always negative, although they tend to be smaller in
absolute value than the estimates of λsg.

In Figure F.3, we present boxplots summarizing the distribution across sectors and years of the export
potential measures Es

jt for the ten destination countries with the largest (in Figure F.3a) and smallest (in
Figure F.3b) mean export potentials. The US is the country with the largest mean value of Es

jt. The distri-
bution of Es

jt for the US is actually distinctively different from that corresponding to all other destinations,
with the first quartile of the distribution for the US being similar to the third quartile of the distribution
of export potentials in Mexico, which is the country with the second largest mean export potential. Other
destinations with large mean export potentials are countries that are geographically or linguistically close to
Costa Rica (e.g., Panama, Colombia, Venezuela, Spain), or countries that are large importers (e.g., Canada,
Germany, Brazil, China). As Figure F.3b shows, the ten destination countries with the smallest mean export
potentials (e.g., Bhutan, the Central African Republic, Seychelles, or Burundi) are all small, distant from
Costa Rica geographically and linguistically, and do not share any PTA with Costa Rica.

In Figure F.4, we show a color map displaying, for each foreign country j, the mean value of Es
jt across

the sectors s and years t in the sample. Most countries in North America, Central America, South America
and Europe are in the top three deciles. Also in the top three deciles are Australia, Russia, China and India.
On the contrary, most countries in Africa, several in South Asia, and the former Soviet republics are in the
bottom deciles.

28The BACI data by CEPII reports country-to-country trade flows at the HS-6 level; see Gaulier and Zignago (2010)
for details. Using a concordance provided by WITS (https://wits.worldbank.org/product_concordance.html), we
aggregate this product-level data to generate sector-level flows, with sectors defined at the four-digit level according
to ISIC Rev. 3. We use a concordance provided by UNSD (https://unstats.un.org/unsd/classifications/Econ/
ISIC.cshtml) to further convert the data to four-digit sectors defined according to the ISIC Rev. 4.

29In estimating equation (F.1), we exclude all observations in which Costa Rica is the origin or destination country.
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Figure F.2: Estimates of Gravity Equation Parameters

-1.
5

-1
-.5

0
.5

Pa
ram

ete
r E

stim
ate

s

Geographic Linguistic Regulatory

Notes: These boxplots represent the distribution of λ̂s
g (geographic), λ̂s

l (linguistic) and λ̂s
a (regula-

tory) across sectors.

Figure F.3: Export Potential - Distributions by Country for Top 10 Destinations
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Notes: These boxplots summarize the distribution of Es
jt (see equation (F.2)) for the 10 destination countries

with the largest (Figure F.3a) and smallest (Figure F.3b) mean export potentials, where the mean is computed
across sectors and years in the period 2005-2015. Countries are listed according to their alpha-3 ISO code.

Figure F.4: Mean Export Potential by Destination Country
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Notes: Map of the mean (across sectors and years in the period 2005-2015) Es
jt by country.
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In terms of the distribution of export potentials Es
jt across sectors, we find that the five sectors with the

largest mean export potentials are the manufacturing of pharmaceuticals, medicinal chemical and botanical
products (sector 2100 according to the 4-digit ISIC Rev. 4), the building of ships and floating structures
(sector 3011), the manufacturing of computers and peripheral equipment (sector 2620), the manufacturing of
motor vehicles (sector 2910), and the manufacturing of basic iron and steel (sector 2410). The manufacturing
of plastic products (sector 2220), which is one of the top sectors by aggregate volume of exports from Costa
Rica during the period 2005-2015, is also in the top 10 of sectors by their mean export potential.

For each foreign country j, sector s, and year t, we use the export potential measures Es
jt of countries

other than j to construct the aggregate export potential of the countries geographically or linguistically close
to j, or that share a deep PTA with it. Denoting the aggregate export potential of the countries that, e.g.,
are geographically close to a destination j as AEs

jt,g, we compute it as the sum of the sector- and year-specific
export potentials of all countries whose geographical distance to j is smaller than some threshold n̄g:

AEs
jt,g �

¸
j1�j

1tngjj1 ¤ n̄guE
s
j1t. (F.3)

We build similar measures for countries linguistically close to j, or cosignatories of a deep PTA with j,
denoted respectively as AEs

jt,l and AE
s
jt,a. We use as thresholds n̄g � 0.79 (790km), n̄l � 0.11, or n̄a � 0.43.

We describe in Figure F.5 the mean (across sectors and years in the period 2005-2015) value of AEs
jt,g

(in Panel (a)), AEs
jt,l (in Panel (b)), and AEs

jt,a (in Panel (c)), for every destination country j in the sample.

Figure F.5: Aggregate Export Potential Measures

(a) Based on Geographic Distance
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(c) Based on Common Membership in a Deep PTA
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Notes: Each of the three panels in this figure displays the mean (across sectors and sample years) for each
destination country of the aggregate export potential measures AEs

jt,g (in Panel (a)), AEs
jt,l (in Panel (b)), and

AEs
jt,a (in Panel (c)).

As discussed in Section 2, our measure of the geographic distance between any two countries j and j1

is a weighted average of the distances between largely populated cities located in j and j1 and, thus, large
countries tend to be geographically isolated. This explains why the United States, Canada, Russia, China
or India have a zero value of the aggregate export potential measure AEs

jt,g; these countries have no other
country such that their bilateral geographic distance ngjj1 is below the threshold n̄g � 790 km we use in
our baseline analysis to classify two countries as geographic neighbors. Conversely, as illustrated in Figure
F.5a, countries located in Central America and in Central Europe have many geographic neighbors with
relatively large export potentials and, thus, their value of AEs

jt,g is large. The aggregate export potential
of their geographic neighbors is smaller for countries in Africa (which tend to have many neighbors, but
small in terms of their own export potential) and for countries in the European periphery (who have fewer
geographic neighbors than those in Central Europe).

The map in Figure F.5b shows that countries with a large share of Spanish speakers (e.g., Spain and
several countries in South and Central America) and countries with a large share of English speakers (e.g.,
countries such as Australia and the UK in which English is an official language, but also countries in which
English is not an official language such as Germany or Denmark) exhibit large values of AEs

jt,l.
Finally, the map in Figure F.5c shows that countries belonging to the EEC, NAFTA or CAFTA, and

countries that have deep PTA with one or more of these trade blocs (e.g., Morocco and Australia) have large
values of AEs

jt,a. Conversely, countries that are not members of a deep PTA with other large countries (e.g.,
Russia, China, and most countries in Africa and Central Asia) have small values of AEs

jt,a.

F.2.3 Correlation Between Export Potential Measures and Firms’ Export Choices

As illustrated in Section 6.2.1, if geographical or linguistic proximity, or common participation in a deep
PTA, are a source of cross-country complementarities in export participation decisions, a firm’s export
probability in a country j and year t will, all else equal, increase in the aggregate market size of the countries
geographically or linguistically close to j, or that share a deep PTA with it. To test this implication, we use
the aggregate export potential measures introduced in Appendix F.2.2 as proxy for the aggregate market size
of the countries close to j, and compute OLS estimates of a regression of a dummy variable that equals one
if firm i exports to country j in year t on flexible functions of country j’s log export potential (introduced
only as a control variable) and the log of the aggregate export potential of the countries geographically or
linguistically close to j, or that share a deep PTA with it. Specifically, given the estimating equation

yijt � hoplnpEsjtqq �
¸

x�tg,l,au

1tAEs
jt,x ¡ 0uhxplnpAE

s
jt,xqq � βit � uijt, (F.4)
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Figure F.6: Impact of Own and Neighbors’ Export Potential

(a) Own - hop�q (b) Neighbors - Geography - hgp�q

(c) Neighbors - Language - hlp�q (d) Neighbors - Deep PTA - hap�q

Notes: Panels (a), (b), (c), and (d) show the point estimate and 95% confidence intervals for the cubic splines
hop�q, hgp�q, hlp�q, and hap�q, respectively, in equation (F.4). The marks p25, p50, p75, and p90 correspond to the
25th, 50th, 75th, and 90th percentiles of the corresponding covariate; i.e., Esjt for panel (a), AE

s
jt,g for panel (b),

AEs
jt,l for panel (c), and AE

s
jt,a for panel (d). Standard errors are clustered by country.

where hxp�q for x � to, g, l, au are cubic splines, and βit is a firm-year fixed effect, panels (a) to (d) in Figure
F.6 respectively show OLS estimates of the functions hop�q, hgp�q, hlp�q, and hap�q.

30

The estimates in Figure F.6 imply that the effect of a country’s own export potential as well as the effect
of the aggregate export potential of a country’s neighbors is highly non-linear, with effects being generally
not statistically different from zero until we reach the destination that is at the 75th percentile of the
distribution of the corresponding variable. From the 75th percentile onwards, the firm’s export probability
in a destination increases in the destination’s own export potential and in the aggregate export potential of
the countries geographically or linguistically close to it.

To test the robustness of the findings in Figure F.6, we also compute estimates of a regression similar to
that in equation (F.4), but in which we capture the effect of Esjt, AE

s
jt,g, AE

s
jt,l, and AE

s
jt,a on yijt through

step functions (instead of through cubic splines). Given the estimating equation

yijt � h̃opEsjtq �
¸

x�tg,l,au

h̃xpAE
s
jt,xq � βit � uijt, (F.5)

where h̃xp�q for x � to, g, l, au are step functions, and βit is a firm-year fixed effect, panels (a) to (d) in
Figure F.7 respectively show OLS estimates of the functions h̃op�q, h̃gp�q, h̃lp�q, and h̃ap�q. More specifically,

30More specifically, for any x � to, g, l, au and any variable z, hxpzq � p1, z, z2, z3, pz�q25q
3
�, pz�q50q

3
�, pz�q75q

3
�q

1βx
where βx is a parameter vector, qQ is the Qth percentile of the distribution of z, and pz� qQq

3
� � pmaxtz� qQ, 0uq

3.
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Figure F.7: Impact of Own and Neighbors’ Export Potential

(a) Own - hop�q (b) Neighbors - Geography - hgp�q

(c) Neighbors - Language - hlp�q (d) Neighbors - Deep PTA - hap�q

Notes: Panels (a), (b), (c), and (d) show the point estimate and 95% confidence intervals for the step functions
h̃op�q, h̃gp�q, h̃lp�q, and h̃ap�q, respectively, in equation (F.5). Standard errors are clustered by country.

the function h̃opEsjtq is defined as

h̃opEsjtq � βo,11t0 ¤ Esjt ¤ qo,25u � βo,21tqo,25 ¤ Esjt ¤ qo,50u

� βo,31tqo,50 ¤ Esjt ¤ qo,75u � βo,41tqo,75 ¤ Esjtu, (F.6)

where pβo,1, βo,2, βo,3, βo,4q is a vector of unknown parameters, and qo,Q is the Qth percentile of the distri-

bution of Esjt. Similarly, for any x � tg, l, au, the function h̃xpAE
s
jt,xq is defined as

h̃xpAE
s
jt,xq � βx,11t0 ¤ AEs

jt,x ¤ qx,25u � βx,21tqx,25 ¤ AEs
jt,x ¤ qx,50u

� βx,31tqx,50 ¤ AEs
jt,x ¤ qx,75u � βx,41tqx,75 ¤ AEs

jt,xu, (F.7)

where pβx,1, βx,2, βx,3, βx,4q is a vector of unknown parameters, and qx,Q is the Qth percentile of the dis-
tribution of AEs

jt,x conditional on AEs
jt,x ¡ 0. The regression estimates described in Figure F.7 are very

similar to those described in Figure F.6.

F.3 List of Moment Conditions

As discussed in Section 6.2, all moment conditions we use in our SMM estimator take the form

1

M

M̧

i�1

 
mkpy

obs
i , zi, xq �

1

S

Ş

i�1

mkpy
s
i pθq, zi, xq

(
� 0, (F.8)
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where yobsi includes the observed firm i’s export participation decisions in every country j � 1, . . . , J and
every sample period t in which the firm is active (i.e., every t in rti, t̄s); zi includes all observed payoff-
relevant variables and all estimates computed in the first step of our estimation procedure (see Section 6.1);
x includes the export potential measures in equation (F.2) for all foreign countries and sample period; and
ysi pθq includes all model-implied export participation decisions for given values of zi and the parameter vector
θ, and a draw χs

i from the distribution of χi conditional on zi. Specifically, we can write zi, x, and χi as

zi � pα̂y, α̂a, α̂r, β̂α, ρ̂α, σ̂α, β̂r, ρ̂r, σ̂r, tα̂jtu
J,t̄
j�1,t�

¯
t, α̂s, trihtu

t̄
t�ti , tastu

t̄
t�

¯
t, (F.9)

tpngjj1 , n
l
jj1qu

J,J
j�1,j1�1, tn

a
jj1tu

J,J,t̄
j�1,j1�1,t�

¯
t, tpn

g
hj , n

l
hjqu

J
j�1, tn

a
hjtu

J,t̄
j�1,t�

¯
tq, (F.10)

x � tEs
jtu

J,t̄
j�1,t�

¯
t, (F.11)

χi � ptαjtu
J,t�

¯
t�1

j�1,t�ti
, tαjtu

J,t�T
j�1,t�t̄�1, trihtu

t�
¯
t�1

t�ti
, trihtu

t�T
t�t̄�1, tνijtu

J,T
j�1,t�ti

q. (F.12)

Each moment function mkp�q is an average over foreign countries and periods of a function m̃k,jtp�q.
Specifically, both for yi � yobsi and for yi � ysi pθq, it holds that

mkpyi, zi, xq �
1

Jpt� tiq

J̧

j�1

ţ

t�ti

m̃k,jtpyi, zi, xq (F.13)

where ti � maxtt, tiu is the first year firm i is observed. As a reminder, J is the number of potential export
destinations, t and t respectively denote the first and last sample periods, and ti denotes firm i’s birth year.

We use in our SMM estimator 89 moments of the type defined by equations (F.8) and (F.13) for different
functions mk,jtp�q. For expositional purposes, we can classify these in three different blocks.

The first block includes moments targeted to identify the parameters determining the level of fixed and sunk
export costs as well as the impact on them of the distance between the firm’s home country and each potential
export destinations. Specifically, the first block of moments targets the identification of the parameters

pγF0 , γ
S
0 , tpγ

F
x , γ

S
x qux�tg,l,auq,

which enter the model through the expressions in equations (9) and (14). A first set of moments in this
block captures firms’ export participation choices by groups of destinations that differ in their distances to
the firm’s home country. More specifically, these moments are defined by

m̃k,jtpy, z, xq � yijt1tn
x1

hj   n̄x1
u1tnx2

hjt   n̄x2
unx1

hjtn
x2

hjt, (F.14a)

m̃k,jtpy, z, xq � yijt1tn
x1

hj ¥ n̄x1
u1tnx2

hjt   n̄x2
unx1

hjtn
x2

hjt, (F.14b)

m̃k,jtpy, z, xq � yijt1tn
x1

hj   n̄x1
u1tnx2

hjt ¥ n̄x2
unx1

hjtn
x2

hjt, (F.14c)

m̃k,jtpy, z, xq � yijt1tn
x1

hj ¥ n̄x1
u1tnx2

hjt ¥ n̄x2
unx1

hjtn
x2

hjt, (F.14d)

for all px1, x2q in tpg, lq, pg, aq, pl, aqu. As a reminder, nghjt � nghj and nlhjt � nlhj for all t, and nghj , n
l
hj , and

nahjt respectively denote the geographic, linguistic and regulatory distances between the firm’s home country
h and the foreign country j. The constants n̄x1 and n̄x2 are thresholds that split destination countries into
two groups depending on whether their distance to the firm’s home market h is larger or smaller than the
corresponding threshold; specifically, we set n̄g � 6 (i.e., 6,000 km), n̄l � 0.5, and n̄a � 1. According to
these thresholds, we split countries roughly depending on whether they are in the Americas (in which case
nghj   6), on whether at least 50% of their population speak Spanish (in which case nlhj   0.5), and on
whether they have any sort of deep PTA with Costa Rica (in which case nahjt   1). E.g., the moment given
the function in equation (F.14a) for px1, x2q � pg, lq is

1

MJpt� tq

M̧

i�1

J̧

j�1

ţ

t�t

pyobsijt �
1

S

Ş

i�1

ysijtpθqq1tn
g
hj   6u1tnlhj   0.5unghjn

l
hj � 0. (F.15)
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For the foreign countries less than 6,000 km away from Costa Rica and with linguistic distance to Costa
Rica below 0.5, this moment captures the difference between the observed sample and the average across
the S simulated samples in the average (across firms, countries and periods) product of the geographic and
linguistic distances of the actual export destinations.

A second set of moments still within this first block are defined by the following functions:

m̃k,jtpyi, zi, xq � yijtyijt�11tn
x1

hjt   n̄x1
u1tnx2

hjt   n̄x2
unx1

hjtn
x2

hjt, (F.16a)

m̃k,jtpyi, zi, xq � yijtyijt�11tn
x1

hjt ¥ n̄x1
u1tnx2

hjt   n̄x2
unx1

hjtn
x2

hjt, (F.16b)

m̃k,jtpyi, zi, xq � yijtyijt�11tn
x1

hjt   n̄x1u1tn
x2

hjt ¥ n̄x2un
x1

hjtn
x2

hjt, (F.16c)

m̃k,jtpyi, zi, xq � yijtyijt�11tn
x1

hjt ¥ n̄x1u1tn
x2

hjt ¥ n̄x2un
x1

hjtn
x2

hjt, (F.16d)

for all px1, x2q in tpg, lq, pg, aq, pl, aqu. These functions differ from those in equation (F.14) in that they
depend not on whether a firm i exports to a country j at a period t (as captured by the dummy yijt) but
on whether a firm i continues exporting at t to a country j to which it was exporting at t� 1 (as captured
by the dummy yijtyijt�1). E.g., the moment given the function in equation (F.16a) for px1, x2q � pg, lq is

1

MJpt� tq

M̧

i�1

J̧

j�1

ţ

t�t

pyobsijt y
obs
ijt�1 �

1

S

Ş

i�1

ysijtpθqy
s
ijt�1pθqq1tn

g
hj   6u1tnlhj   0.5unghjn

l
hj � 0. (F.17)

The interpretation of this moment is analogous to that in equation (F.15), with the only difference that it
focuses in export survival events instead of export participation events.

Equations (F.14) and (F.16) list four moments each for each px1, x2q in tpg, lq, pg, aq, pl, aqu. Thus, the
first block of moments includes 24 moments in total.

The second block includes moments targeted to identify the parameters determining the strength of export
complementarities. Specifically, this block of moments targets the identification of the parameters

tpγEx , ψ
E
x , κ

E
x qux�tg,l,au,

which enter the model through the expression in equation (11). The functions defining the moments included
in this second block capture firms’ export probabilities by groups of destinations that differ in the aggregate
export potential of the other countries that are at a given geographical, linguistic, or regulatory distance
to them. A key variable in these moments is thus the aggregate export potential of the countries that are
within certain distance thresholds of each potential export destination; we define these as

AEs,x2

jt,x1
�

¸
j1�j

1t
¯
nx2
x1
¤ nx1

jj1t   n̄x2
x1
uEs

j1t, (F.18)

where the index x1 identifies the distance measure, and the index x2 identifies the distance interval over
which we are summing the export potential measures Es

j1t. The index x1 takes values in the set tg, l, au,
with x1 � g denoting the geographical distance in equation (1), x1 � l denoting the linguistic distance in
equation (2), and x1 � a denoting the regulatory distance in equation (3). The index x2 takes values in the
set t1, 2, 3u, and it determines the distance thresholds according to the following rules. For the case in which
x1 � g, the distance thresholds are

p
¯
nx2
g , n̄

x2
g q �

$&
%

p0, 426q if x2 � 1,
p426, 790q if x2 � 2,
p790, 1153q if x2 � 3.

(F.19)

For the case in which x1 � l, the distance thresholds are

p
¯
nx2

l , n̄
x2

l q �

$&
%

p0, 0.01q if x2 � 1,
p0.01, 0.11q if x2 � 2,
p0.11, 0.50q if x2 � 3.

(F.20)
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Finally, for the case in which x1 � a, the distance thresholds are

p
¯
nx2
a , n̄

x2
a q �

$'&
'%

p0, 17 q if x2 � 1,

p 17 ,
3
7 q if x2 � 2,

p 37 ,
6
7 q if x2 � 3.

(F.21)

Then, for example, the variables AEs,1
jt,g, AE

s,2
jt,g, and AE

s,3
jt,g denote the aggregate export potential in sector

s of all countries j1 other than country j which are less than 426 km away from j, between 426 km and 790
km away from j, and between 790 km and 1153 km away from j, respectively. There is a close connection
between the variables defined in equations (F.18) to (F.21) and those used as regressors in equation (F.4).
Specifically, for any x1 in tg, l, au, the thresholds n̄2x1

defined in equations (F.19) to (F.21) coincide with the
thresholds n̄x1 used to compute the aggregate export potentials displayed in Figure F.5. Thus,

AEs
jt,x1

� AEs,1
jt,x1

�AEs,2
jt,x1

for x1 � tg, l, au.

Given AEs,x2

jt,x1
for x1 � tg, l, au and x2 � t1, 2, 3u, the moments in this second block are defined by

m̃k,jtpyi, zi, xq � yijt1tn
x1

hjt   n̄x1
u1tAEs,x2

jt,x1
� 0u, (F.22a)

m̃k,jtpyi, zi, xq � yijt1tn
x1

hjt   n̄x1
u1t0   AEs,x2

jt,x1
¤ p66pAE

s,x2

jt,x1
qu, (F.22b)

m̃k,jtpyi, zi, xq � yijt1tn
x1

hjt   n̄x1
u1tp66pAE

s,x2

jt,x1
q   AEs,x2

jt,x1
u, (F.22c)

m̃k,jtpyi, zi, xq � yijt1tn
x1

hjt ¥ n̄x1
u1tAEs,x2

jt,x1
� 0u, (F.22d)

m̃k,jtpyi, zi, xq � yijt1tn
x1

hjt ¥ n̄x1
u1t0   AEs,x2

jt,x1
¤ p66pAE

s,x2

jt,x1
qu, (F.22e)

m̃k,jtpyi, zi, xq � yijt1tn
x1

hjt ¥ n̄x1
u1tp66pAE

s,x2

jt,x1
q   AEs,x2

jt,x1
u, (F.22f)

where p66p�q denotes the 66th percentile of the random variable in parenthesis. As a reminder, nx1

hjt denotes
for any x1 in tg, l, au the corresponding distance between the firm’s home country h and the foreign country
j, and n̄x1

is a threshold value we use to split foreign countries into two groups depending on whether their
distance to the home market is larger or smaller than the corresponding threshold; specifically, we set n̄g � 6,
n̄l � 0.5, and n̄a � 1, which are the same threshold values we use to define the moments in equations (F.14)
and (F.16). E.g., the moment given by the function in equation (F.22a) for px1, x2q � pg, 1q is

1

MJpt� tq

M̧

i�1

J̧

j�1

ţ

t�t

pyobsijt �
1

S

Ş

i�1

ysijtpθqq1tn
g
hj   6u1tAEs,1

jt,g � 0u � 0. (F.23)

This moment captures, for those foreign countries that are less than 6,000 km away from Costa Rica and
have no country closer than 426 km to them, the difference between the export probability in the observed
sample and the average export probability across the S simulated samples. Similarly, the moment given by
the function in equation (F.22b) for px1, x2q � pg, 1q is

1

MJpt� tq

M̧

i�1

J̧

j�1

ţ

t�t

pyobsijt �
1

S

Ş

i�1

ysijtpθqq1tn
g
hj   6u1t0   AEs,1

jt,g ¤ p66pAE
s,1
jt,gqu � 0. (F.24)

This moment captures, for foreign countries that are less than 6,000 km away from Costa Rica and have
countries located less than 426 km away from them whose aggregate export potential is positive by below
the 66th percentile of the corresponding distribution, the difference between the export probability in the
observed sample and the average export probability across the S simulated samples.

Equation (F.22) lists six moments for each x1 in tg, l, au and each x2 in t1, 2, 3u. Thus, this block of
moments could include 54 moments in total, each of them defined as the difference between the observed and
simulated export probabilities in a subset of countries selected on the basis of their geographic, linguistic, or
regulatory, distance to Costa Rica and of the aggregate export potential of the other potential destinations
located within some pre-specified distance interval from those countries. However, 2 of these 54 moments
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select subsets of countries that are empty. As a result, the second block includes 52 moments in total.

The third block includes moments targeted to identify the parameters determining the distribution of the
unobserved (to the researcher) terms νit and ωit. Specifically, this block targets the identification of

pσν , p, tpγ
N
x , κ

N
x qux�tg,l,auq,

which enter the model through the expressions in equations (12) and (13). With the aim of identifying the
variance of the fixed cost shock νijt, σ

2
ν , we use moments defined by the following two functions

m̃k,jtpyi, zi, xq � yijt
¸
i1�i

yi1jt1tQprihtq � Qpri1htqu, (F.25a)

m̃k,jtpyi, zi, xq � 1t
¸
j�1

yijt ¡ 0u, (F.25b)

where Qp�q : R� Ñ t1, 2, 3, 4u is a function that maps the firm’s domestic revenue level into its corresponding
quartile. The moment defined by the function in equation (F.25a) captures, on average across periods and
pairs of firms i and i1 whose domestic sales belong to the same quartile of the distribution, the similarity
in the sets of export destinations of these two firms in the corresponding period. The function in equation
(F.25b) captures whether firm i is an exporter at period t. These two moments help identify σν .

With the aim of identifying p, we use moments defined by the following two functions

m̃k,jtpyi, zi, xq � yijtp1� yijt�1qyijt�2 � yijtp1� yijt�1qp1� yijt�2qyijt�3, (F.26a)

m̃k,jtpyi, zi, xq � p1� yijtqyijt�1p1� yijt�2q � p1� yijtqyijt�1yijt�2p1� yijt�3q. (F.26b)

The function in equation (F.26a) captures short (one or two periods) spells outside of an export market.
The function in equation (F.26a) captures short export spells. As our model features firms that have perfect
foresight on all payoff-relevant variables other than the fixed cost shock ωijt, short-lived transitions in and
out of an export market will be largely driven by unexpected realizations of this fixed cost shock. The
functions in equation (F.26) measure the frequency with which these short-lived transition take place.

Finally, with the aim of identifying tpγNx , κ
N
x qux�tg,l,au, we use moments defined by the following functions

mkpy, z, xq � yijt

J̧

j1�1

yij1t1tyijt�1 � yij1t�1u1tQpEijtq � QpEij1tqu1t
¯
nx2
x1
¤ nx1

jj1t   n̄x2
x1
u (F.27)

for any value of x1 in tg, l, au and any value of x2 in t1, 2, 3u, where Qp�q : R� Ñ t1, 2, 3, 4u is a function that
maps a country’s export potential into its corresponding quartile. For any value of x1 in tg, l, au and any
value of x2 in t1, 2, 3u, the thresholds

¯
nx2
x1

and n̄x2
x1

are determined as in equations (F.19) to (F.21). E.g., the
moment built using the function in equation (F.27) for px1, x2q � pg, 1q captures, on average across firms and
time periods, the frequency with which firms simultaneously export to any two countries j and j1 in which
they had the same export status in the previous period (as imposed by the condition that yijt�1 and yij1t�1

should coincide), that have similar export potentials (as imposed by the condition that Eijt and Eij1t should
fall in the same quartile), and that are less than 426 km apart from each other. Intuitively, the function in
equation (F.27) for px1, x2q � pg, 1q captures the correlation in firms’ export participation decisions across
countries of similar market size that are geographically very close to each other.

The function in equation (F.27) for px1, x2q � pg, 2q is analogous to that for px1, x2q � pg, 1q, differing
exclusively in that, instead of focusing on pairs of countries that are less than 426 km apart, it focuses on
pairs of countries whose bilateral distance is larger than 426 km and smaller than 790 km. Similarly, the
function in equation (F.27) for px1, x2q � pg, 3q focuses instead on pairs of countries whose bilateral distance
is larger than 790 km and smaller than 1,153 km. Thus, the functions in equation (F.27) for x1 � g and all
three possible values of x2 allow us to identify the parameters determining the correlation between νijt and
νij1t as a function of the geographical distance between countries j and j1.

Equations (F.25) and (F.26) list two moments each. Equation (F.27) lists one moment for each x1 in
tg, l, au and each x2 in t1, 2, 3u. Thus, the third block of moments includes 13 moments in total.
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F.4 Additional Details on SMM Estimator

We provide here additional details on two aspects of our SMM estimator. In Appendix F.4.1, we describe
how we compute the vector of simulated choices ysi pθq that enter the moment conditions; see equation (32).
In Appendix F.4.2, we describe how we compute our SMM estimates given the vector of moment conditions.

F.4.1 Computing Vector of Simulated Choices

Given any value of the parameter vector θ defined in footnote 24, we describe here the steps we follow to
compute each of the moment conditions (see equation (32)) we use in our estimation.

First step. For each firm i in the sample, we take S � 5 draws of the vector of unobserved payoff-relevant
variables χi defined in equation (F.12). Specifically, for each draw, we implement the following procedure.

First, if we observe firm i in the first sample year, t, then we treat its birth year,
¯
ti, as unknown, and we

draw it randomly from the empirical distribution of firm ages in Costa Rica in 2010, as reported in World
Bank (2012). If we do not observe firm i in t, then we assume its birth year coincides with the first year it
appears in the sample. The firm’s birth year is thus observed, and not randomly drawn, in this case.31

Second, we draw firm i’s domestic revenue shocks eriht for every period t in the interval r
¯
ti, T s. To do

so, we draw T �
¯
ti � 1 independent standard normal variables, which we then multiply by σr. If

¯
ti  

¯
t,

we use the draws of eriht for every t in r
¯
ti,

¯
ts, together with the firm’s observed domestic sales in the first

sample year, rih
¯
t, to generate values of the firm’s log domestic sales for every t in r

¯
ti,

¯
ts. In this case, lnprih

¯
tq

operates as a terminal condition of the corresponding AR(1) process, and we use the unconditional mean of
this process as initial condition. Similarly, we use the draws of eriht for every t in rt̄�1, T s, together with the
firm’s observed domestic sales in the last sample year, riht̄, to generate values of the firm’s log domestic sales
for every t in rt̄� 1, T s. In this case, lnpriht̄q operates as an initial condition of the corresponding process.

Third, we draw firm i’s fixed cost shocks νijt and ωijt for every country j � 1, . . . , J and every t in
r
¯
ti, T s. To obtain these draws of νijt, we first draw JpT �

¯
ti � 1q independent standard normal random

variables, which we then multiply by the Cholesky decomposition of the variance matrix in equation (12).
To obtain these draws of ωijt, we first draw JpT�

¯
ti�1q independent random variables distributed uniformly

between 0 and 1; we then set ωijt �
¯
ω if the draw corresponding to country j and period t is smaller than

the parameter p introduced in equation (13), and ωijt � ω̄ otherwise.
Fourth, for each country j, we draw αjt for every period t between the earliest birth year in the corre-

sponding simulated sample and the initial sample year, and for every t between the last sample year and
the terminal period; i.e., for all t in rminit

¯
tiu,

¯
tq Y pt̄, T s. To do so, we first obtain T �minit

¯
tiu � 1 draws of

the shocks eαjt, which we do by drawing an equal number of independent standard normal variables that we
then multiply by σα. We then use the draws of eαjt for every t in rminit

¯
tiu,

¯
tq, together with the value of αjt

observed in the first sample year, αj
¯
t, to generate values of αjt for every t in rminit

¯
tiu,

¯
tq. In this case, αj

¯
t

operates as a terminal condition of the corresponding AR(1) process, and we use the unconditional mean of
this process as initial condition. Similarly, we use the draws of eαjt for every t in rt̄� 1, T s, together with the
value of αjt observed in the last sample year, αjt̄, to generate values of αjt for every t in rt̄� 1, T s. In this
case, αjt̄ operates as an initial condition of the corresponding AR(1) process.

Second step. For each firm i in the sample, we use the S draws of χi generated according to the procedure
described above, the vector zi of observed payoff-relevant variables, and a value of the parameter vector θ,
to compute the vector of model-implied firm i’s optimal export choices ysi pθq for all s � 1, . . . , S simulated
samples. We do so implementing the algorithm described in Section 5.

F.4.2 Computing SMM Estimates

Denote the vector of K moment conditions as MpZ, x; θq � pm1pZ, x; θq, . . . ,mKpZ, x; θqq
1 where

mkpy
obs, Z, x; θq �

1

M

M̧

i�1

! 1

Jpt� tiq

J̧

j�1

ţ

t�ti

 
mkpy

obs
i , zi, xq �

1

S

Ş

i�1

mkpy
s
i pθq, zi, xq

()
,

31A firm will appear in our dataset as long as it has positive domestic sales, regardless of whether it exports.
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with yobs � tyobsi uMi�1 and Z � txiu
M
i�1. Given MpZ, x; θq and a K �K positive semi-definite matrix W , we

compute our SMM estimate of θ as the solution to the following minimization problem

min
θ

MpZ, x; θqWMpZ, x; θq1. (F.28)

To solve this minimization problem numerically, we use a two-step algorithm: first, we use the TikTak
global optimizer proposed in Arnoud et al. (2019) with 5,000 starting points, using BOBYQA as the local
optimizer; second, we polish the outcome of the global optimizer using a Subplex local optimizer.

In practice, we compute a two-stage SMM estimate. In the first stage, we obtain estimates of θ, which
we denote as θ̂1, minimizing the objective function in equation (F.28) for a diagonal weight matrix W �W1

in which every diagonal element k � 1, . . . ,K equals

W1,k �
1

pmobs
k pyobs, Z, xqq2

, with m
obs
k pyobs, Z, xq �

1

M

M̧

i�1

! 1

Jpt� tiq

1

S

J̧

j�1

ţ

t�ti

Ş

i�1

mkpy
obs
i , zi, xq

)
.

(F.29)

In the second stage, we obtain estimates of θ, which we denote as θ̂2, minimizing the function in equation
(F.28) for a diagonal weight matrix W � W2 in which every diagonal element k � 1, . . . ,K equals W2,k �

pV̂kpy
obs, Z, x; θ̂1qq

�1, with V̂kpy
obs, Z, x; θ̂1q the clustered-robust variance of the moment Mkpy

obs, Z, x; θ̂1q,
with each cluster defined as a firm-year combination (see Section 11 in Hansen and Lee, 2019, for details). We
present heteroskedasticity-robust, clustered at the firm-year level, and clustered at the firm level, standard
error estimates. We compute each of these applying the formulas in Section 11 of Hansen and Lee (2019),
with the adjustment for simulation noise in Gourieroux et al. (1993).

F.5 Alternative Simulation Draws

We evaluate here the sensitivity of our estimates of the vector θ defined in footnote 24 to the set of S � 5
draws of χi (see equation (F.12)) we use to compute those estimates. We take 50 independent sets of 5 draws
of χi and, for each of them, we compute a new SMM estimate of θ. For each parameter in θ, we compute a
non-parametric density of the estimates obtained in the 50 sets of simulations, and report in Table F.2 the
mode of this density as well as our baseline estimate; see Table F.4. Our baseline estimates are generally
close to the mode of the distribution of the estimates obtained for different draws of χi, the only exception

Table F.2: Sensitivity of Baseline SMM Estimates to Alternative Simulation Draws

Parameters
Baseline Alternative

Parameters
Baseline Alternative

Estimates Estimates Estimates Estimates

γF
0 62.92 63.53 κE

l 5.40 5.53
γF
g 13.11 17.68 γE

a 3.32 3.29
γF
l 4.14 2.79 φE

a 1.21 1.26
γF
a 29.28 28.99 κE

a 6.85 6.68
γS
0 114.76 115.09 γN

g 0.64 0.66
γS
g 19.95 19.88 κN

g 0.05 0.10
γS
l 0.23 0.26 γN

l 0.15 0.15
γS
a 21.83 21.07 κN

l 4.54 4.60
γE
g 9.83 10.79 γN

a 0.06 0.06
φE

g 1.96 1.98 κN
a 2.61 2.57

κE
g 6.02 6.03 σν 80.04 79.98
γE
l 0.98 1.06 p 0.72 0.72
φE

l 2.74 2.76

Note: the number in the “Baseline Estimates” column is the estimate reported in Table F.4;
that in the “Alternative Estimates” column is the mode of the non-parametric density of the
estimates obtained when reestimating our model using 50 alternative sets of draws of χs

i .
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being the estimate of γFg , which is 25% smaller than the mode of the density of the corresponding estimates.
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F.6 Estimation Results: Additional Details

F.6.1 First-step Estimates: Potential Export Revenue Parameters

In Table F.3, we present point estimates and standard errors for all parameters affecting the evolution over
time of potential export revenues (see Section 4.3).

Table F.3: Estimates of Potential Export Revenue Parameters and Their Process

Potential Export Revenue Process for Country- and Year- Process for Log
Parameters Specific Rev. Shifter Domestic Sales

Parameter
Estimate

Parameter
Estimate

Parameter
Estimate

(Standard Error) (Standard Error) (Standard Error)

αy 1.856a βα,g -0.117b ρr 0.857a

(0.066) (0.037) (0.012)

αa -3.832a βα,l -0.047 σr 0.865
(0.066) (0.071)

αr 0.285a βα,a -0.109
(0.041) (0.079)

βα,gdp 0.079a

(0.019)

ρα 0.686a

(0.059)

σα 0.630

Observations 13,293 Observations 467 Observations 43,300

Note: a denotes significance at 1%, b denotes significance at 5%. In parenthesis, standard error estimates.
The results for Potential Export Revenue Parameters include country-year and sector fixed effects, and the
displayed standard errors are heteroskedasticity robust standard errors. The results for Process for Country-
and Year-Specific Rev. Shifter include no fixed effects, and the displayed standard errors are clustered by
country. The results for Process for Log Domestic Sales include fixed effects for the firm’s sector and province
of location, and the displayed standard errors are clustered by firm.

In Figure F.8, we present box plots summarizing the distribution of the estimated values of αjt across
all sample periods for several specific countries. Specifically, panels (a) and (b) contain information for the
15 countries with the largest and smallest median estimates of αjt, respectively.

Figure F.8: Estimates of Country- and Year-Specific Export Revenue Shifters

(a) Top-15 Destinations
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(b) Bottom-15 Destinations
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Note: In both figures, countries are identified by their ISO 3166-1 alpha-3 code, and ordered in the horizontal axis by
their distance to Costa Rica. For each country, the corresponding box plot represents (from top to bottom) the max, third
quartile, median, first quartile and min of the estimated values of αjt across all sample periods. Panel (a) displays box-plots
of the estimates of tαjtut for the 15 countries with the largest median estimates. Panel (b) displays analogous information
for the 15 countries with the lowest median estimates.
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F.6.2 Second-Step Estimates: Fixed and Sunk Costs Parameters

In Table F.4, we present point estimates and standard errors for all parameters entering fixed and sunk
export costs (see Section 4.4).

Table F.4: SMM Estimates of Fixed and Sunk Cost Parameters

Parameter
Estimate

Parameter
Estimate

(Standard Errors) (Standard Errors)

γF
0 62.92a κE

l 5.40
(1.11)(1.34)(2.77) (6.05)(7.84)(19.56)

γF
g 13.11a γE

a 3.32a

(0.38)(1.17)(3.43) (0.04)(0.04)(0.06)

γF
l 4.14a φE

a 1.21
(0.99)(1.71)(4.71) (0.52)(0.73)(1.51)

γF
a 29.28a κE

a 6.85a

(0.78)(0.62)(1.09) (1.02)(1.48)(3.18)

γS
0 114.76a γN

g 0.64a

(3.18)(3.09)(6.03) (0.00)(0.00)(0.01)

γS
g 19.95a κN

g 0.05a

(0.92)(1.10)(2.80) (0.00)(0.00)(0.01)

γS
l 0.23 γN

l 0.15a

(3.56)(4.43)(8.36) (0.00)(0.00)(0.01)

γS
a 21.83a κN

l 4.54a

(1.04)(0.83)(1.46) (0.29)(0.31)(0.50)

γE
g 9.83a γN

a 0.06a

(2.33)(2.85)(6.42) (0.01)(0.01)(0.01)

φE
g 1.96a κN

a 2.61a

(0.50)(0.66)(1.55) (0.00)(0.00)(0.00)

κE
g 6.02a σν 80.72a

(0.28)(0.49)(0.66) (0.51)(0.79)(2.05)

γE
l 0.98a p 0.72a

(0.08)(0.07)(0.11) (0.00)(0.00)(0.00)

φE
l 2.74

(2.88)(3.79)(7.16)

Note: a denotes significance at 1%. In parenthesis, robust standard errors,
standard errors clustered by firm-year, and standard errors clustered by firm,
respectively. Displayed markers of statistical significance are determined on
the basis of the standard errors clustered by firm-year.

In Figure F.9, for the case of the US, China, Germany and Spain, we plot the value of cjj1t{gjt multiplied
by 100 for all other destinations j1.

Figure F.9: Estimated Static Complementarities
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(b) China
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(c) Germany
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(d) Spain
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Note: In Panels (a), (b), (c) and (d) we illustrate, for the cases of the United States, China, Germany, and Spain, respectively,
the percentage reduction in fixed costs of exporting to these countries if the firm simultaneously also exports to each of the
other possible export destinations.

In Figure F.10, for the case of the US, China, Germany and Spain, we plot the value of ρjj1t for all other
destinations j1.

Figure F.10: Estimated Pairwise Correlation Coefficients in Fixed Cost Shocks

(a) The United States
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(b) China

(0.70,0.75]
(0.65,0.70]
(0.60,0.65]
(0.55,0.60]
(0.50,0.55]
(0.45,0.50]
(0.40,0.45]
(0.30,0.40]
[0.24,0.30]
Below 0.01 or No Data

(c) Germany
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(d) Spain
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Note: In Panels (a), (b), (c) and (d) we illustrate, for the cases of the United States, China, Germany, and Spain, respectively,
the correlation coefficient in the fixed cost shock νijt between the corresponding country and every other country in the
world.
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F.7 Model Without Cross-Country Complementarities

We present here the estimates of a model analogous to that in Section 4 except for the additional restriction
that the complementarity term in equation (11) equals zero for all countries and periods. Fixed and sunk costs
in this restricted model thus only depend on the parameters θR � pγF0 , γ

S
0 , σν , p, tpγ

F
x , γ

N
x , κ

N
x , γ

S
x qux�tg,l,auq.

In this restricted model, the estimation approach in Section 7.1 is still valid; thus, the estimates of the
demand elasticity and the parameters entering potential export revenues coincide with those described in
Section 7.1. Concerning the estimation of θR, we follow an approach analogous to that in Section 6.2, using
the same moments described in Section F.3. We present in Table F.5 the resulting estimates.

Table F.5: Estimates of Fixed and Sunk Cost Parameters in Model Without Complementarities

Parameter
Estimate

Parameter
Estimate

(Standard Errors) (Standard Errors)

γF
0 35.81a γN

g 0.64a

(4.78)(7.93)(19.89) (0.01)(0.01)(0.01)

γF
g 4.97a κN

g 0.04a

(0.41)(0.75)(1.77) (0.00)(0.00)(0.01)

γF
l 0.96 γN

l 0.18a

(2.64)(3.87)(9.59) (0.03)(0.03)(0.07)

γF
a 6.32 κN

l 0.38
(3.62)(6.05)(16.11) (0.52)(0.70)(1.59)

γS
0 70.70a γN

a 0.10a

(6.17)(9.24)(21.09) (0.01)(0.01)(0.03)

γS
g 36.21a κN

a 0.42a

(0.22)(0.31)(0.31) (0.05)(0.04)(0.10)

γS
l 0.16 σν 41.59a

(5.25)(9.93)(25.32) (0.76)(1.33)(3.36)

γS
a 27.39a p 0.65a

(4.48)(8.92)(24.36) (0.00)(0.00)(0.00)

Note: a denotes significance at 1%. In parenthesis, robust standard errors, standard errors
clustered by firm-year, and standard errors clustered by firm, respectively. Markers of statis-
tical significance are determined on the basis of the standard errors clustered by firm-year.

Figure F.11 is analogous to Figure 1. The mean fixed cost function implied by the estimates in Table
F.5 is smaller than the estimated mean fixed cost function for single-destination exporters displayed in panel
(a) of Figure 1 for our general model with complementarities. This is to be expected, as the estimated
mean fixed export costs in the restricted model without cross-country complementarities likely approximate
a weighted average of the mean fixed export costs faced by different firms depending on their export bundles,
with weights given by the frequency with which different export bundles are observed in the data.

Figure F.11: Fixed and Sunk Costs Estimates in Model Without Cross-Country Complementarities
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(b) Sunk Export Costs
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Note: In both figures, countries are identified by their ISO 3166-1 alpha-3 code, and placed in the horizontal axis by their
distance to Costa Rica. The vertical axis indicates the estimated cost in thousands of 2010 USD.
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G Properties of Estimated Model: Additional Details

We consider here a simplified version of the model in Section 4 with the goal of understanding the role cross-
country complementarities play on firm export choices. Specifically, we impose on the model in Section 4
the following additional restrictions: (a) there are two markets, A and B; (b) for both markets, the fixed
cost gravity term gjt and sunk costs sjt are constant over time; (c) the complementarity term in fixed costs
cABt is constant over time; (d) ωijt � 0 for every i, j and t; (d) αy � 0 and all other determinants of export
revenues are constant over time, implying that rijt is constant over time for every firm i and market j.

Dropping the t subscript from all constant variables, and denoting the complementarities between mar-
kets A and B as c, firm i will thus solve the following optimization problem at t � 0:

max
tyjtujt

¸
t¥0

 
δtpyiAtπiA � p1� yiAt�1qsA � yiBtπiB � p1� yiBt�1qsB � yiAtyiBtcq

(
(G.1)

where, for any country j, πij � η�1rij � gj � νij is the potential export profits of firm i in j net of all
components of fixed export costs other than the complementarity term; i.e., net of gj and νij . As no firm
can export before the first period of activity, it holds that yiAt�1 � yiBt�1 � 0 when t � 0.

To understand the role complementarities play on firm choices, we consider two cases: one in which
c � 0, and one in which c ¡ 0. Without loss of generality, we keep all throughout the assumption that sunk
export costs are lower in country B than in country A; i.e., sB   sA.

Case 1: no complementarities. In this case, c � 0 and the firm’s export decision is independent across
countries. As the problem in equation (G.1) is stationary, a firm exports to any country j � tA,Bu at any
period t ¥ 0 if and only if πij ¥ π̄jp0q, for π̄jp0q � p1 � δqsj . Thus, as shown in panel (a) in Figure G.1,
firms with πiA   π̄A and πiB ¥ π̄B export only to B; firms with πiA ¥ π̄A and πiB   π̄B export only to A;
and, firms with πiA ¥ π̄A and πiB ¥ π̄B export to both countries. Consistently with the parametrization
that sB   sA, the plot in panel (a) of Figure G.1 assumes that π̄Bp0q   π̄Ap0q.

Case 2: positive complementarities. In this case, c ¡ 0 and the firm’s export decision is not independent
across countries. Conditional on exporting to country j1 � j, exporting to j is optimal if and only if
πij ¥ π̄jp1q with π̄jp1q � p1 � βqsj � 2c. Note that π̄jp1q   π̄jp0q for any c ¡ 0. Panel (b) in Figure
G.1 illustrates the new exporters that emerge when c becomes positive. These new exporters are of two
kinds. First, “natural exporters” to one of the markets (i.e., firms that export to one of the markets even
when c � 0) and that, as complementarities become more important (i.e, as the value of c increases), start
exporting to the other one. These are firms whose value of pπiA, πiBq falls in the orange and blue areas in

Figure G.1: Export Choices Models With and Without Complementarities
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panel (b). Second, firms that do not export when c � 0, but export to both markets at the new level of c.
These are firms whose value of pπiA, πiBq falls in the green area in panel (b).

Panel (b) in Figure G.1 shows how a firm i, depending on the values of pπiA, πiBq, changes its set of
destinations when c switches from being equal to zero to being positive. To determine how the share of
firms exporting to either country changes as we change the value of c, we need to impose assumptions on the
distribution of pπiA, πiBq. In Figure G.2, we show how country-specific export shares change as we change
the value of c when, for j � tA,Bu, πij is normally distributed with mean µ (common in both markets) and
variance equal to 1. We further assume that πiA and πiB are independent of each other. We impose values
of µ, δ, sA and sB such that, when c � 0, the export share to A equals 2%, and the export share to B equals
20%. Thus, we can characterize markets A and B as being “small” and “large”, respectively.

We extract several conclusions from Figure G.2. First, as reflected in the black lines in both panels, the
effect on export shares of changes in c is non-linear: export shares are convex in c. Second, when comparing
the export shares for positive values of c to those for c � 0, both the absolute and the relative increase in the
export share is larger in the “small” export market (i.e., country A) than in the large one (i.e., country B).
More specifically, when measuring the change in export shares as the value of c switches from zero to one,
we observe that the percentage point increase in export shares in markets A and B is 21 pp. and 13 pp.,
respectively, and the relative increase in export shares in markets A and B is 11.5 (which equals 23%/2%)
and 1.65 (which equals 33%/20%), respectively. Third, the reason for the larger impact of changes in c on
export shares in A than in B is that there are many more firms that exported only to B in the case with
c � 0 and add market A as export destination when c increases, than there are firms that exported only to
A in the case with c � 0 and add market B as export destination when c increases; i.e., the probability that
the vector pπiA, πiBq is in the area painted in orange in panel (b) of Figure G.1 is larger than the probability
that it is in the area painted in blue in the same graph.

Figure G.2: Export Share and Cross-Country Complementarities
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Note: In panel (a), for each value of c, “Total” denotes the share of firms that export to A at that value of c; “Always
exporters” denotes the share of firms that export to A at that value of c and also export to A when c � 0; “Neighbor
exporters” denotes the share of firms that export to A at that value of c, do not export to A when c � 0, and export to B
when c � 0; and “New exporters” denotes the share of firms that export to A at that value of c and export neither to A
nor to B when c � 0. The interpretation of the labels for panel (b) is analogous.
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