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Abstract

Textbook theory tells us that the price impact of demand shocks depends on the ability

of investors to identify close substitutes and trade against the mispricing. Corporate bonds’

salient characteristics, such as credit rating and maturity, make identifying such substitutes

particularly easy. Yet existing estimates of corporate bond multipliers (the price increase in

response to demand shocks) typically assume all bonds, regardless of their characteristics, are

equally good substitutes. In this paper, we introduce rich heterogeneous substitution patterns

among bonds and demonstrate that security-level multipliers are an order of magnitude smaller

than previously estimated and are essentially zero. Nonetheless, aggregated portfolios exhibit

substantially larger multipliers, reflecting the reduced availability of near substitutes for more

aggregated portfolios. The price impact of demand shocks reverts after a quarter. Finally, we

find that the multiplier is larger for high-yield bonds, longer-maturity bonds, and bonds with

greater arbitrage risks.
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1 Introduction

Our paper seeks to understand the ability of the corporate bond market to absorb demand-driven

price pressures. The bond market disruption in March 2020 has raised concerns regarding whether

the corporate bond market has become more vulnerable to demand shocks, particularly from mutual

funds.1 The impact of demand-driven price pressures crucially depends on the availability of

substitute assets. If there is an ample supply of close substitutes, arbitrageurs can easily hedge

idiosyncratic risks and aggressively trade against demand shocks. And perhaps unique to the

corporate bond market, salient characteristics such as credit rating and maturity make identifying

close substitutes relatively straightforward. Bonds within the same rating and maturity category

are closer substitutes than bonds that do not share these similar characteristics. We show that

accounting for the heterogeneous cross-substitution patterns is crucial for estimating price impact

correctly.

We measure demand-driven price pressure using multipliers—the percentage increase in the

asset’s price if mutual funds exogenously increased their demand for one percent of the asset’s

amount-outstanding (Gabaix and Koijen, 2021). In a frictionless benchmark, demand-driven price

pressures will have almost no price impact; hence, the multiplier would be close to zero. In addition,

we estimate the “substitute passthrough” of close substitutes, which is defined as the percentage

increase in an asset’s price due to its close substitutes’ prices rising by one percent.

Our main innovation in estimating multipliers is to allow for heterogeneous cross-elasticities.

Specifically, we allow bonds to have a different cross-elasticity for bonds with similar vs. different

characteristics. Explicitly allowing for heterogeneous substitution turns out to be quantitatively

important. At the security level, we find the multiplier is 0.05, and the substitute passthrough is

around 1. Ignoring these heterogeneous substitution patterns leads to considerable upward bias. If

we assume homogeneous substitution among all bonds, we get multipliers of around 0.4. This is an

order of magnitude larger than when heterogeneous substitution patterns are taken into account,

and it is also roughly the magnitude existing studies that (implicitly) impose homogeneous cross-

elasticity find. Our findings suggest that bonds are highly substitutable, and the market is quite

good at absorbing security-specific demand shocks. With that said, the market is not as good

at absorbing demand shocks at more aggregate levels, e.g., demand shocks for a specific-rating

1See for example https://www.brookings.edu/wp-content/uploads/2021/06/financial-stability_report.

pdf.
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category. As figure 1 shows, the more aggregate the demand shock, the higher the multiplier and

the lower the substitute passthrough. For example, at the rating level, the multiplier is 3.5, and the

substitute passthrough is statistically indistinguishable from zero. The considerable difference in

the price impact between security-level vs. more aggregate demand shocks highlights the double-

edged nature of substitutability. While high substitutability reduces price impact to direct demand

shocks, it increases price spillover from indirect demand shocks to substitutes. We also investigate

the persistence of the price impact and its heterogeneity along various portfolio characteristics. We

find the price impact reverts after a quarter. And that the price impact is larger for high-yield

bonds, longer maturity bonds, and bonds with larger arbitrage risks.

Figure 1: Demand is more inelastic for more aggregate portfolios

The figure shows plots the multiplier (inverse of elasticity) and substitute passthrough coefficients (link between

substitute and test asset returns) for various levels of portfolio aggregation—see Table 4 for descriptions of the

aggregation. The figure shows a negative relationship between multipliers and substitute passthroughs. It also

shows multipliers are monotonically increasing in aggregation, whereas substitute pasthrough is monotonically

decreasing in aggregation.

We construct exogenous demand shocks from flow-induced trading by mutual funds. Following
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the literature, we assume mutual funds invest their flows into their existing portfolios proportionally

(Lou, 2012).2 We allow for autocorrelations in fund flows and extract the flow innovation terms.

Furthermore, we adjust the demand shock to account for the expected cumulative trading from

this flow innovation.3 We then strip out common factor variations to remove potential confounding

factors. Finally, we construct bond-level shocks by summing up fund-level shocks weighted by the

fund’s lagged holding share for each bond.

We then use these demand shocks to estimate price multipliers.4 We show that as long as

lagged mutual fund portfolio shares are orthogonal to unobserved demand shocks, we can use our

(observed) demand shocks to identify the multipliers successfully. Our identification strategy is di-

rectly related to Bartik instrument applications where exogeneity of shares guarantees instrument

validity (Goldsmith-Pinkham et al., 2020; Chaudhry, 2022). From this perspective, our identifica-

tion strategy can be viewed as pooling multiple exogenous exposure research designs. Each bond’s

price is exposed to net retail inflows into a given mutual funds, but their degree of exposure to

these flows exogenously depends on how much mutual fund’s held of the bond in the previous

period (conditional on controls).

To estimate multipliers for individual bonds, we regress bond returns on its demand shocks,

controlling for the relevant substitute portfolio’s returns. We find that allowing for heterogeneous

cross-elasticity is quantitatively important for the estimate of the multiplier. Under the homo-

geneous cross-elasticity assumption, i.e. any given pair of bonds have the same cross-elasticity,

the relevant substitute portfolio’s return is simply the market return, or equivalently, a time-fixed

effect. The estimated multiplier is significantly positive and around 0.4, similar to the estimate in

the literature (Bretscher et al., 2022; Siani, 2022b; Darmouni et al., 2023).

However, once we relax the homogeneous elasticity assumption, we find a much smaller multi-

plier. To allow for heterogeneous cross-elasticity, we add another control which is the returns of an

additional substitute portfolio formed of bonds with the same detailed rating category as the testing

asset.5 To deal with the endogeneity of prices, we instrument the return of the substitute portfolio

2In appendix B.1 we relax this one-to-one passthrough assumption by directly looking at mutual fund rebalancing

to estimate lower bounds for the demand passthrough, and use this to find upper bounds for the multiplier. This

exercise suggests the security-level multiplier is at most 0.1, which is still 3-6 times smaller than what is typically

found in studies that assume homogeneous cross-elasticities.
3This is the theoretically relevant shock when there are forward-looking investors Gabaix and Koijen (2021).
4We focus on the multipliers in this paper, but one can easily translates the estimates into the elasticity space, by

taking the inverse of the multipliers.
5We refer to AAA,AA+, AA − AA + ... as detailed rating categories and AAA,AA,A,BBB... as coarse rating
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with the demand shocks to bonds in the substitute portfolio.6 After allowing close substitutes to

have different cross-elasticities than further away substitutes, we find the multiplier is around 0.05

and statistically indistinguishable from zero. In other words, the price impact of these demand

shocks from mutual funds is close to zero. On the other hand, the substitute passthrough is close

to one, i.e. the spillover from close substitute’s prices to the bond’s price is almost one-to-one.

Failing to account for close versus distant substitutes leads to significant over-estimation of the

multiplier. Intuitively, when a bond is hit by a positive demand shock, its substitutes likely also

receive similar demand shocks due to common ownership. The increase in the bond price comes

from both its own demand shock and also its substitutes’ prices being higher. If the latter channel

is not accounted for in the right way, then the degree of price change due to its own demand shock

would be mis-measured. Furthermore, the spillover effect from the asset’s substitute price is larger

if it is a close substitute. Assuming homogeneous substitution effectively under-weighs the impact

from close substitutes, and attributes too much of the price movement to the asset’s own demand

shocks.

We also show that accounting for heterogeneous substitution is particularly important for the

corporate bond market relative to the equity market. We repeat the same exercise for stocks to

estimate the stock-level multipliers, with and without controlling for close substitutes. We define

close substitutes as either stocks with similar loading on the Fama-French 3 factors, or stocks within

the same industry groups. Controlling for close substitutes does reduce the multiplier estimated,

but only slightly compared to the case for bonds, suggesting that the heterogeneity in cross-elasticity

among stocks plays a weaker role in the equity market.

We then move on to estimate the multipliers for corporate bond portfolios. In contrast to the

near-zero multiplier of individual bonds, we find that portfolios are affected more by demand shocks

and have significantly positive multipliers. As the portfolio multiplier is monotonically increasing

in the degree of aggregation, the substitute passthrough is monotonically decreasing. For portfolios

formed by bonds in the same rating category with the same quarter-to-maturity, the multiplier

is 0.35, significantly larger than the 0.05 estimate at the bond level. Furthermore, the portfolio

substitute passthrough is estimated to be slightly lower than that at the bond level. At the most

aggregated level, where each portfolio is formed by bonds in the same coarse rating group, the

categories.
6We also run a specification where we directly control substitute prices using substitute portfolio-time fixed effects

rather than using instrumental variables, the multiplier estimates are essentially unchanged.
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portfolio multiplier is 3.5 and the passthrough coefficient drops to 0.

Consistent with demand being more elastic in the long run, we find that the price response to

demand shocks is not permanent and seems to revert fully. For our baseline level of aggregation, we

find that price impact takes around two quarters to revert fully. This reversion rate is somewhat

faster than the four-quarter reversion Li (2021) found for stock portfolios. Overall, our results

suggest that demand is much more elastic in the long run.

Furthermore, we investigate heterogeneity in multipliers to uncover potential structural drivers

of inelastic demand. We focus on portfolios formed by bonds in the same detailed rating category

with the same quarter-to-maturity. First, we explore heterogeneity along credit risk and duration

risk dimensions and find that portfolios consisting of bonds with lower ratings and longer maturities

have significantly larger multipliers. Investment grade (IG) portfolios have near-zero multipliers,

whereas high yield (HY) portfolios’ have multipliers around 0.6—hence our baseline level multiplier

estimate of 0.35 is predominantly driven by HY bonds. Specifically, the sharp change in multipliers

around the IG/HY cutoff indicates that elasticity depends on investor clientele.

Finally, we compute the Sharpe ratio of a strategy that takes advantage of the price devia-

tion between the testing asset and its substitute portfolio for one quarter. This is near-arbitrage

strategy as price may not converge in the following quarter due to non-flow shocks and future

flow shocks. We find the (annualized) Sharpe ratios are generally small, suggesting un-hedged risk

may be a factor impeding arbitrage activities. Indeed, we find that in the cross-section of portfolios

formed by detailed rating and maturity, portfolios with high arbitrage risks have significantly higher

multipliers. A one-standard-deviation increase in arbitrage risk increases the multiplier by 0.45.

In the remainder of this section, we discuss the literature. We explain our demand structure

and estimation methodology in Section 2. Section 3 describes our data and construction of demand

shocks in detail. Section 4 presents the baseline estimation results and Section 5 focuses on arbitrage

risks. Section 6 concludes.

1.1 Literature Review

Estimating multipliers directly contributes to the long literature in asset pricing that estimates the

slope of the asset demand curve—multipliers are the inverse of demand elasticities.7 The literature

has shown asset demand is considerably less elastic than standard theories suggest. Partially due

to data availability, this literature has traditionally focused on estimating the demand elasticity

7Our security-level multiplier estimate of 0.05 implies an elasticity of 1/0.05 = 20.
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of individual stocks (micro elasticities). More recently, researchers have begun estimating the

micro elasticity of other asset classes, such as bonds, and more aggregate level elasticities, such as

those of the entire equity market (macro elasticity). Our paper contributes to this broad body of

work. Figure 2 shows how our estimates compare to a representative selection of micro elasticity

estimates from the literature—our estimates confirm that bond demand is more elastic than stocks,

but additionally we find that bonds are a lot more elastic than suggested by prior studies.

Figure 2: Our estimate vs. other micro stock and bond elasticity estimates
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This graph presents a representative set of stock and bond micro elasticity estimates from the literature. The y-axis

is the magnitude of the estimate—if authors provided a range for the estimate, the graph shows the midpoint of the

range. The x-axis describes the methodologies used for estimating the elasticities.

Most directly, our estimates speak to the burgeoning literature estimating corporate bond

micro elasticities. Several recent papers have adapted the asset demand system developed by Koijen
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and Yogo (2019b) for the equity market to study corporate bond demand.8 Bretscher et al. (2022)

focus on the heterogeneous demand elasticities of different investors, and find the average corporate

bond elasticity is around 3.8. Darmouni et al. (2023) adopt a two-layer framework to capture the

interaction effect between fund flows and asset market inelasticity. Their demand elasticity estimate

ranges from 0.8 to around 2, depending on the time period. Siani (2022a) estimates the elasticity

of the primary market demand and finds it is between 1.9 to 3.5. Fang (2022) uses a nested logit

structure to allow for more flexible substitution within and across IG and HY bonds, and finds

a higher elasticity of around 10. Compared to these studies, we find corporate bond markets are

considerably more elastic, with a bond-level micro elasticity of around 20. Our method has several

advantages over the demand system estimates. Firstly, our approach allows for greater flexibility in

substitution patterns. At the investor level, standard logit demand structure imposes homogeneous

cross-substitution across assets (in a nested logit system, homogeneity is within the nest). In the

context of corporate bonds, this is a strong assumption. For example, it assumes AA- and CCC

bonds are equally good substitutes for AA bonds. In line with findings in Fang (2022), allowing for

greater flexibility in substitution results in more elastic estimates for the slope of individual bond’s

demand curve. Our approach is relatively model-agnostic compared to asset demand systems.

Furthermore, our approach is not encumbered by not observing the holdings of investors such

as households, hedge funds, private pension funds etc. Due to data-availability issues, corporate

bond demand systems are typically only able to estimate the demands for insurance companies,

bond mutual funds and public pension funds. Hence, the bottom-up aggregated market demand

elasticity omits potentially important investors. Since our approach starts with the market clearing

condition, it is not impacted by these data-availability concerns. Finally, our top-down approach

makes it more suitable for studying bond specific heterogeneity in micro elasticities e.g., due to

rating-based segmentation.

In terms of stock micro elasticities, an early strand of the literature shows that the inclusion

of stocks in indices results in significant positive abnormal returns. For example, see Shleifer

(1986); Harris and Gurel (1986); Beneish and Whaley (1996); Wurgler and Zhuravskaya (2002);

Chen et al. (2004); Chang et al. (2015); Pavlova and Sikorskaya (2022) for stocks and Calomiris et

al. (2022) for bonds. Generally, they find significant and permanent price impact; the estimated

micro elasticities are around three orders of magnitude smaller than those implied by standard

8Jansen (2021) has also used demand systems to estimate the elasticity of European government bonds, and finds

estimates of around 4.11 for maturity bucket portfolios.
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models (Petajisto, 2009). Among these index-inclusion papers, Wurgler and Zhuravskaya (2002)

have the closest connection with our paper. They show that demand is more elastic for stocks

with closer substitutes. This finding is consistent with arbitrageurs being able to better hedge

stock-specific idiosyncratic risk and trade more aggressively against demand shocks. We show this

is also true for corporate bonds; those with closer substitutes exhibit more elastic demand curves.

Overall, our demand shock and setting of corporate bonds have several advantages over Wurgler and

Zhuravskaya (2002) for establishing the importance of close substitutes in flattening the demand

curve. Firstly, stocks lack a prominent characteristic for identifying substitutes, whereas, in the

case of corporate bonds, credit rating and maturity provide natural dimensions for identifying close

substitutes. Secondly, index inclusion (or deletion) only impacts a handful of assets in any given

year, whereas flow-induced trading shocks impact all assets to some extent. The broader exposure

allows us to conduct our analysis at the bond portfolio level. At this higher level of aggregation,

arbitrage risks are likely to play a more significant role in limiting arbitrage and hence is easier to

detect.9

Another strand of the stock elasticity literature uses mechanical portfolio rebalancing as a

source of demand shocks, showing that mechanical trading by mutual funds in response to flows

has a significant price impact (Lou, 2012; Coval and Stafford, 2007; Edmans et al., 2012; Li, 2021).

In contrast, Choi et al. (2020) find little evidence for fire-sale price pressure in the corporate

bond market. Other variants of mechanical trading-induced demand shocks include using dividend

payment-induced trading (Hartzmark and Solomon, 2022), reinvestment of stimulus payments by

US households (Greenwood et al., 2022), and investing refunds from unsuccessful bids in Chinese

IPOs (Li et al., 2021). Overall these papers find large price impact as well. Li and Lin (2022)

use equity net-flows and show stock prices respond more to demands at more aggregated levels.

Our identification strategy directly builds upon the mutual flow-induced trading literature. We

make three contributions compared to the standard methodology. Firstly, we take into account

the close substitute portfolio’s return in the estimation; this helps address the omitted variable

bias generated by flow-induced demand shocks being correlated across assets. Secondly, we use the

method proposed by Gabaix and Koijen (2021) to control for the omitted variable bias generated by

forward-looking agents anticipating predictable fund flows. Thirdly, we formalize the identification

by appealing to shares’ exogeneity rather than shocks’ exogeneity. This formalization of the identi-

9Inclusion in an index may bring better liquidity and better coverage by analysts, which may drive the observed

price impact. Trade-induced shocks are less contaminated by such effects.
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fication strategy builds a direct parallel with exogenous share identification of Bartik instruments

(Goldsmith-Pinkham et al., 2020; Chaudhry, 2022).

At more aggregate levels, Gabaix and Koijen (2021) finds that the macro elasticity of the

overall equity market demand is around 0.2. Hartzmark and Solomon (2022) and Li et al. (2021)

also find relatively inelastic macro elasticities. Overall, the equity market seems considerably more

inelastic than individual stocks. Other papers have attempted to estimate equity portfolio level

elasticities and found them to be somewhere in between equity micro and macro elasticities (Peng

and Wang, 2019; Li, 2021). We show that more aggregate portfolios of individual bonds are more

inelastic, and they are also less sensitive to changes in the prices of their close substitutes.

2 Demand Framework

In the section we outline our demand framework. To help frame the discussion, we begin by in-

troducing a fully general demand system that, while infeasible to estimate, allows for complete

flexibility in the cross elasticities between bonds. We then outline the homogeneous cross-elasticity

restriction typically made by existing methods. This restriction makes estimation feasible, how-

ever, it risks introducing positive omitted variable bias to the multiplier estimates. Finally, we

outline our demand system which relaxes the homogeneous cross-elasticity restriction by allowing

for heterogeneous cross-elasticity between close and distant substitutes; where close and distant

substitutes are identified using bond characteristics such as rating and maturity.10 Our demand

system brings us one step closer to the general demand system, but remains feasible for estimation.

2.1 Fully general demand system

For a fund i in our sample (denote the set as MF ), we assume its demand for the N available

assets is

qi,t︸︷︷︸
N×1

= Γ︸︷︷︸
N×N

pt︸︷︷︸
N×1

+ ui,t︸︷︷︸
N×1

+ νi,t︸︷︷︸
N×1

for i ∈ MF, (1)

where qi,t is a N × 1 by vector, where element qi,j,t denotes the log quantity for bond j

demanded by fund i. Similarly, pt is the N × 1 price vector, where element pj denotes the log price

of bond j. Γ is a N ×N matrix that governs demand elasticities and substitution patterns among

10In Appendix D we show how our approach links to logit demand systems and nested logit demand systems as in

Koijen and Yogo (2019b) and Koijen and Yogo (2019a)
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bonds. To simplify the notation, we assume Γ is homogeneous among investors, but this does not

matter for our estimation.11
∂qj
∂pj

= Γj,j is the slope of the demand curve for asset j. Furthermore,

∂qj
∂pk

= Γj,k is the cross-elasticity of asset j to asset k’s price. The observed flow-induced trading

demand shock is captured by ui,t, where element ui,j,t denotes fund i’s exogenous demand for bond

j due to flows. Finally, the vector νi,t captures the unobserved demand shocks to fund i at time

t. Throughout this section, we assume that the observed demand shocks ui,t are orthogonal to the

unobserved shocks νi,t. We explain how we construct such shocks in the next section.

Equation (1) can be viewed as a log-linearization of any generic demand function. For example,

it nests the standard demand function derived from maximizing mean-variance utility. However,

deriving the demand function from utility maximization would inevitably impose some restrictions

on investors’ utility. To preserve the maximum degree of flexibility, we model the demand in a

reduced-form way.

For a fund that is not in our sample,12 and we cannot observe its demand shocks, we denote

their demand as

qi,t = Γpt + νi,t for i /∈ MF (2)

With the constant net supply of bonds, the market clearing condition gives:

∆

(∑
i

exp (qi,t)

)
= 0. (3)

Log-linearize the market clearing condition around the last period values, we get for bond j

∆pj,t = Muj,t + M̃∆psubj,t + ν̃j,t, (4)

where

uj,t ≡
∑
i

Si,j,t−1ui,t ≡
∑
i

exp(qi,j,t−1)∑
i exp(qi,j,t−1)

ui,t

M ≡ − 1

Γj,j

M̃ ≡ −
∑

k ̸=j Γj,k

Γj,j

∆psubj,t ≡
∑
k ̸=j

wj
k∆pk,t ≡

∑
k ̸=j

Γj,k∑
k ̸=j Γj,k

∆pk,t

11If Γ is heterogeneous among investors, then the final expression for market multipliers should be average of

investor elasticities weighted by their AUM shares.
12We use the term “fund” to refer to all investors in the bond market.

10



and ν̃j,t ≡ νj,t/(−Γj,j), where νj,t is the market-share weighted average of demand from the fund-

level unobserved demand shocks νi,t. With a slight abuse of notation, we keep using ui,t for shocks

instead of ∆ui,t.

If investors have downward-sloping demand with respect to the asset’s own price, then the

diagonal of Γ should be negative, i.e. Γj,j < 0, which implies M > 0. If assets are broadly speaking

substitutes with each other, then the off-diagonal terms are positive, and M̃ should be positive.

If assets are complements with each other, then the off-diagonal terms are negative, implying a

negative M̃ . We refer to M as the asset’s own multiplier and M̃ as the substitute passthrough.

Equation 4 suggests that if we observe asset-specific demand shocks uj,t and asset-specific

substitutes ∆psubj,t we can run a regression to estimate M and M̃ . However, the construction of

∆psubj,t is infeasible without further restrictions on cross-elasticities: asset j’s ∆psubj,t is a weighted

average of the returns of other assets, where the weights depend on unobserved cross-elasticities—

the closer an asset is as a substitute, the larger its weights in the substitute portfolio. Hence, we

will need to impose some structure on the substitution pattern, which will allow us to construct (or

control for) the substitute portfolio without knowing the exact magnitudes of the cross elasticities

Γjk.

2.2 Demand Structure with Heterogeneous Cross-elasticity

Homogeneous substitution. The existing literature commonly assumes homogeneous substi-

tution patterns. For example, logit-demand systems such as those in Koijen and Yogo (2019b) and

Bretscher et al. (2022) imply homogeneous cross-elasticities, i.e., Γj,k is proportional to the market

share of bond k.13 In this special case, ∆psubj,t is essentially the market portfolio constant across j.14

Therefore, researchers can use the specification in equation 5 to correctly identify the multiplier

M by exploiting the cross-sectional variation. Existing literature that uses flow-induced trading to

identify price impact with time-fixed effects implicitly assumes the same structure (Lou, 2012).

∆pj,t = Muj,t +Time fixed effects + ν̃j,t (5)

13To see the substitution is homogeneous in a logit-demand system, consider the logit-demand specification

ln(
wi,j,t

wi,0,t
) = γipj + β⊤Xj + ϵi,j,t, where Xj is the relevant characteristic vector that affects demand. When as-

set k’s price increase, ln(
wi,j,t

wi,0,t
) does not change. In other words

∂ln(wi,j,t)

∂pk
=

∂ln(wi,0,t)

∂pk
is constant for all j ̸= k. For

the complete derivation of cross elasticities, see Appendix D.
14Technically, the substitute is the market excluding the test asset. When each test asset is small relative to the

whole market as in our baseline, the difference is negligible. Under the logit demand system, the substitute portfolio

is the exact market portfolio. See Appendix D.
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However, in the corporate bond market, the homogeneous substitution assumption is likely

to be violated. If the price of a BBB+ bond increases, investors will probably substitute much

more into another BBB+ bond than a AAA bond (all else equal). In addition, there will probably

be very little substitution in the high-yield bond class. With heterogeneous substitution patterns,

∆psubj,t is no longer constant across j.

When the model is mis-specified, we may still correctly identify the multiplier M from (4)

without controlling for substitute portfolio if the observed demand shocks uj,t are orthogonal to

∆psubj,t . However, demand shocks to close substitutes are commonly correlated in the cross section.

In our case, the demand shocks are constructed from flows into mutual funds, which hold portfolios

of closely substitutable bonds. Similarly, in the demand system estimation, the instruments for

bond prices are commonly constructed from investment mandates, which are mostly stipulated at

the market segment level, and rarely at the CUSIP level. As we demonstrate later in this section,

omitting substitute portfolio ∆psubj,t will bias the multiplier estimates upward when demand shocks

are mutually correlated.

Two-layer substitution structure. We impose a two-layer structure to capture the heteroge-

neous substitution patterns. We allow cross-elasticities to have two levels: a stronger cross-elasticity

for bonds within the same detailed rating (close substitutes) and a weaker cross-elasticity for bonds

outside this category (distant substitutes). Formally, let Γ be:

Γj,k =


γo j = k

γdwk + γcwk|g j ̸= k, j, k in the same detailed rating g

γdwk otherwise,

(6)

where wk is the share of asset k in the whole market and wk|g is the conditional share of k in

the detailed rating group g. Intuitively, the cross-elasticity is scaled by market share so that the

substitution effect is in proportion to their relative sizes. Appendix D shows that this demand

structure also arises from a nested-logit system.

Under this demand structure, the substitute portfolios for each asset j can be decomposed into

two components: the portfolio of bonds in the same detailed-rating group, and a market portfolio.

We call the former portfolio its close substitute. For example, for a 10-year BBB- bond, its close-

substitute portfolio includes all the other BBB- bonds. Specifically, Equation (4) can be rewritten

12



as:

∆pj,t = Muj,t + M̃∆pg(j),t + M̃m∆pmt + ν̃j,t (7)

or alternatively as

∆pj,t = Muj,t + M̃∆pg(j),t +Time fixed effects + ν̃j,t. (8)

where ∆pg(j),t ≡
∑

k∈g wk|g,t−1∆pk,t is the portfolio return of assets in the same detailed rating

category as asset j, weighted by each asset’s lagged market-value, and ∆pmt is the market return.

We instrument portfolio returns with demand shocks to solve endogeneity issues, as will be explained

in Section 3.1. The multiplier M measures the price response to a one-percentage point increase

in demand. The passthrough coefficient M̃ captures the comovement of the test asset with its

close substitutes, conditional on the market return. A passthrough close to 1 indicates a strong

substitutability among assets within groups.

For the purpose of estimating the multiplier M alone, we can also simply absorb ∆pg(j),t and

∆pmt with group-time fixed effects, as in equation (9):

∆pj,t = Muj,t + Fixed effectsg,t + ν̃j,t. (9)

Although this group-time fixed effect specification is more straightforward, the baseline specification

in equation (4) allows us to estimate the substitute passthrough coefficients M̃ , which is informative

about the spillover effect among close substitutes. In our analysis, we estimate both specifications

(8) and (9). We find that the choice of specification has little impact on the estimate of M ,

suggesting the IV estimation strategy for equation (8) successfully addresses the endogeneity issues.

Omitted variable bias. Failing to control for close substitutes will lead to over-estimation of the

multiplier and hence under-estimation of the elasticity. The following example showcases the source

of the bias. Suppose bond-level shocks are generated as uk,t = ug,t + ũk,t, where the bond-specific

shock ũk,t is orthogonal to the group level shock ug,t. Also for simplicity, we assume each bond is

minuscule relative to the group so Cov(pgk, ũk) = 0. If the econometrician controls for time FE but

fails to control for ∆pgj,t when estimating the multiplier, the omitted variable bias can be shown as:

M̂ −M = M̃
Cov(pgk, ug)/V ar(ug)

1 + V ar(ũk)
V ar(ug)

≡ M̃
Mg

1 + V ar(ũk)
V ar(ug)

> 0. (10)

The bias has three components, the passthrough coefficient M̃ , the group-level multiplier Mg, and

the variance ratio of the bond-specific shocks to group shocks. Therefore, failure to control for close
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substitutes will contaminate the bond-level multiplier with the group-level multiplier. As we show

below, multipliers increase as we move to more aggregate portfolio levels, so the bias is positive

and can be potentially large.15

This issue is not specific only to our empirical specification, but it arises whenever shocks

across bonds are correlated—a typical scenario for most other demand shocks commonly used in

the literature, such as institution mandates. If the substitution is indeed homogeneous as commonly

assumed, M̃ is close to zero so the bias is small. However, as we show in our estimation results, at

the bond level the substitute passthrough is close to 1, so ignoring close substitutes dramatically

overestimates the multiplier.

As we show in Section 4, at the CUSIP level the multiplier M is close to zero once the

substitute portfolio is controlled, suggesting the market is fairly elastic. Therefore, for most of

the heterogeneity analysis, we conduct the analysis at the portfolio level. In our baseline portfolio

specification, we treat each asset as a market-value weighted portfolio formed by bonds with the

same detailed rating category and quarter-to-maturity. Like the individual bond analysis, we

assume there are two cross-elasticities, one for portfolios with the same detailed ratings (close

substitutes) and another for portfolios outside this category (distant substitutes).

Finally, with enough data, one can easily extend our analysis to allow for multiple layers of

substitution: same detailed rating category, the same investment rating (investment-grade vs high-

yield), and all the other cases. We verify that the estimation results are quantitatively very similar

to the case with two different levels of cross-elasticities. So we will focus on only two levels of

heterogeneity for most parts of the paper.

3 Empirical Strategy

In this section, we first describe our identification strategy, and then we introduce the data sources,

and then the construction of our demand shock measure. We present summary statistics regarding

the demand shocks at the end.

15We are implicitly assuming that the cross-elasticity between corporate bonds and other asset classes (such as

Treasuries, mortgage-backed securities) is small. Hence the bias due to not including those asset returns explicitly is

negligible.
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3.1 Identification

We use equation (7) to estimate the asset’s multiplier M and substitute passthrough M̃ . Under

Assumption 1, the unobserved demand shock νj,t is orthogonal to the observed demand shocks uk,t

for any k. In equilibrium, ∆psubj,t is endogenous and is determined by the whole vector of demand

shocks ut and νt. We instrument ∆psubj,t with usubj,t defined as

usubj,t ≡
∑

j ̸=k,k∈g(j)

wj
k,tuk,t. (11)

Under Assumption 1, uj,t and usubj,t are both orthogonal to νj,t in the cross-section:

Assumption 1. For any mutual fund i in each period t, the mutual fund’s lagged portfolio share

in bond j is orthogonal to its unobserved demand shocks,

Ei,t [ν̃j,tSi,j,t−1] = 0 ∀i, t

Appendix A shows that under Assumption 1, the multiplier and the passthrough coefficient

are identified.16 Our identification strategy uses the same insight as in Goldsmith-Pinkham et

al. (2020) that Bartik instruments can be viewed as exogenous share instruments. As a result,

the strategy is similar to an exposure research design, where bonds have exogenous exposures to

common shocks, and the degree of exposure depends on the portfolio shares of mutual funds.

To make the pooled exposure design intuition more concrete, suppose households receive a

preference shock that increases their demand for bonds (this shock may be correlated with the

fundamental characteristics of the bond market). As a result of the household preference shock,

bond mutual funds will receive inflows. Consider a mutual fund that holds two bonds, and before

the shock held 90% of its holdings in bond A and the remaining 10% in bond B. Suppose this mutual

fund receives $10 million in inflows and mechanically invests these inflows according to its previous

periods portfolio weights. In this case, bond A would experience a demand increase of $9 million

and bond B will experience an increase of $1 million. If the previous periods portfolio weights of

the mutual fund are orthogonal to the household preference shock, then the relative increase in the

16One potential concern for Assumption 1 is that if the unobserved shock νj,t loads on a factor, such as νj,t =

ˇνj,t + βjηt, and there exist factor-focused funds whose portfolio shares are functions of bonds’ factor loading, e.g.,

Qj,t−1 = ψt−1βj , then the orthogonality condition in Assumption 1 will be violated. We address this issue in

Appendix B. In essence, we show that as long as the fund-specific demand shock ui,t is orthogonal to factors, our

identification is still effective. Our results are robust to different factor specifications in flows (see Appendix B).
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demand for bond A vs bond B will be as good as randomly assigned.17 Hence, given exogeneity

of funds’ lagged portfolio weights and unobserved shocks, flow-induced trading by a single mutual

fund amounts to an exogenous exposure research design. Our identification strategy pools many

such instances of flow-induced trading, and hence it can be viewed as a pooled exposure design.

Robustness of Assumption 1. Below we discuss the potential violations for Assumption 1,

and how we address them. One potential threat to this assumption is market-timing skills by

mutual fund managers. Suppose some mutual fund managers have superior information about

bond idiosyncratic returns in the future, and allocate their portfolio in advance to front-run the

market, the share exogeneity will be violated. This issue can be addressed using longer lags for

shares. In Appendix B.4, we show the results are robust if we aggregate shocks using shares with

one-year lags. It is unlikely that mutual fund managers are able to predict bond-level idiosyncratic

returns in one year and allocate assets accordingly.

Another potential concern is factor loadings driving both portfolio shares as well as bond

returns. Bond returns can load on common factors, such as credit risks, and there exist style-

specialized funds that over-weigh bonds with higher loadings on one particular factor. For example,

suppose the unobserved shocks νj,t have the following factor structure:

ν̃j,t = βjηt + ν̌j,t,

where ηt is the factor and ν̌j,t is the true idiosyncratic shock. Also suppose one mutual fund i

specializes in factor η, which means:

Si,j,t−1 = ξiβj + Ši,j,t−1.

In this case, the share exogeneity condition under νj,t will be violated:

Ei,t [νj,tSi,j,t−1] = Ei,t

[
β2
j,t

]
ξiηt ̸= 0.

The solution to this issue is straightforward. We can explicitly control for common factors in the

final regression, allowing for heterogeneous loadings:

∆pj,t = Muj,t + M̃∆psubj,t + βjηt + ν̌j,t, (12)

17If the fund has mandates restricting what types of bonds the fund can hold, then the previous periods portfolio

weights, the part that is determined by mandates, are naturally orthogonal to demand shocks.
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so that shares are exogenous to ν̌j,t. As common to the bond literature, we make an additional

assumption that βj depends on the characteristics of bond j, such as maturity or ratings. Then

the factor loading term βjηt can be absorbed by characteristic-time fixed effects. This provides a

robust method of controlling for common factors without estimating a factor model.18

3.2 Data

Mutual fund data: We obtain detailed data on open-end mutual funds in the U.S. from Morn-

ingstar Inc. Morningstar is one of the largest providers of investment research to the asset man-

agement industry. Detailed holdings and fund flows are collected from surveys of mutual fund

managers, and cross-validated by Morningstar against publicly available sources such as regulatory

filings to ensure their accuracy. Most funds report at least once per quarter. In order to keep as

many funds as possible in our sample, we conduct our analysis at the quarterly frequency. The

Morningstar mutual fund coverage is quite extensive—the data sets total assets under management

(AUM) lines up closely with the Flow of Funds open-end mutual fund sector AUM (see Figure 10

in the Appendix).

Since our identification relies on flow induced trading in the US corporate bond market, we

apply some additional filters to narrow in on domestic bond mutual funds. Firstly, we restrict our

sample to funds that report their portfolio value in US dollars and also to securities denominated

in US dollars. Secondly, we focus on funds that have at least $10 million dollars of bonds under

management, and bonds make up 50% to 120% percent of their portfolio’s asset under management

(AUM). The lower bound is to filter out non-bond funds, and the upper bound is to filter out

potential misreporting. Taken together this database gives us coverage of 1,151 unique funds from

2002Q1 to 2021Q3, totaling around 5.6 million bond-fund-quarter observations.

After applying our data filters, we then define mutual fund i’s dollar flows Fit scaled by lagged

AUMi,t−1 as,

fit :=
Fit

AUMi,t−1
.

This is a key building block for constructing our demand shocks. We denote the set of investors

whom we observe flow data as MF .

18Our results are also robust to controlling for off-the-shelf factors from the bond literature, such as Bai et al.

(2019).
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Bond return data: We use corporate bond returns data from WRDS Bond Returns file, which is

constructed using transaction level data from FINRA’s TRACE (Trade Reporting and Compliance

Engine) database, and Mergent FISD data for bond issue and issuer characteristics. Specifically,

our quarterly return measure is the cumulative end-of-month returns of the months that fall in a

given quarter. We further merge this dataset with Morningstar’s CUSIP level bond characteristics.

Additionally, we apply filters to ensure we are capturing corporate bonds with reliable return

data. Firstly, we restrict our sample to securities that WRDS classifies as corporate bonds. Sec-

ondly, we restrict our attention to corporate bonds that have at least a CCC- or higher rating by

S&P. Overall, we have 377, 753 bond-quarter observations.

3.3 Constructing Flow Shocks

Our shock measure builds on the flow-induced trading (FIT) measure proposed by Lou (2012). The

measure exploits the fact that mutual funds tend to mechanically invest inflows/outflows according

to their existing portfolio weights (Coval and Stafford, 2007). Ultimately, flow-induced demand

shocks are essentially a Bartik instrument, where the key identifying assumption is the exogeneity

of lagged mutual funds holding shares (Goldsmith-Pinkham et al., 2020; Chaudhry, 2022). With

that said, there are several omitted variable bias concerns when directly using FIT as a demand

shock measure, hence we need to apply several adjustments to get from FIT to our demand shock

(Gabaix and Koijen, 2022). Below we walk through how we construct our bond-specific demand

shock measure.

Step 1: Measuring flow-induced trading by mutual funds. Assuming fund i mechanically

reinvests dollar flow Fit according to their existing portfolio weight θij,t−1. This implies that the

dollar amount of flow-induced trading of bond j will be θij,t−1Fit. The percentage change in asset

j’s holdings due to flows is

fit =
θij,t−1Fit

θij,t−1AUMi,t−1

Implicitly in this step we have assumed that the flows fully pass through to the demand shocks to

each bond one-to-one. If the passthrough is less than one-to-one, then we risk underestimating the

multiplier, since we overestimate the quantity of the shock. We test this assumption in appendix

section B.1 by estimating the passthrough of flows to actual tradings. Notice that this passthrough

is a lower-bound of the passthrough to demand, as the actual tradings also reflect other equilibrium

objects such as prices. Overall, we find that the estimated passthroughs are sizeable (around 0.5 to

0.6) at the individual bound level. Therefore, we can use our passthrough estimates to get upper
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bounds on the multipliers. We find that the upper bounds are still considerably smaller than micro

multipliers typically found for stocks and bonds.19

Step 2: Adjusting for predictability in flows. Due to return chasing by households, mutual

fund flows and flow induced trading tend to be predictable (Lou, 2012). As a result, forward-

looking investors will trade today in anticipation of future flow. Hence the relevant demand shock

is not just the flow induced trading today, but rather, the total amount of flow induced trading

predicted by innovations in flows today (Gabaix and Koijen, 2021). To determine flow innovations,

we estimate an AR(3) model with a time trend for each fund i,20

fit = ρi,0 +

3∑
k=1

ρi,kfi,t−k + δit+ εit

Assuming relatively little discounting by forward looking agents at the quarterly level, the relevant

quantity of the demand shock is the total cumulative trading predicted by the innovation,

Kiεit

where Ki =
1

1−
∑3

k=1 ρi,k
.

Step 3: Even though our main identification assumption does not rely on flow exogeneity, as

additional robustness checks we also remove potential common factors from the flow shocks. We

estimate a model of the form

εi,t = αi + δt + λf
i ηt + ui,t,

where ui,t is the fund-specific idiosyncratic flow innovations. Hence, our measure for fund-specific

demand shocks is Kiuit. We find that mutual fund flows have a weak factor structure after con-

trolling for time-fixed effects. Therefore, in the baseline, we do not control additional factors ηt

to avoid introducing additional estimation errors. Controlling for additional factors makes little

difference to the estimates (see Appendix section B).

Step 4: Aggregate fund-level shocks to bond-level shocks. To obtain bond-level demand

shocks, we aggregate the fund-level shocks Kiuit to the bond level using funds’ lagged holding

share weights. With a slight abuse of notation, we denote bond j’s demand shock in quarter t as

ujt. Specifically, ujt is defined as

ujt =
∑

i∈MF

Sij,t−1Kiuit

19At the bond level, the upper bound multiplier estimate is 0.1 (elasticity of 10), and for our baseline level of

aggregation, it is around 0.33 (elasticity of 3).
20Our results are robust to changing the specification of the AR process (see appendix section B.5).
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where Sij,t−1 is the market share of bond j that is held by investor i in period t− 1.

Figure 3 plots the 1st to 99th percentile range of the shocks for each quarter, along with its

median. The magnitudes of shocks are generally quite large ranging from around 1%-3% of the total

outstanding amount. The range is relatively stable in magnitude apart from two crisis episodes

in 2008 and 2020. For robustness, we explore including and dropping the crisis periods from our

estimation sample, and find that are results are robust to this decision.

Figure 3: Demand shocks (N = 339, 847)

This graph plots the median value of our demand shock measure in a given quarter, and the shaded grey area

denotes the range of demand shock values that fall between the 1st and 99th percentile of shocks in any given

quarter. The shocks are represented as a percentage of the total outstanding amount.

4 Estimation Results

We present our main findings in this section. We first show that the multiplier at the CUSIP level

drops from 0.4 to 0.05 once we account for the heterogeneity in cross-substitution. When we form

bonds into our baseline portfolios, the portfolio multiplier becomes significantly larger, indicating
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demand is more inelastic at the portfolio level. Furthermore, the multiplier monotonically increases

as we form increasingly more aggregate portfolios, while the substitute passthrough monotonically

decreases. Furthermore, we investigate the dynamics of the price impact at the portfolio level and

find the effect almost fully reverts after 2 quarters, suggesting demand is more elastic in the long

run. Finally, we show that the multiplier is larger for bonds with higher default risks and longer

time to maturity.

4.1 Baseline Estimates

CUSIP Level Table 1 presents our baseline estimates treating each CUSIP as one asset. The first

column corresponds to assuming homogeneous cross-substitution. Under this assumption, every

asset has the same substitute portfolio, which is simply the market portfolio. This is equivalent

to including time fixed effects in the regression. We run the regression specified by equation (5).

Under this assumption, we get a significant CUSIP multiplier of 0.39, indicating that 1% increase

in demand leads to 0.39% increase in the bond’s price. This implies that the average elasticity for

a bond is around 2.6. The magnitude of the average elasticity is in line with the estimate in the

literature using a standard logit demand system (Bretscher et al., 2022; Siani, 2022a).

Once we relax the homogeneous cross-substitution assumption and allow certain groups of

bonds to be closer substitutes compared to others, the CUSIP multiplier drops to nearly zero,

implying very elastic demand at the individual bond level. Column (2)-(4) in Table 1 present

results using the specification in equation (9). We include group time fixed effect, to control for

the returns of the substitute portfolios. Furthermore column (5)-(6) show the results from running

the regression in equation (8), where we include the returns of a substitute portfolio, ∆psubj,t . The

substitute portfolio is defined as the market-value weighted portfolio formed by all bonds within the

same detailed rating category (excluding the asset itself). We instrument the substitute portfolio’s

(∆psubj,t ) return with the market-value weighted demand shocks for all bonds in the substitute

portfolio usubj,t , defined in equation (11). We also include a time fixed effect in all the regressions,

which means we are controlling for the market portfolio return (the distant substitute) as well.

Effectively, we are allowing the cross-elasticity to be different for bonds within the same rating

category relative to all the other bonds.

Our result implies the demand elasticity at the CUSIP level is around 20,21 which is much larger

than the current estimates in the literature. In Appendix B.7, we show that the magnitude of the

21Under the unit-elasticity null, we estimate the 95% confidence interval for the elasticity is (19.9, 20.1).
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estimate does not change when only looking at bonds with large shocks (above median in absolute

size). Among the elasticity estimates in the literature, Fang (2022)’s estimate of 10 is the closest

ours. Compared to other demand systems used for estimating corporate bond elasticities, Fang

(2022) uses a somewhat more flexible nested logit structure, allowing for differential substitution

within and across IG and HY categories. Overall, our paper emphasizes the importance of explicitly

modeling the rich heterogeneous substitution patterns in the corporate bond market.

As mentioned in Section 3.3, in the case when the passthrough from fund flows to security-level

flows is less than one-to-one, we can use the estimated passthrough coefficient to provide an upper

bound for the multiplier. The upper bound is approximately 0.1, implying an elasticity of 10. Fur-

thermore, the bias introduced by imperfect passthrough should be the same in all the specifications,

hence it cannot explain the difference in the estimates between Column (1) (assuming homogeneous

cross-substitution) and Column (2)-(4) (heterogeneous cross-substitution). The difference between

the two cases highlight the importance of allowing heterogeneous cross-substitution patterns.

In addition to a near zero CUSIP multiplier, the substitute passthrough (M̃) is highly signif-

icant and is quantitatively close to 1. This implies that within the detailed rating groups, bonds

are effectively perfect substitutes with each other. Finally, our point estimates are stable whether

or not we exclude crisis periods, or include additional fixed effects.

Our results imply that ignoring the substitute portfolio’s return in the regression leads to

a significant over-estimation of the multiplier. Intuitively, when we observe a demand shock to

bond j, it is likely that other similar bonds are also experiencing demand shocks. The price of

bond j is higher not only because of its own demand shock, but also because all of its substitutes

now have higher prices. Hence ignoring the substitute portfolio will lead to over-estimation of the

price impact from its own demand shock. Furthermore, in the case when certain bonds are closer

substitutes than others, we need to overweight the close substitutes in constructing the substitute

portfolio, or alternatively, allow the close substitutes to have a different coefficient than the other

bonds.

In Appendix C, we estimate the equity market multiplier at the stock level, following identical

procedures. We define close substitutes as stocks with similar factor loading or stocks in the same

industry group. We find that allowing for heterogeneous cross-substitution reduces the multiplier

estimated, as in the corporate bond case. However, quantitatively, the difference is not as big as

that in the bond market, suggesting that heterogeneous substitution patterns are a particularly

special feature of the bond market. Perhaps due to the fact that rating and maturity play a
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significant role in investor’s demand, accounting for heterogeneous cross-substitution is much more

important in the bond market than in the equity market.

Portfolio Level Next we form portfolios of bonds based on detailed rating and quarter-to-

maturity, and estimate the multiplier at the portfolio level. In addition to the market portfolio

(which is taken care of by the time effect), we include the return of a substitute portfolio that is

formed by all bonds in the same detailed rating category as before.

The results are presented in Table 2. As before, column 1 corresponds to the result using the

specification in equation (5). Column 2-4 report results using the specification in equation (9) with

different definitions of close substitutes. Furthermore, column 5-6 relate to the IV strategy with

the specification in equation (8). In the rest of the paper, unless specified otherwise, equation (8)

is our baseline specification, where we instrument ∆psubj,t with usubj,t , since it allows us to estimate

and interpret the coefficient in front of the substitute portfolio returns.

Similar to the CUSIP case, we find that only including the market portfolio as the substitute

significantly overestimates the portfolio multiplier. Once we include additional substitute portfolios,

the multiplier estimated is considerably lower.22

A priori, we expect the portfolio-level multiplier to be larger than the CUSIP multiplier. Intu-

itively, the substitutability among portfolios with different maturities should be smaller compared

to the substitutability among CUSIPs with the same maturity. Indeed, Table 2 shows the multiplier

on portfolios is significantly larger than the multiplier for individual CUSIPs—1 percent increase in

demand for a given portfolio raises the price for that portfolio by 35 basis points. This estimate is

stable across various specifications. Additionally, the substitute passthrough at the portfolio level

is also smaller than that at the CUSIP level, consistent with the intuition that more aggregated

portfolios are less substitutable.

To verify whether our demand specification accounts for important cross-substitution het-

erogeneity sufficiently, we further allow heterogeneity in cross-elasticities for bonds in the same

investment-grade (IG) or high-yield (HY) group versus bonds that are not. We implement such

specification by including an additional substitution portfolio formed by all the IG or HY bonds

(excluding the own asset and close substitute’s returns). The result is shown in Table 3 column

(2). The own multiplier does not change quantitatively. In addition, the substitution passthrough

22In Appendix B.7, we show that the estimate does not change much when only looking at portfolio with large

shocks (above median in absolute size).
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is much larger for bonds within the same rating category compared with bonds not in the same

rating category but are in the same IG/HY group. Column (3) and (4) of Table 3 further confirm

that our result is not sensitive to the choice of the specific substitute portfolio. Column (3) uses

all bonds in the same coarse rating group to form the substitute portfolio, i.e., using a broader

definition of the set of close substitutes.23 We can also group bonds into two maturity groups

based on the partition: {[0, 10), [10,∞)}. Column (4)’s substitute portfolio includes all bonds in

the same maturity group and detailed rating category, i.e., a more narrow definition of the set of

close substitutes. Across all the different alternative specifications, the estimated own multiplier is

similar to that in the baseline case.

23For example, for a 11-year BBB- bonds, the substitute portfolio includes all the BBB rated bonds.
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Table 1: CUSIP baseline

Homo. OLS OLS First-stage 2SLS

(1) (2) (3) (4) (5) (6)

Shock 0.39∗∗∗ 0.02 0.05 0.07 0.05

(0.06) (0.05) (0.05) (0.04) (0.05)

Substitute return 1.07∗∗∗

(0.06)

Group Shock 2.61∗∗∗

(0.30)

Quarter FE Yes Yes Yes Yes Yes Yes

Group x Quarter FE No Yes Yes Yes No No

ST/LT x Quarter FE No No No Yes No No

Drop Crisis No No Yes Yes Yes Yes

N 333,537 333,537 314,534 314,534 314,534 314,534

R2 0.21 0.39 0.36 0.40 0.62

First-stage F-statistic 72.49

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table presents the CUSIP level multiplier estimates. Column 1 is the OLS estimates from regressing bond

returns on the demand shock, controlling for time fixed effects, as in equation (5)—this specification corresponds to

a model in which we assume homogeneous cross-elasticity with all other bonds. Columns 2-4 show results from

running the regression in equation (9) with different definitions of close-substitutes. Columns 2 and 3 directly

control for close-substitute prices using detailed rating x time fixed effects. Column 4 additional controls for

maturity (long-term/short-term) x quarter fixed effects to control for potentially omitted time-varying maturity

factor in holding shares. Column 5 and 6 relate to the IV specification specified in equation (8). We regress bond

returns on the demand shock and substitute returns, while controlling for time fixed effects (and additional controls

depending on the specification). We instrument for substitute returns using demand shocks to substitute assets.

The IV specification corresponds to the model that allows for heterogeneous cross-elasticities between close and

distant substitutes. The parenthesis contain standard errors clustered at the substitute group x time level.
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Table 2: Quarter to Maturity x Detailed Rating baseline

Homo. OLS OLS First-stage 2SLS

(1) (2) (3) (4) (5) (6)

Shock 0.95∗∗∗ 0.32∗∗ 0.33∗∗∗ 0.35∗∗∗ 0.35∗∗∗

(0.12) (0.10) (0.10) (0.10) (0.10)

Substitute return 0.90∗∗∗

(0.05)

Group Shock 2.91∗∗∗

(0.34)

Quarter FE Yes Yes Yes Yes Yes Yes

Group x Quarter FE No Yes Yes Yes No No

ST/LT x Quarter FE No No No Yes No No

Drop Crisis No No Yes Yes Yes Yes

N 81,866 81,866 77,387 77,387 76,348 76,348

R2 0.23 0.47 0.41 0.44 0.47

First-stage F-statistic 69.85

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table presents the quarter to maturity × detailed rating level multiplier estimates. Column 1 is the estimates

from regressing portfolio returns on the demand shock, controlling for time fixed effects, as in equation (9). This

specification corresponds to a model in which we assume homogeneous cross-elasticity with all other bonds.

Columns 2-4 show results from running the regression in equation (9) with different definitions of close-substitutes.

Columns 2 and 3 directly control for close-substitute prices using detailed rating x time fixed effects. Column 4

additional controls for maturity (long-term/short-term) x quarter fixed effects to control for potentially omitted

time-varying maturity factor in holding shares. Column 5 and 6 relate to the IV specification in equation (8), in

which we regress portfolio returns on the demand shock and substitute returns, while controlling for time fixed

effects (and additional controls depending on the specification). We instrument for substitute returns using demand

shocks to substitute assets. The IV specification correspond to the model that allows for heterogeneous

cross-elasticities between close and distant substitutes. The parenthesis contain standard errors clustered at the

substitute group x time level.
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Table 3: Alternative Substitutes

(1) (2) (3) (4)

Shock 0.35∗∗∗ 0.35∗∗∗ 0.31∗∗ 0.33∗∗

(0.10) (0.10) (0.11) (0.11)

Detailed rating substitute return 0.90∗∗∗ 0.77∗∗∗

(0.05) (0.17)

IG substitute return 0.18

(0.22)

Coarse rating substitute return 0.79∗∗∗

(0.08)

Det rating x ST/LT substitute return 0.99∗∗∗

(0.08)

Quarter FE Yes Yes Yes Yes

Drop Crisis Yes Yes Yes Yes

N 76,348 76,348 76,296 76,348

First-stage F-statistic 69.85 3.37 18.19 107.94

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table shows the quarter to maturity × detailed rating level multiplier estimates are robust to the exact

definition of the close substitute. Column 1 is our baseline specification in which the close substitute is defined as all

other bonds in the same detailed rating category. In column 2 the substitute includes the detailed rating substitute,

and all bonds with the same investment rating as an additional substitute. Column 3 includes all other bonds in the

same coarse rating category as substitutes. Column 4 includes all bonds in the detailed category and similar

maturity as substitutes. The parenthesis contain standard errors clustered at the substitute group x time level.
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4.2 Aggregate Portfolios

Motivated by the difference in CUSIP and portfolio multiplier, we repeat our analysis for port-

folios with various aggregation levels, using the specification in equation (8). We find that the

more aggregated the portfolio is, the larger the portfolio multiplier and the smaller the substitute

passthrough.

Specifically, we estimate the multiplier and substitute passthrough for all the assets/portfolios

in Table 4. The second column specifies at which level we form the portfolios, and the third column

specifies the substitute portfolio included in the regression in addition to the market portfolio. As

we move to more aggregated portfolios, they become less substitutable with each other. As a result,

demand shocks have a larger price impact and the relationship between the portfolio’s price and

its substitute’s price becomes weaker.

Table 4: Aggregate Portfolios

Asset Substitute Portfolio

CUSIP Individual bonds
Other bonds in the same

detailed rating category

Rating × Quarter to Maturity
Portfolios formed by detailed

rating and quarter-to-maturity

Other bonds in the same

detailed rating category

Rating × ST/MT/LT Buckets

Portfolios formed by coarse

rating and three maturity groups

({[0, 4), [4, 10), [10,∞)})

Other bonds in the same

coarse rating category

Rating × ST/LT Buckets

Portfolios formed by coarse

rating and two maturity groups

({[0, 10), [10,∞)})

Other bonds in the same

coarse rating category

Rating
Portfolios formed by coarse

rating categories

Other bonds in the same

investment grade category

This table presents all levels of portfolios for which we estimate multipliers and substitute passthroughs. The left

column specifies at which level the portfolio is formed. All bonds are weighted by their market-value inside the

portfolio. The right column specifies the additional substitute portfolio included in the regression in addition to the

time fixed effect.
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Figure 1 visualizes our findings, and Table 5 presents the exact estimates. To ensure our

results are not driven by tail aggregate shocks, we exclude the crisis periods for all regressions

onward. From Figure 1, we see that as we move from CUSIP-level estimate to the most aggregate

portfolios formed by ratings, the asset’s own multiplier increases from 0.05 to 3.5, implying the

demand elasticity drops from 20 to less than 0.3. Intuitively, it is easy to find substitutes for an

individual bond, whereas it is much more difficult to find substitutes for the entire portfolio of BBB

bonds. Hence demand is much more elastic for individual CUSIPs compared with more aggregated

portfolios. Furthermore, the substitute passthrough decreases from 1.07 to essentially 0. At the

rating-portfolio level, assets are much weaker substitutes with each other compared to that at the

CUSIP level.

Our aggregation results highlight the connection between micro and macro multipliers. De-

mand elasticities naturally depend on what we define as an asset. Micro multipliers typically refer

to the multiplier on an individual security, whereas macro multipliers refer to the multiplier when

we treat a whole asset class as one.24 They are at the two ends of a spectrum, and our results show

that depending on the portfolio definition, the multiplier estimated can lie anywhere in between.

In fact, demand inelasticity at the portfolio level is what allows us to estimate the multipliers at

more micro levels — the significance in the first stage of all the IV regressions relies on portfolio

prices responding to demand shocks.

24Our identification strategy does not allow us to uncover the macro elasticity for the corporate bond market as

an asset class.
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Table 5: Aggregation

CUSIP Rat x Q to Mat Rat x 3 Mat Rat x 2 Mat Rat

(1) (2) (3) (4) (5)

Shock 0.05 0.35∗∗∗ 1.23∗ 1.59∗∗ 3.51∗∗∗

(0.05) (0.10) (0.48) (0.58) (0.87)

Substitute return 1.07∗∗∗ 0.90∗∗∗ 0.73∗∗∗ 0.48∗∗ -0.02

(0.06) (0.05) (0.13) (0.15) (0.31)

Quarter FE Yes Yes Yes Yes Yes

Drop Crisis Yes Yes Yes Yes Yes

N 314,534 76,348 1,407 938 469

First-stage F-statistic 72.49 69.85 33.83 16.15 17.78

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table shows the multiplier and substitute passthrough estimates for various levels of portfolio aggregation—see

Table 4 for descriptions of the aggregation. All the specifications are estimated using IV, specifically we instrument

the substitute’s return using demand shocks to the assets in the substitute portfolio. The parenthesis contains

standard errors clustered at the substitute group x time level.

4.3 Dynamic Effects

We investigate the dynamic effects of price response to demand shocks in this section. We focus

on the baseline portfolio specification in Section 4.1, i.e., portfolios are formed by bonds with the

same detailed rating and quarter-to-maturity. To see the dynamic effects, we regress portfolios’

cumulative returns on lagged demand shocks. Specifically, we run the following regression

∆pj,t:t+h = Mhuj,t + Fixed effectsg,t+h + εj,t+h for h = 0, 1, . . . (13)

Figure 4 plots the response of cumulative returns to demand shocks. Consistent with our pre-

vious result, there is a significant on-impact price increase upon positive demand shocks. The effect

almost fully reverts in the following quarter, and the price impact is statistically indistinguishable

from zero. In other words, the cumulative effect drops to 0 after T +1. The reversal in return after

6 months is consistent with the hypothesis that long-term demand is more elastic than short-term
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Figure 4: Price Impact Dynamics

The graph plots the dynamic price impact estimates of the demand shock. The estimates are for the detailed rating

× quarter to maturity level (our baseline level of aggregation). Specifically we regress various leads of the return of

the portfolio in excess of its close substitute return on the demand shock. The shaded region denotes the 95%

confidence interval.

demand.
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Table 6: Dynamic Effects

T T+1 T+2 T+3

(1) (2) (3) (4)

Shock 0.33∗∗∗ 0.14 0.15 0.02

(0.07) (0.11) (0.20) (0.19)

Group x Quarter FE Yes Yes Yes Yes

N 77,387 55,466 45,770 39,584

R2 0.41 0.57 0.60 0.61

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table presents the dynamic cumulative price impact estimates of the demand shock. The estimates are for the

detailed rating × quarter to maturity level (our baseline level of aggregation). Specifically we regress the cumulative

return on the demand shock while controlling for substitute group x time fixed effects. The parenthesis contains

standard errors clustered at the substitute group x time level.

4.4 Rating and Maturity Heterogeneity

Finally, we look at how multipliers vary across different types of bonds. We focus on the hetero-

geneity in multipliers for bond portfolios with different maturities and ratings. As before, we use

our baseline portfolio specification.25 As shown in Section 4.1, the exact substitute definition does

not matter for the estimation results.

We first estimate portfolio multipliers for IG versus HY bonds. We pool all the IG portfolios

together and find the portfolio multiplier is close to 0. For the pooled HY portfolios, the estimated

multiplier is around 0.6, much higher than that for IG portfolios. The overall estimate of 0.35 masks

significant heterogeneity among portfolios with different ratings. We also estimate the portfolio

multipliers for each rating category. The results are shown as scattered dots in Figure 5. On

average, riskier portfolios have higher portfolio multipliers. HY bonds tend to be riskier with larger

idiosyncratic risks. As a result, it may be more difficult to substitute to other assets, which leads

to higher portfolio multipliers.

25Each asset is a portfolio formed by bonds with the same detailed rating category and quarter-to-maturity, and

the substitute portfolio includes all the other bonds in the same detailed rating category.
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Figure 5: IG/HY Segmentation Effect (N = 28, 192)

The graph shows how the detailed rating × quarter-to-maturity multiplier estimates differ across ratings.

Specifically, the estimates are plotted relative to the pooled investment grade multiplier estimate. The blue and red

dots are the heterogeneous estimates for IG and HY detailed rating categories, respectively. The red line represents

the relative estimate for HY bonds. And the blue and red shaded areas represent the 95% confidence interval for

the IG and HY pooled estimate, respectively.
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Figure 6: Zooming in on IG/HY Segmentation Effect (N = 20, 372)

The graph shows how the detailed rating × quarter-to-maturity multiplier estimates differ across the six detailed

ratings above and below the IG/HY cutoff. Specifically, the estimates are plotted relative to the multiplier estimate

of the six IG categories just above the cutoff. The blue and red dots are the heterogeneous estimates for IG and HY

detailed rating categories, respectively. The red line represents the relative pooled estimate for six detailed rating

categories just below the cutoff. And the blue and red shaded areas represent the 95% confidence interval of the

zoomed in pooled IG and HY estimates, respectively.
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The discrete change in portfolio multipliers around the IG/HY cutoff suggests that investor

segmentation may be a source of demand inelasticity. Figure 6 zooms in closer to the IG/HY

cutoff. On the left hand side of the cutoff, the point estimates for BBB-rated portfolio and A-

rated portfolios are all close to 0. Once we cross the cutoff, the estimated portfolio multipliers

jump discretely upward to around 0.6. Investor segmentation is particularly strong at the IG/HY

cutoff. Many investors in the corporate bond market face strong incentives to either stay within

the investment grade universe or the high yield universe. For example, insurance companies face

much higher capital charges when holding HY bonds — 90% of insurance companies’ portfolio is

in IG bonds. Mutual funds are set up as either investment-grade funds or high-yield funds. The

fund mandates limit the managers from investing in the other category of bonds. As a result of

these frictions, we see strong investor segmentation around the IG/HY cutoff. While mutual funds

hold only about 15 percent of BBB- rated bonds, they hold about 22 percent for BB+ rated bonds.

The difference in investor base likely contributes to the discrete changes in the portfolio multipliers

estimated.

In addition to ratings, we also investigate heterogeneity along the maturity dimension. Specif-

ically, we group portfolios into short, medium and long maturity groups: 0-3 years, 4-10 years and

10 years above. Figure 7 shows longer maturity portfolios have slightly higher portfolio multipliers,

although the difference is not statistically significant. Short-term portfolios have a multiplier close

to 0; medium-term and long-term portfolios have a higher multiplier around 0.3-0.4. The heteroge-

neous multipliers for portfolios with different maturity are likely linked to the clientele effects and

segmentation along the yield curve (Vayanos and Vila, 2021; Kekre et al., 2022).
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Figure 7: Maturity Heterogeneity (N = 76, 348)

The graph shows how the detailed rating × quarter-to-maturity multiplier estimates differ across maturity. The

estimates are presented relative to the short-term maturity elasticity. The bars reflect 95% confidence intervals. As

the estimates suggest we can reject the null of no heterogeneity at the 95% level.
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5 Arbitrage Risk

To better understand the quantitative implications of the multipliers we find in the previous section,

we look at the Sharpe ratio of a strategy that takes advantage of the price deviation between the

testing asset and its substitute portfolio at the one-quarter horizon. For example, if portfolio

A’s price is too high relative to its substitute portfolio, arbitrageurs could make money by selling

portfolio A and purchasing its substitute. However, if substitute returns do not fully replicate

portfolio A’s returns, arbitrageurs face tracking error risk, which could result in losses. In other

words, this is a near-arbitrage opportunity as the trade contains some risk. Specifically, we consider

a strategy that sells the more expensive one between asset j and its close substitute asset and buys

the cheaper one. We unwind this position in the following period, given that we find the price gap

disappears by the end of the next period on average.26

The expected return of this strategy is M ×Mean(|uj,t|), where M is the multiplier estimated

in Section 4 and |uj,t| is the size of demand shocks in absolute terms. The volatility of this return

is the arbitrage risk, defined as

ArbRiskj ≡ std(ν̃Sj,t +Muj,t) (14)

The arbitrage risk comes from both non-flow shocks, as well as the next period (observable) demand

shocks (uj,t). Since we have removed all the predictable components in constructing u, the following

period u is unknown to the arbitrageur when carrying out the strategy and should be considered

as part of the arbitraging risk.

The average Sharpe Ratio of this arbitrage activity is then given by

SR =
M ×Mean(|uj,t|)
Mean(ArbRiskj)

(15)

We find the annualized Sharpe ratio across different aggregation levels are generally small,

ranging from 0.006 at the CUSIP level to 0.28 at the most aggregated rating level.27 The Sharpe

ratio increases with the aggregation level, mainly because the multipliers are larger for more ag-

gregated portfolios. However, even the maximum Sharpe ratio is small and it is before considering

26The Sharpe ratios are calculated under the implicit assumption that different bonds and portfolios are seg-

mented, and the arbitrageur buys and sells one bond/portfolio at a time. In other words, we are not considering the

diversification benefit if the arbitrageur operates across multiple submarkets.
27If we subset to large shocks only, the Sharpe ratios for portfolios at different aggregation levels also fall within

this range. The main reason is because the large shocks are accompanied by large noises as well.
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potential shorting costs.28 Our results reveal that the risks of engaging in these arbitrages are high

relative to the average gain, which potentially explains why we observe these price deviations exist

in the data.

Table 7: Arbitrage Risk and Portfolio Multipliers

M Arb. risk Sharpe ratio

CUSIP .052 .043 .006

Det. rating × Quarter to maturity .348 .055 .026

Rating × ST/MT/LT 1.229 .037 .134

Rating × ST/LT 1.591 .048 .142

Rating 3.507 .043 .280

The table presents the estimated multiplier (M), the average arbitrage risk (as defined in Equation 14) and the

implied annualized Sharpe ratio for portfolios at different aggregation levels.

5.1 Multipliers and Arbitrage Risk

Motivated by the low Sharpe ratio, we explore to what extent arbitrage risk limits investors to

substitute across assets. Our arbitrage risk is the part of the risk that cannot be hedged away

by constructing the substitute portfolio, and hence it acts as a limit to arbitrage Wurgler and

Zhuravskaya (2002). Intuitively, the higher the arbitrage risk, the less arbitrageurs are willing to

substitute to alternative portfolios and hence higher multipliers. In Appendix E, we provide a

simple two-asset case illustrating this intuition.

We use our baseline portfolio (formed by bonds with the same detailed rating group and

quarter-to-maturity) for analysis in this section. We first sort our portfolios into four groups based

on the size of their arbitrage risk defined in Equation 14: group 1 includes portfolios with the

lowest arbitrage risk, and group 4 includes portfolios with the highest arbitrage risk. We run the

baseline specification in Section 4.1 including interaction terms of group indicators and demand

shocks (uj,t). In other words, we allow the portfolio multiplier M to differ by group. We plot the

relative magnitudes of the estimates for each group in Figure 8.

We indeed find that portfolios with higher arbitrage risk have higher portfolio multipliers and

28Other papers have found strategies that predict bond returns with much bigger Sharpe ratio (Bartram et al.,

2020).
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Table 8: Arbitrage Risk and Portfolio Multipliers

(1) (2)

Shock 0.35∗∗∗ 0.03

(0.04) (0.04)

ArbRisk x Shock 0.45∗∗∗

(0.03)

Substitute return 0.90∗∗∗ 0.91∗∗∗

(0.04) (0.04)

Quarter FE Yes Yes

Drop Crisis Yes Yes

N 76,348 76,348

First-stage F-statistic 2544.04 2562.86

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table presents estimates for how the detailed rating × quarter-to-maturity multiplier estimates depend on the

arbitrage risk of the portfolio. We standardized the arbitrage risk measurement by subtracting the mean and

dividing it by the cross-section standard deviation of the arbitrage risk. Column (1) estimates our baseline

specification for the post-winsorized sample. Column 2 includes an interaction term between the demand shocks

and arbitrage risk. The parenthesis contains robust standard errors clustered at the substitute group × time level.
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Figure 8: Arbitrage Risk and Portfolio Multipliers (N = 76, 348)

The graph shows how the detailed rating × quarter-to-maturity multiplier estimates different arbitrage risk

quartiles. The estimates are presented relative to the lowest arbitrage risk quartile. The bars reflect 95% confidence

intervals. As the estimates suggest we can reject the null of no heterogeneity at the 95% level.

more inelastic demand. We obtain an almost monotone pattern of multipliers across groups. Groups

with higher arbitrage risk have significantly higher portfolio multipliers. For group 1, the estimate

for the multiplier is close to 0, suggesting it is almost frictionless arbitrage between bonds in this

group and their substitutes. However, for group 4, the estimate for the multiplier is much larger.

Wurgler and Zhuravskaya (2002) find similar patterns in the stock market using index inclusion and

exclusion events. We verify such pattern exists more broadly outside of the index-related events.

The relationship between arbitrage risks and portfolio multipliers is also verified in a regression

specification. We add an interaction term between ArbRiskj and demand shock u in the baseline

regression specification,

∆pj,t = M0uj,t +M1uj,t ×ArbRiskj + M̃∆psubj,t + ϵj,t (16)

Table 8 presents the results. The coefficient in front of the interaction term is significantly positive.

A one-standard-deviation increase in arbitrage risk increases the portfolio multiplier by 0.45. The
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effect is particularly strong among the high-yield bonds, which have higher overall risks and also

idiosyncratic risks.

6 Conclusion

In this paper, we study a wide range of multipliers in the corporate bond market utilizing exogenous

demand shocks from mutual fund flows. Studying the corporate bond market is interesting not

only because it serves as an important channel for the real economy, but also because it is different

from the equity market in terms of market structure, investor composition and correlation of asset

payoffs. Comparing the two markets can shed light on the key drivers of market inelasticity.

We emphasize that it is important to account for the correct substitute portfolios when esti-

mating the multipliers. Different from existing methods in the literature, we allow for close and

distant substitutes in our estimation. Ignoring the heterogeneous cross-elasticity leads to under-

estimation of demand elasticities. At the CUSIP-level, the estimated multiplier drops from 0.3

to essentially 0 (both economically and statistically) once we allow for certain bonds to be closer

substitutes than others. Relative to equities, we find that individual bonds are much more elastic.

While individual bonds are quite elastic, portfolios of bonds face more inelastic demand. The

portfolios formed by rating categories and maturity have a multiplier around 0.35. Furthermore, as

the portfolio becomes more aggregated, the portfolio-level multiplier increases and the substitute

passthrough decreases, indicating portfolios are less substitutable at more aggregated levels. Finally,

we find that riskier portfolios and long-term portfolios have higher multipliers; portfolios with larger

arbitrage risks also have higher multipliers. Our results imply that both investor segmentation and

arbitrage risk contribute to inelastic demand at the portfolio level. We leave the quantification of

different channels to future research.

Finally, we find that the price impact at the portfolio level almost disappears in the next

quarter, suggesting that long-run demand is more elastic than short-run demand. Investigating the

dynamics of the price impact is interesting and can be informative about the underlying arbitrage

frictions. For future work, it would be interesting to link the demand elasticities at different horizons

to different arbitrage theories.
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A Identification

A.1 Identification of Multipliers

We first consider the specification in Equation (9), restated here:

∆pj,t = Muj,t + Fixed effectsg,t + ν̃j,t.

To identify the coefficients correctly, we need the following moment conditions to be satisfied:

E[uj,tνj,t] = 0. (17)

We now prove that Assumption 1, i.e. νjt ⊥ Sij,t−1 for all fund i and time t, is a sufficient

condition for satisfying these moment conditions, where Sij,t−1 is the lagged market share of mutual

fund i. For clarity, we use the notation E(j)
i to denote the expectation over dimension j conditional

on dimension i.

Proof.

E(j,t) [uj,tνj,t] = E(j,t)
[
E(i)
j,t [Sij,t−1ui,t] νj,t

]
(Definition of uj,t)

= E(i,j,t) [Sij,t−1ui,tνj,t] (L.I.E.)

= E(i,t)
[
ui,tE

(j)
i,t [Sij,t−1νj,t]

]
(conditional Exp.)

= E(i) [ui,t0] . (I.D. assum.)

The first equality is the definition of bond-level shocks as the aggregation across fund-level

shocks. The second line directly follows through the law of iterated expectations. The third

equality applies the law of iterated expectations again, and this time we take the expectations

across bonds within each fund. As shocks ui,t are at the fund level, it can be pulled out of the

expectations. This is the key property exploited in the exogenous-share design. Notice that here

we do not assume orthogonal flows. The last equality uses the identification assumption.

A.2 Identification of Substitute Passthrough

We estimate the passthrough according to the following equation:

∆pj,t = Muj,t + M̃∆psubj,t + ν̃j,t,
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where we instrument ∆psubj,t with usubj,t , constructed as the value-weighted group-level shocks:

usubj,t ≡
∑
k

wk|g(j),t−1uk,

where g(j) is the group of close substitutes for bond j, and wk|g(j),t−1 =
Ik∈g(j)wk,t−1

wg(j),t−1
is the (lagged)

market share of bond k conditional on group g(j). The required moment condition is:

E[usubj,t νj,t] = 0.

The proof is slightly more complicated due to the weighting in usub, but essentially follows a

similar strategy. We suppress the time subscript in the proof below for ease of notation.

Proof. Plug in the definitions and use the law of iterated expectations as before, we have:

E(j)
[
usubj νj

]
=E(j)

[
wk|g(j)ukνj

]
(18)

=E(j)
[
wk|g(j)E

(i)
k [uiSik] νj

]
(19)

=E(i)
[
E(k)
i

[
E(j)
ik

[
wk|g(j)νj

]
Sik

]
ui

]
. (20)

Notice that the inner expectation is virtually the group-level idiosyncratic shocks:

E(j)
ik

[
wk|g(j)νj

]
= E(j)

ik

[Ik∈g(j)wk

wg(j)
νj

]
= wkE

(j)
ik,j∈g(k)νj︸ ︷︷ ︸

νg

.

Plug it back into Equation 20, we have:

E(k)
i

[
E(j)
ik

[
wk|g(j)νj

]
Sik

]
= E(k)

i [wkSikνg]

= E(g)
i

E(k)
g [wkSik]︸ ︷︷ ︸

Si,g

νg


= 0.

Here we rely on the exogenous share assumption at the group level, i.e., Si,g ⊥ νg.

B Robustness of Shock Construction

In this section, we explore the sensitivity of our results to various deviations from our baseline

assumptions used in the shock construction process.
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B.1 Assessing passthrough of fund flows into trading

In constructing our shocks, we assumed that mutual funds mechanically reinvest inflows according

to their existing portfolio weights. This assumption implies a one-to-one passthrough from inflows

into trades. In this section, we kick the tires on this assumption and find that while the passthrough

is not precisely one-to-one, it is still relatively high, around 50% at the individual bond level and

60% at our baseline level of aggregation. Overall, the less than one-to-one passthrough suggests

that our multiplier estimates are potentially attenuated. However, we can find upper bounds on

the multipliers using our passthrough estimates. The upper bound estimates are still considerably

smaller than those typically found for stocks. At the bond level, the upper bound multiplier

estimate is 0.08, and for our baseline level of aggregation, it is around 0.33.

Instead, we run the following specification ignoring the price response,

∆qijt = α+ βfit + εijt

where ∆qijt = 2
Qijt−Qij,t−1

Qijt+Qij,t−1
is the Davis and Haltiwanger (1992) change in mutual fund holdings,

and fit is the funds flows as a percentage of lagged AUM.29 Naturally, our β estimates are biased

due to omitting the prices. However, since mutual fund demand curves are presumably downward

sloping, we can sign the bias as negative. As a result, our β estimate is a lower bound of the true

passthrough.

Table 9 shows that passthrough is not equal to one but is still sizeable and highly significant.

At the individual bond (CUSIP) level, the passthrough is around 0.51. This estimate is smaller

than what Lou (2012) found for individual stocks—0.62 for inflows and 0.97 for outflows. The

lower passthrough for individual bonds is, however, somewhat expected. It is presumably easier

to find another GM stock, than it is to find another 34-quarter GM bond maturing in 12 months.

Consistent with the difficulty in finding exact bond CUSIPs, the passthrough increases at more

aggregate levels—it is easier to find another BBB bond than a specific CUSIP. At the detail rating-

quarter to maturity level, the passthrough rises to around 0.58. At the rating letter level, the

passthrough is closer to 0.95.

Table 10 separately assesses the passthrough for inflows and outflows. Two things stand out.

Firstly, we see higher passthrough at more aggregate levels. Secondly, the passthrough is higher

29Davis and Haltiwanger (1992) change is a second order approximation of the log difference, and has several

desirable properties over the standard percentage change measure, for example, it is symmetric, and it does not

generate outliers due to small base effects.
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Table 9: Estimating passthrough from flows into holdings

CUSIP Det Rating x Q to Mat Rating

(1) (2) (3) (4) (5) (6)

Flows 0.51∗∗∗ 0.49∗∗∗ 0.58∗∗∗ 0.57∗∗∗ 0.94∗∗∗ 0.91∗∗∗

(0.02) (0.01) (0.01) (0.01) (0.04) (0.05)

Time + Fund FE No Yes No Yes No Yes

N 4,861,780 4,861,779 1,193,197 1,193,177 163,515 163,502

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

for outflows than inflows, echoing Lou (2012) findings for equities.

Table 10: Estimating passthrough from flows into holdings

CUSIP Det Rating x Q to Mat Rating

(1) (2) (3) (4) (5) (6)

Flows 0.45∗∗∗ 0.66∗∗∗ 0.55∗∗∗ 0.79∗∗∗ 0.94∗∗∗ 1.08∗∗∗

(0.05) (0.05) (0.02) (0.04) (0.03) (0.13)

Time + Fund FE Yes Yes Yes Yes Yes Yes

Flow Type Inflow Outflow Inflow Outflow Inflow Outflow

N 2,893,530 1,968,240 690,300 502,855 84,099 79,391

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Overall, these passthrough estimates suggest that our multiplier estimates are potentially at-

tenuated. By assuming a passthrough of 1, we are overestimating the size of the demand shock and

hence underestimating the multiplier. Since our passthrough estimates are lower bounds for the

actual passthrough, we can use them to estimate the upper bounds on the true multiplier. If our

lower bound passthrough estimate is β̂ < 1, then the true multiplier must be M ≤ 1
β M̂ , where M̂

is the multiplier we estimated in section 4.1. Accordingly, this calculation suggests that the true

CUSIP multiplier could be as high as 0.08, and our detailed rating-quarter to maturity could be as

high as 0.33. While these upper bounds are higher than our estimates, they are still considerably

48



smaller than 1, the magnitude typically found for equities.

B.2 Non-parametric estimation of flow factor structure

In this section, we implement the factor models for flow shocks. We first show that flow shocks

have weak factor structures in this section; in the next section we explicitly remove the common

factors and show our results are robust.

We first implement the non-parametric approaches to estimate common factors. Due to missing

values in our data, we estimate the factor model using alternating least squares (ALS). We find the

data exhibits a relatively weak factor structure, with the first factor only explaining around 8% of

the variation in mutual fund flows.

With that said, non-parametric factor estimation methods are known to have poor finite sample

performance when there are a lot of missing value. In our context, due to mutual fund entry and

exit, we have a highly unbalanced panel of flow data—relative to a fully balanced panel we are

“missing” 49.8% of observations. Hence, there is a risk that the factor model is simply fitting noise

rather than identifying actual factors.

To assess this overfitting risk, we run a five-fold cross-validation exercise. The procedure splits

the sample into five subsamples, estimates the factor model on one of them, and then assess the

models performance on the four subsamples left out. It then repeats this five times and calculates

the average performance of the method.

Figure 9 shows the average root mean-squared errors from the five-fold cross-validation exercise.

The results suggests the factors are likely being fit on noise. In fact, adding more factors seems to

make the out-of-sample performance even worse. While this finding does not suggest that there is

a strong factor structure in flows, it does suggest that non-parametric factor estimation may not

be able to extract it in our setting with a highly unbalanced panel. Due to this concern, in the

next subsection we explore a parametric approach to estimating factors—the additional structure

should help reduce the risk of overfitting.

B.3 Parametric estimation of flow factor structure

Due to the poor performance of the non-parametric method in estimating factors, in this section

we follow a parametric approach below. Specifically, let the data-generating process of innovation

be:
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Figure 9: Cross-validation of non-parametric factor estimation
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ϵi,t = δt + Λi,tηt + ui,t, (21)

where δt is the time fixed effects, Λiηt is the contribution from common factors, and ui,t is the

desired idiosyncratic demand shocks.

Following the common approach in asset pricing, we assume the factor loading are a linear

function of characteristics, Λi,t = C ′
i,tλ, where Ci,t is a vector of observable characteristics of

fund i, including (lagged) log AUM of the firm, the share in high-yield bonds, and the average

duration in the portfolio, and λ is a constant vector. The data generating process of ϵi,t under this

parameterization is then:

ϵi,t = δt + C ′
i,t(ληt) + ui,t. (22)

Notice (22) can be estimated by running a panel regression of ϵi,t on Ci,t with time-varying coeffi-

cients and time fixed effects. In the baseline where no additional factors are controlled, we simply

regress ϵi,t on time fixed effects. The estimated residual is recovered as:

ûi,t = ϵi,t − δ̂t − C ′
i,t(λ̂ηt) (23)

To minimize noise due to extreme outliers and volatile funds, we winsorize innovations ϵi,t
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at the 5% level before estimating (22). Importantly, the winsorized innovations are only used in

the estimation of coefficients. In (23) we use the original ϵi,t to recover the demand shock ûi,t, as

outliers are also valid idiosyncratic shocks to demand.

B.4 Lagging market shares for shock construction

Another potential concern to the exogenous share condition is that some mutual fund managers

have superior information and therefore can front-run the market, leading to a positive correlation

between market share and bond returns. This issue can be addressed with further lagging the

market share used in aggregating fund flow shocks: it is highly unlikely for a mutual fund manager

to predict idiosyncratic returns at the bond level in one year and allocate their portfolio in one

year to benefit from it.30

Table 11 and 12 report our baseline results using shocks aggregated with one-year-lag market

shares. The results remain largely unchanged.

B.5 Sensitivity of multiplier estimation to shock construction specifications

Below we explore how sensitive our multiplier estimates are to changing various choices we made

in the shock construction process. Overall, our estimates do not seem to change very much if

we (i) winsorize extreme values and use inverse variance weighting in calculating fixed effects, (ii)

control for additional factors as described in B.3, or (iii) use different specifications for our AR

regressions. Furthermore, we also find that our substitute specification does a quite good job at

control for substitutes, as the results are unchanged if we instead include detailed rating × quarter

fixed effects.

B.6 Morningstar data coverage

We find that Morningstar mutual fund dataset coverage is quite extensive and closely lines up with

the coverage of the Flow of Funds estimate of mutual fund holdings.

30It might be more plausible if they are able to predict the dynamics of some systematic factors in one year and

trade accordingly—the common factor issue is addressed in Section by removing the common factors from flows.
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Table 11: CUSIP specification lagging holding shares by one-year

Homo. OLS OLS First-stage 2SLS

(1) (2) (3) (4) (5)

Shock 0.39∗∗∗ -0.03 0.01 0.02

(0.07) (0.06) (0.05) (0.06)

Substitute return 1.08∗∗∗

(0.04)

Group Shock 3.93∗∗∗

(0.47)

Quarter FE Yes Yes Yes Yes Yes

Group x Quarter FE No Yes Yes No No

Drop Crisis No No Yes Yes Yes

N 277,336 277,336 261,144 261,144 261,144

R2 0.21 0.40 0.37 0.62

First-stage F-statistic 94.96

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 12: Quarter to Maturity x Detailed Rating specification lagging holding shares by one-year

Homo. OLS OLS First-stage 2SLS

(1) (2) (3) (4) (5)

Shock 1.04∗∗∗ 0.31∗∗ 0.33∗∗ 0.33∗∗

(0.15) (0.12) (0.12) (0.12)

Substitute return 0.96∗∗∗

(0.04)

Group Shock 4.36∗∗∗

(0.51)

Quarter FE Yes Yes Yes Yes Yes

Group x Quarter FE No Yes Yes No No

Drop Crisis No No Yes Yes Yes

N 81,866 81,866 77,387 76,348 76,348

R2 0.22 0.47 0.41 0.48

First-stage F-statistic 69.48

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 13: Shock robustness

Bench. Robustness

(1) (2) (3) (4) (5) (6) (7) (8)

Shock 0.33∗∗∗ 0.29∗∗ 0.32∗∗ 0.37∗∗∗ 0.26∗∗ 0.28∗∗∗ 0.21∗∗∗ 0.18

(0.10) (0.10) (0.11) (0.11) (0.08) (0.08) (0.06) (0.13)

AR lags 3 3 1 2 1 2 3 0

Time Trend Yes Yes Yes Yes No No No No

Factors No Yes No No No No No No

Quarter × Sub FE Yes Yes Yes Yes Yes Yes Yes Yes

Drop Crisis Yes Yes Yes Yes Yes Yes Yes Yes

N 77,387 77,387 77,387 77,387 77,387 77,387 77,387 77,387

R2 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

This table summarizes the estimates for the portfolio multipliers when we use different specifications to extract

demand shocks. All estimates are for portfolios formed by detailed rating and quarter-to-maturity as in Section 4.1.

“Factors” refer to the parametric estimation of flow factor structure explained in Appendix B.3.
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Figure 10: Total Assets of All Mutual Funds in Flow of Funds vs. Morningstar

B.7 Multipliers and Shock Sizes

In this section, we estimate the magnitudes of the bond-level and portfolio-level multipliers for

bonds that experienced large shocks. There are two reasons why this might be interesting. First,

the effect of the demand shocks may be non-linear, and one might expect large shocks generate

larger price responses than small shocks. Second, the bonds with large demand shocks are likely

to belong to funds that experienced large fund flows, in which case the passthrough assumption

is more likely to hold. The CUSIP-level results are presented in Table 14, and the portfolio-level

results are presented in Table 15. The estimates are quantitatively similar to what we have in the

main text.

B.8 Alternative Specifications

In this section we explore other specification to estimate equation 7 i.e.,

∆pj,t = Muj,t + M̃∆pg(j),t + M̃m∆pmt + ν̃j,t

Our objective was to estimate for M , hence our baseline specification was a fixed effect regression,

which directly controls for ∆pg(j),t and ∆pmt by including group × quarter fixed effect. While this

specification is most robust, we lose economic content by not being able to estimate M̃ . Hence,
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Table 14: CUSIP Multipliers from Large Shocks

Homo. OLS OLS First-stage 2SLS

(1) (2) (3) (4) (5) (6)

Shock 0.35∗∗∗ 0.06 0.05 0.04 0.05

(0.05) (0.04) (0.04) (0.04) (0.05)

Substitute return 1.18∗∗∗

(0.06)

Group Shock 2.54∗∗∗

(0.28)

Quarter FE Yes Yes Yes Yes Yes Yes

Group x Quarter FE No Yes Yes Yes No No

ST/LT x Quarter FE No No No Yes No No

Drop Crisis No No Yes Yes Yes Yes

N 166,749 166,747 157,247 157,247 157,248 157,248

R2 0.20 0.40 0.37 0.39 0.61 0.17

First-stage F-statistic 79.08

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

This table summarizes the estimates for the CUSIP multipliers when we only consider the subset of bonds with

shocks that are above-median shock in size. Column 1 is the OLS estimates from regressing bond returns on the

demand shock, controlling for time fixed effects—this specification corresponds to a model in which we assume

homogeneous cross-elasticity with all other bonds. Columns 2 and 3 directly control for close-substitute prices using

detailed rating x time fixed effects. Column 4 additional controls for maturity (long-term/short-term) x quarter

fixed effects to control for potentially omitted time-varying maturity factor in holding shares. Column 5 and 6

relate to the IV specification in which we regress bond returns on the demand shock and substitute returns, while

controlling for time fixed effects (and additional controls depending on the specification). We instrument for

substitute returns using demand shocks to substitute assets. The IV specification corresponds to the model that

allows for heterogeneous cross-elasticities between close and distant substitutes. The parenthesis contain standard

errors clustered at the substitute group x time level.
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Table 15: Portfolio Multipliers from Large Shocks

Homo. OLS OLS First-stage 2SLS

(1) (2) (3) (4) (5) (6)

Shock 0.80∗∗∗ 0.33∗∗∗ 0.28∗∗ 0.23∗ 0.27∗∗

(0.11) (0.10) (0.10) (0.09) (0.10)

Substitute return 0.97∗∗∗

(0.07)

Group Shock 2.76∗∗∗

(0.32)

Quarter FE Yes Yes Yes Yes Yes Yes

Group x Quarter FE No Yes Yes Yes No No

ST/LT x Quarter FE No No No Yes No No

Drop Crisis No No Yes Yes Yes Yes

N 39,324 39,323 37,086 37,086 37,086 37,086

R2 0.25 0.51 0.47 0.49 0.51 0.24

First-stage F-statistic 71.62

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The table presents the quarter to maturity × detailed rating level multiplier estimates using the subset of portfolios

that experienced shocks that are above-median in absolute size. Column 1 is the OLS estimates from regressing

bond returns on the demand shock, controlling for time fixed effects—this specification corresponds to a model in

which we assume homogeneous cross-elasticity with all other bonds. Columns 2 and 3 directly control for

close-substitute prices using detailed rating x time fixed effects. Column 4 additional controls for maturity

(long-term/short-term) x quarter fixed effects to control for potentially omitted time-varying maturity factor in

holding shares. Column 5 and 6 relate to the IV specification in which we regress bond returns on the demand

shock and substitute returns, while controlling for time fixed effects (and additional controls depending on the

specification). We instrument for substitute returns using demand shocks to substitute assets. The IV specification

correspond to the model that allows for heterogeneous cross-elasticities between close and distant substitutes. The

parenthesis contain standard errors clustered at the substitute group x time level.
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we additionally explored an IV specification, where we include ∆pg(j),t (instrumenting it with

ug(j),t) and controlling for ∆pmt using time-fixed effects. In the interest of brevity we left a third

specification where we also estimate M̃m for the appendix. In this specification we can directly

include ∆pg(j),t and ∆pmt , which we instrument with ug(j),t and um,t respectively.

Table 16 presents the estimates for all three specification. The own multiplier estimates are

unchanged across the three specifications. The (near) substitute passthrough is close to one, where

as the distant substitute passthrough is close to zero. These estimates are in line with what we

would economically expect—a securities price is more closely tilted to near substitutes than distant

substitutes.

Table 16: CUSIP-level multipliers: alternative specifications

OLS 2SLS

(1) (2) (3)

Shock 0.05 0.05 0.05

(0.05) (0.05) (0.05)

Substitute return 1.07∗∗∗ 1.07∗∗∗

(0.06) (0.07)

Mkt return (far sub.) 0.03

(0.10)

Quarter FE Yes Yes No

Group x Quarter FE Yes No No

Drop Crisis Yes Yes Yes

N 314,534 314,534 314,534

R2 0.36

First-stage F-statistic 72.49 33.54

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 17 presents similar estimates for the baseline level of aggregation. The own multiplier

estimates are extremely similar across the three specifications. The (near) substitute passthrough

is close to one, where as the distant substitute passthrough is significant but smaller than the near
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substitute. Overall, M̃m being larger for this more aggregated portfolio, compared to the CUSIP

M̃m is also in line with what we would economically expect.

Table 17: Baseline aggregation level multipliers: alternative specifications

OLS 2SLS

(1) (2) (3)

Shock 0.33∗∗∗ 0.35∗∗∗ 0.36∗∗∗

(0.10) (0.10) (0.11)

Substitute return 0.90∗∗∗ 0.83∗∗∗

(0.05) (0.06)

Mkt return (far sub.) 0.45∗∗∗

(0.11)

Quarter FE Yes Yes No

Group x Quarter FE Yes No No

Drop Crisis Yes Yes Yes

N 77,387 76,348 76,348

R2 0.41 0.21 0.36

First-stage F-statistic 69.85 24.14

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

C Substitutions in the equity market

In the main text of our paper, we focus on the corporate bond market. A priori, there are clear

close substitutes in the bond market, which helps mitigate the effect of demand shocks. ignoring

close substitutes leads to biased multiplier estimates. Our estimates further validate this prior.

Stocks, however, do not have clear close substitutes, and therefore it is harder to accommodate

demand shocks without large price impacts. Assuming homogeneous substitution when estimating

the multiplier is also not far off.

In this section, we confirm this prior on the equity market. Using the same Morningstar
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fund data, we follow identical procedures in shock construction and identification as in our baseline

estimation. We estimate the stock multiplier with and without controlling for its close substitutes—

defined in terms of loading on Fama-French three factors, or its industries. We find that controlling

for close substitutes does reduce the estimated multiplier, but only very slightly, suggesting that

substitutions are way less influential in the equity market than in the bond market.

Table 18: Multiplier estimates for stock markets

Stock Return

(1) (2) (3)

Shock 0.380*** 0.254*** 0.252***

(0.086) (0.040) (0.072)

Group x Quarter FE None FF3 Industry

Quarter FE Yes Yes Yes

N 144,768 136,270 135,201

R2 0.188 0.332 0.263

Table 18 reports the estimates of the equity multipliers at the stock level. The shocks are

constructed in the same way as in the baseline specification for corporate bonds, and the sample

covers the CRSP universe of the U.S. listed stocks from 2003Q1 to 2020Q4. In the first column,

we regress stock returns on stock level shocks, controlling for the time-fixed effect only. This

specification assumes homogeneous substitution patterns across stocks. The point estimate is 0.38,

indicating a one-percent demand shock to a single stock leads to a 38 basis points increase in the

stock price.

In Column (2), we add group-time fixed effects to control for the close substitutes. The group

here is defined as the stocks with similar factor loading as the test stock. Specifically, we compute

the loading of each stock on Famma-French three factors, and then triple-sort them into 3× 3× 3

groups. The total group numbers (27) are comparable with the detailed rating groups in the

bond market (21). Controlling for the group-time fixed effects does reduce the point estimate,

suggesting that the equity market also exhibits heterogeneous substitution patterns. Nevertheless,

the reduction in the multiplier is much less dramatic than the bond market counterpart as reported

in 1. After controlling for close substitutes, the multiplier is still around 0.25, only 34% smaller
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than the univariate regression. To put it into perspective, in the bond market we see an almost

90% drop in the multiplier once controlled for the close substitutes. The multiplier is also much

larger than the point estimate in corporate bonds, indicating much inelastic demand in the equity

market. This is also consistent with the prior that it is harder to substitute away in the stock

market than the bond market. In Column (3) we define the close substitutes in terms of the Global

Industry Classification Standard (GICS) industry groups (27 groups in total). The estimate is very

close.

In conclusion, we find that the force of heterogeneous substitution is at work in the equity

market as well, but it is much weaker than the bond market, consistent with our prior.

D Interpretations based on Demand Systems

In this section, we show how our reduced form approach is linked to a nested logit demand system.

Specifically, we derive the elasticity matrix Γ from a nested logit demand system and show that it

yields the reduced-form specification as we used in the main text.

Following Koijen and Yogo (2019a), consider the demand structure for a representative investor

as follows:

w(j | g) = exp(δ(j, g))∑
j∈g exp(δ(j, g))

w(g) =
(
∑

k∈g exp(δ(k, g)))
λ

1 +
∑

g′(
∑

k∈g′ exp(δ(k, g
′)))λ

δ(j, g) = βgpj + βX + uj ,

(24)

where w(j | g) is the conditional share of asset j in group g, w(g) is the share of group g in the whole

portfolio. The unconditional share of asset j is therefore w(j) = w(j | g)w(g). The parameter λ

controls the substitution at the group level. When λ = 1, this system is reduced to the simple logit

system as

w(j) = w(j | g)w(g) = exp(δ(j, g))

1 +
∑

g′(
∑

k∈g′ exp(δ(k, g
′)))

.

Taking the derivative of w(j) with respect to pk, we have:

∂w(j)

∂pk
=


βgw(j) (1− λw(j)− (1− λ)w(j | g)) j = k

−βgw(j) (λw(k) + (1− λ)w(k | g)) j ̸= k, j&k ∈ g

−βg′λw(j)w(k) j ∈ g, k ∈ g′ ̸= g

(25)
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Log linearize the system (24) with the partial derivatives above, reorganize, we have:

log∆w(j) = βg∆pj − βg(1− λ)
∑
k∈g

w(k | g)∆pk − λ
∑
g′

∑
k∈g′

βg′w(k)∆pk + uj

Applying market clearing condition log∆w(j) = ∆p(j), we can derive the equation for esti-

mation:

∆pj =
1

(1− βg)︸ ︷︷ ︸
M

uj +
βg

(βg − 1)
(1− λ)︸ ︷︷ ︸

M̃

∑
k∈g

w(k | g)∆pk︸ ︷︷ ︸
∆pgj

+ λ
1

(βg − 1)

∑
g′

∑
k∈g′

βg′w(k)∆pk︸ ︷︷ ︸
Time FE

+ ν̃j (26)

This equation maps directly to our empirical specification. When λ = 1, the nested system

is reduced to standard logit demand, and M̃ = 0. In this case, we do not need to control for

price changes for close substitutes. Our estimates of M̃ strongly reject this assumption. Therefore,

when specifying demand for corporate bonds, a nested system is preferred over the standard logit

demand.

E Arbitrage Risk

Consider a two-period economy populated with measure 1 of homogeneous investors. Investors have

CARA utility, with absolute risk aversion coefficient γ. There are two risky assets with normally

distributed payoff in period 2 DA

DB

 ∼ N(µ,Σ) (27)

Σ =

 σ2
A ρσAσB

ρσAσB σ2
B

 (28)

In addition, there is a risk-free asset with total return normalised to 1. Investors choose portfolio

x to maximize expected utility,

x =
Σ−1

γ
(µ− p) (29)

xA =
γσ2

B(µA − pA)− ργσAσB(µB − pB)

|γΣ|
(30)

where | · | denotes matrix determinant. Apply market clearing, we get

x+ u+ ν = x̄ (31)
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where u is the observed exogenous demand and ν is the unobserved demand shocks. Focusing on

asset A, we can express its price as

pA = γσ2
A(1− ρ2)︸ ︷︷ ︸

=M

uA +
ρσA
σB

pB + constant + γ(σ2
AνA + ρσAσBνB)︸ ︷︷ ︸

error term

(32)

The micro multiplier maps to the term γσ2
A(1− ρ2) in this case, which is determined by both the

risk aversion coefficient as well as asset A’s residualized risk. To understand the term σ2
A(1− ρ2),

regress asset A’s price on its substitute, asset B’s price,

pA = β0 + β1pB + ϵ (33)

the variance of ϵ captures the risk in asset A that cannot be hedged by holding asset B, which is

equal to σ2
A(1− ρ2).

Hence we have shown that the multiplier M is increasing in both the risk aversion coefficient

and the residualized risk that cannot be hedged by the substitute portfolio.
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