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Abstract

Climate change presents new risks for every property in the United States. Due to

the high cost and sometimes unavailability of location-specific property risk data, home

buyers can greatly benefit from acquiring knowledge about these risks. To explore this,

a large-scale nationwide natural field experiment was conducted through Redfin, to esti-

mate the causal impact of providing home-specific flood risk information on the behavior

of home buyers in terms of their search, bidding, and purchasing decisions. Within this

experiment, Redfin randomly assigned 17.5 million users to receive information detailing

the flood risk associated with the properties they searched for on the platform. Our analy-

sis reveals several key findings: (1) the flood risk information influences every stage of the

house buying process, including the initial search, bidding activities, and final purchase;

(2) individuals are willing to make trade-offs concerning property amenities in order to

own a property with a lower flood risk; and (3) the impact of the flood risk information

is more pronounced for users conducting searches in high flood risk areas, but does not

differ significantly between buyers in Red and Blue Counties. We found that this informa-

tion resulted in changes to property prices and altered the market’s hedonic equilibrium,

suggesting that climate adaptation can be forward-thinking and proactive. Overall the

experiment affected the purchasing decisions of approximately $135 billion of real estate.

∗We would like to thank Chris Costello, Ed Kearns, John List, John Matsusaka, Jeremy Porter for their com-

ments, and Robert Huang for his excellent research assistance.
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1 Introduction

The precipitously urgent threat of climate change endangers both economies and human

well-being across the globe. The ways in which people adjust their actions in light of new

climate change-related information (“new news”) will play an increasingly crucial role in

determining the societal consequences of carbon emissions (Nordhaus, 1993; Hinkel et al.,

2014; Auffhammer, 2018; Kahn, 2020; IPCC, 2021). Adaptation to climate change can take

place through various means. For instance, both businesses and individuals have the option

to relocate to areas that offer greater protection from climate change-related disasters; this is

often referred to as a “higher ground” approach. Once a secondary location is chosen, they

can further safeguard themselves by investing capital in defensive measures (Barreca et al.,

2016), such as installing air conditioning systems, property stilts, fire-resistant roofs, and

sturdy windows.

Adaptations like these are predicated upon individuals’ awareness of high-stakes climate

risks associated with their properties, like flooding. However, an increasing body of evidence

suggests that individuals in the United States are largely unaware of these risks (Bakkensen

and Barrage, 2022; Wagner, 2022). This lack of awareness implies that properties located

in high-flood risk areas may be significantly overvalued, with an aggregate overvaluation

estimated at approximately $200 billion (Gourevitch et al., 2023). This exposure to climate

change risk is expected to worsen over time as the exposure to climate change risk intensifies

(Marcoux and Wagner, 2023).

Furthermore, flood-related events have caused more direct economic damage than any

other type of natural disaster worldwide (Miller, Muir-Wood and Boissonnade, 2008). In

the United States alone, these damages have exceeded $1 trillion since 1980 (NOAA, 2018;

Wing et al., 2022), and some argue that the indirect economic damages could be greater than

the direct effects (Hallegatte, 2008; Koks et al., 2015). These direct and indirect economic

consequences are expected to escalate over time and might not be mitigated, even if society

were to dramatically and immediately reduce carbon dioxide emissions (Dottori et al., 2018;

Wobus et al., 2019). However, the human cost associated with flooding may be mitigable if

people become aware of current and future risks and actively engage in adaptive behavioral

changes (offsetting measures). By increasing understanding of the risks involved and taking

appropriate action, individuals can potentially reduce the impact of flooding on their lives

and livelihoods.

However, we do not yet know how individuals react to information about specific climate

change-related risks associated with their investments. To explore this, we conducted a rig-

orous assessment to measure the causal impact of climate change information on searching
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and buying decisions within the United States national housing market. We present the first

large-scale experimental evidence offering insights into how precise flood risk information in-

fluences the behavior of home buyers across the United States. Our nationwide natural field

experiment was conducted in late 2020 utilizing the Redfin website and application (“app”),

involving the participation of a substantial user base (17.5 million individuals in total, evenly

split between treatment and control groups). Using an online search brokerage such as Redfin

is extremely common; according to the National Association of Realtors, 97% of U.S. home

buyers use the internet for their search.

In an unexpected and unannounced manner, Redfin implemented randomized assignment

of complete property-level flood information at the individual customer level. Randomiza-

tion took place either at the device level or, if the visitor was registered with Redfin and logged

in, at the individual level. For each property that a treated customer searched for, they were

provided with two key pieces of information: a flood risk score ranging from 1 (minimal risk)

to 10 (extreme risk), and the predicted likelihood of flooding over a 30-year period.1 Cus-

tomers were not able to filter their search results based on the flood score and sellers were

blind to the information.2 Apart from the flood risk information, all other features of the

Redfin search experience remained consistent for both the treated and control groups. The

flood risk information had no direct bearing on any search or pricing algorithms. Consider-

ing the significant market share held by Redfin during the experiment, our study generated

variation in flood information within approximately 20% of the entire U.S. internet property

market throughout the experiment’s duration, resulting in nearly 400 million property views.

This widespread participation allowed for robust analysis of the effects of flood information

on searching and buying behavior within the housing market.

In our field experiment, the detailed flood risk information displayed on Redfin for every

property in the United States was generated by First Street Foundation (FSF) (Bates et al.,

2021). FSF is a registered 501(c)(3) non-profit organization that embraces an open science

perspective and continuously updates and enhances its predictive model. It has been argued

argued that FSF maps are more reliable and valid than those provided by FEMA for a number

of reasons; indeed, considerable literature has highlighted the limitations of FEMA’s mapping

technology (Wing et al., 2018, 2022). Unlike FEMA’s flood maps, which primarily serve the

requirements of the National Flood Insurance Program, the FSF flood score is generated by a

predictive model that incorporates not only past flood risks but also considers future climate

change trends and pluvial and fluvial risks. The FSF predictive model has undergone peer

review (Armal et al., 2020; First Street Foundation, 2020; Flavelle et al., 2020; Porter et al.,

1This flood risk information was positioned approximately two-thirds of the way down the viewing page for
each property, regardless of whether the individual was using their phone or computer.

2During the experiment, no seller complained to Redfin about the flood risk information.
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2021), and ongoing research efforts aim to validate its model predictions by leveraging recent

natural disasters as natural experiments.3

Our main hypothesis is that the presence of property-level flood risk information will af-

fect consumer behavior and housing market expectations. We posit that the availability of

this information will lead to a reduced likelihood of individuals searching for, engaging with,

and purchasing high flood risk homes. We develop and build on the closed form hedonic

models presented in Epple (1987) and Giannias (1999). We show that moving from partial to

full information on the distribution of flood risk on the supply side can affect demand. Our

emphasis on one’s updating beliefs about a place based asset’s attributes draws on previous

research on expectations and decision-making (Manski, 2004; Glaeser and Nathanson, 2017;

Kuchler, Piazzesi and Stroebel, 2023). We are precise on the populations in our data that

would be exposed to the new flood risk news to test this hypothesis. By testing how infor-

mation shapes individuals’ expectations, we aim to shed light on the role of information in

facilitating adaptation to climate change. We believe that this is important, yet many existing

climate adaptation models do not allow for such expectations’ impact on behavior and wel-

fare (they only examine the costs of experienced extreme events). Additionally, by studying

how consumers trade off current and future climate risks against other housing attributes,

our research contributes to the understanding of decision-making processes in the housing

market, which we know little about.

The Redfin data allows us to observe the entire search process for both treated and con-

trol customers, as well as their interactions with the Redfin app for each property they visit,

both before and during the field experiment. Our partnership with Redfin provides us with

comprehensive insights into user behavior without the need of building a search model or

imposing any structure. Redfin employs real estate agents, a practice that grants us access to

detailed information on bidding behavior for all users who engage the services of a Redfin

3Several notable distinctions exist between FEMA’s flood maps and FSF’s maps. Firstly, FEMA’s flood maps
do not provide universal coverage across the United States, whereas the FSF flood score offers national coverage.
Secondly, FSF’s national model incorporates pluvial (precipitation) and fluvial (rivers, creeks) flooding simula-
tion, which FEMA’s maps do not include. Thirdly, FSF’s model employs a Regionalized Flood Frequency Analysis
(RFFA) approach that utilizes traditional statistical propensity matching techniques to model ungauged streams,
river reaches, and regions with known gauged characteristics, thereby producing flow parameters with high
confidence. Additionally, FSF’s model incorporates environmental factors to assess recent and future changes
in flood risk over a 30-year period. Fourthly, every local FEMA map must be agreed on by local politicians,
businesses, and other organizations; in other words, the maps consider flood risks as defined by FEMA, but also
political and business interests. In contrast, FSF models are not affected by local lobbying concerns. Lastly, the
flood score data provided by FSF varies for each property in the United States, therefore providing more gran-
ular information than FEMA’s version. FSF’s hazard layer for a 1-in-100-year event (representing a 1% annual
risk of occurrence) identifies approximately 1.7 times as many properties at risk compared to FEMA’s Special
Flood Hazard Area designation (First Street Foundation, 2020). These problems have been previously discussed
as FEMA’s flood maps are currently outdated for policymaker and consumer use (Mulder and Kousky, 2023),
emphasizing the need for improved mapping technologies and updated flood risk information.
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agent, both before and during the experiment. This vertical arrangement throughout the

home searching and buying process enables a comprehensive analysis of how trusted infor-

mation about the future, specifically related to flood risk, influences sorting and market out-

comes in the real estate sector. Throughout the duration of the experiment, Redfin had an

average of 1,757 lead agents per month across the country (Redfin, 2021). This wealth of

agent data is instrumental in enhancing our understanding of bidding patterns and buying

behavior.

Additionally, we augment our analysis by linking the Redfin data with market data on all

U.S. property transactions. This allows us to examine the impact of information disclosure

on the hedonic equilibrium of the housing market. By incorporating transaction data, we can

assess how the availability of flood risk information influences the overall market dynam-

ics and pricing. These data sources provide a novel and comprehensive foundation for our

project, enabling us to accurately measure search dynamics, bidding behavior, and the impact

of information disclosure on individuals’ climate-risk adaptive behavior.

We report three main sets of results. First, we show how the randomized flood risk infor-

mation changes people’s search and engagement behavior, and how they learn and develop

strategies to trade-off the flood disamenity in their search behavior. Second, we show how the

randomized flood risk information changes people’s bidding and buying behavior. Third, we

show how the randomized flood risk information shifts the resulting hedonic housing price

distribution.

First, our analysis revealed that the randomized flood risk information had a significant

and meaningful impact on users’ search behavior. Specifically, individuals who randomly

received the flood risk information were more inclined to browse properties with lower flood

risk compared to the control group. Among those who initially searched for homes with high

flood risk, the treatment led to a 10% reduction in the flood risk of their searched homes after

two months. The mechanism was that consumers learned which properties and locations had

high flood risk and created a sense of which properties were to be avoided. Furthermore, the

availability of detailed search data allowed us to gain insights into the trade-offs consumers

make when searching for lower flood risk properties. We found that treated individuals were

willing to trade-off certain property characteristics, such as neighborhood amenities like bike

and walk score. This suggests that individuals actively and organically adjusted their search

parameters and strategies in response to the flood risk information provided by Redfin.

Notably, our analysis also revealed that treated individuals who were searching for homes

in zip codes different from their current residence, and thus potentially had limited local

information and knowledge, exhibited a higher sensitivity to the flood risk information. This

group showed a more substantial reduction of 23% in the flood risk of their searched homes.
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Overall, these findings demonstrate that the provision of detailed flood risk information on

Redfin influenced users’ search behavior, leading to a greater focus on properties with lower

flood risk. The analysis of trade-offs and the differential impact on individuals lacking local

knowledge provide valuable insights into the behavioral responses to flood risk information.

Our search analysis revealed several interesting secondary findings. By employing ma-

chine learning techniques and estimating conditional average treatment effects, we discov-

ered that 62% of all individuals were affected by the flood risk information, meaning they ad-

justed their searched flood score downward (i.e., searched for homes with lower flood scores).

Among individuals who initially searched for homes with high flood risk, the proportion af-

fected by the information increased to 85%. However, it is important to note that we failed to

reject several null hypotheses. For instance, we found no difference in the treatment effects

for individuals who Redfin identified as more likely to purchase a property. Additionally,

individuals across all income levels exhibited similar behaviors in response to the flood risk

information. Moreover, there was no difference in treatment effects regardless of the percent-

age of risky properties browsed by an individual according to FEMA’s classification. This

suggests that even for properties identified as high-flood risk by FEMA, the federal informa-

tion fails to reach or to fully inform consumers about properties’ actual flood risk; this may

be due to a number of reasons, including the data’s intelligibility and ease of access.

We also investigated whether there was a divide in responsiveness to the risk information

based on political affiliation, using county-level Presidential voting patterns as a proxy (Dun-

lap, McCright and Yarosh, 2016). Interestingly, we found that Democrats and Republicans

responded similarly to the flood risk information, both in terms of search behavior, engage-

ment, and bidding behavior. In real estate markets, buyers are confronted with tradeoffs and

our results suggest that across the political spectrum that a risk adaptation nudge induces, on

average, the same behavioral response.

Furthermore, we examined whether users browsing from counties impacted by a recent

flood event showed different treatment effects. However, our analysis revealed no signifi-

cant difference in treatment effects for individuals browsing from these counties compared to

others. Overall, these findings demonstrate that political affiliation, attitudes about climate

change, income level, and recent flood events did not significantly impact users’ responsive-

ness to the flood risk information.

Second, our analysis of the impact of flood risk information on physical engagement with

homes revealed several interesting findings. While the flood risk information did not signif-

icantly change the overall probability of touring a property, placing an offer, or closing a bid

(the extensive margin behaviors), it did have an effect on the bidding behavior at the intensive

margin. Specifically, we observed that treated individuals who were initially browsing high
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flood risk properties were more likely to make offers on properties with approximately 57%

lower flood scores compared to their control counterparts. Treated individuals also exhibited

a lower likelihood of placing offers on waterfront (but not coastal) properties. This aligns

with the search behavior findings, indicating that individuals were willing to trade off flood

risk for other desirable property attributes. The observed behavior can be interpreted as in-

dividuals "voting" with their actions, making choices that optimize their desired bundles of

flood risk, other amenities, and tax considerations, akin to the principles of Charles Tiebout’s

theory of local public finance. Overall, these findings indicate that the flood risk informa-

tion influenced what properties people chose to make offers on, as they sought to strike a

balance between flood risk and other property attributes. The information also affected what

properties the treated users ended up living in–i.e., lower flood risk properties.

Third, our analysis of the impact of the flood risk information on the hedonic equilibrium

pricing of properties revealed significant findings. We leveraged the exogenous variation

created by our randomization, which resulted in some homes having a higher percentage of

treated users and others having a lower percentage. We found that a higher percentage of

treated users per property led to a maximum penalty of nearly $7,000 for homes with high

flooding risk across the United States (that are not located in the high-risk FEMA zones).

The flood risk information had a tangible effect on property prices, with homes in high flood

risk areas experiencing a decrease in value. This value can be construed as the value of best

information available on the expectations of climate change impacting high-risk homes.4

Notably, these price decreases were observed for properties that were not considered risky

by FEMA or not on the waterfront but were identified as risky by FSF. This suggests that the

flood risk information provided by FSF, which incorporates future climate change trends and

pluvial and fluvial risks, revealed previously unrecognized flood risks that were not captured

by FEMA’s maps. We found no heterogeneity in terms of the initial property price. This

finding indicates that the impact of the flood risk information was consistent across different

price ranges. This supports our earlier results, which showed that consumers of all income

levels and from different geographic locations were affected by the flood risk information.

Overall, our findings from analyzing how the flood risk information impacted search, en-

gagement, offers, and the housing market all the search provide evidence that the flood risk

information through the “new news” mechanism. This mechanism influenced the hedonic

equilibrium pricing of properties, with homes in high flood risk areas experiencing a reduc-

tion in value due to the newly revealed flood risks provided by FSF’s predictive model. The

three-month field experiment was very high stakes, in that the experiment affected the sales

4The ex-ante losses posed by climate change are lower if risk lovers (and maybe those with an edge in
upgrading risky homes) are more likely to live in these homes. While we cannot directly observe these attributes
of people, our evidence supports the claim of some "reshuffling".
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of 8,150 high flood risk properties (average price = $653,000) totaling $5.3 billion. The infor-

mation reduced the prices of these high flood risk properties by $57 million. The experiment

affected the sales of 186,000 low flood risk properties (average price = $697,000) totaling

$129.5 billion. Of this, the information increased prices of these low flood risk properties by

around $100 million.

Our research addresses a crucial gap in the literature by conducting a field experiment

that examines the impact of climate change information on the process of searching for and

buying a home. While previous studies have used observational data or simulations to ana-

lyze climate change adaptation (Massetti and Mendelsohn, 2020),5 our experiment leverages

a unique opportunity to study the causal effects of flood risk information on consumer be-

havior.

Existing empirical literature has explored how climate risk is capitalized into local home

prices, with mixed findings regarding the extent of capitalization.6 In addition, such studies

often assume that market participants are fully aware of the actual risk faced by properties.7

In contrast, our research challenges this assumption by demonstrating that individuals are

averse to high flood risk properties once they are exposed to the new information, leading to

our new news hypothesis. The fact that the flood risk information influenced search behavior,

bidding behavior, and hedonic equilibrium pricing suggests that the information was not

previously known or fully incorporated into market outcomes.

5Despite the limitations of identification in previous research, there have been several notable papers that
have highlighted the possibility that adaptation can be an important mechanism for reducing the marginal
costs of climate change (Lemoine, 2018; Biardeau et al., 2020; Bento et al., 2020; Dundas and von Haefen, 2020;
Aragón, Oteiza and Rud, 2021; Cruz Álvarez and Rossi-Hansberg, 2021; Davis et al., 2021; Heutel, Miller and
Molitor, 2021; Kahn et al., 2021; Carleton et al., 2022). While there are non-experimental papers suggesting
that flood maps (Hino and Burke, 2021; Weill, 2022) or flood disclosure requirements (Lee, 2021) may cause a
change in property prices, these maps and disclosures are based on inferior FEMA maps that exclude new flood-
risk science. We would not find treatment effects in our experiment if previous information sets were complete,
available, and accessible, hence our new news interpretation.

6There are a range of studies suggesting weak or partial capitalization of flood risk into property values (Har-
rison, T. Smersh and Schwartz, 2001; Hallstrom and Smith, 2005; Bin et al., 2008; Daniel, Florax and Rietveld,
2009; Kousky, 2010; McKenzie and Levendis, 2010; Bin and Landry, 2013; Beltrán, Maddison and Elliott, 2018;
Ortega and Tas.pınar, 2018; Bernstein, Gustafson and Lewis, 2019; Eichholtz, Steiner and Yönder, 2019; Murfin
and Spiegel, 2020; Baldauf, Garlappi and Yannelis, 2020; Gibson and Mullins, 2020; Keys and Mulder, 2020;
Giglio et al., 2021; Hino and Burke, 2021). Some other studies often fail to detect significant negative effects, or
may even find positive premiums (Bin and Kruse, 2006; Atreya and Czajkowski, 2019). The size of these cap-
italization effects partially depends on the mortgage lender and insurer behavior (Gallagher, 2014; Garbarino
and Guin, 2021; Ouazad and Kahn, 2022), but also on the research design as it is unlikely that these studies
thoroughly control for unobservables (Kurlat and Stroebel, 2015; Piazzesi, Schneider and Stroebel, 2020; Giglio,
Kelly and Stroebel, 2021).

7Recent research has documented that the majority of households in high risk flood zones do not even have
basic flooding insurance (Kousky et al., 2020; Wagner, 2022) and that many people are not flood insurance
literate and do not understand their level of risk (Kousky and Netusil, 2023). Moreover, any adaptation mea-
sures that are taken, such as home elevation, is under-invested because benefits accrue too far into the future
(Hovekamp and Wagner, 2023).
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Our findings align with the growing body of literature that shows individuals have dif-

ficulty evaluating probabilities of infrequent hazards and may lack adequate information

about risk (Slovic, 1987; Siegrist and Gutscher, 2006; Botzen, Aerts and van den Bergh, 2009;

Bubeck, Botzen and Aerts, 2012; Wachinger et al., 2013; Mulder, 2021; Bakkensen and Bar-

rage, 2022; Wagner, 2022). It also contributes to the understanding that incomplete infor-

mation in hedonic models can hinder the estimation of the value of non-market amenities

(Barwick et al., 2019; Bergman, Chan and Kapor, 2020; Ainsworth et al., 2023; Gao, Song and

Timmins, 2023). Our research contributes to the field by providing empirical evidence on

the role of readily-available, accurate flood risk information in shaping consumer behavior

and market outcomes. In so doing, we shed light on the limitations of individuals’ risk per-

ception, and emphasize the need for improved information dissemination to facilitate better

decision-making in the housing market.

Our research is also related to important papers that have estimated the adaptation costs of

coastal flooding and storms (Balboni, 2019; Hong, Wang and Yang, 2020; Desmet et al., 2021;

Fried, 2022; Bilal and Rossi-Hansberg, 2023). Our paper complements their work by adopting

a microeconomic perspective focused on the assignment of heterogeneous home buyers to

different homes. This matching process is more likely to feature less ex-post regret if home

buyers are better informed about the emerging risks that specific homes face. Since a home

purchase is typically considered a longer-term investment, expectations of emerging risks

should play a key role in the search process. The results from our natural field experiment

suggest that anticipating such risks is important for assessing the general equilibrium welfare

effect of increased flooding, consistent with the other work on the climate change adaptation

benefits of better weather forecasts (Molina and Rudik, 2022; Downey, Lind and Shrader,

2023; Shrader, Bakkensen and Lemoine, 2023).

First Street Foundation’s flood risk scores, readily accessible and comparable on the Redfin

app, nudged home buyers to update their beliefs about each property’s emerging risks. Such

updates to an individual’s expectations affect their investment decisions. In this sense, our

paper builds on an emerging nudging literature that seeks to improve the investment deci-

sions made by those assigned to a treatment group. For example, Chetty, Hendren and Katz

(2016), Chetty and Hendren (2018), and Bergman et al. (2019) attempt to steer people to

neighborhoods, based on a model of upward mobility for helping such individuals antici-

pate what their child will gain from growing up there. Bottan and Perez-Truglia (2020) has

a model to illustrate what individuals could gain from selling their homes. The FSF flood

risk information in our paper should be thought of as a similar model-based information
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intervention.8

We also build on the literature of housing search. There are not many papers that analyze

the search behavior of home buyers because it is usually difficult to observe home buyers’

behavior or ascertain the data from search companies. The only paper coming close to the

level of data we have is Piazzesi, Schneider and Stroebel (2020).9 They have data from tru-

lia.com, where they examine 43,000 email alerts from only one metro area in the U.S. (Bay

Area) and match their data with a heterogeneous housing search model. However, we have

data from the whole of the U.S., we have all of the customers’ search, engagement, and offer

data (400 million properties searched), we have this data matched to the MLS, and we have

randomized information on an important academic and policy-relevant attribute: flood risk.

We also then match the experiment to different search populations to test the mechanism of

behavior change: “new news” on flood risk.

Our field experiment shows that a new piece of information on climate risk allows investors

to update their beliefs and vote with their feet (Banzhaf and Walsh, 2008). Our treatment

effect estimates indicate the conditional average response to this “new news.” If this informa-

tion is already known, or if it is ignored, then we should see no treatment effect. Thus, we

view our field experiment estimates to be important because they convey how home investors

respond to low cost yet salient information about emerging risks.10 We view our research

as a first step in an ambitious research agenda that examines the welfare effects of societal

learning about emerging climate risks.

The paper is structured as follows: Section 2 describes the background and the natural field

experiment, and section 3 states the data used and the empirical design. Section 4 analyzes

the field experiment, section 5 analyzes the impact of the information on the housing market,

and finally, section 6 concludes.

8Our main results are also consistent with other papers showing that it is possible to change location choices
and welfare using information in a field experiment (Bergman, Chan and Kapor, 2020; Ainsworth et al., 2023).
These two papers focus on school choice and find that even in the presence of public information on school
value add, consumers still have biased beliefs on location choice. In our case of flooding, there was no public
information on flooding at the property level in the U.S., so our consumers were not necessarily biased given
their information sets. What we estimate is the effect of new flooding news on location choice.

9There are other papers that use Google search/trends data, but they do not observe individuals and their
search strategies (Wu and Brynjolfsson, 2015; Møller et al., 2023), or a set of selected consumers are surveyed
(Genesove and Han, 2012).

10Since the field experiment was completed, the flood risk information has been rolled out to all consumers
on Redfin and other online property marketplaces (e.g., Zillow, Realtor). Redfin also provides this information
on other risks that have been known to have incomplete markets, such as wildfire risk (Baylis, Boomhower et al.,
2023; Boomhower, Fowlie and Plantinga, 2023).
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2 The Field Experiment

We present evidence of a nationwide field experiment randomized at the individual (i.e.,

platform user) level. It is a natural field experiment since users were not aware of the ex-

periment and there was no selection into the experiment (Harrison and List, 2004). The field

experiment was conducted through one of the largest full-service real estate brokerages in the

United States, i.e., Redfin, that had more than 47 million average monthly users in 2021.11

Redfin acts as a full-service real estate brokerage that pairs agents with people to sell their

current homes or buy new ones. We will first provide the background to the treatment and

then describe the design of the field experiment.

2.1 Background

The non-profit organization First Street Foundation (FSF) created the Flood Factor Score as

a tool to predict a property’s current and future risk of flooding. It is currently selling its

prediction model’s forecasts to several agencies in the U.S. government and to the GSEs, but

also now makes the flood risk data for every U.S. residential property freely and publicly

available.12

FSF models flooding from fluvial, pluvial, and coastal sources (tidal and surge) while also

integrating current and future environmental considerations, all at a property level (Bates

et al., 2021). Notably, the model provides the ability to capture flooding in areas of the coun-

try that do not have a gauge, are under-gauged, or are outside of typical flood risk models’

purview. The method used to create that flood risk relies on a novel Regionalized Flood Fre-

quency Analysis (RFFA) approach that makes use of traditional statistical propensity match-

ing techniques to model the characteristics of ungauged streams, river reaches, and country

with known gauged characteristics to produce likely flow parameters with high confidence.

Additionally, a core component of the model is the ability to also include pluvial (rainfall)

events as probabilistic flood risks with depths and associated return periods (First Street

11The actual start date of the experiment was October 1st, 2020. At that point in time, the macroeconomic
environment was between the COVID-19 peaks and a stable economy.

12FSF has received funding from donors such as 2040 Foundation, Hightide, and Grantham.

11

https://investors.redfin.com/news-releases/news-release-details/redfin-reports-fourth-quarter-and-full-year-2021-financial
https://firststreet.org/


Foundation, 2020).13

The Flood Factor Score is a 1 to 10 score presented as (a) minimal (1), (b) minor (2), (c)

moderate (3-4), (d) major (5-6), (e) severe (7-8), and (f) extreme (9-10) flood risk. It noti-

fies the individual about a property’s potential of risk flooding at least once over a life of a

30-year mortgage signed today. The flood risk score is two-dimensional, where a high flood

score implies that a property has a larger likelihood and severity of flooding over the next 30

years (see Figure A1). The score incorporates the current and future risk of all major types of

flooding (and their combinations), including high-intensity rainfall, overflowing rivers and

streams, high tides, and coastal storm surges. The score can vary considerably for properties

in the same neighborhood due to local flood dynamics, such as property differences in ele-

vation, proximity to water bodies, and proximity to flood risk reduction projects (First Street

Foundation, 2020). This information is the most objective the individual can receive on the

flood risk of a property.14

2.2 The Design of the Field Experiment

In this field experiment, Redfin randomly assigned new and existing Redfin users to either

the treatment group, in which they were shown a Flood Factor Score section on every on-the-

market and off-the-market property listing page they visited, or to a control group without a

Flood Score section. Figure 1 presents the experiment experience using a mobile device for

both the control and treatment groups within a property page that has a flood score of 6 (i.e.,

major flood risk).15 The control group (Figure 1(a)) did not see the flood risk section while

scrolling a property page, whereas the treatment group (Figure 1(b)) had full access to it.16

13An open science process has led to the creation of this FSF model. Many scientists have contributed to the
model, and they are part of an iterative scientific process refining the model and testing its accuracy. The risk
scores are reported to the public without confidence intervals. The scientific community continues to debate
the merits of educating the public about current and future risks without overloading the public with nuances
regarding model uncertainty regarding the veracity of key assumptions (Cooper et al., 2022). Any predictive
model of flood risk will induce both Type 1 and Type 2 errors. There will be some locations where the model
will over-state the risk and there will be other areas where the model will under-state the true risk (Bates, 2023),
although the model attempts to reduce false positives by using the conservative climate scenario SSP2-45 instead
of the extreme scenario of SSP5-85.

14We do not test whether the individuals in our experiment fully update their beliefs or the other mechanisms
as to why this information might work in changing behavior.

15Figure A2 presents the experiment experience for treated users using a desktop. As another example,
Figure A3 shows the visual experience using a mobile device for a property page with a flood score of 4 (i.e.,
moderate flood risk)

16Figure A4 shows the color and labels Redfin used to show a property’s flood score within the flood risk
section, ranging from a flood score of 1 to 10.
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Figure 1: The Visual Experience for the Treatment Group and the Control Groups

(a) Control (b) Treatment

The flood risk section was placed after the property’s public facts and neighborhood in-

formation. When a user clicked on the flood risk section, they viewed an “about flood risk”

paragraph; the colored (i.e., from light green to dark red depending on the risk) Flood Factor

Score; the flood likelihood of the property over time (i.e., 1, 5, 10, 15, 20, 25, and 30 years);17

the home’s FEMA official flood risk zone if available, and flood insurance information. We can

test whether the FEMA flood risk zones have an impact on treated individuals in the study

since some individuals searched for properties within a FEMA flood zone before the experi-

ment began. We find no major differences in treatment effects for those searching in and out

of a FEMA flood zone.

The Redfin users in the treatment group always see the main flood risk number as they

scroll down the page for every property that they search for, but they can ignore the more

in-depth flood risk probabilities over time by not clicking on the tab (that unfolds the full

30 year flood risk information). They choose their own intensity of engagement with the

provided information. Redfin did not nudge the home searchers to focus on this information

or advertise the new information feature to consumers (they had to organically discover it on

their own with no help in learning about the flood risk). It is included as an additional piece

of information about the home. Throughout the searcher’s web page experience, we observe

their full organic search activity (for all those in both treatment and control groups). The

flood risk information covered 99.9% of the U.S. housing market (First Street Foundation,

2020).

17Research by Keller, Siegrist and Gutscher (2006) suggests that providing flood risk probabilities over 30
years as opposed to one year helps individuals more make informed decisions.
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2.3 Demand Side Hypotheses Through the Lens of a Hedonic Housing Assignment Model

A parametric closed form hedonic assignment model allows us to concisely state our paper’s

core hypotheses. At any point in time, there is a hedonic equilibrium real estate pricing

gradient that maps each home’s attributes into a market price. In equilibrium, every home is

occupied and given market prices nobody wants to trade homes.

To simplify the exposition, we model climate change as a one time change in the distri-

bution of risk across geographic locations. In our model, there is a "before" and an "after"

period. The assumption that "climate change" is a one time surprise allows us to sidestep

the modeling challenge of incorporating expectations into a closed form hedonic assignment

model.18

If climate change increases the risk that a given home faces and if this risk is not common

knowledge, then the buyer may subsequently regret her investment. If climate increases

the risk that different homes face and if this knowledge is common knowledge, then in the

hedonic equilibrium those who choose to live in riskier homes will be compensated through

lower prices. In our empirical work below, only a subset of buyers are informed about the

new risks. Below, we sketch out the implications of all three cases.

To simplify the algebra below, we focus on one attribute of housing namely flood safety.

We assume that consumers purchase one property and the numeraire good X. Properties are

assumed to vary only with respect to the local flood safety level F.19 Consumers only differ

by their preference for flood safety (α). It is assumed to be normally distributed with mean ᾱ

and standard deviation σα.

We consider the case when the supply of properties is exogenous, and their perceived safety

follows the distribution N (f̄ ,σ2
f ). A Consumer’s bid depends on the safety of the property,

denoted by h. Specifically, h = f −f̄
σf

, where f is the perceived level of safety. Due to the

transformation, h follows a standard normal distribution. . Consumers do not have full

information on f̄ and σ2
f . Their perceived safety of each property depends on the actual

18We recognize that different people will have different baseline beliefs about emerging climate risks. Some
may embrace the FEMA maps as delineating the risk. Others may rely on their past experience in the areas
they have lived. Some may be skeptical about whether the risk of extreme events is rising. Those who are most
surprised by the "new news" of the FSF nudge and those who become aware of now "known unknowns" are likely
to value this forecast information the most. Future hedonic research can follow Severen, Costello and Deschenes
(2018) by integrating the “forward-looking Ricardian approach” into closed form hedonic assignment models.

19We assume higher flood risk lowers utility but do not parse out the reasons as to why it causes a loss.
There are at least five reasons why higher flood risk could cause a utility loss: (1) people think they will die
or be physically hurt in the flood; (2) people think that flooding will destroy their home; (3) people think that
flood areas will experience rising insurance prices over time; (4) people think they will lose time and resources
cleaning up after flood after flood; (5) people think they will spend more money offsetting flood risk to reduce
flood damage in high FSF score areas.
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safety of the property and their belief on climate change (f̄ and σ2
f ).

Following the closed form hedonic models presented in Epple (1987) and Giannias (1999),

we assume consumers’ utility function takes the following form:

U (h,x,α) = ϵ+γ1h+γ2αh+
1
2
ρh2 +ωxh+θx (1)

and the budget constraint is given by x + P (h) ≤ I , where P (h) = π0 +π1h is the equilibrium

price function. Then the utility maximization problem can be written as:

maxhU (h,I − P (h),α) (2)

We substitute P (h) into the utility function and the first order condition is given by:

(γ1 +γ2α +ωI −ωπ0 −θπ1) + (ρ − 2ωπ1)h = 0 (3)

The demand for safety is h = (γ1+γ2α+ωI−ωπ0−θπ1)
(2ωπ1−ρ) . Because h is linear in α, which is nor-

mally distributed, the aggregate demand for safety is also normally distributed. Its mean is
(γ1+γ2ᾱ+ωI−ωπ0−θπ1)

(2ωπ1−ρ) and its variance is γ2
2σ

2
α

(2ωπ1−ρ)2 .

In equilibrium, aggregate demand will equal aggregate supply. This is equivalent to:

γ1 +γ2ᾱ +ωI −ωπ0 −θπ1

2ωπ1 − ρ
= 0 (4)

γ2σα
2ωπ1 − ρ

= 1 (5)

From the above equations, we know the gradient of the hedonic function π1 = 1
2ω (γ2σα +ρ)

and the intercept π0 = 1
ω (γ1 + γ2ᾱ + ωI − θ

2ω (γ2σα + ρ). When we transform the unit to the

actual safety level, the hedonic pricing function is given by:

P0(f ) = (π0 −
π1f̄

σ1
) +

π1

σf
f (6)

Proposition 1: Due to climate change, the distribution of flood safety shifts such that; f̄

decreases to f̄ ′ and σ2
f increases to σ ′2f . When consumers have full information about this

new distribution, properties whose safety has declined will lose value and vice-versa.20

20To simplify the discussion, we assume that climate change leads to a one time shift in the distribution of
safety.
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Consumers reevaluate the safety level of each property based on their new information on

climate change. Denote the perceived safety level with and without the new information by

h0 and h1, respectively. The new hedonic price function will have a smaller gradient (replace

σf by σ ′f in equation (6)) and a larger intercept (replace f̄ by f̄ ′). Denote this new hedonic

function by P1(f ) = π′0 +π′1f . Denote the relative safety level with and without climate change

by h0 and h1, respectively. Then we calculate the price difference of each property with a given

safety level f0 at the new versus the old equilibrium:

P1(f0)− P0(f0) =
(
π1f̄

σf
−
π1f̄ ′

σf ′

)
−
(
π1

σf
− π1

σf ′

)
f0 =

f0 − f̄ ′

σf ′
−
f0 − f̄
σf

≡ h1 − h0 (7)

Consumers reevaluate the safety level of each property based on their new information on

climate change. The above equation shows that for properties whose safety level is previ-

ously underestimated (h0 < h1), their prices at the new equilibrium are higher. In contrast,

consumers are willing to pay less for properties that are revealed to be riskier due to climate

change.

Now suppose only k% of the population (randomly selected) know that the true distri-

bution of safety is N (f̄ ′,σ ′2f ). Consumers’ utility depends on the perceived safety level and

the price of the property. For those without the new information on climate change, their

perceived safety is h0 despite the actual safety level h1. These consumers face the follow-

ing maximization problem, where P2 denotes the price equilibrium function in this economy

without full information:

Maxh0
U (h0, I − P2(h1),α) (8)

while consumers with updated information solve the following problem:

Maxh1
U (h1, I − P2(h1),α) (9)

Note that from the definition of h1 and h0, we can rewrite h0 =
h1σ

′
f +f̄ ′−f̄
σf

, which would allow

us to solve the first case.

Proposition 2: Consider two consumers with the same risk preference, and only consumer

A knows the true climate change induced distribution of the safety of properties. Then con-

sumer A bids higher for properties that are safer under climate change and bids lower for the

riskier properties.

Suppose they both bid for a property with safety level f0, whose relative safety is h0 and
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h1 respectively before and after climate change. Assume h1 > h0 (i.e., a safer property under

climate change). Their bids can be described as the maximum δ that satisfies the following:

U (h,I − δ,α) ≥U0 (10)

where U0 is a given utility level. By substitution, the bid function can be written as:

δ ≤
ϵ+γ1h+γ2αh+ 1

2ρh
2 +ωIh+θI

ωIh+θ
(11)

The bid increase as the perceived safety h increases (given that all the coefficients are as-

sumed to be positive). When h1 > h0, consumer A would bid higher for the property, given

that α is the same for both consumers.21

Note that if nobody has updated their information (k = 0), the above equation is the same

as the baseline case in equation (6). If everyone has updated their information (k = 1), this

equation is the same as the case when everyone gets the information simultaneously (i.e.

substitute the new mean and variance into equation (6)). As k increases, the hedonic price

gradient moves gradually from the baseline case to the full information case (see Proposition

1).

21The maximization problems in equations (8) and (9) can be solved by finding the first order conditions.
From the first order conditions, the demand for safety for the two groups of consumers can be written as, where
π′′1 and π′′0 are coefficients of P2(h):

h0 =
(γ1 +γ2α)

σ ′f
σf

+ (
ρσ ′f
σ2
f
− ωπ′′1

σf
)(f̄ ′ − f̄ ) +ω(I −π′′0 )

σ ′f
σf
−θπ′′1

2ωπ′′1
σ ′f
σf
− ρ(

σ ′f
σf

)2
(12)

h1 =
γ1 +γ2α +ωI −ωπ′′0 −θπ

′′
1

2ωπ′′1 − ρ
(13)

Since both h0 and h1 are linear in α are normally distributed, the aggregate demand is (1− k)h0 + kh1, which
is thus also normal. Its mean is (1 − k)E[h0] + kE[h1] and its variance is (1 − k)2V ar(h0) + k2V ar(h1), assuming
the aggregate demand from the two groups are independent. At equilibrium, aggregate demand should equal
aggregate supply of relative safety h1, which follows a standard normal distribution. Thus, (1−k)h0 +kh1 should
have a mean 0 and a variance 1. We can solve for π′′1 from the following equation and plug it back to solve for
π′′0 :

(1− k)2 ∗
γ2σa

2ωπ′′1 − ρ
σ ′f
σf

+ k2 ∗
γ2σa

2ωπ′′1 − ρ
= 1 (14)

Once we find π′′1 and π′′0 , we can transform in the same way as before to obtain the hedonic pricing gradient
as a function of the absolute safety level:

P (f ) =

π′′0 − π′′1 f̄
′

σ ′f

+
π′′1
σ ′1

f (15)
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Proposition 3: Consumers with a greater preference for safety have a higher willingness to

pay for new information.

For a given consumer, we have shown their demand for safety in both cases when the new

information is available. Suppose the utility-maximizing safety level is h1 and h0 when this

consumer knows or does not know the information respectably. The loss in consumer surplus

(in dollar value) can be found by solving for ∆x in the following equation:

U (h0, I − P2(h0) +∆x,α) = U (h1, I − P1(h1) +∆x,α) (16)

For simplicity, we consider the case that only the mean of the supply of safety decreases,

and the standard deviation does not change. By substituting and rearranging, ∆x can be

shown to be a decreasing function of h0 and thus an increasing function of α (under the

assumption that the coefficients in the utility function are positive, including γ2).

Our three propositions suggest that safety is currently undervalued due to a lack of infor-

mation on risk, but once that information on risk becomes available (i.e., new news) people

act on it and value it, and those with a higher preference for safety will act on it even more.

This “new news” hypothesis allows us to be a bit more precise about who is expected to

change their behavior as a result of this information. This hypothesis predicts that the fol-

lowing consumers will be affected by the new information:

(a) consumers searching for properties that are in-land (i.e., not coastal) but have high flood

risk defined by FSF;

(b) consumers searching for properties that are in-land (i.e., not coastal) but close to a wa-

terfront (e.g., river, lake) and have high flood risk defined by FSF; and

(c) consumers searching for properties that are not defined risky by FEMA by are on the

coast.

For populations (a), (b) and (c), the information will revise their flood risk beliefs upward

and will search and buy lower flood risk homes, as per propositions 1 and 2. We believe

that the central tenet and test of this new news hypothesis is the following two groups of

consumers will be less affected by the FSF flood risk information:

(d) consumers searching for properties in already FEMA designated as high risk; and

(e) consumers searching for properties with zero to low risk.
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Population (d) should already be informed about the flood risks because of current informa-

tion dissemination and because you need flood insurance to obtain a mortgage in these FEMA

areas.22 These are the predictions for the new news hypothesis on search and offers.

Based on our propositions and predictions, property prices will change their gradient w.r.t.

flood risk. The prices on FSF high flood risk but FEMA low/no risk properties will decrease

through a lack of demand (either a lower willingness to pay by consumers or a lack of offers

overall that will reduce competition and reduce prices) and that the prices on FSF low risk

properties will go up because of an increase in demand (either a higher willingness to pay by

consumers or an increase in competition for the property that will drive up prices).

2.4 Implementation of the Field Experiment

The nationwide natural experiment enrolled 17,455,506 unique users (8,730,329 users in the

treatment group and 8,725,177 in the control arm) for 12 weeks between October 12th, 2020

and January 3rd, 2021.23 The number of unique users in the field experiment represented

approximately 41% of average monthly unique Redfin users in 2020 (Redfin, 2020). The

experiment enrolled both new users (5,827,406 in the control group and 5,832,461 in the

treatment group) browsing the website and app and existing ones (2,877,250 in the control

arm and 2,876,760 in the treatment arm) that have been browsing the website and app before

entering to an experiment arm. Of these individuals, we have 1,328,785 (664,352 in the con-

trol arm and 664,433 in the treatment arm) individuals who are registered Redfin users. We

focus on this registered sample because they have a higher likelihood of actually purchasing

a home and we observe their behavior for a longer time frame.24

2.4.1 Randomization Architecture

Redfin sets up randomized experiments by creating independent cohorts of equal size. Its

cohort assignment is random, independent, and sticky. The randomness element ensures that

users have an equal probability of being assigned to any cohort. The independence criterion

ensures that a user’s cohort assignment in one experiment does not influence their assignment

in subsequent experiments. Stickiness guarantees that once a user has been allocated to a

specific cohort, they remain within that group throughout the experiment.

Redfin assigns users to treatment and control cohorts through a hashing algorithm, con-

22We recognize that there still might not be full information from the FEMA high flood risk ratings, but there
should be less of an effect for this population than populations (a) to (c).

23We had full access to the data from Redfin for one week before the first day of the experiment, starting on
October 6th.

24Redfin uses registered users to understand the long-term impact of their experiments.
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sidering both the unique experiment ID and the unique user ID (i.e., an HTTP cookie). The

algorithm begins by first hashing the experiment ID using the SHA-1 algorithm. Following

this, the hashed experiment ID is combined with the user’s unique ID, which is then hashed

via the MD5 algorithm. The assignment of users to a specific cohort is then conducted by

dividing the MD5 hashed identifier by the total number of cohorts (two in our case) and us-

ing the remainder from this operation to determine the user’s assignment (i.e., treatment and

control).

Given the cohort assignment, Redfin employs a system known as “Bouncer flags” to further

control the enrollment of users into experiments. Bouncer flags can be activated for any

proportion of public users (approximately 40% for our experiment), and the users under

these flags are designated as enrolled users. Whenever a user browses Redfin, the bouncer

flag first identifies a user’s cohort and quickly decides the specific experience a user will view

while browsing listings. This stage ensures the stickiness of users within each experiment.

Individuals entered the experiment sequentially through time (see Figure 2) by first check-

ing whether an individual’s HTTP cookie (i.e., the user identifier) has been assigned to the

experiment and, if not, randomly assigning the user to a treatment arm until the target num-

ber of daily experiment assignments was reached. A variable number of individuals entered

the experiment each day; on average, 103,902 individuals per group entered each day. Once

an individual entered the experiment, they remained in the same group until the end of the

experiment. After the experiment finished, every individual had access to the Flood Fac-

tor section for each property they viewed. See Figure A5 for the whole 17.5 million Redfin

customers entering the experiment.

Figure 2: Number of Registered Users Entering the Experiment

(a) By Day (b) Cumulative
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3 Data and Empirical Strategy

In this section, we describe the data and its sources, the estimation strategy, and then show

the randomization balance tests.

3.1 Data

The data sets used in this paper come from multiple sources, arising either from browsing,

touring, and bidding data generated by Redfin, multiple listing service and county records,

or publicly available data sets, such as census estimates. The web data-generating process

was the following.25 Every time an individual clicked on a home, the website collected the

following information about the individual’s home session activity.

Property views data. Once a user clicks and opens a new property, a single data point was

generated with the following columns: the user’s anonymized unique ID and an anonymized

login ID;26 the timestamp when the property view began; whether the action was conducted

by a bot; whether the action was conducted via a cellphone or a desktop; the zip code and

its accuracy (in kms.) from where the user conducted the search; the flood risk score of the

property; the list price of the property at that point in time; the number of bedrooms and

bathrooms of the property; the approximate square feet of the property; the zip code where

the property is located; whether the property is new construction; whether the property is a

short sale;27 the year when the property was built; and the walking, transit, and bike scores

where the property is located.28 We organize this dataset as a panel where our observation

unit is the user at the day level.

Engagement data. This data section provides information about the actions a user con-

ducted within a property page. That is, whenever a user scrolled or clicked a feature within

a property page, a single data point was generated with the following information: the user’s

anonymized unique ID and an anonymized login ID; the timestamp of the action; whether

the action was conducted by a bot; whether the action was conducted via a cellphone or a

desktop; and the engaged action conducted (e.g., clicked on the pictures, “favorited” a house,

25An individual accessing the website through a computer, phone, or tablet can browse property listings on
the market and the entire stock of homes.

26The “unique ID” follows each individual across time, and it is created the first time a browser visits our
partner’s webpage. The “login ID” is created when an individual decides to register to the platform.

27A short sale is a sale that takes place when a financially distressed homeowner sells their property for less
than the amount due on the mortgage. The buyer of the property is a third party (not the bank), and all proceeds
from the sale go to the lender.

28These scores are supplied by Walk Score, and they range from 0 - 100. Walk Score measures the walkability
of any address, Transit Score measures access to public transit, and Bike Score measures whether a location is
good for biking. A higher score represents a better measure for each category.
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conducted a tour, etc.). This data also contains the seconds spent per session, the number of

sessions, and the number of total and unique listings views, among other variables. In this

sense, we have multiple single data points for every property view that a user conducted.

As mentioned above, we organize this dataset as a panel where our observation unit is the

individual at the day level.

Touring, bidding, and closing data. A unique feature of our study is that we can follow

individuals through each step of the home buying experience: the search; the property tour;

the bid; and the closing process for a property. A single data point is generated every time

a user tours a house, places a bid, or closes a deal. These observations contain the user’s

anonymized unique ID and an anonymized login ID; the day on which action was done (i.e.,

either touring the property, placing an offer to a property, or closing the deal); the property

ID that allows knowing characteristics of the property; the offer price and characteristics of

the offer and close; and characteristics of the tour. We organize this dataset as a panel where

our observation unit is the user at the touring, bidding, or closing level.

Multiple Listings Service Data. Multiple Listing Service data comes from Redfin and cov-

ers those regions where the brokerage operates.29. Each listing contains unique listing and

property identifiers, sale date, sale price, listing added and end date, listing price, number

of bedrooms, year built of the property, approximate square feet of the property, number of

bedrooms, whether the listing is new construction, geographic characteristics of the property,

among other variables.

3.2 The Empirical Strategy

Our objective is to estimate whether the randomized disclosure of flood risk information

about a property affects the behavior of individuals throughout the home buying search pro-

cess. To do this, we rely on three estimators.

Average Treatment Effect (ATE) across post-treatment time points. We estimate the ATE

of disclosing a property’s flood risk information on the behavior of individuals throughout

the home buying process. In our dataset, our unit of observation is the user at the day level.

Users are organized as a panel, where every row of the data set is the average value of a user

in a given day. We implement an estimator with the following functional form:

yit = β0 + β1Iit + β2Di + β3 (Iit ∗Di) +uit (17)

Where, yit is the average outcome of individual, i, during day, t. We will focus on the

29Redfin currently operates in every state in the United States except for North Dakota. For a complete list of
the local markets where Redfin operates, see the following link.
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flood risk score of the property as the outcome variable. Iit is an indicator that takes 1 if the

observation occurs after individual, i, was first treated. The binary treatment indicator for

individual, i, is D ∈ {0;1}. This estimator takes the form of a classic difference-in-differences

to take advantage of the experiment design and deal with a potential regression to the mean

situation commonly observed in longitudinal experiments (Twisk et al., 2018). β3 in equation

17 provides an unbiased estimate of the ATE and randomization provides internal validity of

the estimate. Standard errors are clustered at the individual level. This estimate will demon-

strate the impact of the flood score information across all individuals in the experiment.

Conditional Average Treatment Effect (CATE) across post-treatment time points. We use

a similar estimator as in 17 with an interaction term on an observed covariate, X ∈ R, in the

following way:

yit = β0 + β1 (Iit ∗Xi) + β2 (Di ∗Xi) + β3 (Iit ∗Di ∗Xi) +uit (18)

Where, Xi , represents the covariate of individual, i. For this estimator, we focus our atten-

tion on using the baseline average flood risk of all the houses viewed before the experiment

begins for individual, i, as a covariate, Xi . This estimator differs from equation (17) above,

since the information might have a very different impact across the different types of flood

risk that an individual is exposed to. This specification is going to be our main specification to

understand how the effects of the information impact people who are searching and buying

low, medium, and high risk flood properties, and to test our new news hypothesis.

Average Treatment Effect at any post-treatment time point. We use the following estima-

tor to obtain an estimate of the average treatment effect of disclosing a property’s flood risk

information on the behavior of individuals at any point throughout the home buying process,

and it allows us to understand whether treated users kept adjusting their search patterns

as time passed. Relative to the estimator of equation 17, this estimator provides a flexible,

dynamic functional form across time, commonly known as a difference-in-differences event-

time study:

yit = β0 +
∑
k,−1

βk (Tik ·Di) +uit (19)

Where, Tik, is an indicator variable for individual, i, in period, k , 1, since the treatment

was implemented to that specific individual. This indicator variable remains zero for all the

control units, and as before, D ∈ {0;1}, is a binary treatment indicator for individual, i. The

coefficient that estimates the estimand during period, t, in equation 19 is βk. To provide fur-

ther evidence that randomization ensured a balance between the treatment and control units,

we conduct a joint test of the null hypothesis:
∑

t<T0
βk = 0. Standard errors are clustered at
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the individual level.

3.3 Pre-Experiment Balance

We check the balance in the observable covariates between treatment and control to ensure

the randomization worked. Each column of tables A3 and A4 provides estimates of regress-

ing outcomes of interest before the experiment began against a treatment dummy variable

for registered users. We cannot statistically reject the null hypothesis for the coefficient of

interest for every regression, providing evidence that randomization worked by creating bal-

anced treatment and control groups before the experiment began. Figures A6 (a) to (f) pro-

vide estimates of the event-time study estimator for individuals at any pre-treatment time

point to estimate differences in pre-trends. Visually, any pre-treatment confidence interval

estimates lie outside the null hypothesis. For every regression, one cannot reject the joint

null hypothesis, providing additional evidence that randomization worked and that we have

parallel pre-trends. Tables A5 to A10 present balancing tests in the observable covariates be-

tween treatment and control stratified by average flood risk category (i.e., low, medium, and

high) at baseline. We cannot reject the null between treated and control users at baseline.

Finally, Table A12 presents the number of registered users within each flood risk category be-

fore the experiment began, stratified by treatment assignment for the registered individuals.

One cannot reject that both distributions are different (Pearson χ2(5) = 5.1, p-value = 0.398),

suggesting a balance between treatment and control within flood risk categories.

Registered vs. Non-Registered Users. Given that most of our results have as sample

users that “registered” on the website, tables A13 and A14 present the results of regress-

ing outcomes of interest at baseline against a “registered” dummy variable. Registered and

non-registered users have different browsing patterns. On average, registered users browsed

31% more properties, and their zip code concentration index was 19%–i.e., registered users

concentrated their browsing patterns in a higher number of zip codes. Regarding the charac-

teristics of the houses, registered users browsed properties with 0.9% fewer bedrooms, 0.3%

fewer bathrooms, 0.7% fewer square feet, 0.1% lower year of built, 6.3% higher flood scores,

and 6.3% higher list prices.30 They also had a 0.2% less probability of browsing a new con-

struction and a 0.3% less probability of browsing short sales. Finally, they browsed properties

with 4.2% more, 1.1% less, and 2.7% more walk, transit, and bike scores, respectively.

30The states of California (27.11% of all the registered users with pre-experiment information), Washington
(9.07%), Illinois (7.63%), Maryland (5.25%), New York (5.19%), Massachusetts (4.49%), Texas (3.80%), Virginia
(3.04%), Florida (3.52%), and Pennsylvania (3.85%) had the top 10 highest number of registered users partici-
pating in our experiment. The states of Florida (22.62%), California (13.01%), New York (8.98%), Washington
(6.95%), and Illinois (4.94%) had the highest percentage of registered users browsing, on average, extremely
risky properties pre-experiment.
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Given that registered users are more typical of the average individual who is going to buy

properties in the market in 2020, we will conduct the empirical analysis on search, engage-

ment, and bidding with registered individuals in the experiment. We will leverage the whole

dataset to examine general equilibrium effects on the housing market.

4 Results

In this section, we provide evidence of how the randomized treatment flood risk information

affected: (i) home search behavior over time (4.1); (ii) engagement with the homes (4.2); and

(iii) tours, offers, and closes (4.3). We will then analyze whether the treatment information

had heterogeneous effects (4.4).

4.1 Home Search Behavior Dynamics

In searching for a home using the Redfin Platform, the buyer knows their preferences and

their budget constraint. The search process allows the searcher to learn about the heteroge-

neous differentiated products available for purchase. While it is easy to quickly learn an area’s

day-to-day weather conditions, it has not been easy to acquire information about property-

specific environmental risks. As the cost of acquiring such information is effectively lowered

to zero for a randomized subset of Redfin users, we study how they respond to this access to

information.

First, we estimate equation (17) for the whole sample, not segmenting by flood risk. Tables

A15 (i.e., for all Redfin users) and A17 (i.e., for registered Redfin users) present the average

treatment effects of having access to the flood factor on the number of properties browsed

per day (column 1), the average characteristics of the browsed properties per day (columns 2

- 5), the average flood score of the properties browsed per day (column 6), and the Herfind-

ahl–Hirschman zip code location index (HHI) of a user by day (column 7). On average, the

treatment did not change the number of properties a user browsed per day, nor the average

number of bathrooms, square feet, or list price of the properties browsed per day. However,

users with access to the flood score browsed properties with fewer bedrooms. They also geo-

graphically expanded their searches by increasing the number of zip codes searched per day

relative to the control.

When stratifying users by their average flood score of all the houses viewed before the

experiment began (by estimating the CATE in equation (18)), treated users registered on the

platform had a meaningful and significant change in their search behavior with a monotonic

decrease in how flood risky the user’s searches were before the experiment began. Figure 3
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presents estimates of β3 from equation (18) by baseline average flood score search category.

The largest change was among those browsing, on average, high (i.e., severe or extreme) flood

risky properties pre-experiment. That is, treated registered users in this category browsed

properties with -4.82% lower flood score than their control counterparts (p<0.01). This effect

size is large, as it is equivalent to a change in the flood score of 0.5 on a ten point scale.

An analogy of this effect size is in terms of the average reduction in long-term flood risk

associated with this change in the flood score. The comparable reductions in flood risk over

1, 2, 5, 10, 20 and 30 years are 8.0%, 10.6%, 6.2%, 4.1%, 3.4%, 2.9%, and 2.7%, respectively.

However, people looking in relatively small risky areas do not have much range to move out

of, so we also report the standard deviation effect size. For our high risk treated group, their

standard deviation effect size is X.X. The effect sizes for low and medium risk are 0.03% (s.e.

= 0.10) and -0.54% (s.e. = 0.43), respectively.31

Figure 3: CATE on the Average Flood Score of a Daily Search for Registered Users
% Change relative to Control

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began.

In Figure 4, we present estimates of βk from estimator 19 (i.e., an event-time study) for

registered users browsing, on average, high risk properties before the experiment. The re-

sults show that, on average, there was no statistically significant difference between treat-

ment and control groups before the experiment, suggesting that randomization was properly

31When running the analysis on every user and not just the registered ones, those browsing low, medium,
and high risk flood areas pre-experiment browsed properties with 0.00% (s.e. = 0.03), -0.78% (s.e. = 0.17), and
-1.73% (s.e. = 0.95) lower flood scores, in that order, relative to their control counterparts.
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conducted. However, as time progressed, treated users began browsing properties with pro-

gressively lower flood scores than the control group. By the ninth week, treated users were

browsing properties with a -11.8% (p < 0.01) lower flood score compared to a week before the

experiment, whereas after the sixth week, the reduction was -5.2% (p < 0.01) less flood risk

score, relative to control users.

However, we did not find statistically significant effects in event-time studies involving

registered users browsing properties with varying levels of average flood risk prior to the

experiment. Specifically, Figures A7 (a) and A7 (b) illustrate the results for users browsing,

on average, low and medium risky properties before the experiment began, respectively.

Figure 4: Event-time Study on the Average Daily Flood Score
of Properties Searched for Registered Users
High-risk cohort, % Change relative to Control

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 19. Coefficients are relative to the week before a user entered the
experiment. Vertical lines crossing the estimates are confidence intervals at the 95% level. The vertical dashed line represents the beginning
of the experiment for a user. The x-axis represents each user’s baseline average flood score search category before the experiment began.
Pre-trends p-value = 0.66, leveling of coefficients p-value = 0.000

Place-based factors may also influence the impact of flood information. For instance, differ-

ences in information access and local knowledge between homeowners and non-local buyers

can create a situation where the latter may unwittingly purchase properties with higher envi-

ronmental risks. In addition, the relative place-based risks associated with flood-prone areas

could further affect the effectiveness of our treatment. For example, people residing in safe

areas may be more likely to adjust their home search when looking for properties in high-risk

areas, whereas those already in flood-prone areas may not be as responsive to our treatment.
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In this sense, we calculated the difference in the mean, standard deviation, and coefficient of

variation (CV = (mean/standard deviation)) of the zip code’s flood score between an individ-

ual’s origin and most search destinations at baseline, and we interacted it with the treatment

and the average flood score search at baseline to test our previous hypothesis.

We found that for individuals searching, on average, high flood risk homes pre-experiment

and that also searched within zip codes with a higher flood risk CV than their origin, the

average flood risk decreased by 12.77% (p < 0.01) after receiving the information (Figure 5

(b)). This reduction could be due to two possible changes: the treated individual searched

within zip codes with a lower mean flood risk or within zip codes with a higher standard

deviation. It is worth mentioning that interacting the treatment with the difference in the

destination’s and origin’s zip code flood score mean and standard deviation did not have a

meaningful or statistically significant effect (Figures A8 and A9, respectively).

Figure 5: CATE on the Average Flood Score of a Daily Search for Registered Users, by
Characteristics of Most Searched Destination and Origin Zip Code at Baseline

(a) Lower Coefficient of Variation Flood

Score at Destination Zip Code than Origin

(b) Higher Coefficient of Variation Flood

Score at Destination Zip Code than Origin

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s average flood score search category before the
experiment began.

In addition to displaying flood risk categories to treated users, our study (see Figure 1 for

the visual experience of the experiment) provided them with a comprehensive view of the

flood risk through a detailed quinquennial cumulative probability of a property flooding.

Holding each user’s average flood score search category before the experiment constant, we

found that a 1 percentage point increase in the treated user’s baseline cumulative probabil-

ity of flooding to the building footprint in 2020 (0 years in Figure 6) decreased the average
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flood score search by 0.052%. However, we did not observe statistically significant effects for

cumulative probabilities in years 5, 10, 15, 20, 25, and 30.

Figure 6: CATE on the Average Flood Score of a Daily Search for Registered Users,
by Cumulative Flood Probability at Baseline

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s average flood probability search before the
experiment began.

Our data partner also classifies the type of flood risk each property faces. FSF classified en-

vironmental risks into three categories: “Precipitation,” “Precipitation and Sea Level Rise,”

and “Precipitation, Sea Level Rise, and Hurricane Storm Surge.” Holding each user’s average

flood score search category before the experiment constant, we found that individuals who

searched at baseline for properties with “Precipitation, Sea Level Rise, and Hurricane Storm

Surge” risks experienced a 2.8% reduction in their flood score exposure. In contrast, those

who searched for properties with “Precipitation and Sea Level Rise” risks reduced their ex-

posure by 1.4%. However, browsing for properties with only “Precipitation” risk at baseline

did not yield a statistically significant effect (Figure 7).
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Figure 7: CATE on the Average Flood Score of a Daily Search for Registered Users,
by Type of Risk at Baseline

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average type of environmental risk
search before the experiment began. Coastal areas on the East Coast and Hawaii are referred as “Precipitation, Sea Level Rise, and Hurricane
Storm Surge”, other coastal areas are “Precipitation, and Sea Level Rise” and all other locations are “Precipitation”.

We also analyze the impact of the treatment for different types of people who search for

homes that are: (a) either on the waterfront (seas/coastal, rivers, lakes) or not; (b) either in

FEMA high risk zones or not; or (c) either on the coast or not; and (d) the various combinations

of all these dimensions. We categorize people into various buckets by whether the customer

had one of these homes in their search before the experiment took place.

In Figures 8 (a) and (b), we show that the flood risk information had an impact on those

customers who had a waterfront property in the search before the experiment started. In

Figures 9 (a) and (b), we show that the flood risk information had a similar impact on those

customers who had a FEMA high risk property in the search before the experiment started,

however, the size of the effect is larger for the without FEMA high property int heir search

before the experiment started. In Figure 10 (a) we show that the flood risk information had

an impact on those customers who had a waterfront but not coastal property in the search

before the experiment started. In Figure 10 (b) we show that the impact of the high flood risk

information for those searching for waterfront and coastal properties is more noisy.

Taken together, these results provide us with more evidence for the “new news” hypothesis.

The impact of the treatment is coming through for people who are looking at waterfront but

not coastal properties, which would not be in NFIP or designated as risky by FEMA.
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Figure 8: CATE on the Average Flood Score of a Daily Search for Registered Users

(a) Without Waterfront Search at Baseline (b) With Waterfront Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any
waterfront property before the experiment are classified as “without” waterfront search at baseline. On the other hand, users who browsed
at least one waterfront property before the experiment are classified as “with” waterfront search at baseline.

Figure 9: CATE on the Average Flood Score of a Daily Search for Registered Users

(a) Without FEMA Risk Search at Baseline (b) With FEMA Risk Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The x-
axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any property
considered risky by FEMA before the experiment are classified as “without” FEMA risk search at baseline. On the other hand, users who
browsed at least one property considered risky by FEMA before the experiment are classified as “with” FEMA risk search at baseline.
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Figure 10: CATE on the Average Flood Score of a Daily Search for Registered Users

(a) With Waterfront and

Without FEMA Risk Search at Baseline

(b) With Waterfront and

With FEMA Risk Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who browsed at least one
waterfront property before the experiment are classified as “with” waterfront search at baseline. Users who did not browse any property
considered risky by FEMA before the experiment are classified as “without” FEMA risk search at baseline. On the other hand, users who
browsed at least one property considered risky by FEMA before the experiment are classified as “with” FEMA risk search at baseline.

Figure 11: CATE on the Average Flood Score of a Daily Search for Registered Users

(a) With Waterfront and

Without Coastal Search at Baseline

(b) With Waterfront and

With Coastal Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who browsed at least one
waterfront property before the experiment are classified as “with” waterfront search at baseline. A property is classified as being located
on the coast when its geographic coordinates (latitude and longitude) are 200 meters or less from the nearest shoreline. Users who did
not browse any coastal property before the experiment are classified as “without” coastal search at baseline. On the other hand, users who
browsed at least one coastal property before the experiment are classified as “with” coastal search at baseline.
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We next examine what attributes of the property markets are consumers trading off for

reduction in flood score of searches in the main result from Figure 3. In Figure 12 we ex-

amine the changes in the values of the property attributes. We do not see people trading off
a lower flood score for a change in the number of bedrooms, bathrooms, sq ft, or list price.

We see a slight increase in the HHI, meaning that consumers might be more concentrated in

their property views within zip codes, although we only have 90% confidence in that result.

However, we do find a lower bike score, and similar magnitude decreases in walk and transit

score, although the latter two are more noisy. The bike score is calculated by measuring bike

infrastructure (lanes, trails, etc.), hills, destinations and road connectivity, and the number of

bike commuters. The walk score analyzes hundreds of walking routes to nearby amenities,

e.g., grocery stores, schools, parks, restaurants, and retail (points are awarded based on the

distance to amenities in each category). The walk score also measures pedestrian friendli-

ness by analyzing population density and road metrics such as block length and intersection

density. We suspect that both the walk and bike scores are correlated with: (a) public funds

available to improve roads and nearby amenities; and/or (b) how business-friendly an area is

to incentivize business creation, both of which are positively demanded but are willing to be

trade-off.

Figure 12: CATE on the Average Outcomes of a Daily Search
for Registered Users Browsing High Risk Properties at Baseline

% Change relative to Control

Note: Coefficients are in the form of ((eβ3 −1)·100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents treatment effects for users browsing high flood risk properties,
on average, before the experiment began.

33



4.1.1 Nonparametric Conditional Average Treatment Effects

The impact of flood information on users may vary based on individual characteristics. We

recognize that Redfin customers could vary with respect to their risk aversion, and they can

vary with respect to their incomes and their local social capital and family ties to an area

where they are searching. Such searchers may also vary with respect to whether they trust

the data that Redfin is supplying.

In the previous section, we demonstrated heterogeneity in treatment effects by analyzing

how these effects differed depending on users’ pre-experiment flood risk search behavior.

However, the impact of our treatment could also vary based on other individual character-

istics, in addition to baseline flood risk search behavior. Moreover, the estimator used to

calculate the previous CATE, i.e., the estimator presented in equation 18 relies on the linear-

ity assumption of the effect that covariates, Xi , have on the treatment. If these effects were

non-linear, our calculated estimates would be biased or wouldn’t cover the entire distribution

of heterogeneous treatment effects.

To account for the possibility of nonlinearity and to incorporate the influence of other base-

line characteristics on treatment effects, we utilize a Generalized Random Forest algorithm

known as causal forests (Athey, Tibshirani and Wager, 2019; Athey and Wager, 2021). We fur-

ther describe this algorithm in section A.1. Figures A18 to A20 show the predicted conditional

average treatment effects through causal forests stratified by baseline flood risk categories.

Several results are worth highlighting. Figure A18 shows how the algorithm identified that

80%32 of the conditional average treatment effects were negative for those users browsing

extremely risky properties before the experiment began—albeit only 25% of them were sta-

tistically significant at the 90% level. The largest reduction for this group was a reduction of

-20% in the average flood risk score. Moreover, Figure A19 also plots how causal forests found

that about 60% of the treatment effects were negative for those users browsing medium risky

properties before the experiment began. The most significant reduction was -15% relative to

the control group.

Finally, for those in the low pre-experiment risk groups, we didn’t find negative statisti-

cally significant treatment effects (Figure A20). Nevertheless, we found positive statistically

significant effects at the right end of the treatment effects distribution.

32When focusing on the population regardless of their pre-experiment average flood search, we found that
62.1% were affected by the flood risk information.
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4.2 Engagement

The Redfin experiment represents an “intention to treat.” Each searcher must decide whether

she keeps engaging with this information. Everyone has a time budget constraint and indi-

vidual home buyers know their home purchase priorities. It is conceivable that a home buyer

would spend relatively little time engaging with the flood risk data, given that there are many

other dimensions of a home’s quality to consider. In this section, we test this hypothesis.

As seen in Figure A13, the treatment did not have a statistically significant impact on the

probability of registering on the website. Tables A19 (i.e., for all users) and A20 (i.e., for

registered users) shows an average daily increase in the total seconds (3.9) and the number of

sessions spent (0.004) in the platform for those registered users in the treatment arm. When

stratifying users by their average pre-experiment flood score houses searches, we did not find

statistically significant results for the total seconds spent and the number of sessions (Figures

13 (a) and (b)).

Figure 13: CATE on the Time Spent on the Website per Day for Registered Users

(a) Seconds Spent (b) Number of Sessions

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began.

In the same vein, Figures 14 (a) and (b) show no large or statistically significant effects

when stratifying by baseline flood scores for the number of unique home views and total

home views, respectively.

35



Figure 14: CATE on the Number of Homes Viewed per Day for Registered Users

(a) Unique Home Views (b) Total Home Views

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began.

The treatment had an impact on how users engaged with the listings. Figure 15 shows

how the treatment (stratified by the baseline average flood score search category) affected

the times a user engaged with (a) the flood risk section33, (b) “favorite” a property, (c) next

photo, and (d) active similar properties, as a percentage of all the properties a user browsed

per day. Both groups of users, those browsing, on average, low risk and high risk properties

at baseline, exhibited increased engagement with the flood risk section once they entered

the experiment, compared to the control users (Figure 15 (a)). As well, users browsing, on

average, properties with low flood risk pre-experiment “favorited” more properties once the

flood score became available, whereas those browsing, on average, high risk properties pre-

experiment, “favorited” fewer properties (Figure 15 (b)) and clicked fewer times “next photo”

(Figure 15 (c)).

Our findings presented above suggest that users previously browsing high risky properties

adjust their search behavior once they learn about the flood risk. This finding has important

economic content because we reject the hypothesis that informed, risk-loving individuals seek

out risky homes. If such “complete information” matching was taking place, then we would

not expect to observe the facts we reported above.

33Engaging with the flood risk refers to reaching the flood risk section for the treated individuals and reaching
the section where the flood risk should be for the control individuals.
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Figure 15: CATE on the Percentage of Times Registered Users
Engaged with a Specific Property’s Features per Day

(a) Engaged with the Flood Risk Section (b) Clicked “Favorite” a Property

(c) Clicked Next Photo (d) Clicked Active Similar Properties

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began.

We also examine some of these engagement metrics for different type of properties (based

on the user’s pre-experiment search history). Figures A15, A16, and A17 in the Appendix

show the average treatment effect on the engagement with the flood risk section for users

browsing waterfront, FEMA-risky, and coastal properties at baseline. Consistent with the

search results, we found that treated users looking at waterfront but not coastal properties

are more likely to spend more time searching for the flood risk section.

4.3 Tours, Offers, and Closes

Redfin provides customers with an integrated house purchase process such that home

buyers can search for a specific home and then work with a Redfin directed brokerage service.
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It gives its users the option to tour properties, place a bid on a particular property, and close

a deal. In our experiment, once a treated user views and opens a property, they observe the

flood score of that particular unit. For those in the treatment group who search for a given

property and then choose to tour the property and then place a bid for that property, we

observe each of these steps play out in the housing purchasing process. Based on revealed

preference logic, we view touring and bidding on a home as important (and costly) evidence

that one is responding to information.

Tours. As seen in Figures 16 (a) and (b), having access to the flood risk score of the prop-

erties doesn’t affect the likelihood of booking a tour or canceling a home tour, irrespective

of their baseline flood score search or the flood score of the property; that is, we don’t find a

statistically significant difference on the probability of booking or canceling a home tour for

the treatment group.

Figure 16: CATE on the Probability of Booking a Tour and Canceling a House Tour

% Change relative to Control for Registered Users

(a) Probability of Booking a Tour (b) Probability of Cancelling a House Tour

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents the flood score category of the property.

Offers. Figures 17 (a) and (b) show the probability of an individual placing a house offer

and the flood score of a property someone in our experiment bid on, stratified by the baseline

average flood score search category and relative to their control counterpart. Figure 17 (a)

shows no statistically significant difference in having access to the flood score of properties

on the probability of bidding on a property. However, Figure 17 (b) treated users browsing

high risky flood properties pre-experiment place bids on properties with -57.1% (s.e. = 19.73)

less flood score than their control counterparts.
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Figure 17: CATE on Offers

% Change relative to Control

(a) Probability of Placing an Offer (b) Flood Score of the Property

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began. S.E. clustered at the registered user level. FE = Fixed Effects of the location of the Property.

Figure 18 (a) and (b) show how treated groups trade-off characteristics of a property to

reduce their flood exposure, as shown in Figure A34 (b). On the one hand, as seen in Figure 18

(a), people browsing riskier properties before the experiment began had a lower probability

of placing an offer on waterfront properties. That is, those users with access to flood scores

and browsing high risky properties before the experiment began had a -39.6% less probability

of placing a bid on a waterfront property. On the other hand, Figure A35 (b) shows that users

browsing high risky properties before the experiment began went on to bid properties with

-14.6% less square feet (s.e. = 17.08).
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Figure 18: CATE on the Characteristics of an Offer

% Change relative to Control
(a) Prob. of Offer being on the Waterfront (b) Square Feet of the Property

Note: For Figure (b), coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence
intervals, where the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score
search category before the experiment began. Standard errors clustered at the user level. FE = Fixed Effects of the location of the Property.

We examine how the offers vary by the type of properties that the user searches for. In

Figures 19 (a) and (b), we show that the reduction in the flood score of offers is coming from

the waterfront properties. FEMA RISK. In Figures 20 (a) and (b), we see small differences

between FEMA and non-FEMA high risk, but in Figures 21 (a) and (b), we see that the reduc-

tions in flood score are coming from the waterfront properties not on the coast. This again

supports our new news hypothesis.
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Figure 19: CATE on the Flood Score of an Offer for Registered Users

(a) Without Waterfront Search at Baseline (b) With Waterfront Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any
waterfront property before the experiment are classified as “without” waterfront search at baseline. On the other hand, users who browsed
at least one waterfront property before the experiment are classified as “with” waterfront search at baseline. Estimates are with City Fixed
Effects.

Figure 20: CATE on the Flood Score of an Offer for Registered Users

(a) Without FEMA Risk Search at Baseline (b) With FEMA Risk Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any
property considered risky by FEMA before the experiment are classified as “without” FEMA risk search at baseline. On the other hand,
users who browsed at least one property considered risky by FEMA before the experiment are classified as “with” FEMA risk search at
baseline. Estimates are with City Fixed Effects.
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Figure 21: CATE on the Flood Score of an Offer for Registered Users

(a) With Waterfront and

Without Coastal Search at Baseline

(b) With Waterfront and

With Coastal Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who browsed at least one
waterfront property before the experiment are classified as “with” waterfront search at baseline. A property is classified as being located
on the coast when its geographic coordinates (latitude and longitude) are 200 meters or less from the nearest shoreline. Users who did
not browse any coastal property before the experiment are classified as “without” coastal search at baseline. On the other hand, users who
browsed at least one coastal property before the experiment are classified as “with” coastal search at baseline.

For the high flood risk property users, while the flood score of the offered properties de-

crease, Figure 22 shows that there is nothing driving the trading off of other attributes. The

only thing that is not particularly noisy is the different zip code count.
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Figure 22: CATE on the Average Outcomes of the Offers
for Registered Users Browsing High Risk Properties at Baseline

% Change relative to Control

Note: Coefficients are in the form of ((eβ3 −1)·100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents treatment effects for users browsing high flood risk properties,
on average, before the experiment began. *: The outcome variable is a binary indicator that takes a value of one when a user submits an
offer for a property in a zip code different from their most frequently browsed one at baseline and zero otherwise. As such, the treatment
represents a shift in probability rather than a percentage change, as with the others.

Closing. In the process of selling a home, the “closing” is one of the final steps, as money

and legal paperwork are exchanged to finalize the transaction. From basic revealed preference

logic, if a home buyer has doubts about following through with a purchase, this is the key time

to walk away from the deal.

We now show the probability of an individual closing a house offer and the flood score

of a property someone in my experiment closed on, stratified by the baseline average flood

score search category and relative to their control counterpart. As seen in Figure 23 (a), we

found a lower probability (-15%) of closing an offer between treatment and control groups

for those browsing medium risky properties pre-experiment. Figure 23 (b) shows the aver-

age treatment effects of having access to properties’ flood score on the property’s closed flood

score. On average, registered treated users browsing pre-experiment high flood risk proper-

ties closed properties with -58.8% (p < 0.01) less flood risk than their control counterparts.

This result is extremely similar to the result on the offers made in Figure 17, which suggests

that for these Redfin users, they were the marginal winning buyers.
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Figure 23: CATE on the Probability of Closing on a Property

% Change relative to Control

(a) Probability of Closing an Offer (b) Flood Score of the Closed Properties

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began. FE = Fixed Effects of the location of the Property.

4.4 Does Political Ideology or Recent Flooding Events Influence the Treatment’s Effec-
tiveness?

Previous research has noted the political divide concerning interest and climate change

concerns (Dunlap and McCright, 2008; Bernstein et al., 2022). Blue state voters and their

elected officials routinely express their support for the green economy and subsidies to decar-

bonize it. Energy conservation nudges focused on peer comparisons tend to be more effective

with liberals than conservatives, or areas that are deemed more green (Dunlap and McCright,

2008; Costa and Kahn, 2013; Allcott, 2015).

We test whether political ideology influences the average treatment effect of the flood in-

formation. We calculate conditional average treatment effects by whether the county where

the user lives voted for Biden or Trump in the 2020 Presidential election. In Figures 24 (a)

and (b), we show the impact of Biden and Trump winning counties for search and offers re-

spectively. For search, we see that both Trump and Biden supporters respond more to high

flood risk than medium flood risk (p < 0.05). We cannot reject the null that Biden and Trump

counties respond to the flood score in the same way for both searches and for offers.
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Figure 24: Flood Risk by Counties from Where Users Browsed
the Most at Baseline, Stratified by Whether Biden or Trump Won in 2020

(a) Search (b) Offer

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. We assigned a baseline county to
where users browsed the most from at baseline. We do not have enough observations to estimate the impact on offers for Trump counties
with high flood risk.

Studies have also estimated the impact of flooding events on the real estate market and

risk perceptions, finding that home buyers respond to recent major flooding events and ad-

just their risk perceptions only during a brief period of time (Kousky, 2010; Zhang, 2016;

Zhang and Leonard, 2019). We test whether the county from which a user made the most

searches and the county a user searched for properties the most at baseline experienced a

flooding event in the past seven days to further examine the heterogeneity of our conditional

average treatment effects. Figures A29 (a) and (b) show that a flooding event did not have

a statistically significant effect on how treated users browsed for properties within counties

experiencing a flooding event in the past 7 days.

5 Real Estate Market Price Responses to Property Specific Flood Risk In-

formation

While no home buyer gains utility from owning a home at risk of flood, the population differs

with respect to their willingness to pay for such a home. Higher-income people have a higher

economic capacity to avoid such risky homes. More risk loving people and those with the

ability and economic capacity to upgrade their homes will be more likely to bid for risky

homes than risk averse people who do not want to invest the time and effort in upgrading a

home (Shogren and Stamland, 2002).
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In a setting where buyers and sellers have complete information about climate risks, the

climate risks will be capitalized into the sales price of the home. Hedonic real estate regres-

sion techniques can be used to recover the marginal value of the home’s attributes. Recent

papers have followed this strategy to estimate the compensation for flood risk (Ortega and

Tas.pınar, 2018; Bernstein, Gustafson and Lewis, 2019).Gao, Song and Timmins (2023) study

the responsiveness of regional migration in China to local air pollution. They find that this

migration elasticity nearly doubles when the authorities publicize urban air pollution lev-

els. This study’s natural experiment demonstrates that people are more responsive and more

likely to adapt to a pollution threat when they are informed about it. Our experiment’s indi-

vidual level variation in access to environmental risk information allows us to take the next

step here to investigate how different people engage with such information.

Our field experiment’s results highlight that home buyers do not have “complete informa-

tion” about emerging risks. Home buyers are responding to this information in every phase

of the search process. In this section, we study how property-specific revelation of flood risk

affects the housing hedonic gradient. An ideal field experiment for answering this question

would randomize the flood score at the property level (not at the individual searcher level).

For every home sold in the experimental period, there was a random fraction of users who

were in the treatment and the control group. This variation is due to random variation of

who gets placed into treatment and control with small samples.For example, suppose that

50 Redfin home buyers chosen randomly in the treatment group choose to click on 14 Elm

Street, Belmont, MA 02478 when the experiment was going on (the last three months of

2020). Suppose that during that time, 100 Redfin home buyers chosen at random to be in

the control group also looked at that home. This means that 50/150 of the Redfin searchers

that were randomly selected to be in the experiment knew the home’s flood score during the

study period. Let’s also remember that Redfin allocated around 41% of its total traffic to

this experiment. Thus, 59% of its monthly traffic, by definition, didn’t know about the flood

score. Following the 14 Elm Street example, we can say that 50/336 of Redfin’s total searches

for this house knew its flood score. If Redfin has a 20 percent market share, then the market

wide exposure to treatment for this home equals 50/1680 or about 3%.

Our dependent variable is the sales price minus the list price. This variable reflects the

“new news” associated with the home (Bajari et al., 2012). The First Street Foundation flood

score treatment information was an unanticipated event that could not be incorporated into

the list price. In our econometric model below, the variable, Frac_Treat represents the ratio

of the count of people in the treatment group who visited this property divided by the total

count of all Redfin searchers who visited this property. We estimate the following regression:
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ypt = β0 + β1Fp + β2Frac_Treatp + β3

(
Fp ∗Frac_Treatp

)
+λz +mt +upt (20)

Where, ypt, represents the dollar spread between the sale price and the property listing

price, p, sold in the month, t, of the experimental period. Fp shows the property’s flood

risk category (i.e., low, medium, and high), whereas, Frac_Treat, represents the percentage of

people who viewed the property and were in the treatment group as a fraction of all Redfin

viewers. λz and mt represent zip code- and month-fixed effects, respectively. upt are the

residuals. Standard errors are clustered at the zip code level.

Figure 25 (a) shows the distribution of the variable, Frac_Treat, i.e., the percentage of peo-

ple who viewed the property and were in the treatment group as a fraction of all Redfin

viewers, which follows a normal distribution. Figure 25 (b) shows estimates of β3 from esti-

mator 20. We did not find a statistically significant effect when running estimator 20 on the

whole sample of listings sold during the experimental period.

Figure 25: The Association Between Treatment Exposure Intensity
and the (Sale - Listing Price) Spread

(a) Distribution of Listing Views Conducted

by Treated Users per Listing

(b) All Listings

1PP Increase in Exposure Intensity, ($)

Note: For Figure (b), vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the
95% level. The x-axis represents the flood score of the property.

However, when we divide the listings into two groups based on their characteristics —being

on the waterfront or being in a FEMA risk zone —we observe that our intensity treatment

variable, referred to as Frac_Treat, has an impact on the difference between the sale price

and the listing price. Figure 26 illustrates how a 1 percentage point increase in the intensity

treatment variable affects the spread between the sale price and the listing price for properties

that are not situated on the waterfront (see Figure 26 (a)), as well as for properties that are not
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considered risky by FEMA (see Figure 26 (b)), stratified by the listing’s flood risk score. For

both instances, properties considered highly risky by First Street Foundation, incurred a price

penalty as the percentage of treated users viewing the listing in Redfin increased.

A one percentage point increase in the percentage of views conducted by the treated users

led to a negative penalty of -$68 and -$53 for highly risky properties not on the waterfront and

not considered risky by FEMA, respectively. In other words, going from 0% (pre-experiment

beliefs) to 100% (everyone having the FSF flood score) in our variable of interest leads to

a price penalty of -$6,800 and -$5,300 under list price among severely risky properties not

on the waterfront and not considered risky by FEMA, in that order. These results suggest

that the intervention influenced risk expectations for those properties either not perceived as

risky (i.e., not on the waterfront) or not defined as risky by a government institution (i.e., not

considered risky by FEMA).

Figure 26: CATE of an Increase in Exposure Intensity on the (Sale - Listing Price)

(a) Not Waterfront Listings

1PP Increase in Exposure Intensity, ($)
(b) Not FEMA Risky Listings

1PP Increase in Exposure Intensity, ($)

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. As
well, for Figure (b), the x-axis represents the flood score of the property.

However, we did not observe a statistically significant effect of an increase in our treatment

intensity variable on the difference between the sale price and listing price for properties lo-

cated on the waterfront versus those classified as risky by FEMA (as shown in Figure 27),

suggesting that flood risk was already priced for those properties.
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Figure 27: CATE of an Increase in Exposure Intensity on the (Sale - Listing Price)

(a) Only Waterfront Listings

1PP Increase in Exposure Intensity, ($)
(b) Only FEMA Risky Listings

1PP Increase in Exposure Intensity, ($)

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents the flood score of the property.

Finally, we have access to information on whether an investor bought a property. An in-

vestor is defined as any buyer whose name of the buyer of the listing includes at least one of

the following keywords: LLC, Inc, Trust, Corp, Homes; or any buyer whose ownership code

on a purchasing deed includes at least one of the following keywords: association, corporate

trustee, company, joint venture, or corporate trust. In Figure 28, we find that low risk is

treated differently by investors than medium and high risk. It seemed that for low flood risk

homes, moving from 0 to 100% treated led to a 2.5 percentage point increase in the prob-

ability of an investor buying the property (over a baseline of 9.76% in the control group).

Medium and high risk have a lower likelihood of purchasing home, although they are more

noisy. This result does demonstrate that the flood risk is changing the expected returns of a

property, and such returns are more pivotal for investors than regular homeowners.
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Figure 28: CATE of an Increase in Exposure Intensity
on the Probability a Listing was Bought by an Investor

% Change relative to Control

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents the flood score of the property. An investor is defined as any buyer whose name of the buyer of the listing includes at
least one of the following keywords: LLC, Inc, Trust, Corp, Homes. We also define an investor as any buyer whose ownership code on a
purchasing deed includes at least one of the following keywords: association, corporate trustee, company, joint venture, or corporate trust.

Our interpretation of these results is that the sales price represents the outcome of a type

of auction process. For homes located in high flood risk areas for whom this information is

made public to a large number of searchers, then these treated individuals are less likely to

bid aggressively for the home. The winning bidder for the home will end up paying less for

the home. By subtracting the asking price, we standardize the dependent variable.34 This

negative capitalization effect is likely to be even larger in cities experiencing population loss

(Glaeser and Gyourko, 2005).

Our findings have implications for hedonic real estate models of amenity and disamenity

capitalization. Given that homes are durable goods, dynamic hedonic analysis teaches us that

the expected present discounted flow of flood risk is the right “x” variable to include in a

hedonic home price regression (Bishop and Murphy, 2011, 2019; Bayer et al., 2016; Severen,

Costello and Deschenes, 2018). If home buyers are forward-looking, they will base their bids

and purchase price based on the expected future risk stream. This is also consistent with an

extrapolative model of home buying (Glaeser and Nathanson, 2017), in that (all else equal) a

high flood risk score reduced future demand for the home, and if flood risk scores are spatially

correlated then a zip code that faces overall flood risk could be perceived to be on the decline

34Given that this is a short run experiment that the seller was unaware was taking place, the asking price is
likely to be independent of the flood score.
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and this makes the property even less attractive. This discussion highlights the importance

of using expectations-based amenity variables when studying real estate price capitalization

of climate risks when these place based risks are changing over time.

6 Conclusion

A majority of American adults live in owner-occupied housing. Such housing is often their

major asset. Rising global greenhouse gas concentrations pose new place-based risks for such

real estate. In the past, trusted information about these place-based risks was difficult to

access. As Internet real estate platforms such as Redfin incorporate pinpoint climate risk

maps into their platform this information plays a valuable role in educating home buyers.

This information can play a causal role in accelerating the pace of climate change adaptation

if home buyers respond to this information by becoming more discerning about how they

search and buy.

Thanks to Redfin’s integrated real estate platform, we are able to study the entire search

process for a randomized treatment group and a control group. A unique feature of this

field experiment is our ability to track how the same individuals act when searching on the

internet and when they are physically taking actions, such as, searching, touring, and closing

on homes. We observe a logical consistency in the treatment group’s choices at every step

in the housing purchase process. At each stage of the housing search process, the flood risk

information influenced consumer behavior related to search, bidding, and closing. In the

market overall, we find real changes in house prices with the flood risk information. All

of the evidence from the field experiment in this paper points to the new news hypothesis.

People were not previously aware of the risk, but now they are through an understandable

piece of information that allows consumers to have the correct flood risk beliefs. This matters

for climate change adaptation.

Future research could explore demand-side and supply-side factors to gain a deeper un-

derstanding of the causal effects of pinpoint climate risk information. Specifically, on the

demand side, it would be beneficial to investigate how various individuals update their prior

beliefs when presented with climate risk information. For example, do people become scared

or more informed about another attribute of the differentiated product (i.e., the home) when

they learn it faces higher risk? Given the expense of sea walls, and levees, and given the pos-

sibility of "Peltzman Effects" induced by them (Wang, 2021; Benetton et al., 2022; Bradt and

Aldy, 2022; Ostriker and Russo, 2022), it is important to evaluate how to configure demand-

side information to accelerate adaptation.

On the supply side, new research could focus on understanding how providers of climate
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risk information can present it more effectively. For example, what presentation formats

most effectively convey risk information to consumers? Additionally, it may be helpful to

investigate how the credibility and reliability of the information source affects its impact on

decision-making.

Our study has documented that millions of people respond to location specific risk infor-

mation. This reveals that they trust this information. Going forward, fostering a competition

between spatial risk modeler forecasts and identifying the best models will play an important

role in determining the pace of climate risk adaptation. With access to trusted information

that becomes common knowledge, real estate developers will be more likely to invest in build-

ing in locations and with materials and designs that foster resilience to flooding risk. Insurers

will be more likely to engage in risk pricing that provides incentives for greater self-protection

investment by those who occupy the risky homes.

Redfin is a for-profit company whose efforts to educate its customers about climate risks

help them to make informed decisions. Redfin chose to incorporate the First Street Founda-

tion risk scores on its platform. Future research could explore how different platforms decide

what climate risk information to incorporate into their webpage interface. If a platform with

a large market share incorporated biased estimates of place based risks, then the scaled dis-

semination of such information could hinder climate change adaptation.

Throughout this paper, we have assumed that sellers do not strategically respond to the

ongoing field experiment. Since Redfin did not receive any complaints from sellers related

to the property specific flood information, we do not believe that they were aware that the

demand side experiment was unfolding. Going forward, home sellers seeking to sell an ob-

jectively climate-risky home (as measured by flood risk, fire risk, and heat risk) will know

that potential buyers can go to the FSF webpage and research the home or this information is

just directly on the Redfin platform. Sellers of such risky homes will be likely to have to sell

at a discount unless they take proactive and credible steps to upgrade the home’s resilience to

climate risk. As more sellers seek to offset their homes’ climate risk, this will create a new re-

silience market for goods ranging from better windows to shield the home from PM2.5 from

wildfires to anti-flooding strategies (Acemoglu and Linn, 2004). In this sense, the diffusion of

emerging risk information accelerates climate change adaptation.
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A Appendix

Figure A1: The First Street Foundation flood score matrix calculation
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Figure A2: The Visual Experience for the Treatment Group using a Desktop and
Browsing a Property with a Flood Score of 4 (i.e., Moderate)

(a) Collapsed (b) Expanded
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Figure A3: The Visual Experience for a Treated Individual using a Cellphone and
Browsing a Property with a Flood Score of 4 (i.e., Moderate)

Figure A4: Colors and Labels of Flood Scores Displayed
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Figure A5: Number of Users Entering the Experiment

(a) By Day (b) Cumulative

Table A1: Balance Tests

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment -0.000 0.000 0.000 0.000 -0.000 -0.001 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.179*** 2.286*** 1.357*** 2024.415*** 485799.127*** 0.369*** 7085.469***
(0.001) (0.001) (0.000) (0.711) (333.888) (0.000) (2.706)

Obs. 20,263,675 19,553,720 19,749,101 19,702,920 19,276,527 20,007,907 20,263,675

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Coefficients are in the form of (eβ − 1).

Table A2: Balance Tests

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment 0.000 0.000 0.000 -0.003** -0.001 -0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.037*** 0.007*** 1972.515*** 24.693*** 32.771*** 34.417***
(0.000) (0.000) (0.021) (0.019) (0.016) (0.016)

Obs. 20,263,675 20,263,675 19,710,317 18,362,013 10,963,216 19,221,707
Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Except for columns (1) and (2), coefficients are in the
form of (eβ − 1).
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Table A3: Balance Tests for Registered Users

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment 0.012 -0.004** -0.040 -20.732 51497.580 0.000 -1.047
(0.011) (0.001) (0.035) (17.045) (60686.895) (0.001) (5.388)

Constant 4.616*** 3.427*** 2.717*** 2347.868***798274.542*** 1.749*** 6974.568***
(0.343) (0.006) (0.071) (13.855) (23944.058) (0.007) (125.229)

Obs. 3,886,331 3,832,821 3,828,927 3,811,433 3,827,826 3,845,367 3,886,331

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Coefficients are in the form of (eβ − 1).

Table A4: Balance Tests for Registered Users

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment 0.000 -0.000 -0.000 0.000 -0.000 0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.035*** 0.005*** 1971.718*** 25.411*** 32.484*** 35.014***
(0.000) (0.000) (0.056) (0.052) (0.044) (0.045)

Obs. 3,756,792 3,756,792 3,687,767 3,479,666 2,197,226 3,609,231
Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Except for columns (1) and (2), coefficients are in the
form of (eβ − 1).

Table A5: Balance Tests for Registered Users (Low Flood Score)

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment 0.001 -0.001 -0.002 -0.003 -0.007* 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.688*** 2.306*** 1.368*** 2043.907***509464.695*** 0.243*** 5967.618***
(0.065) (0.003) (0.002) (2.925) (2336.592) (0.000) (112.946)

Obs. 3,201,727 3,150,989 3,164,474 3,154,546 3,157,116 3,192,673 3,201,727

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Coefficients are in the form of (eβ − 1).

Table A6: Balance Tests for Registered Users (Low Flood Score)

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment 0.000 -0.000 -0.000 -0.001 -0.001 0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.036*** 0.005*** 1971.660*** 25.146*** 32.104*** 34.440***
(0.000) (0.000) (0.203) (0.113) (0.253) (0.070)

Obs. 3,201,727 3,201,727 3,156,132 2,984,810 1,897,289 3,093,164

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Except for columns (1) and (2), coefficients are in the
form of (eβ − 1).
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Table A7: Balance Tests for Registered Users (Medium Flood Score)

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment -0.002 -0.002 -0.004 -0.005 -0.011 0.003 0.004
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.479*** 2.061*** 1.255*** 1871.379***490104.659*** 1.693*** 6393.800***
(0.049) (0.004) (0.002) (5.119) (2866.718) (0.007) (102.238)

Obs. 496,765 484,654 487,313 484,647 489,071 495,171 496,765

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Coefficients are in the form of (eβ − 1).

Table A8: Balance Tests for Registered Users (Medium Flood Score)

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment -0.001 -0.000 -0.000 0.006 0.001 0.004
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.034*** 0.006*** 1971.419*** 27.544*** 34.902*** 38.944***
(0.000) (0.000) (0.171) (0.184) (0.220) (0.138)

Obs. 496,765 496,765 485,020 454,676 282,374 473,876

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Except for columns (1) and (2), coefficients are in the
form of (eβ − 1).

Table A9: Balance Tests for Registered Users (High Flood Score)

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment -0.014 0.011 0.014 0.018 0.006 -0.005 -0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.346*** 1.750*** 1.251*** 1744.026***501075.050*** 6.417*** 7333.455***
(0.040) (0.015) (0.012) (21.034) (12133.754) (0.031) (103.815)

Obs. 34,191 33,072 33,295 33,127 33,716 33,992 34,191

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Coefficients are in the form of (eβ − 1).

Table A10: Balance Tests for Registered Users (High Flood Score)

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment 0.009** -0.001 0.000 0.034 0.040* 0.018
(0.000) (0.000) (0.000) (0.001) (0.001) (0.000)

Constant 0.030*** 0.006*** 1977.218*** 23.030*** 34.823*** 40.533***
(0.000) (0.000) (0.458) (0.490) (0.414) (0.377)

Obs. 34,191 34,191 33,193 30,790 13,613 32,271

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Except for columns (1) and (2), coefficients are in the
form of (eβ − 1).
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Figure A6: Balance Tests Trajectories
Estimates relative to the week before the experiment began

(a) Views (b) Bedrooms

(c) Bathrooms (d) Sq. Ft.

(e) List Price (f) Flood Score
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Table A11: Pre-Experiment Distribution of Flood Score for Users by Treatment Status

Number of Users; Column Percentages in Parenthesis

Flood Score Category Control Treatment Total

Low 2,382,113 2,383,094 4,765,207

(82.79) (82.84) (82.82)

Medium 435,051 433,629 868,680

(15.12) (15.07) (15.10)

High 60,086 60,037 120,123

(2.07) (2.08) (2.08)

Total 2,877,250 2,876,760 5,754,010

(100.00) (100.00) (100.00)

Table A12: Pre-Experiment Distribution of Flood Score
for Registered Users by Treatment Status

Number of Registered Users; Column Percentages in Parenthesis

Flood Score Category Control Treatment Total

Low 369,997 369,779 739,776

(83.41) (83.46) (82.82)

Medium 66,976 66,566 133,542

(15.10) (15.02) (15.10)

High 6,592 6,707 13,299

(1.49) (1.51) (1.50)

Total 443,565 443,052 886,617

(100.00) (100.00) (100.00)
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Table A13: Registered vs. Non-Registered Users During the Pre-Experiment Phase

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Registered 0.313*** -0.009*** -0.003*** -0.007*** 0.063*** 0.031*** -0.194***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.023*** 2.292*** 1.356*** 2025.810*** 475826.054*** 0.359*** 7508.680***
(0.000) (0.000) (0.000) (0.547) (249.535) (0.000) (2.022)

Obs. 19,091,234 18,401,110 18,592,661 18,551,868 18,117,389 18,848,928 19,091,234

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Coefficients are in the form of (eβ − 1).

Table A14: Registered vs. Non-Registered Users During the Pre-Experiment Phase

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Registered -0.002*** -0.003*** -0.001*** 0.042*** -0.011*** 0.027***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.037*** 0.008*** 1972.762*** 24.336*** 32.853*** 34.106***
(0.000) (0.000) (0.016) (0.014) (0.013) (0.013)

Obs. 19,091,234 19,091,234 18,558,011 17,264,853 10,223,715 18,090,938
Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Except for columns (1) and (2), coefficients are in the
form of (eβ − 1).
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Table A15: ATE on the Characteristics of the Homes Viewed
Coefficients in terms of Elasticity, % Change relative to Control

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Experiment began 21.896*** 0.091*** 0.100*** -0.346*** -2.783*** 1.082*** -7.009***
(0.056) (0.022) (0.026) (0.034) (0.065) (0.035) (0.039)

Treatment -0.026 0.061 0.020 0.030 0.031 -0.065 0.043
(0.075) (0.033) (0.039) (0.051) (0.100) (0.050) (0.054)

Diff-in-diffs -0.010 -0.044 -0.004 -0.016 -0.027 -0.015 -0.060
(0.079) (0.032) (0.037) (0.048) (0.092) (0.049) (0.055)

Obs. 82,829,780 79,522,502 80,268,396 80,114,762 78,399,668 81,365,064 82,829,780

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Note: Coefficients are in the form of ((eβ − 1) · 100)
from equation 17.

Table A16: ATE on the Characteristics of the Homes Viewed
with Pre-Experiment Information

Coefficients in terms of Elasticity, % Change relative to Control

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Experiment began 28.066*** 0.210*** 0.463*** -0.136*** 0.704*** 1.586*** -12.333***
(0.065) (0.025) (0.029) (0.038) (0.072) (0.038) (0.045)

Treatment -0.032 0.062 0.020 0.032 0.031 -0.065 0.040
(0.076) (0.033) (0.039) (0.051) (0.100) (0.050) (0.055)

Diff-in-diffs 0.070 -0.048 -0.008 -0.036 0.019 -0.023 -0.059
(0.091) (0.035) (0.041) (0.053) (0.102) (0.053) (0.063)

Obs. 60,606,062 59,045,933 59,514,136 59,398,412 58,427,212 60,459,949 60,606,062

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Note: Coefficients are in the form of ((eβ − 1) · 100)
from equation 17.
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Table A17: ATE for Registered Users on the Characteristics of the Homes Viewed
Coefficients in terms of Elasticity, % Change relative to Control

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Experiment began 20.278*** 0.336*** 0.288*** -0.311*** -2.917*** 0.837*** -7.926***
(0.155) (0.058) (0.069) (0.090) (0.175) (0.087) (0.109)

Treatment 0.023 -0.118 -0.230* -0.295* -0.731** -0.068 0.029
(0.209) (0.087) (0.103) (0.135) (0.268) (0.128) (0.153)

Diff-in-diffs -0.021 0.096 0.091 0.116 0.193 -0.078 -0.183
(0.219) (0.082) (0.097) (0.126) (0.246) (0.123) (0.154)

Obs. 15,074,700 14,779,817 14,837,436 14,771,224 14,834,564 14,889,899 15,074,700

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Note: Coefficients are in the form of ((eβ − 1) · 100)
from equation 17.

Table A18: ATE for Registered Users on the Characteristics of the Homes Viewed
with Pre-Experiment Information

Coefficients in terms of Elasticity, % Change relative to Control

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Experiment began 19.570*** 0.498*** 0.485*** 0.065 -1.488*** 0.868*** -9.129***
(0.160) (0.060) (0.070) (0.092) (0.179) (0.089) (0.113)

Treatment 0.032 -0.109 -0.226* -0.279* -0.701** -0.068 0.018
(0.210) (0.087) (0.103) (0.135) (0.269) (0.128) (0.153)

Diff-in-diffs -0.059 0.083 0.097 0.137 0.289 -0.055 -0.098
(0.227) (0.084) (0.099) (0.129) (0.252) (0.126) (0.159)

Obs. 13,746,356 13,538,474 13,588,603 13,544,431 13,584,855 13,704,992 13,746,356

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Note: Coefficients are in the form of ((eβ − 1) · 100)
from equation 17.
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Figure A7: Event-time Study on the Average Daily Flood Score
of Properties Searched for Registered Users

(a) Low (b) Medium

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 19. Coefficients are relative to the week before a user entered the
experiment. Vertical lines crossing the estimates are confidence intervals at the 95% level. The vertical dashed line represents the beginning
of the experiment for a user. The x-axis represents each user’s baseline average flood score search category before the experiment began.

Figure A8: CATE on the Average Flood Score of a Daily Search for Registered Users, by
Characteristics of Most Searched Destination and Origin Zip Code at Baseline

(a) Lower Mean Flood Score at

Destination Zip Code than Origin

(b) Higher Mean Flood Score at

Destination Zip Code than Origin

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began.
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Figure A9: CATE on the Average Flood Score of a Daily Search for Registered Users, by
Flood Characteristics of the Most Searched Destination and Origin Zip Code at Baseline

(a) Lower Standard Deviation Flood Score at

Destination Zip Code than Origin

(b) Higher Standard Deviation Flood Score

at Destination Zip Code than Origin

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began.

Figure A10: CATE on the Average Flood Score of a Daily Search for Registered Users,
by Redfin’s Probability of Registered User Buying a House at Baseline

(a) Bottom 90 of Redfin’s Probability (b) Top 10 of Redfin’s Probability

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began.
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Figure A11: CATE on the Average Flood Score of a Daily Search for Registered Users,
by Percentage of Properties Considered by FEMA to be Risky Searched at Baseline

% Change relative to Control

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began.

Figure A12: CATE on the Average Flood Score of a Daily Search for Registered Users,
by Within-City Average Price Quintile Search at Baseline

Stratified by Average Flood Score Search at Baseline

(a) Low (b) Medium

76



(c) High

Note: Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 19. Vertical lines crossing the estimates are confidence intervals at
the 95% level. The x-axis represents the baseline average listing price quintile within a city search category of each user pre-experiment.

Figure A13: CATE on the Probability of Platform Registration
% Change relative to Control

77



Table A19: Average Treatment Effects on Platform Activity
Coefficients in terms of Elasticity, % Change relative to Control

(1) (2) (3) (4)
Total Seconds Number Sessions Unique Home Views Total Home Views

Experiment began 241.484*** 0.137** 0.701*** 1.008***
(59.910) (0.051) (0.179) (0.253)

Treatment -0.515 -0.001 -0.004 -0.007*
(0.479) (0.000) (0.002) (0.003)

Diff-in-diffs 2.372** 0.000 0.003 0.005
(0.849) (0.001) (0.003) (0.005)

Obs. 91,974,850 91,974,850 91,974,850 91,974,850

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Note: Coefficients are in the form of ((eβ − 1) · 100)
from equation 17.

Table A20: ATE for Registered Users on the Activity on the Platform
Coefficients in terms of Elasticity, % Change relative to Control

(1) (2) (3) (4)
Total Seconds Number Sessions Unique Home Views Total Home Views

Experiment began 302.408** 0.207* 0.824** 1.152**
(99.207) (0.080) (0.288) (0.400)

Treatment -0.180 -0.002* -0.002 -0.005
(1.042) (0.001) (0.004) (0.005)

Diff-in-diffs 3.884** 0.004** 0.005 0.010
(1.347) (0.001) (0.005) (0.007)

Obs. 27,034,546 27,034,546 27,034,546 27,034,546

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Note: Coefficients are in the form of ((eβ − 1) · 100)
from equation 17.
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Figure A14: CATE on the Average Flood Score of a Daily Search for Registered Users, by
whether the user’s county of origin or destination search at baseline experienced a flood

shock in the past 7 days

(a) County of Origin (b) County of Destination

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level.
Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. The x-axis represents each user’s baseline average flood score search
category before the experiment began.

Figure A15: CATE on the Percentage of Times Registered Users
Engaged with the Flood Risk Section of a Listing per Day

(a) Without Waterfront Search at Baseline (b) With Waterfront Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any
waterfront property before the experiment are classified as “without” waterfront search at baseline. On the other hand, users who browsed
at least one waterfront property before the experiment are classified as “with” waterfront search at baseline.
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Figure A16: CATE on the Percentage of Times Registered Users
Engaged with the Flood Risk Section of a Listing per Day

(a) Without FEMA Risk Search at Baseline (b) With FEMA Risk Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The x-
axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any property
considered risky by FEMA before the experiment are classified as “without” FEMA risk search at baseline. On the other hand, users who
browsed at least one property considered risky by FEMA before the experiment are classified as “with” FEMA risk search at baseline.

Figure A17: CATE on the Percentage of Times Registered Users
Engaged with the Flood Risk Section of a Listing per Day

(a) With Waterfront and

Without Coastal Search at Baseline

(b) With Waterfront and

With Coastal Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who browsed at least one
waterfront property before the experiment are classified as “with” waterfront search at baseline. A property is classified as being located
on the coast when its geographic coordinates (latitude and longitude) are 200 meters or less from the nearest shoreline. Users who did
not browse any coastal property before the experiment are classified as “without” coastal search at baseline. On the other hand, users who
browsed at least one coastal property before the experiment are classified as “with” coastal search at baseline.
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A.1 Nonparametric Heterogeneous Treatment Effects

We seek to identify the conditional average treatment effect on the treated (CATE), which

seeks to identify differences in treatment effects within the population and how big these

differences are with an estimand defined as:

CATE ≡ τ(X) = E

[
Y

(1)
i −Y

(0)
i | Xi = x

]
= µ1(x)−µ0(x) (21)

Where Y (1)
i and Y

(0)
i are the potential outcomes of outcome, Y , with observed covariates, X ∈

R, for individual, i. The goal is to identify the CATE or τ(X) which is the difference in poten-

tial outcomes that equates to the difference in the conditional expectation of x: µ1(x)− µ0(x).

Given that our treatment was randomized, we could estimate τ(x) via estimator 18. How-

ever, estimator 18 relies on the linearity assumption of the effect that covariates, Xi , have on

the treatment. If these effects were non-linear, our calculated estimates would be biased or

wouldn’t cover the entire distribution of heterogeneous treatment effects. We rely on causal

forests, a Generalized Random Forest algorithm, to relax this assumption and not provide a

parametric form (Athey, Tibshirani and Wager, 2019; Athey and Wager, 2021). Causal forests

are built to identify how treatment effects vary across users by maximizing the difference in

the relationship between our target variable (i.e., our outcome variable) and a specific feature

(i.e., our treatment indicator) within other features (i.e., our baseline covariates). This method

employs a splitting criterion optimized for detecting splits that reveal treatment effect het-

erogeneity. The objective is to identify leaf nodes where the treatment effect is constant but

distinct from other leaves.

In our analyses, we utilize baseline variables as covariates, X. We use the most searched

city, the device most used by the user to browse the web (i.e., mobile or desktop), the num-

ber of weeks since the user entered the experiment, and the baseline average flood of all the

houses viewed by user, i. We randomly split our data into training (70%) and testing (30%)

samples. We used the training sample to fit a causal forest with 50,000 trees grown in the

forest and four grown trees on each subsample. After training the causal forest, we predicted

conditional treatment effects on the testing sample and a 90% confidence interval around

each one. On each graph presented below, we show the percent rank of the conditional aver-

age treatment effects with a 90% confidence interval, where a bigger coefficient size tells us

that more observations lie within the branch of the calculated conditional average treatment

effect.
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Figure A18: Causal Forest—High Risk Group
% Change relative to Control

Note: The causal forest was trained on 70% of the extreme risk universe, and the plotted effects are calculated on 30% of the rest. We use
50,000 trees to grow the forest. We use baseline variables to fit the model. A bigger size of the circle effects tells us that more observations
lie within the branch of the calculated conditional average treatment effect.

Figure A19: Causal Forest—Medium Risk Group
% Change relative to Control

Note: The causal forest was trained on 70% of the severe risk universe, and the plotted effects are calculated on 30% of the rest. We use
50,000 trees to grow the forest. We use baseline variables to fit the model. A bigger size of the circle effects tells us that more observations
lie within the branch of the calculated conditional average treatment effect.
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Figure A20: Causal Forest—Low Risk Group
% Change relative to Control

Note: The causal forest was trained on 70% of the major risk universe, and the plotted effects are calculated on 30% of the rest. We use
50,000 trees to grow the forest. We use baseline variables to fit the model. A bigger size of the circle effects tells us that more observations
lie within the branch of the calculated conditional average treatment effect.
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A.2 Six Categories

Table A21: Pre-Experiment Distribution of Flood Score for Users by Treatment Status

Number of Users; Column Percentages in Parenthesis

Flood Score Category Control Treatment Total

Minimal 1,962,300 1,963,483 3,925,783

(68.20) (68.25) (68.23)

Minor 419,813 419,611 839,424

(14.59) (14.59) (14.59)

Moderate 323,050 322,315 645,365

(11.23) (11.20) (11.22)

Major 112,001 111,314 223,315

(3.89) (3.87) (3.88)

Severe 29,470 29,681 59,151

(1.02) (1.03) (1.03)

Extreme 30,616 30,356 60,972

(1.05) (1.05) (1.05)

Total 2,877,250 2,876,760 5,754,010

(100.00) (100.00) (100.00)
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Table A22: Pre-Experiment Distribution of Flood Score
for Registered Users by Treatment Status

Number of Registered Users; Column Percentages in Parenthesis

Flood Score Category Control Treatment Total

Minimal 275,765 275,476 551,241

(62.17) (62.18) (62.17)

Minor 94,232 94,303 188,535

(21.24) (21.28) (21.26)

Moderate 53,124 52,913 106,037

(11.98) (11.94) (11.96)

Major 13,852 13,653 27,505

(3.12) (3.08) (3.10)

Severe 3,799 3,825 7,624

(0.86) (0.86) (0.86)

Extreme 2,793 2,882 5,675

(0.63) (0.65) (0.64)

Total 443,565 443,052 886,617

(100.00) (100.00) (100.00)
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Figure A21: CATE on the Average Flood Score of a Daily Search for Registered Users
% Change relative to Control

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began.
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Figure A22: Event-time Study on the Average Daily Flood Score
of Properties Searched for Registered Users

% Change relative to Control
(a) Extreme (b) Severe

(c) Major (d) Moderate

(e) Minor (f) Minimal

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 19. Coefficients are relative to the week before a user entered the
experiment. Vertical lines crossing the estimates are confidence intervals at the 95% level. The vertical dashed line represents the beginning
of the experiment for a user. The x-axis represents each user’s baseline average flood score search category before the experiment began.
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Figure A23: CATE on the Average Flood Score of a Daily Search for Registered Users, by
Characteristics of Most Searched Destination and Origin Zip Code at Baseline

(a) Lower Mean Flood Score at

Destination Zip Code than Origin

(b) Higher Mean Flood Score at

Destination Zip Code than Origin

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began.

Figure A24: CATE on the Average Flood Score of a Daily Search for Registered Users, by
Flood Characteristics of the Most Searched Destination and Origin Zip Code at Baseline

(a) Lower Standard Deviation Flood Score at

Destination Zip Code than Origin

(b) Higher Standard Deviation Flood Score

at Destination Zip Code than Origin

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began.
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Figure A25: CATE on the Average Flood Score of a Daily Search for Registered Users, by
Characteristics of Most Searched Destination and Origin Zip Code at Baseline

(a) Lower Coefficient of Variation Flood

Score at Destination Zip Code than Origin

(b) Higher Coefficient of Variation Flood

Score at Destination Zip Code than Origin

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s average flood score search category before the
experiment began.

Figure A26: CATE on the Average Flood Score of a Daily Search for Registered Users,
by Redfin’s Probability of Registered User Buying a House at Baseline

(a) Bottom 90 of Redfin’s Probability (b) Top 10 of Redfin’s Probability

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began.
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Figure A27: CATE on the Average Flood Score of a Daily Search for Registered Users,
by Within-City Average Price Quintile Search at Baseline

Stratified by Average Flood Score Search at Baseline

(a) Extreme (b) Severe

(c) Major (d) Moderate

(e) Minor (f) Minimal

Note: Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 19. Vertical lines crossing the estimates are confidence intervals at
the 95% level. The x-axis represents the baseline average listing price quintile within a city search category of each user pre-experiment.
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Figure A28: CATE on the Probability of Platform Registration
% Change relative to Control

Figure A29: CATE on the Average Flood Score of a Daily Search for Registered Users, by
whether the user’s county of origin or destination search at baseline experienced a flood

shock in the past 7 days

(a) County of Origin (b) County of Destination

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level.
Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. The x-axis represents each user’s baseline average flood score search
category before the experiment began.
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Figure A30: CATE on the Number of Homes Viewed per Day for Registered Users

(a) Seconds Spent (b) Number of Sessions

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began.

Figure A31: CATE on the Number of Homes Viewed per Day for Registered Users

(a) Unique Home Views (b) Total Home Views

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began.
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Figure A32: CATE on the Percentage of Times for Registered Users
Engaged with a Specific Property’s Features per Day

(a) Engaged with Flood Risk Section (b) Clicked “Favorite” a Property

(c) Clicked Next Photo (d) Clicked Active Similar Properties

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began.
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Figure A33: CATE on the Probability of Booking a Tour and Canceling a House Tour

% Change relative to Control for Registered Users

(a) Probability of Booking a Tour (b) Probability of Cancelling a House Tour

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents the flood score category of the property.

Figure A34: CATE on the Probability of Making an Offer as a Function of the Flood Score

% Change relative to Control

(a) Probability of Placing an Offer (b) Flood Score of the Property

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began. S.E. clustered at the registered user level. FE = Fixed Effects of the location of the Property.

94



Figure A35: CATE on the Characteristics of an Offer

% Change relative to Control
(a) Prob. of Offer being on the Waterfront (b) Square Feet of the Property

Note: For Figure (b), coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence
intervals, where the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score
search category before the experiment began. Standard errors clustered at the user level. FE = Fixed Effects of the location of the Property.

Figure A36: CATE on the Probability of Closing on a Property

% Change relative to Control

(a) Probability of Closing an Offer (b) Flood Score of the Closed Properties

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 18. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category
before the experiment began. FE = Fixed Effects of the location of the Property.
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Figure A37: The Association Between Treatment Exposure Intensity
and the (Sale - Listing Price) Spread for All Listings

1PP Increase in Exposure Intensity, ($)

Note: For Figure (b), vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the
95% level. The x-axis represents the flood score of the property.

Figure A38: CATE of an Increase in Exposure Intensity on the (Sale - Listing Price)

(a) Only Not Waterfront Listings

1PP Increase in Exposure Intensity, ($)
(b) Only Not FEMA Risky Listings

1PP Increase in Exposure Intensity, ($)

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. As
well, for Figure (b), the x-axis represents the flood score of the property.
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Figure A39: CATE of an Increase in Exposure Intensity on the (Sale - Listing Price)

(a) Only Waterfront Listings

1PP Increase in Exposure Intensity, ($)
(b) Only FEMA Risky Listings

1PP Increase in Exposure Intensity, ($)

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents the flood score of the property.

Figure A40: Causal Forest—Extreme Risk Group
% Change relative to Control

Note: The causal forest was trained on 70% of the extreme risk universe, and the plotted effects are calculated on 30% of the rest. We use
50,000 trees to grow the forest. We use baseline variables to fit the model. A bigger size of the circle effects tells us that more observations
lie within the branch of the calculated conditional average treatment effect.
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Figure A41: Causal Forest—Severe Risk Group
% Change relative to Control

Note: The causal forest was trained on 70% of the severe risk universe, and the plotted effects are calculated on 30% of the rest. We use
50,000 trees to grow the forest. We use baseline variables to fit the model. A bigger size of the circle effects tells us that more observations
lie within the branch of the calculated conditional average treatment effect.

Figure A42: Causal Forest—Major Risk Group
% Change relative to Control

Note: The causal forest was trained on 70% of the major risk universe, and the plotted effects are calculated on 30% of the rest. We use
50,000 trees to grow the forest. We use baseline variables to fit the model. A bigger size of the circle effects tells us that more observations
lie within the branch of the calculated conditional average treatment effect.
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Figure A43: Causal Forest—Moderate Risk Group
% Change relative to Control

Note: For computational reasons, we used 20% of the moderate risk universe. From that sample, the causal forest was trained on 70% of it,
and the plotted effects are calculated on the 30% rest. We use 50,000 trees to grow the forest. We use baseline variables to fit the model. A
bigger size of the circle effects tells us that more observations lie within the branch of the calculated conditional average treatment effect.

Figure A44: Causal Forest—Minor Risk Group
% Change relative to Control

Note: For computational reasons, we used 10% of the minor risk universe. From that sample, the causal forest was trained on 70% of it,
and the plotted effects are calculated on the 30% rest. We use 50,000 trees to grow the forest. We use baseline variables to fit the model. A
bigger size of the circle effects tells us that more observations lie within the branch of the calculated conditional average treatment effect.
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Figure A45: Causal Forest—Minimal Risk Group
% Change relative to Control

Note: For computational reasons, we used 5% of the minimal risk universe. From that sample, the causal forest was trained on 70% of it,
and the plotted effects are calculated on the 30% rest. We use 50,000 trees to grow the forest. We use baseline variables to fit the model. A
bigger size of the circle effects tells us that more observations lie within the branch of the calculated conditional average treatment effect.
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