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1 Introduction

Motivated by limitations in the cognitive ability of people to understand and process information,

macroeconomists have increasingly begun to incorporate behavioral elements into their models

as an alternative to rational expectations. A novel approach in this regard is the finite horizon

planning (FHP) framework developed in Woodford (2018) in which agents are boundedly rational,

as their ability to evaluate the full set of state-contingent paths along which the economy might

evolve is limited to a finite horizon. To highlight the appeal of the approach, Woodford (2018)

embeds FHP into a New Keynesian (NK) model and shows that monetary policy does not suffer

from a “forward guidance” puzzle in which a credible promise to keep the policy rate unchanged

in the distant future produces counterfactually large effects on current inflation and output.

Our previous research, Gust, Herbst, and López-Salido (2022), provides additional evidence that

a New Keynesian model with FHP is a compelling framework for understanding aggregate output,

inflation, and interest-rate dynamics. Our results suggest that this model is able to generate

substantial inflation persistence and realistic costs to an anticipated disinflation announced by a

central bank. In addition, the model fits the macroeconomic time series substantially better than

other behavioral models as well as the “hybrid” NK model that features rational expectations,

habit persistence in consumption, and exogenous price indexation.1

While the NK-FHP model has had some success in explaining the macroeconomic time series, it

remains an open question how well it accounts for some key stylized facts that have emerged from

empirical studies using survey data on inflation expectations. This literature finds that forecast

errors are systematically predictable in a way that is difficult to rationalize with macroeconomic

models that feature full information, rational expectations (FIRE). This research emphasizes that

survey data on expectations help to discriminate across alternative models of expectation formation,

and several papers in this literature point to stylized facts that are difficult to reconcile with

several popular behavioral models including those emphasizing diagnostic expectations or cognitive

discounting.2 Important contributions to this literature include Coibion and Gorodnichenko (2015)

(hereafter CG (2015)), Angeletos, Huo, and Sastry (2020) (hereafter AHS (2020)), and Kohlhas

and Walther (2021) hereafter KW (2021).3 CG (2015) study the correlation between consensus

forecast errors and forecast revisions of inflation and find evidence consistent with an underreaction

of forecasts to revisions. The evidence in KW (2021) also supports the finding of an underreaction

of forecasts to revisions but KW (2021) also provide evidence of an overreaction of average forecasts

to recent data. AHS (2020) study the impulse responses of inflation forecasts from the survey of

1The specific behavioral models that we compare to the NK-FHP model are the models of Angeletos and Lian
(2018) and Gabaix (2020).

2See, for example, Kohlhas and Walther (2021), who point to some evidence that they suggest is challenging to
explain with simple formulations of diagnostic expectations. Similarly, Angeletos, Huo, and Sastry (2020) present
evidence that seems at odd with simple formulations of cognitive discounting.

3We focus on the evidence from these papers because they are directly relevant to the macroeconomic models that
we investigate. Another important branch of this literature, including Bordalo, Gennaioli, Ma, and Shleifer (2018),
Fuhrer (2018), and Broer and Kohlhas (2018), examines the predictability of forecasts errors of individual forecasters
instead of average or consensus forecasts.

1



professional forecasters (SPF) and find that the average forecast underreacts to shocks initially but

overreacts later on.

To understand the implications of the FHP model for the predictability regressions and impulse

responses of inflation, we begin by focusing on a partial equilibrium model in which FHP firms

set prices in a staggered fashion. We characterize the dynamics of aggregate inflation and firms’

forecast of inflation analytically. This allows to provide formal conditions under which inflation

forecasts under FHP are consistent with the predictability impulse responses of AHS (2020) and

predictability regressions of CG (2015) and KW (2021). We find that the version of the FHP model

in which price setters learn and update their beliefs about events outside their planning horizons

is a key feature necessary to account for this evidence. To provide intuition regarding the role of

outside-the-planning-horizon beliefs in the FHP model, it is helpful to first consider the forecasting

properties of inflation when price-setters’ beliefs for events outside their planning horizon remain

fixed and compare it to the case of FIRE. Under FIRE, a price-setting firm with an opportunity

to reset its price takes into account the full effects of a persistent shock into the distant future and

efficiently incorporates those beliefs into its forecast. Under finite planning without learning, firms’

beliefs outside of their planning horizon are fixed, and firms neglect the longer-lasting effects of

persistent shocks so that their forecasts systematically underpredict realized inflation.

While an underreaction is consistent with the evidence of CG (2015), the no-learning version of

the model fails to account for the longer-run overreaction that AHS (2020) find for inflation forecasts

as well as evidence of an overreaction emphasized by KW (2021). The FHP model’s predictions can

account for this evidence when firms learn adaptively and update their longer-run beliefs (i.e., those

outside their planning horizons) about inflation. We show that these outside-the-planning-horizon

beliefs depend on past inflation and evolve sluggishly: they do not change much in the short run but

can move significantly over time as firms acquire more information on previously observed aggregate

inflation. Because a firm’s forecast of inflation at shorter horizons also depends on their (slowly

evolving) longer-run beliefs, its forecasts inherit this inertia, thus responding sluggishly at first.

Accordingly, agents’ inflation forecasts undershoot realized inflation initially but overshoot it later

on. This later overshoot reflects that firms’ inflation forecasts overweigh changes in beliefs about

events that occur outside their planning horizon. When these beliefs eventually adjust, they help

generate impulse responses in line with the empirical ones in AHS (2020). We formalize these results

through three propositions highlighting that there is a wide range of parameter values for which

inflation expectations under FHP is qualitatively consistent with the specific patterns of inflation

forecast errors emphasized by CG (2015), KW (2021), and AHS (2020). These parameters go

beyond the parameter governing the length of firms’ planning horizons and include those governing

the rate at which firms update their longer-run beliefs and the persistence of shocks.

We then extend the analysis to the dynamic, general equilibrium model studied by Woodford

(2018) and find that these results apply in general equilibrium as well. In particular, the NK-FHP

model with learning in Woodford (2018) is capable of generating forecast errors in line with the

patterns of inflation forecast errors in the empirical literature. Moreover, the general equilibrium
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version introduces richer inflation dynamics and inflation expectations are influenced by different

type of shocks as well as by other aspects of the economy such as the central bank’s reaction

function for setting interest rates. Accordingly, the parameters governing the shock processes

and the central bank’s interest-rate reaction function influence the model’s implications for the

predictability regressions of CG (2015) and KW (2021) and predictability impulse responses of

AHS (2020), which, in turn, highlights the importance of examining this evidence using a dynamic,

general equilibrium model.

Given the prominent role of structural parameters auxiliary to expectations formation, it is dif-

ficult to use only the empirical estimates from the predictability regressions and impulse responses

to guide our assessment of the FHP model. Rather, we leverage the approach in our previous

research, Gust, Herbst, and López-Salido (2022), and estimate the model employing a Bayesian,

full-information likelihood-based approach using U.S. data on output growth, inflation, and nominal

interest rates from 1966:Q1 through 2007:Q4, a time period for which there were notable changes

in trends in inflation and output growth. This approach allows us to identify all the structural

parameters of the model. Armed with these parameter estimates, we compute the model’s coun-

terparts to the empirical moments emphasized by CG (2015), KW (2021), and AHS (2020) and

evaluate the model using these statistics. An important aspect of our procedure is that it does

not directly incorporate information on inflation forecasts or forecast errors. Thus, the information

coming from empirical moments emphasized by CG (2015), KW (2021), and AHS (2020) can be

viewed as form of external validation of the model. Our main finding using this approach is that the

NK-FHP model is able to match the empirical moments in these papers remarkably well, while also

explaining fluctuations in U.S. output, inflation, and interest rates better than other alternative

models including a NK model incorporating sticky information.

After performing this external validation exercise, following Del Negro and Eusepi (2011) we

modify our estimation procedure to include survey data on inflation expectations as an additional

observable variable. We find that, overall, the parameter estimates of the model, including the

length of agents’ planning horizons, change little with the inclusion of inflation expectations in

the estimation procedure. This result reflects that the model estimated without the inflation

expectations data already fits that data reasonably well. We do find, however, changes in parameter

estimates if the objective is to exclusively fit the inflation expectations data. In that case, estimates

of the length of agents’ planning are on the order of four quarters compared to estimates on the

order of one quarter when the objective is to jointly fit the macroeconomic time series and inflation

expectations data.

Our paper is related to earlier work that uses survey data on inflation expectations in the

context of the estimation of DSGE models. Ormeno and Molnar (2015) perform a similar exercise

to Del Negro and Eusepi (2011) to show that a NK model incorporating adaptive learning fits the

inflation expectations data better than the rational expectations models of Del Negro and Eusepi

(2011) though it shows little improvement in fit in terms of macro data. While we also estimate

a DSGE model and incorporate survey evidence on inflation expectations into our analysis, our
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emphasis, unlike those papers, is on evaluating the model’s ability to account for the predictability

regressions of CG (2015) and KW (2021) and the predictability impulse responses of AHS (2020).

Our paper is also related to papers such as Milani (2007) and Slobodyan and Wouters (2012)

that estimate models with learning using macro data as well as Eusepi and Preston (2018) and

Carvalho, Eusepi, Moench, and Preston (2023), which emphasize learning about long-run trends.

A key difference between these papers and the finite-horizon approach used here is that expectation

formation in these papers is backward looking while expectation formation under FHP has both a

backward-looking and forward-looking component. We find that both components are important

in accounting for the predictability results of CG (2015), KW (2021), and AHS (2020).

The rest of the paper proceeds as follows. The next section presents the properties of aggregate

inflation when firms’ set prices with finite horizon plans and the analytical results regarding the

predictability of inflation forecasts under FHP. Section 3 describes the general equilibrium version

of the model that we estimate. Section 4 discusses the estimation results of that model, including

its fit of the predictability regressions of CG (2015) and KW (2021) and the predictability impulse

responses of AHS (2020). It also compares the NK-FHP’s empirical performance with alternative

models including a NK model emphasizing sticky information. Section 5 concludes.

2 Finite Horizon Planning and Inflation Forecast Predictability

A key finding in the empirical literature using survey data is that inflation forecast errors are

systematically predictable. CG (2015) emphasize this predictability by running regressions and

showing that median inflation forecast errors in the SPF are correlated with forecast revisions.

AHS (2020) show that the impulse response of the median inflation forecast in the SPF under

reacts to aggregate shocks in the short run before over reacting later on. Building on CG (2015),

KW (2021) find evidence of both an underreaction of the average forecast to new information but

a simultaneous overreaction to recent data. In this section, we follow Woodford (2018) and assume

firms, setting prices according to Calvo (1983) contracts, have finite planning horizons. We study

the inflation forecasts of these firms and derive conditions under which they are consistent with the

empirical results of CG (2015), AHS (2020), and KW (2021).

Finite horizon planning. Before discussing the economy’s price-setting firms, we first define

the expectations operator of an agent who is a finite-horizon planner. As discussed in Woodford

(2018), such an agent making decisions at date t can only look forward and formulate plans that

take into the model’s relationships and all possible realizations of shocks occurring between periods

t and t+k, where k denotes the length of an agent’s planning horizon. Let Ekt denote the subjective

expectations of a finite-horizon planner. Then, for any endogenous variable in periods t + k − j,
Zt+k−j , with j = 0, 1, 2, ..., k (i.e., j indexes the number of periods remaining within the planning

horizon), the following relationship holds:

EktZt+k−j = EtZ
j
t+k−j , (1)
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where Et denotes the rational expectation (RE) operator conditional on time t information and the

variable Zjt+k−j reflects the subjective expectations of a finite-horizon planner. Because an agent has

a limited understanding of events outside of its planning horizons, its subjective expectations differ

from rational expectations, and expression (1) provides a mapping between an agent’s subjective

expectations and rational expectations.

Price setting. The price-setting firms are monopolistic competitors whose prices are staggered

á la Calvo (1983). When resetting their price, each firm is assumed to have a finite planning period

of length k. As shown in Woodford (2018), under these assumptions, firms’ price-setting behavior

implies a log-linearized relationship for inflation given by:

πjτ = βEτπ
j−1
τ+1 + κyτ , (2)

where τ = t+ k − j denotes the planning period and 1 < j ≤ k. The variable πjτ denotes the (log-

linearized) inflation rate implied by firms’ plans in period τ . The parameter β is the discount rate,

and the parameter κ is a function of the Calvo price-setting parameter, θp, and parameters that

affect the link between firms’ real marginal costs and aggregate output. The variable yτ represents

the (log-linearized) output gap, which is assumed to follow an AR(1) process:

yt = ρyt−1 + et (3)

with ρ ≥ 0. For now, we assume that the output gap evolves exogenously. This simplification allows

us to derive analytical results, providing a better understanding of the implications that NK-FHP

has for the predictability impulse responses of AHS (2020) and the predictability regressions of

CG (2015) and KW (2021). Later, we modify this assumption, and allow the output gap to be

endogenously determined in the context of the general equilibrium model that we estimate.

Equation (2) reflects the behavior of firms who have the opportunity to change their prices

at date t and it holds in each period of those firms’ planning horizons except the last period.

Iterating forward on the expressions implied by equation (2) results in an expression that determines

aggregate inflation:

πkt = κEt

k−1∑
i=0

βiyt+i + βkEtπ
0
t+k (4)

where πkt = πt denotes aggregate inflation (in log deviation from steady state). According to

equation (4), aggregate inflation depends on the expected path of the output gap and on the

expected inflation rate at the end of firms’ planning horizons (Etπ
0
t+k). The NK Phillips curve

under rational expectations arises as a special case: as k →∞, the planning horizon extends over

a firm’s infinite lifetime and inflation depends on the entire future path of the output gap.

Firms with the opportunity to reset their price at date t make a fully state contingent plan

through t+k. They use their knowledge of the model’s structural equations to do so. However, these

firms use continuation value functions to assign value to events outside of their planning horizons

(i.e., the longer-run from their viewpoint). These value functions affect the expected inflation rate
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at the end of firms’ planning horizons (π0
t+k). Formally, the (log-linearized) equilibrium condition

associated with firms’ pricing plans at the end of their horizon is:

π0
t+k = κyt+k + β(1− θp)vpt, (5)

where vpt is the (log-linearized) continuation value to the plans of firms with the opportunity to

reset their prices at date t and 1−θp is the fraction of firms that have the opportunity to re-optimize

their price at date t.

Learning. While firms are sophisticated in thinking about events within their planning horizon,

they are less so when thinking about events further in the future. In this regard, we consider two

different situations. In the no learning case, firms’ beliefs about longer-run events (i.e., outside

their planning horizon) are fixed at their steady state values so that vpt = 0 ∀t. Alternatively,

we allow firms to learn and update their beliefs based on past experience. In this case, the value

function vpt evolves according to:

vpt+1 = (1− γp)vpt + γpv
e
pt, (6)

where vept is a firm’s new estimate of its value function. The parameter γp determines how much

weight they place on that new estimate and satisfies 0 < γp < 1. The new estimate of the value

function is determined by firms who can re-optimize their prices at time t, as vept is chosen as part

of their FHP optimization problem. Woodford (2018) shows that in equilibrium vept satisfies:

vept = (1− θp)−1πkt . (7)

According to equation (7), vept depends on aggregate inflation scaled by the fraction of firms who can

re-optimize their prices at date t.4 Combining equations (6) and (7), it follows that firms’ beliefs

about events outside their planning horizon (i.e., vpt) depends on past realizations of inflation.

Inflation Dynamics. The equilibrium dynamics of inflation can be characterized analytically.

Equations (4), (5), and (6) imply that aggregate inflation is the sum of a component that reflects

a firm’s future beliefs about the output gap over its finite horizon and a component that firm’s

beliefs about longer-run events outside of its planning horizon:

πkt = A(k)κyt + βk+1(1− θp)vpt, (8)

where the parameter A(k) = 1−(βρ)k+1

1−βρ .5 Both the parameters affecting the response of inflation to

changes in the ouput gap and changes in their longer-run beliefs depend on k, the length of a firm’s

planning horizon.

The dynamics of inflation under RE correspond to the case in which k → ∞. In that case, a

4More specifically, to a first order approximation, Woodford (2018) shows vept = p∗kt , where p∗kt denotes the
optimal contract price chosen by firms with an opportunity to reset their price at date t. Equation (7) then reflects
the equilibrium relationship between aggregate inflation and the contract price: πkt = (1− θp)p∗kt .

5The term on the output gap reflects that firms know the process for yt so that Ekt yt+i = Etyt+i = ρiyt.
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firm’s longer-run beliefs, vpt, become irrelevant and A(∞) = 1
1−βρ so that inflation evolves according

to

πREt =
κ

1− βρ
yt.

Inflation dynamics under FHP expectations involves two deviations from the dynamics of inflation

under RE. First, since 0 < 1 − (βρ)k+1 ≤ 1, inflation in the FHP model is less responsive to

fluctuations in the output gap. This muted responsiveness of inflation is a function of ρ and the

length of the planning horizon. A shorter planning horizon or a more persistent shock imply a

more muted response of inflation to movements in the output gap relative to the RE solution. The

second deviation from inflation dynamics under RE is that firm’s longer-run beliefs about inflation,

as discussed above, depend on past inflation and thus inflation under FHP expectations displays

an excess sensitivity to past inflation.

Forecasting. To understand the implications of FHP expectations for forecast predictability,

we characterize a firm’s one-step ahead forecast for inflation and the associated forecast error. A

firm with a planning horizon of length k > 0 has a one-step ahead forecast given by:

Ekt πt+1 = ρA(k − 1)κyt + βk(1− θp)vpt = [1− (βρ)k]
κρ

1− βρ
yt + βk(1− θp)vpt. (9)

Like inflation, a firm’s one-step ahead forecast is sticky, since a firm’s longer-run beliefs about

inflation affect Ekt πt+1 and these beliefs depend on lagged inflation.6 This stickiness diminishes

as k → ∞. In that case, expression (9) converges to the forecast under rational expectations:

E∞t = Etπt+1 = κρ
1−βρyt.

Under FHP expectations, a firm will make systematic forecast errors. To see this, define the

one-step ahead forecast error under FHP as Fkt+1 ≡ πkt+1 − Ekt πt+1. Using expressions (8) and (9),

the one-step ahead forecast error evolves according to:

Fkt+1 =
[
βk+1γpA(k) + ρ(βρ)k

]
κyt − βk [1− β(1− γ̃p)] (1− θp)vpt +Ot+1. (10)

where γ̃p = γp(1−βk+1) and Ot+1 is an omitted terms that depends on the innovation in the output

gap at date t+ 1, et+1.7

Equation (10) is a key equation for determining the forecasting properties of inflation in the FHP

model. Firms’ forecast errors for inflation are the sum of an unpredictable component (Ot+1) and

two predictable components. One of those predictable components relates to errors associated with

firms underpredicting the responsiveness of inflation to movements in the output gap: In response

to an increase changes in the output gap, the inflation forecast error rises because realized inflation

responds more than expected inflation. Accordingly, firms’ forecasts underreact to changes in the

output gap. The other predictable component relates to changes in the value function governing

firms’ longer-run beliefs. Because 0 < β < 1 and 0 < γ̃p < 1, the forecast error falls in response

6As equation (9) highlights, the learning framework in Woodford (2018) uses the “anticipated utility” approach
of Kreps (1998) and a firm’s forecast of future inflation ignores the fact that vpt will change over time.

7To obtain expression (10), note that A(k) = A(k − 1) + (βρ)k.
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to an increase in the value function, indicating that firms’ forecasts overreact to changes in their

longer-run beliefs. This overreaction reflects that a firm is closer to the end of its planning horizon

when forming expectations of future inflation, making the sensitivity of the one-step ahead forecast

to a firm’s (continuation) value function greater than that of realized inflation.

2.1 Impulse Response Predictability

Equations (9) and (10) can be used to characterize the impulse responses of inflation forecasts and

forecast errors to an innovation in et, allowing us to relate the model’s implications to the empirical

work of AHS (2020). Using data from the SPF, AHS (2020) compute the impulse response of

the median respondent’s inflation forecast and forecast error from the shock that maximizes the

business cycle variation in inflation. Their results are striking, as they show there is a sign switch in

the impulse response of the inflation forecast error: it underreacts before overreacting later on. We

show that the FHP model is capable of generating this sign switch, and the following proposition

established conditions under which it does so.

Proposition 1. (IRFs of Inflation Forecasts and Forecast Errors). Let
∂Ekt+iπt+1+i

∂et
and

∂Fkt+1+i

∂et
for

i ≥ 0 be the impulse response functions for a firm’s one-step ahead inflation forecast and forecast

error, respectively.

1. Without learning:
∂Ekt+iπt+1+i

∂et
≥ 0 and ∂Ft+1+i

∂et
≥ 0, ∀i ≥ 0 and k > 0.

2. With learning: If γp ≤ 1−ρ
1−βk+1 , there is a threshold forecast horizon, i?, such that:

(a)
∂Ekt+iπt+1+i

∂et
≥ 0 for i ≥ 0,

(b) ∂Ft+1

∂et
> 0 and ∂Ft+1+i

∂et
< 0 for i ≥ i?,

Proof: See the appendix.

Proposition 1 indicates that in the model in which firms do not update their longer-run beliefs

about inflation (i.e., no learning), both the inflation forecast and inflation forecast error respond

positively to an innovation to the output gap. Accordingly, the impulse responses are characterized

by a systematic underreaction — there is no flip in the sign of the impulse response function at

any horizon. This underreaction reflects that without learning vpt = 0 ∀t so that movements in a

firm’s inflation forecast reflect only changes in the output gap. And, a firm with finite-planning

horizon neglects changes in the output gap that occur outside its planning horizon, implying that

its forecast underreacts to such changes. Thus, the FHP model without learning, similar to other

behavioral models emphasizing cognitive discounting, can not account for the empirical evidence

in AHS (2020).

While incorporating learning into the model may be a necessary condition to account for the

evidence in AHS (2020), it is not a sufficient condition. For the forecast error to change signs

from an underreaction to an overreaction, Proposition 1 also provides a sufficient condition that

puts an upper bound on γp, the speed at which firms update their longer-run beliefs using past
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data. Focusing on β ≈ 1, this condition only imposes a restriction on γp for shocks that are

highly persistent (i.e., values of ρ close to 1.) For more moderate values of ρ and relatively short

planning horizons, this condition is easily satisfied so that all values of γp between zero and one are

consistent with the result in AHS (2020). Intuitively, if the output-gap shock is not very persistent,

the impulse responses of the forecast error in later periods will be mostly determined by changes in

a firm’s longer-run inflation beliefs. With the effect of the value function more important for the

impulse responses in later periods, a firm’s forecast will eventually display an overreaction, since

firms’ forecasts are excessively sensitive to changes in vpt.

Proposition 1 establishes the existence of a threshold horizon at which the impulse response of

the inflation forecast error in the FHP model switches signs. Figure 1 illustrates how this threshold

horizon depends on the model’s structural parameters. The upper panel plots the threshold horizon

(i?) as a function of a firm’s planning horizon (k) for two different values of γp. The threshold

horizon is higher for shorter planning horizons. For instance, when γp = 0.3 and k = 12, the

impulse response switches from an underreaction to an overreaction after 10 quarters, while when

k = 1, it takes 16 quarters. A shorter planning horizon has this effect because, all else equal, it

makes the magnitude of the underreaction of the forecast to the change in the output gap larger,

delaying the eventual overshoot. Figure 1 also highlights that a higher value of γp or lower value of

ρ results in an earlier overreaction of a firm’s inflation forecast. These results reflect that a higher

value of γp speeds up the learning process so that the model’s eventual overreaction occurs earlier.

A lower value of ρ has a similar effect, since it implies a smaller and less persistent underreaction

of a firm’s inflation forecast. Overall, proposition 1 indicates that the sign switch in the impulse

response function of the forecast error is a robust, qualitative feature of the FHP model with

learning. Later, we conduct a more rigorous empirical evaluation of the FHP model, pinning its

parameters down using macroeconomic time series while using the impulse response of AHS (2020)

as well as the predictability regressions of CG (2015) and KW (2021) as additional tests regarding

the nature of expectation formation embedded in finite horizon planning.

2.2 Inflation Predictability Regressions

To discriminate across alternative models of expectation formation, CG (2015) and KW (2021)

emphasize the predictability of forecast errors from regressions using survey data on expectations.

CG (2015) regress the median forecast error of inflation on the median forecast revision and show

that there is a positive correlation between the forecast error and forecast revision, implying an

underreaction of forecasts to new information. KW (2021) also emphasize the underreaction of

forecasts to new information but they provide additional evidence that forecasts in survey data

also involve an overreaction to recent data. In particular, they regress average forecast errors from

survey data on the forecasted variable and show a negative correlation between the forecast error

and the forecasted variable, implying an overreaction to recent data. They argue that a wide

class of models of expectation formation are unable to account for this simultaneous underreaction

to new information implied by the CG (2015) regression and overreaction to recent data implied
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Figure 1: Delayed Overreaction of Inflation Forecasts in the FHP Model
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Note: The figure shows the threshold date at which the impulse response of the inflation forecast in the FHP
model switches from an underreaction to an overreaction.

by their regression. In this section we investigate the implications of FHP expectations for the

predictability regressions of CG (2015) and KW (2021).

To examine the implication of the FHP model for the predictability result of CG (2015), a firm’s

inflation forecast revision is defined as Rkt =
[
Ekt − Ekt−1

]
πt+1. A firm’s forecast at t− 1 satisfies:

Ekt−1πt+1 = ρ2A(k − 2)κyt−1 + βk−1(1− θp)vpt−1 (11)

for k > 1. At time t− 1 a firm’s expectation for πt+1 differs from its expectations at time t because

it has less information than at time t. In addition, a firm is looking an extra period ahead and is

closer to the end of its planning horizon. Because, it is close to the end of its planning horizon,

its forecast of πt+1 at time t − 1 puts more weight on a firm’s value function and less weight on

the output gap than a firm’s one-step ahead forecast. Proposition 2 characterizes the relationship

between inflation forecast errors and revisions for a firm with FHP expectations.

Proposition 2. (Forecast Error and Revision Correlation). Let βCG =
cov(Rkt , Fkt+1)

var(Rkt )
denote the

univariate regression coefficient from regressing the one-step ahead forecast error on the forecast

revision in the FHP model.

1. Without learning: If ρ > 0, then βCG > 0, for any finite planning horizon k > 0.

2. With learning: If ρ = 0 and γp <
1−β

1−βk+1 , then βCG > 0.
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Proof: See the appendix.

Proposition 2 shows that for positively correlated shocks, the FHP model without learning

always results in a positive value of βCG, in line with the empirical estimates of CG. Without

learning, a persistent increase in the output gap (ρ > 0) leads firms with FHP expectations to

revise up their forecasts of inflation. From equation (10), it follows that their inflation forecast

errors rise persistently, and there is a persistent underreaction of the inflation forecast to new

information.

With learning, the dynamics of inflation are richer (and more complex) and the correlation

between the forecast error and forecast revision can be either positive or negative depending on the

length of a firm’s planning horizon (k), how quickly firms update their longer-run beliefs (γp), and

the persistence of the shock (ρ). When the shocks are uncorrelated, Proposition 2 indicates that the

FHP model implies βCG > 0 if firms do not update their longer-run beliefs too quickly. Specifically,

there is an upper bound on γp that grows increasingly tight as the length of the planning horizon

increases. For instance, for short-horizon planning (k = 1) with learning occurring at relatively

sluggish rate, (i.e., γp <
1

1+β < 0.5), the model generates βCG > 0.

Our final proposition considers the regression statistic of KW (2021). While KW (2021) mainly

focus on forecasts of output growth, they show that several survey measures of inflation expec-

tations, including average forecasts of consumer price inflation from the SPF, display a negative

correlation between the forecasted variable and survey respondents’ forecast errors. Propositon 3

characterizes the relationship between inflation and forecast errors under FHP expectations.

Proposition 3. (Forecast Error and Inflation Correlation). Let βKW =
cov(πkt , Fkt+h)

var(πkt )
denote the

univariate regression coefficient from regressing the h-step ahead forecast error on inflation in the

FHP model.

1. Without learning: If ρ > 0, then βKW > 0, for any finite planning horizon k ≥ h ≥ 1.

2. With learning: If ρ = 0 and k ≥ h > 1, then βKW < 0 if and only if:

βk+1(1− γ̃p)
(1− βk+1)(2− γ̃p)

[
β−h(1− γ̃p)−h − 1

]
> 1.

Proof: See the appendix.

Proposition 3 indicates that the correlation between inflation and the forecast error is positive in

the FHP model without learning. However, when the FHP model includes learning, the correlation

can be negative for forecasts beyond a quarter (i.e., h > 1). For uncorrelated shocks, the condition

in proposition 3 indicates that for a fixed value of k, a longer forecast horizon or a larger value of γ

are more likely to imply that βKW < 0. This negative correlation is possible because firms learn and

update their longer-run beliefs about events outside their planning horizons by extrapolating from

past data on inflation. Such behavior implies that a firm’s forecasts can overreact to movements in

inflation, and faster learning in which firms’ beliefs depend more on recent inflation data exacerbates

this overreaction.
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Table 1 shows some numerical results for βCG and βKW , varying the persistence of the shock,

the length of firms’ planning horizons, and the learning speed. The table highlights that βCG > 0

for firms’ planning horizons of 3 to 6 quarters and that βCG is positive for a wide range of values

of ρ and γp. In particular, when ρ = 0.9, βCG is positive even for high values of γp. The table also

highlights that βKW can be positive or negative depending on how firms update their beliefs about

their value functions. When γp = 0.9, the sign of βKW is negative, as firm’s beliefs about their

value functions responds relatively quickly to past changes in inflation. However, when γp = 0.25,

firms’ beliefs depend relatively more on inflation in the distant past, and the sign of βKW is positive

in those cases. Overall, we conclude that the FHP model can be qualitatively consistent with the

empirical evidence of CG (2015) and KW (2021) and below we investigate this question further in

the context of an estimated, general equilibrium model.

Table 1: Predictability Regression Results For FHP
Model

ρ = 0.25 ρ = 0.9

βCG βKW βCG βKW
k = 6
γp = 0.25 0.59 0.03 0.52 -0.01
γp = 0.9 0.43 -0.07 0.46 -0.02

k = 3
γp = 0.25 0.59 0.01 0.69 0.0
γp = 0.9 0.44 -0.05 0.58 -0.01

Note: For βCG, entries report population coefficient from a regression of
one-step ahead inflation forecast errors on forecast revision. For βKW , en-
tries report population coefficient from a regression of three-quarters ahead
inflation forecast errors on inflation. The values of β and κ were set to 0.99
and 0.05, respectively.

3 Dynamic General Equilibrium Model

The previous section establishes that inflation expectations implied by the NK-FHP model are

broadly consistent with key stylized facts that have emerged from the empirical literature using

survey data on expectations. With this result established, we next turn to investigating whether

the NK-FHP model in Woodford (2018) is jointly consistent with the survey data on inflation

expectations as well as the fluctuations in output, inflation, and interest rates in U.S. data. To

address this question, this section extends the analysis in the previous section to include households

with finite planning horizons and monetary policy that is specified to follow an interest rate rule.

As in the previous section, it is assumed that all agents have the same planning horizon of

length k. The model’s inflation dynamics are determined from similar expressions to those shown

in equations (4) and (5) except that now the output gap no longer follows an exogenous process but

is endogenously determined. With an endogenously determined output gap, the New Keynesian
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Phillips curve becomes:

πkt = κEt

k∑
i=0

βi(yk−it+i − y
?
t+i) + βk+1(1− θp)vpt (12)

where y?t+i is an exogenous shock to aggregate supply and yk−it+i is a firm’s beliefs about the output

gap in period t+ i which as discussed below is determined by the level of household expenditures.

Households. There is a large number of identical, infinitely-lived households. Each household

makes a consumption\savings decision but like the economy’s firms only has the ability to plan

k periods ahead. Households also supply their labor services to firms in a perfectly competitive

labor market. As shown in the appendix, optimization by households gives rise to a (log-linearized)

relationship that relates household expenditures at time t to future interest rates that occur over

their planning horizon:

ykt = −σEt
k−1∑
i=0

(
ik−it+i − π

k−i−1
t+i+1 − r

?
t+i

)
+ Ety

0
t+k (13)

where ykt are a household’s demand for expenditures at time t and ijt+i denotes a household’s beliefs

about the setting of the policy rate in period t+ i. The parameter σ is the inverse of a household’s

relative risk aversion, and the variable r?t is an exogenous shock to preferences.8 This shock as well

as the supply shock, y?t , are assumed to follow AR(1) processes with persistence parameters, ρy,

for the supply shock, and ρr for the demand shock. A household’s expenditures at time t, ykt , also

depend on its plans for expenditures at the end of their planning horizion, y0
t+k, which are given

by:

y0
t+k = −σ

(
i0t+k − r?t+k

)
+ vht (14)

where the variable vht is the value that household assigns to events that occur outside of their

planning horizons and reflects that households, like firms, have a limited ability to understand and

evaluate situations that occur in the distant future.

Similar to firms, households update vht based on past events and do so in a way that is consistent

with their optimal finite-horizon plan. In particular, when they decide on their expenditures, ykt+k,

they form a new estimate of their value function, veht, and use it to update their beliefs according

to:

vht+1 = (1− γ)vht + γveht, (15)

where 0 < γ < 1 determines how much weight they place on their new estimate. This new estimate

is consistent with household optimization and as shown in the appendix reflects outcomes for both

expenditures and inflation:

veht = ykt + σπkt (16)

8As shown in the appendix, this shock affects a household’s discount factor and differs from the preference shock
used in Woodford (2018).
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Substituting equation (16) into equation (15), it follows that vht depends on past realizations of

household expenditures and inflation. Accordingly, a household’s longer-run beliefs are determined

in a backward-looking manner and because they depend in particular on lagged expenditures, these

longer-run beliefs can give rise to persistence in household expenditures.

Trend-Cycle Decomposition. As discussed in Woodford (2018), an interesting feature of the

NK-FHP model is that its variables can be decomposed output into a “cyclical” component— re-

flecting the effect of the model’s shocks— and a “trend” component—reflecting changes in household

and firm beliefs’ about their longer-run continuation values. Specifically, the “trend” components

(denoted by π̄jt , ȳ
j
t , and ījt , respectively, for j = 0, 1, ..., k) are defined by abstracting from the effect

of shocks in equations (12) and (13). Accordingly, the evolution of these trends can be written as

functions of the continuation values of households and firms decisions, vht and vpt:

π̄kt = κ

k∑
i=0

βiȳk−it + βk+1(1− θp)vpt

ȳkt = −σ

[
k∑
i=0

īk−it −
k−1∑
i=0

π̄k−i−1
t

]
+ vht

where
{
π̄kt , ȳ

k
t

}k
j=0

denote the effect of the continuation value functions on the plans of households

and firms. (For these variables, we denote the effects of the vht and vpt on household and firm

plans with only a t subscript since vht and vpt are fixed at time t.) We use the trend variables to

help characterize the model’s dynamics and understand the role of household and firms’ longer-run

beliefs in generating endogenous persistence and influencing inflation expectations.

Monetary Policy. Monetary policy at each date t is specified as an interest-rate rule of the

form:

ikt = īkt + φπ(πt − π̄kt ) + φy(yt − ȳkt ) + i?t (17)

where i?t is an exogenous shock to the rule assumed to follow a first-order autoregressive process

with persistence parameter, ρi. We assume that the intercept of the policy rule depends on the

evolution of the model’s trends. In particular, ījτ is given by:

ījτ = φ̄ππ̄
j
τ + φ̄yȳ

j
τ (18)

The time-varying intercept in the interest rate rule is intended to capture two aspects of monetary

policy. First, it acknowledges that policymakers do not necessarily view the “equilibrium” or longer-

run real interest rate as a constant.9 Second, it also allows for the possibility that policymakers

may respond more aggressively to persistent deviations of inflation from their inflation target, as

captured by π̄kt , than they do to temporary deviations. In that case, φ̄π > φ̄, and as shown in

our empirical analysis in Gust, Herbst, and López-Salido (2022), we find that such a monetary

9This formulation is consistent with policymakers’ efforts to inform their decisions distinguishing trend factors—
such as demographic or productivity changes—from cyclical variations in output and inflation. It implicitly assumes
that policymakers are no better at separating trend from cycle as the private sector.
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policy response fits the data substantially better than a rule in which monetary policy responds

equi-proportionately to cyclical and trend inflation.

4 Empirical Analysis

In this section, we assess the dynamic, general equilibrium model’s ability to to match the impulse

response predictability results of AHS (2020) and predictability regressions of CG (2015) and KW

(2021). The model and methodology closely follow Gust, Herbst, and López-Salido (2022), where

we estimated the NK-FHP model employing a Bayesian, full-information likelihood-based approach

using U.S. data on output growth, inflation, and interest rates.10 Our estimation strategy does

not employ information on inflation expectations or the predictability statistics and as discussed

below we use predictive checks to evaluate the model’s performance on the predictability statistics

emphasized by AHS (2020), CG (2015), and KW (2021).

For this assessment, we use plausible parameter configurations from the posterior distribution

of the NK-FHP model. The use of a full-information estimation as the basis for assessing these

moments is a bit of a departure from the previous literature, which relies on regression analysis

or partially identified VAR models. The full information strategy employed here is an attractive

approach for a number of reasons. First, as the propositions in Section 2 indicate, the consistency

of the NK-FHP model with particular stylized facts of inflation expectations depends not only

on parameters directly governing finite horizon planning, but additional structural parameters

auxiliary to the planning horizon. The presence of these auxiliary parameters can substantially

complicate the estimation of the model. By using the full posterior distribution from the model,

we incorporate the mostly likely values of these auxilary parameters into our evaluation. The

methodology here also ensures that the assessment of particular moments related to inflation and

inflation expectations is done conditional on parameterizations that also can rationalize the realized

time series of output growth, inflation, and interest rates. Finally, our use of a fully specified model

allows us to examine the behavior of these moments conditional on specific structural shocks. This

is in important because—as Section 2 highlights—the persistence of the shock is often critical for

determining the values of βCG and βKW and the impulse responses of inflation forecasts to shocks.

The NK-FHP model described in Section 3 is estimated using data on output growth, GDP

deflator inflation, and the federal funds rate in the United States from 1967-2007. The priors

and computational strategy for eliciting the posterior distribution of the parameters, p(θ|Y ), is ex-

tremely similar to Gust, Herbst, and López-Salido (2022). Thus, we relegate most of the estimation

details to the appendix.

The NK-FHP model in this section uses a planning horizon k = 1. Consistent with the results

in Gust, Herbst, and López-Salido (2022), this value maximizes the overall fit—measured using log

marginal data densities—of the model in Section 3. That said, our results are broadly consistent

for other values of k consistent with a limited planning horizon. Table 2 describes key features of

10A minor difference in the model described in Section 3 from the one in Gust, Herbst, and López-Salido (2022)
is that the demand shock is specified slightly differently. This change has little effect on the estimation results.
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the posterior distribution. The posterior mean estimates of the learning rates, at 0.47 and 0.20 for

the households and firms, respectively, indicating that firms weight recent data less in forming their

beliefs about events outside their planning horizons than households. Given our focus on inflation

expectations, the speed at which price-setters’ update their beliefs will be particularly relevant for

the predictability statistics that we study. The monetary policy rule has the same features as in

Gust, Herbst, and López-Salido (2022): it displays a strong response to trend inflation and cyclical

output but essentially no response to trend output. The demand shock and monetary policy shocks

are estimated to be highly persistent, while the posterior mean for the AR coefficient for the supply

shock is only 0.45. As discussed later, the difference in the persistence of these shocks will be

important in determining whether the model is consistent with the evidence regarding inflation

forecast predictability.

Table 2: NK-FHP(k = 1) Model: Selected Posterior Statistics

Description Mean [0, 95

γ Household learning rate 0.47 [ 0.30, 0.64]
γp Firm learning rate 0.20 [ 0.13, 0.29]
κ Slope of the Phillips curve 0.03 [ 0.02, 0.04]
σ Coef. Relative. Risk Aversion 2.68 [ 1.94, 3.52]
φπ Int. rule response to π̃t 0.98 [ 0.72, 1.27]
φy Int. rule response to ỹt 0.89 [ 0.59, 1.29]

φπ Int. rule response to πt 1.84 [ 1.49, 2.23]

φy Int. rule response to yt 0.13 [ 0.04, 0.25]

ρξ AR coeff. for demand shock 0.90 [ 0.84, 0.96]
ρi AR coeff. for monetary policy shock 0.95 [ 0.90, 0.98]
ρy AR coeff. for supply shock 0.45 [ 0.30, 0.60]

Note: The table shows estimates of the posterior means, 5th, and 95th per-
centiles of the model parameters computed from output of the SMC sampler.
See appendix for details.

4.1 Predictive checks for assessing inflation expectation predictability

While the model has been estimated to jointly account for fluctuations in output growth, inflation,

and interest rates, the estimation strategy does not use information on inflation expectations or

the predictability statistics emphasized by AHS (2020), CG (2015), and KW (2021). Thus, an

important additional check on the model’s empirical fit is its ability to account for these statis-

tics. To investigate this question, we use the framework of predictive checks. These checks involves

comparing some statistic or moment from the data to the predictive distribution of that statistic

under a given model. Here we use the posterior distribution of the estimated NK-FHP model. Let

Y DSGE denote the set of observables used to estimate the DSGE model–output growth, inflation,

and interest rates–and let Y be an expanded set of observables which includes SPF consensus in-

flation expectations data. Formally, let S(Y ) be some statistic of this data, where S(Y ) can be
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a scalar—like the regression coefficient as in CG (2015)—or a vector—like the impulse responses

of AHS (2020). For a given model, M, we can draw from the posterior distribution of param-

eter estimates to a obtain a simulated counterpart to Y—called Ỹ—and compute the predictive

distribution for Ỹ as

p(Ỹ |M) =

∫
p(Ỹ |θ,M)p(θ|Y DSGE ,M)dθ. (19)

Using (19), one can compare where the observed statistic S(Y ) lies in the predictive distribution

for S(Ỹ |M). If S(Y ) lies in the tail of the predictive distribution for a particular model, the model

is said to be deficient along this dimension of the data. To compute S(Y ) for the predictability

IRF of AHS (2020), we estimate a VAR(4) on the observed data and construct impulse responses

identifying a shock, as they do, that maximizes the forecast error variance of inflation over the

medium term. We follow the same approach to compute the model analogues of these impulse

responses from simulated data. For the predictability regression of CG (2015), we run regressions

of inflation forecast errors on forecast revisions using survey data and model simulated data. For

the predictability regression of KW (2021), we run regressions of inflation forecast errors on lagged

inflation. Algorithm 1 provides more details for these posterior predictive checks. Following CG

(2015) and others, we use the mean forecast for four-quarter-ahead (GDP deflator) inflation ex-

pectations (“Expected Inflation”) from the Survey of Professional Forecasters (SPF) as the actual

inflation expectations data.11

11In making their decisions, firms do not need to forecast inflation outside of their planning horizons. Accordingly,
we need to make an additional assumption when a firm’s forecast horizon exceeds its planning horizon, which is the
case since we are forecasting inflation four quarters ahead with k = 1. In that case, we assume a firm uses its beliefs
at the end of its planning horizon to make its forecast, taking into account its knowledge regarding the persistence
of shocks. The appendix provides more details regarding this assumption.
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Algorithm 1 Predictive Checks

For i = 1, . . . , N :

1. Construct Ỹ . Draw θi ∼ p(θ|Y DSGE), and simulate a single trajectory of Ỹ =

{∆yt, πt, it,Ekt [πAt+4],Ekt−1[πAt+4]}Tt=1, where T ∈ {168, 3000}, either the length of the actual

observables (“finite sample”) or large sample which eliminates sampling uncertainty (“popu-

lation”). The variable πAt = πt + πt−1 + πt−2 + πt−3 is the four-quarter inflation rate.

2. Construct SAHS(Ỹ |M) as the point estimates of the impulse response coefficents of πAt and

Ekt−4[πAt ] to an AHS “inflation” shock in a VAR(4) model for
[
∆yt, πt, it,Ekt [πAt+4]

]
. The

VAR’s inflation shock is identified as the shock that maximizes the variance in inflation over

frequencies associated with periods of length 32 to 6 quarters.

3. Construct SCG(Ỹ |M). Estimate the regression model,

πAt − Ekt−4[πAt ] = α+ βCG

(
Ekt−4[πAt ]− Ekt−5[πAt ]

)
+ ut. (20)

Store the OLS point estimate of β̂CG.

4. Construct SKW (Ỹ |M). Estimate the regression model,

πAt − Ekt−4[πAt ] = α+ βKWπ
A
t−4 + ut. (21)

Store the OLS point estimate of β̂KW .

Notes: We use N = 200 draws from the posterior. Further details on the identification of the AHS

inflation shock used to construct SAHS(Ỹ |M) are available in the Appendix.

AHS (2020). The solid black lines in Figure 2 display the impulse responses of inflation, the infla-

tion forecast, and the inflation forecast error for the inflation shock using the identification scheme

of AHS on the actual data. The blue lines show the (pointwise) mean estimates using simulated

data from the NK-FHP model to compute these impulse responses, and the shaded blue regions

correspond to the 90 percent pointwise credible ranges. The mean impulse responses from the

NK-FHP model for inflation and the forecast of inflation track those in the data quite well. In both

the model and the data, the response of the inflation forecast is more muted than actual inflation

on impact so that the forecast error rises on impact. This underreaction of the forecast lasts about

two and half years, on average, in the model, and a little longer in the data. This underreaction

is then followed by a persistent overreaction in both the model and the data. Accordingly, the

NK-FHP model captures well the result in AHS that the inflation forecast underreacts initially and

then overreacts later on in response to aggregate shocks.

To understand this result, it is important to realize that the AHS inflation shock is an amal-

gamation of the model’s three structural shocks, in particular the supply and monetary policy
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shocks. This reflects that these shocks explain most of the variation in inflation at business cycle

frequencies (i.e., those with periods between 6 and 32 quarters), the frequency band used to iden-

tify the shock. Figure 4 shows the fraction of variance explained by each shock as function of the

frequency of fluctions, where these frequencies have been mapped to periods. For short periods,

the fluctuations in inflation are mostly explained by supply shocks. As the period grows longer, the

importance of the monetary policy shock increases. As shown in Table 2, the supply shock is less

persistent than the model’s other two shocks. Consistent with discussion in Section 2, the initial

underreaction of agents’ forecast of inflation is also shorter for the supply shock, given that it is less

persistent than the other shocks. Accordingly, the response of inflation to the supply shock in later

periods to a greater extent than for the model’s other shocks reflects the overreaction of inflation

to movements in longer-run beliefs (i.e., the continuation value-functions of price-setting firms).

Table 3 highlights this property, as the probability of having the inflation forecast underreact and

then overreact within the first 40 quarters after the supply shock is over 90 percent. In contrast,

those probabilities are only 52 percent and 68 percent for the monetary policy shock and demand

shock, respectively. Moreover, as implied by the mean value of i∗, the sign flip in the forecast error

occurs about 10 quarters after the supply shock, on average, which is notably sooner than for the

model’s other two shocks.
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Figure 2: Impulse Response to an AHS “Inflation” Shock
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Notes: The figure shows the impulse response of inflation, the inflation forecast, and the inflation forecast error from
the AHS-style VAR in the NK-FHP model. The solid blue line denotes the (pointwise) mean across the predictive
checks, while the shaded regions denote the ninety (light blue) and sixty-eight (dark blue) percent bands (across the
means of the predictive checks). The black line correspond to the impulse responses constructed using the actual
data. The top row corresponds to exercise using trajectories of length T = 168 and the bottom row T = 3000.

Figure 4: Frequency-based Variance
Decomposition for Inflation
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Table 3: AHS (2020) Sign Switch Properties

Shock P(i∗ < 40) E[i∗|i∗ < 40]
√

V[i∗|i∗ < 40]

AHS 0.89 10.09 4.49

Supply 0.93 9.52 3.50

Monetary Policy 0.52 30.26 8.43

Demand 0.68 22.83 5.44

Notes: The figure displays the fraction of variance of inflation at particular frequency attributable to demand (blue),

supply (orange), and monetary policy (green) for different horizons, evaluated at the posterior mean parameter

values. The table displays the “sign switching” properties of the AHS shock and the three structural shocks in the

model computed using posterior predictive checks.

CG (2015). Turning to the predictability regression of CG (2015), Figure 5 shows the NK-FHP

model’s implications for this statistic. The upper left panel compares the distribution of model
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estimates for β̂CG to the point estimate from regressing the inflation forecast error on the forecast

revision using the survey data. The point estimate using the survey data is slightly greater than one

and is close to the center of the posterior predictive distribution of the NK-FHP model. The positive

relationship between inflation forecast errors and forecast revisions reflects the initial underreaction

in response to shocks by FHP agents. As shown in Figure 2, because of this underreaction, the

impulse reponse of the forecast error increases on impact, reflecting that FHP agents revise up

their forecasts but not as much as actual inflation increases. Accordingly, an underreaction is

associated with positive co-movement between forecast revisions and forecast errors. While this

underreaction of the forecast eventually dissipates and turns into an overreaction, Figure 2 shows

that the overreaction that occurs later on is small relative to the earlier underreaction of FHP

agents’ inflation forecast and thus is relatively less important in affecting β̂CG.

The model’s distribution of β̂CG in the upper left panel reflects the average effects of all three

of the model’s shocks and the remaining panels show these distributions conditional on each shock.

Conditional on only demand and monetary policy shocks, the distribution of model estimates

lies above the point estimate in the data. As shown in Table 2, these two shocks are highly

persistent so that the initial underreaction that occurs in response to these two shocks lasts a long

time, generating a stronger positive relationship between FHP agents’ forecast errors and forecast

revisions. As noted earlier, the supply shock is considerably less persistent than these two shocks

so that the initial underreaction is less persistent and the overreaction that occurs later on in

response to supply shocks is relatively more important for this shock. Accordingly, the distribution

conditional on this shock lies to the left of the model’s other two shocks.
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Figure 5: Distribution of CG (2015) coefficients
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Note: The figure shows the predictive densities for β̂CG simulated using all the shocks (upper left panel), and

conditional only on demand (upper right panel), supply (bottom left panel), and monetary policy (bottom right

panel) shocks. The black vertical line indicates the point estimate using the SPF data.

KW (2021). Figure 6 shows the predictive distributions of β̂KW . The conditional on all of the

shocks, the mean is about −0.03, and about 70 percent of the simulations feature a β̂KW < 0. The

posterior mean conditional on supply shocks is about −0.06, while it is about zero for the demand

and monetary policy shocks. The mean conditional on supply shock is lower than for the other

two shocks, because this lower persistence of this shock implies that the overreaction of inflation

forecasts occurs earlier and relatively sooner than for the other shocks, as highlighted in Table 3.
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Figure 6: Distribution of KW coefficients
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4.2 Fitting Observed Inflation Expectations

The model used in the previous subsection did not use inflation expectations as an observable. In

some sense, this makes the fact that the model can match the inflation expectation predictability

statistics more impressive, as these moments are not implicity contained in the likelihood function.

That said, it is not obvious that the model can track the time series of inflation expectations and

continue to match these moments (and continue to fit output growth, inflation, and interest rates

well.) In this subsection, we evaluate the NK-FHP model’s ability to fit an additional observable,

inflation expectations. We use, as in the previous subsection, the SPF to construct our inflation

expectations series.

Recall that Ekt [πt+h] denotes the expectations of a h-period ahead inflation for an agent with

a k-period planning horizon. We link this model variable to observed inflation expectations series
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using the following measurement equation:

Expected Inflationt = πA + Ekt [πt+1 + πt+2 + πt+3 + πt+4] + ηt (22)

The parameter πA is the steady state annual inflation rate and Ekt denotes the forecast of economic

agents with planning horizon of length k. We follow Del Negro and Eusepi (2011) and allow for

measurement error, ηt, when including inflation expectations as an observable. The measurement

error follows an AR(1) process:

ηt = ρηηt−1 + εη,t, with εη,t
iid∼ N

(
0, σ2

η

)
.

As discussed in Del Negro and Eusepi (2011) there are number of reasons why it may be important

to include measurement error when adding the SPF measure of inflation expectations to our esti-

mation. One reason is that the information sets of the SPF forecasters and those of the economic

agents in the model may not correspond exactly. Indeed, the SPF is produced in the middle of the

quarter, while the model-based forecasts are made at the start of every quarter as leading to an

information mismatch.12

To evaluate how the inflation data affects the NK-FHP model estimates, Table 4 shows the log

marginal data density (MDD), a summary measure of fit, for different values of agents’ planning

horizon, k. The first column shows the MDD using only the macroeconomic data and thus in logs

is defined as:

log p(Y ) = log

(∫
p(Y |θ)p(θ)dθ

)
.

where Y is the observed data consisting of the “standard” macroeconomic observables of output

growth, inflation, and interest rates. As shown in this column, a planning horizon in which agents

only make state-contingent plans one-quarter ahead (k = 1) fits the macroeconomic data better

than the models with longer planning horizons.

The second and third columns of the table emphasize the role of the inflation forecast data,

which we denote as Eπ, as an observable. In particular, these columns show the log predictive data

density as well as the MDD inclusive of the inflation forecast data. The log predictive data density

provides a measure of the model’s fit on the inflation forecast data and is defined as conditional on

the standard macreconomic data:

log p(Eπ|Y ) = log

(∫
p(Eπ|Y, θ)p(θ|Y )dθ

)
.

The log predictive data density allows us to uncouple the model’s fit of the survey data of inflation

expectations from its fit of the standard macroeconomic data.13 As shown in the second column,

12We follow Del Negro and Eusepi (2011) as well as others by using the current vintage of data for the other
observables while the series on SPF inflation forecasts is a real-time measure. This difference leads to an information
mismatch between the econometrician and forecaster and hence is another reason for the inclusion of measurement
error.

13In addition, this object is less sensitive to a researcher’s prior distribution, as p(θ) is replaced by p(θ|Y ).
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Table 4: Log MDD Estimates

Model log p(Y ) log p(Fπ|Y ) log p(Y, Fπ)

k = 0 −720.42 −56.02 −776.44
k = 1 −716.54 −49.37 −765.91
k = 2 −718.91 −49.53 −768.44
k = 3 −721.46 −48.95 −770.41
k = 4 −723.52 −48.46 −771.99
k = 5 −724.11 −51.47 −775.57

Note: The table shows point estimates of the log MDDs
and the log predictive data density computed using the
output of the SMC samplers. See appendix for details.

the estimate of the planning horizon changes significantly if we focus on fitting only the survey data

on inflation expectations. In that case, the estimate of the planning horizon would include the next

four quarters as well as the current quarter (k = 4). Such a change has important implications for

monetary policy, as it would considerably strengthen the economic effects of forward guidance that

policymakers gave about the policy rate.

While focusing exclusively on fitting inflation forecast data implies that the estimates of agents’

planning horizons are considerably longer, the third column shows the MDD using both sets of

observables, which satisfies:

log p(Y,Eπ) = log p(Y ) + log p(Eπ|Y ).

This relationship is highlighted in Table 4, as the values in the third column of the table are

the sum of the first two columns. Table 4 indicates that the improved fit of the inflation forecast

from the NK-FHP model with k = 4 is more than offset by the deterioration in fit, shown in

column 1, of the standard macroeconomic data. Because of this deterioration in fit in the standard

macroeconomic time series, the estimated planning horizon using this data jointly with the survey

data on inflation expectations involves planning only one quarter ahead (k = 1).

The inflation expectations data when used jointly as an observable with the other macroeco-

nomic data does not change the estimated planning horizon in the NK-FHP model and we find

similar results for the model’s other parameters. Table 2 compares the posterior estimates of other

structural parameters of the NK-FHP model with k = 1 using both sets of observables to their

estimates when the observables do not include the inflation expectations data. The posterior dis-

tribution of the firm learning rate, γp, shifts slightly, with the posterior mean increasing from 0.16

to 0.20. The estimates of the parameters, κ and σ, which determine the sensitivity of inflation to

the output gap and the sensitivity of aggregate demand to changes in the policy rate, respectively,

are little changed by the inclusion of the survey data on inflation expectations. The same is true

for the persistence of the exogenous shocks.
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Table 5: NK-FHP(k = 1) Models: Comparison of Selected Posterior Statistics

With Expectations Data Without Expectations Data

Mean [05, 95] Mean [0, 95]

Learning

γ 0.50 [ 0.33, 0.67] 0.47 [ 0.30, 0.64]
γp 0.16 [ 0.13, 0.20] 0.20 [ 0.13, 0.29]

Endogenous Propagation

κ 0.03 [ 0.02, 0.04] 0.03 [ 0.02, 0.04]
σ 2.71 [ 1.95, 3.58] 2.68 [ 1.94, 3.52]

Monetary Policy Rule

φπ 0.96 [ 0.71, 1.26] 0.98 [ 0.72, 1.27]
φy 0.90 [ 0.60, 1.31] 0.89 [ 0.59, 1.29]

φπ 1.92 [ 1.56, 2.31] 1.84 [ 1.49, 2.23]

φy 0.13 [ 0.04, 0.25] 0.13 [ 0.04, 0.25]

Persistence of Exogenous Processes

ρξ 0.90 [ 0.84, 0.96] 0.90 [ 0.84, 0.96]
ρi 0.95 [ 0.90, 0.98] 0.95 [ 0.90, 0.98]
ρy 0.43 [ 0.36, 0.50] 0.45 [ 0.30, 0.60]
ρη 0.92 [ 0.87, 0.97]

Note: The table shows estimates of the posterior means, 5th, and 95th
percentiles of the model parameters computed from output of the SMC
sampler. See appendix for details.

4.3 Comparison with Alternative Models of Expectation Formation

In this section, we compare the NK-FHP model’s ability to jointly account for the macroeconomic

data and the survey data on inflation expectations with an alternative model of inflation expecta-

tions formation. In the first, the formation of inflation expectations is imperfect due to the presence

of sticky information (SI), as firms’ pricing decisions are not always based on current information.

Sticky information models are an attractive point of comparison, as a number of researchers have

found these models to fit macro time series at least as well as models emphasizing sticky prices.14

Moreover, as emphasized in CG (2015), sticky information models can successfully account for the

correlation between median forecast errors and revisions observed in the SPF. While we mainly

focus on the comparison of the NK-FHP model to the SI model, we also compare the performance

of these models to the “hybrid” NK model which includes habit persistence in consumption and

sticky price contracts that are indexed to lagged inflation. Both the sticky information and hybrid

NK models are desribed in detail in the appendix.

In order to compare the overall fit across models, Table 6 displays the log MDDs of the alter-

native models with and without the inflation forecast series. Table 6 also display the log predictive

data densities to assess a model’s fit to the inflation forecast series, taking the macroeconomic time

14For estimated models with sticky information, see Andrés, López-Salido, and Nelson (2005) and Chung, Herbst,
and Kiley (2014).
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series as given. Starting with the SI model, the first column of Table 6 shows that the SI model fits

the macroeconomic time series about as well as the hybrid-NK model but significantly worse than

the NK-FHP model. As discussed in Gust, Herbst, and López-Salido (2022), the improved fit of

the NK-FHP model relative to the hybrid-NK model reflects the reduced degree of forward-looking

behavior especially in the aggregate demand equation relating the output gap to the policy rate.

This reduced degree of forward-looking behavior also accounts for why the NK-FHP model results

in an improved fit relative to the SI model in terms of fluctuations in output, inflation, and the

policy rate.

Table 6: Log MDD Estimates

Model log p(Y ) log p(Fπ|Y ) log p(Y, Fπ)

Hybrid NK −736.42 −142.84 −879.42
Sticky Information −753.73 −50.58 −804.31
FHP (k = 1) −716.54 −49.37 −765.91

Note: The table shows point estimates of the log MDDs and the log
predictive data density computed using the output of the SMC samplers.
See appendix for details.

The middle column of Table 6 indicates that the SI model fits the inflation forecast data nearly

as well as the NK-FHP model. This good fit is also reflected in how well the SI model is able to

account for the relationship between inflation forecast errors and forecast revisions in the aggregate

data. As indicated in Figure 7, the point estimate of βCG from the data is well within the SI

model’s credible set for β̂CG. The model’s somewhat higher values of β̂CG than the data is driven

by the estimates of λ, whose median value is close to 0.6. While a positive value of β̂CG is consistent

with a forecast that underreacts to new information, the underreaction of the SI inflation forecast

can also be seen in Figure 8. As shown there, in the SI model the inflation forecast error rises

in response to the AHS “inflation” shock, as realized inflation rises more than an average firm’s

forecast of inflation. The median impulse response of the forecast error in the SI model does not

turn into an overreaction, and instead monotonically converges back to zero.15 Thus, while the SI

model fits the median inflation forecast in the SPF reasonably well, it does not display the sign flip

in the impulse response that AHS (2020) document.

15In the appendix, we study a partial equilibrium version of the sticky information model and show analytically
that there is always an underreaction of the impulse response of the one-step ahead forecast in the SI model.
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Figure 7: Distribution of CG coefficient
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Notes: The figure shows the posterior predictive densities for β̂CG simu-

lated for the SI model. The black vertical line indicates the point estimate

using the SPF data.

Figure 8: Impulse Response to an AHS “Inflation” Shock
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Notes: The figure shows the impulse response of inflation, the inflation forecast, and the inflation forecast error from
the AHS-style VAR in the SI model. The solid blue line denotes the (pointwise) mean across the predictive checks,
while the shaded regions denote the ninety (light blue) and sixty-eight (dark blue) percent bands (across the means
of the predictive checks). This exercise uses trajectories of length T = 168.

5 Conclusion

In this paper, we used survey data on inflation expectations as well as aggregate data on output,

inflation, and short-term interest rates to estimate and evaluate a NK model featuring FHP. We

found that the NK-FHP model can account for the predictability of inflation forecast errors as

well as the empirical evidence that the average inflation forecast in the SPF typically underreacts
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relative to realized inflation but overreacts later on. We also showed that the NK-FHP model can

account for survey measures of inflation expectations while also providing a reasonable fit of output,

inflation, and interest-rate dynamics over the business cycle. In doing so, we found that planning

horizons of about a year fit the survey data on inflation expectations best; however, shorter planning

horizons — on the order of a couple of quarters — are best for jointly fitting the inflation survey

data and the macroeconomic time series. In addition, we found that the learning that households

and firms do to form beliefs about events outside of their planning horizons was crucial to the

successful performance of the NK-FHP model in terms of its ability to account for aggregate time

series as well as the evidence on forecast error predictability.

The short-planning horizons and the inertia in private sector beliefs about events outside of their

planning horizons have important implications for monetary policy. Notably, forward guidance

policies are much less effective than when households and firms have lengthy planning horizons

and disinflations are much more costly than in the canonical NK model in which households and

firms have full information, rational expectations. Given these notable differences, an important

avenue of future research is studying optimal monetary policy when households and firms have

finite planning horizons to investigate how optimal policy depends on agents’ planning horizons as

well as the evolution of their beliefs regarding events outside of their planning horizons.
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Appendix for
Inflation Expectations and Macro Dynamics

under Finite Horizon Planning
Christopher Gust, Edward Herbst, and David Lopez-Salido

A Finite-Horizon Household Planning

In this section, we describe the optimal finite-horizon plan set by households and derive equa-
tions (13) and (16). We focus on the optimal plan chosen by a finite-planning houesehold and
abstract from the static labor supply decision that a household makes. A household chooses a
state-contingent plan for consumption and bond holdings, {Cτ , Bτ+1}t+Kτ=t to maximize:

EK
t

{
t+K∑
τ=t

βτ−tQτU(Cτ ) + βK+1Qt+K+1Vt(Bt+K+1)

}
(A-1)

where 0 < β < 1 and Vt(Bt+K+1) is the value function a household uses to assign continuation
values to its plans over the remainder of its infinite lifetime. As discussed further below, this value
function varies over time but is fixed at time t when a household chooses its finite-horizon plans.
The value function depends on a household’s financial position at the end of its planning period,
Bt+K+1. However, households are assumed to have limited ability to understand events that occur
in the distant future and thus, the value function is not the model consistent one that reflects all
possible contingencies that a household may face in the future. The variable Qτ reflects that the
discount factor is stochastic. For t ≤ τ ≤ t+K + 1, it evolves according to:

Qτ =

τ−t−1∏
i=0

ξt+i, (A-2)

where the variable ξt is an exogenous shock that affects a household’s rate of time preference
between periods t and t+ 1. According to equation (A-2), Qt = 1, Qt+1 = ξt, and Qt+K+1 reflects
that a household contemplates all possible contingencies of the shocks, ξt, ξt+1,...ξt+K , that take
place over its finite-planning horizon.

A household takes its initial bond holdings, Bt, as given and faces a per-period budget constraint
given by:

Bτ+1 = (1 + iτ )

[
Bτ
Πτ

+ Yτ − Cτ
]
, (A-3)

where iτ is the policy rate, Πτ is the (gross) inflation rate, and Yτ denotes a household’s disposable
income which includes labor income as well as the profits a household receives from ownership of
the economy’s firms.

The first order conditions from a household’s finite horizon plan are given by:

UCτ
1 + iτ

= βξτE
K
τ

UCτ+1

Πτ+1
for t ≤ τ ≤ t+K − 1, (A-4)

UCt+K
1 + it+K

= βξt+KVBt(Bt+K+1) (A-5)

where VBt(Bt+K+1) denotes a household’s marginal value function with respect to its financial

position at the end of its planning horizon (i.e., VBt(Bt+K+1) =
∂Vt(Bt+K+1)
∂Bt+K+1

). A household’s
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marginal utility of consumption, Ucτ , satisfies:

UCτ = C
−1
σ
τ .

We log-linearize a household’s first order condtions around a non-stochastic steady state in
which aggregate output and consumption satisfy Y = C = 1. Also, ξ = 1 and the nominal interest
rate in steady state satisfies 1 + i = Π

β where Π denotes the (gross) inflation rate. Log-linearizing
equation (A-4) implies:

Ekτ {cτ − cτ+1 + σ [iτ − πτ+1 − r?τ ]} = 0 (A-6)

for t ≤ τ ≤ t + K − 1. We use lower case variables to denote the log-linearized variables so that
iτ = log(1 + iτ ) − log(1 + i) and πτ = log(Πτ ) − log(Π). Also, r?τ is defined as = r?τ = − log(ξτ ).
Using (1), the subjective expectations operator in this expression can be replaced by the rational
expectations operator with redefined variables that reflect an agent’s subjective expectations:

cjt+K−j = Etc
j−1
t+K−j+1 − σ

[
ijt+K−j − Etπ

j−1
t+K−j+1 − r

?
t+K−j

]
(A-7)

for 0 ≤ j ≤ K. We also log-linearize a household’s terminal condition. This condition requires
that we approximate VBt(Bt). To do so, we log-linearize it around its non-stochastic steady state
value of 1

Π and parameterize it as a linear function whose slope and intercept coefficients can
potentially change over time as household’s learn and update their longer-run beliefs based on their
past experience:

VBt(Bt) ≈ −σ−1 [vht + χtbt] (A-8)

When making their optimal plan at time t, a household treats vt and χt as fixed and hence their
optimal consumption and savings decisions at time t depends on these parameters as well as their
initial net asset position, Bt. In expression (A-8), bt = Bt

Πt
and we linearize around bt, since in

steady state B = 0. Using equation (A-8), the log-linearized version of equation (A-5) is:

c0
t+K = −σ

[
i0t+K − r?t+K

]
+
[
vt + χtb

0
t+K+1

]
(A-9)

We also linearize a household’s budget constraint:

bjt+K−j+1 = β−1
[
bj+1
t+K−j + yjt+K−j − c

j
t+K−j

]
(A-10)

where with this notation bK+1
t denotes a household’s initial net asset position and bjt+K−j+1 for

0 ≤ j ≤ K denotes a household’s plans for the evolution of its net assets.
Households do not know the model-consistent value functions, but they learn adaptively and

update their value functions based on observed data. Specifically, a household computes a new
estimate of their value function at the same time as choosing its optimal state-contingent plan.
This new estimate is consistent with their optimal plan, as it satisfies the envelope condition
associated with maximizing equation (A-1):

V E
Bt(Bt) = EKt

Uct (Ct(Bt))

Πt
, (A-11)

where V E
Bt(Bt) denotes a household’s new estimate of its value function. In expression (A-11),

Ct(Bt) is a household’s optimal consumption decision taking vt, χt, and Bt as given. A household
uses V E

Bt(Bt) to form their continuation value function at date t + 1 by combining it with their
current continuation value function according to:

VBt+1(Bt) = (1− γ)VBt(Bt) + γV E
Bt(Bt), (A-12)
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We linearize the functions in expressions (A-11) and (A-12). The latter linearization implies:

vht+1 = (1− γ)vht + γveht (A-13)

χt+1 = (1− γ)χt + γχet (A-14)

where veht and χet are the intercept and slope coefficients to the linear approximation to V E
Bt(Bt):

V E
Bt(Bt) ≈ −

1

σ

(
vEht + χEt bt

)
= − 1

σ

(
cKt (bt; vht, χt) + σπKt

)
(A-15)

The linearized consumption function, cKt (bt; vht, χt), depends on the parameters of the value func-
tion as well as their initial net asset position. The linearized solution to the optimal consumption
function can be determined through recursive substitution using equations (A-7), (A-10), and (A-9).
Since it is a linear function, it is convenient to write it in terms of an intercept term and a slope
term:

cKt (bt; vht, χt) = cKt (0; vht) + gK(χt)bt (A-16)

where cKt (0; vht) is the intercept term associated with setting bt = 0 and gK(χt) is given by:

gK(χt) =
χtβ

−(K+1)

1 + χt
∑K+1

i=1 β−i
=

χt

βK+1 + χt
1−βK+1

1−β

(A-17)

With optimal consumption defined in this way, equation (A-15) implies that vet = cKt (0; vht) +σπKt
and χet = gK(χt).

In equilibrium, bt = 0, and yKt = cKt so we can simplify veht further:

veht = yKt + σπKt (A-18)

which is equation (16) in the main text. In addition, setting bt = 0 in equation (A-9) allows us to
determine yKt = cKt = cKt (0; vht) through recursive substitution using equation (A-7):

yKt = −σEt
K∑
i=0

(
iK−it+i − r

?
t+i

)
+ σEt

K−1∑
i=0

πK−it+i+1 + vht (A-19)

which is equation (13) in the main text. With a representative household and bonds in fixed
supply, the evolution of χt is irrelevant for the economy’s aggregate dynamics. In particular, only
vht affects aggregate expenditures and thus it is sufficient to use only equations (A-13) and (A-18)
to characterize the evolution of longer-run beliefs of households.

B Analytical Results for the FHP Model

In this section, we provide proofs of the paper’s three propositions. Proposition 1 characterizes
the impulse response functions of inflation forecasts and forecast errors in the FHP model, and
the proposition 2 characterizes the FHP model’s properties for the predictability regression of CG
(2015). Proposition 3 characterizes the impulse response of the average inflation forecast in the SI
model.

Proof of Proposition 1. Consider the first part of Proposition 1 that characterizes the impulse
response functions of the the model with no learning. In that case, vpt = 0 and we need only focus
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on the effect of changes in the output gap on the impulse responses. The impulse response of the
output gap at date t+ i is given by:

∂yt+i
∂et

= ρi (A-20)

which reflects that firms know the process for yt. Using this expression in equation (9) and dif-
ferentiating it at t + i with respect to et implies that the impulse resposse function of agents’
one:

∂Ekt+iπt+1+i

∂et
= ρi+1A(k − 1)κ (A-21)

Because ρ ≥ 0, 0 < β < 1, and κ > 0, this expression is non-negative for any finite value of k > 0.
We can also use expression (10) to determine the impulse response of the one-step ahead forecast
error. Differentiating this expression at t+ i with respect to et and using (A-20) yields:

∂Ft+1

∂et
= ρi+1(βρ)kκ ≥ 0 (A-22)

which completes the proof for the FHP model without learning.
The second part of the proposition characterizes the impulse response function of the model

with learning. To characterize the impulse responses of expected inflation and the inflation forecast
error, it is convenient to first characterize the impulse response of the value function. Using equation
(??), the impulse response of the value function at t+ i is:

∂vpt+i
∂et

=
γp

1− θ

i−1∑
j=0

(1− γ)i−1−j ∂π
k
t+j

∂et
(A-23)

for i > 0. We also know that
∂vpt
∂et

= 0 since the value function is predetermined at time t. We can
use the impulse response of inflation to rewrite the impulse response of the value function in terms
of the model’s parameters. The impulse response of inflation is given by:

∂πkt+i
∂et

= A(k)κρi + βk+1(1− θ)∂vpt+i
∂et

(A-24)

Using equation (A-24), expression (A-23) can be rewritten as:

∂vpt+i
∂et

= (1− γ̃p)
∂vpt+i−1

∂et
+

γp
1− θp

A(k)κρi−1 (A-25)

where γ̃p = γp(1− βk+1). This expression can be rewritten as:

∂vpt+i
∂et

=
γp

1− θp
A(k)κ

i−1∑
j=0

(1− γ̃p)i−1−jρj (A-26)

which holds for i > 0. From this expression, we can see that
∂vpt+i
∂et

≥ 0 ∀i, which implies that the
impulse response of expected inflation is always non-negative:

∂Ekt+iπt+1+i

∂et
= ρi+1A(k − 1)κ+ βk(1− θ)∂vpt+i

∂et
≥ 0. (A-27)
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For the change in the sign of the impulse response of the one-step ahead inflation forecast error,
note that at i = 0,

∂vpt
∂et

= 0 and

∂Ft+1

∂et
=
[
ρ(βρ)k + βk+1γpA(k)

]
κ > 0 (A-28)

Accordingly, on impact the forecast error rises. For i > 0, the impulse response of the forecast error
is given by:

∂Ft+1+i

∂et
=
[
ρ(βρ)k + βk+1γpA(k)

]
κρi − βk [1− β(1− γ̃p)] (1− θ)∂vpt+i

∂et
(A-29)

For the impulse response of the forecast error to be negative at i > 0 and ρ > 0 requires that:

[1− β(1− γ̃p)]
i−1∑
j=0

(
1− γ̃p
ρ

)i−1−j
>

[
β +

ρk+1

γpA(k)

]
ρ (A-30)

If expression (A-30) holds at response i?, then it will also hold at i > i? given that the sum on left
hand side grows over time. If 1− γ̃p > ρ, then the forecast error is unbounded as i→∞ and there
must exist an i? for which expression (A-30) is satisfied. Substituting the expression for γ̃p into
the condtion, 1 − γ̃p > ρ, yields the expression used in the proposition. Note that if ρ = 0, this
condition does not apply and expression (A-29) implies i? = 1.

Proof of Proposition 2. To show that βCG > 0, it is sufficient to show that the covariance
between the inflation forecast error and forecast revision is positive. To show this in the no learning
case, note that in the case of no learning equation (10) can be simplified to:

Fkt+1 = ρ(βρ)kκ(ρyt−1 + et) (A-31)

Also, without learning, the forecast revision at date t is given by:

Rkt = ρ2κ(βρ)k−1yt−1 + ρA(k − 1)κet (A-32)

Using these two expressions, the covariance between forecast errors and revisions is:

cov(Rkt ,Fkt+1) = ρ4(βρ)2k−1κ2var(yt) + ρ2(βρ)kA(k − 1)κ2var(et) (A-33)

Expression (A-33) implies that if ρ > 0, then cov(Rkt ,Fkt+1) > 0, which completes the proof for the
no learning case.

With learning, we focus on the case in which ρ = 0. In that case, equation (10) can be written
as:

Fkt+1 = βk+1γpA(k)κet − βk (1− β(1− γ̃p)) (1− θ)vpt (A-34)

With ρ = 0, the forecast revision at time t is given by:

Rkt = (1− θ)βk−1(βvpt − vpt−1) (A-35)

Both vpt and vpt−1 are uncorrelated with et since they are determined before et is realized. This
implies that:

cov(Rkt ,Fkt+1) = −β2k−1 (1− β(1− γ̃p)) (1− θ)2 [βvar(vpt)− cov(vpt, vpt−1)] (A-36)

With ρ = 0, we can write the covariance between the value function at time t and t− 1 as:

cov(vpt, vpt−1) = (1− γ̃p)var(yt)
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Substituting this expression into equation (A-36), the covariance between forecast error and revision
is:

cov(Rkt ,Fkt+1) = −β2k−1 (1− β(1− γ̃p)) (1− θ)2
[
γp(1− βk+1)− (1− β)

]
var(vpt) (A-37)

This expression implies that if 1−β > γp(1−βk+1), then cov(Rkt ,Fkt+1) > 0, which is the condition
given in Proposition 2.

Proof of Proposition 3. We need to consider a firm’s forecast h quarters ahead along with
the associated forecast error. For k ≥ h, a firm’s forecast is given by:

Ekt πt+h = ρhA(k − h)κyt + βk−h+1(1− θp)vpt. (A-38)

A firm’s forecast error is given by:

Fkt+h =
{[
ρh + βk+1γpBh(k)

]
A(k) + ρhA(k − h)

}
κyt+[

βk+1(1− γ̃p)− βk−h+1
]

(1− θp)vpt +Ot+h. (A-39)

where Ot+h is an unpredictable component consisting of innovations in the shock from periods t+1
to t+ h. The term Bh(k) satisfies

Bh(k) =

h−1∑
i=0

ρh−1−i(1− γ̃p)i

The first part of the proposition considers the case of no learning. In that case, a firm’s forecast
error satisfies:

Fkt+h =
(βρ)k−h+1

[
1− (βρ)h

]
1− βρ

κyt (A-40)

Under no learning, equation (8) implies that inflation evolves according to:

πkt = A(k)κyt (A-41)

where A(k)κ > 0. With ρ > 0, the forecast error’s coefficient on the output gap is positive for
any h > 1. Because the coefficient on the output gap for inflation is also positive, the covariance
between the forecast error at horizon h > 1 and inflation will be positive when ρ > 0. Accordingly,
under no learning, βKW > 0 with ρ > 0.

The second part of the proposition considers the case of learning when the output-gap shock is
iid. With ρ = 0, the h-step ahead forecast error with learning simplifies to:

Fkt+h =
[
βk+1γp(1− γ̃p)h−1

]
A(k)κet +

[
βk+1(1− γ̃p)h − βk−h+1

]
(1− θp)vpt +Ot+h. (A-42)

Using equation (8), the covariance between the forecast error and inflation is given by:

cov(πkt , Fkt+h) =
[
βk+1γp(1− γ̃p)h−1

]
(A(k)κ)2var(et)+

+βk+1
[
βk+1(1− γ̃p)h − βk−h+1

]
var(ṽpt) (A-43)

where ṽpt = (1− θp)vpt. Using equation (6), the variance of the value function satisfies:

var(ṽpt) =
γpκ

2var(et)

(1− βk+1)(2− γ̃p)
(A-44)
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Using this expression in equation (A-43), the covariance between the forecast error and inflation
can be rewritten as:

cov(πkt , Fkt+h) = βk+1γp(1− γ̃p)h−1κ2

{
1− βk+1(1− γ̃p)

(1− βk+1)(2− γ̃p)

[
β−h(1− γ̃p)−h − 1

]}
var(et)

This expression implies that the covariance will be negative if and only if:

βk+1(1− γ̃p)
(1− βk+1)(2− γ̃p)

[
β−h(1− γ̃p)−h − 1

]
> 1.

which is the expression shown in proposition 3.

C Computing Inflation Expectations for h > k

We need to make an additional assumption about agents’ beliefs to compute their forecasts of infla-
tion for forecast horizons h that exceed agents’ k-period ahead planning horizons. The assumption
that we make in this case is that agents use their beliefs at the end of their planning horizons and
do so taking into account their knowledge of the persistence of the shocks.

To understand this assumption, we first consider its implications in the partial equilibrium
model. An agent’s expectations for inflation at the end of its planning horizon are:

Ekt πt+k = κEkt yt+k + β(1− θp)vpt. (A-45)

In the partial equilibrium model, we can use equation (1) and the fact that the output gap follows
an exogenous, AR(1) process to write:

Ekt πt+k = κEtyt+k + β(1− θp)vpt = κρkyt + β(1− θp)vpt (A-46)

Unlike Ekt πt+k, an agent’s expectations for h > k do not affect their decisions and thus are not
needed to solve the NK-FHP model. However, in our empirical exercise to compare the model’s
implications to the empirical moments in the data, we need to compute Ekt πt+h for h > k. We do
so assuming agents forecast applying equation (A-45) to periods beyond their planning horizon:

Ekt πt+h = κEkt yt+h + β(1− θp)vpt (A-47)

where h > k. In this expression, we still need to compute Ekt yt+h and do so applying equation (1)
and the fact that in partial equilibrium the output gap follows an AR(1) process. This implies

Ekt πt+h = κEtyt+h + β(1− θp)vpt = κρhyt + β(1− θp)vpt (A-48)

for h > k. Accordingly, when h > k, agents use their beliefs about events outside of their planning
horizons to compute Ekt πt+h as well as their knowledge about the persistence of the output gap.

We use the same approach in general equilibrium and compute Ekt πt+h in an analagous manner.
The difference, however, is that Ekt πt+h and Ekt yt+h are simultaneously determined, respond to more
shocks, and depend on vht as well as vpt. Using equation (1), an agent’s expectations k-periods
ahead in this case are given by:

EtX
0
t+k = A−1

0 B0P
kSt +A−1

0 BvVt (A-49)

where Xt+k = (yt, πt)
′ and St = (r?t , y

?
t , i

?
t )
′. The vector Vt = (vht, vpt)

′ and the matrices A0, B0, Bv
are functions of the model’s parameters. The matrix P is a diagonal matrix whose elements along
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the diagonal consist of the AR(1) coefficients of the three shocks. Equation (A-49) can be used to
determine Ekt πt+k and is the analagous expression to equation A-46. We assume that agents apply
the same knowledge in making forecasts in which h > k and assume that:

EktXt+h = A−1
0 B0P

hSt +A−1
0 BvVt (A-50)

for h > k, which is the analagous expression to equation (A-48).

D Sticky Information and Hybrid NK Models

In this section of the appendix, we describe the sticky information model and hybrid NK models
that we estimate and compare to the NK-FHP models. Under sticky information, price-setting
firms do not face costs to adjusting their prices but instead firms infrequently update the set of
information upon which their price decisions are based. In particular, following Mankiw and Reis
(2002), we assume that price-setters update their information sets in a staggered fashion in which
there is a constant probability, 1−λ, that a firm setting a new price will revise its information set.
Accordingly, a fraction, λ, of firms adjust their prices on the basis of previous information.16 This
setup gives rise to a log-linearized Phillips curve of the form:

πt = (1− λ)λ−1mct + Eλt−1 [πt + ∆mct] , (A-51)

where mct denotes a firm’s real marginal cost and Eλt−1 representing the average time t− 1 forecast
across agents. This forecast is a weighted average of past RE forecasts (Et−j−1):

Eλt−1 = (1− λ)
∞∑
j=0

λjEt−j−1. (A-52)

Because the average inflation forecast depends on past expectations of inflation, sticky informa-
tion induces inertia in inflation with the degree of inertia depending on the information rigidity
parameter, λ. Higher values of λ correspond to firms updating their information sets more slowly,
which reduces the responsiveness of inflation to marginal cost and increases the importance of past
expectations of inflation.

Given the focus of our paper on inflation, we only model price-setting firms as having sticky
information. Households are assumed to use current information in their consumption-savings de-
cisions though we still allow for habit persistence in consumption. Accordingly, the (log-linearized)
aggregate demand relationship in the model is:

[1 + ζ] yt = ζyt−1 + Etyt+1 − σ(1− ζ) [it − Etπt+1 − r?t ] . (A-53)

The presence of habits formation in consumption (ζ > 0) affects the determination of real marginal
cost, which satisfies:

mct =
1

1− ζ
[yt − ζyt−1 − y?t ] .

As in the NK model with FHP, r?t and y?t are AR(1) shocks to the equilibrium real rate and
aggregate supply, respectively. Finally, in the SI model, monetary policy is specified to follow a
Taylor rule:

it = φππt + φyyt + i?t . (A-54)

16Reis (2009) shows how this time-dependent updating of information can arise when firms face a fixed cost to
updating their information.
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where as in the NK model with FHP, i?t is an AR(1) shock to the monetary policy rule.
We also compare the NK-FHP model and the SI model to the “hybrid” NK model. In the

hybrid NK model, prices are sticky and indexed to lagged inflation which implies that aggregate
inflation evolves according to:

πt = γbπt−1 + γfEtπt+1 +
κ

1− ζ
[yt − ζyt−1 − y?t ] , (A-55)

In equation (A-55) the parameters γb = 1−a
1+β(1−a) and γf = β

1+β(1−a) where the parameter 1 − a
determines the extent to which firms index to lagged inflation. For the “hybrid” NK model, the
aggregate demand relationship satsfies equation (A-53) and monetary policy is assumed to follow
(A-54).

E Analytical Results for the Sticky Information Model

To understand the implications of SI for the predictability IRFs and predictability regressions, we
consider a partial equilibrium version of the model in which a firm’s marginal cost is exogenous
and governed by an AR(1) process:

mct = ρmmct−1 + emt

In that case, we can show analytically that the IRF of the average forecast error across agents
to such a shock underreacts relative to realized inflation at each point of the IRF. Moreover, as
shown in CG (2015), under SI, there is a positive relationship between the average forecast error
and forecast revision:

Fλt+1 ≡ πt+1 − Eλt πt+1 =
λ

1− λ

(
Eλt πt+1 − Eλt−1πt+1

)
+ εt+1 (A-56)

where εt+1 is a function of the white noise process, emt+1. Because emt+1 is unforecastable at date t,
βCG, the univariate regression of the SI forecast error on revision satisfies βCG = λ

1−λ . Accordingly,
in the SI model, this regression coefficient is positive and depends only on the information rigidity
parameter, λ. The sticky information model implies a positive relationship between forecast errors
and revisions, because only a fraction 1 − λ update their information set to a shock at date t.
Accordingly, for a shock that increases marginal cost at date t, the average forecast is not revised up
that much, inducing positive co-movement between the average forecast revision and forecast error.
The extent of this underreaction of the forecast to the shock depends entirely on the information
rigidity parameter, λ, with larger values of λ implying a more sizeable underreaction of the forecast.

While CG (2015) prove this result for the SI model for the predictability regressions that they
run, they do not study the implications of sticky information for the preditability impulse responses
of AHS (2020). Proposition 4 establishes that the impulse response of the SI inflation forecast to
changes in marginal cost underreacts relative to realized inflation at each date of the response.
Accordingly, there is no eventual overreaction, as documented by AHS (2020).

Proposition 4. (Underreaction of IRFs of SI Inflation Forecasts). Let ∂Et+iπt+1+i

∂emt
and

∂Eλt+iπt+1+i

∂emt
for i ≥ 0 be the impulse response to an innovation in marginal cost at date t for realized inflation
and the average inflation forecast across agents in the sticky information model, respectively. Then,
∂Eλt+iπt+1+i

∂emt
= (1− λi+1)∂Et+iπt+1+i

∂emt
, ∀i ≥ 0.
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Proposition 4 establishes that the impulse response of the average forecast across firms is pro-
portional to the response of realized inflation at each date. Moreover, the response of the average
forecast is proportionately smaller than the response of realized inflation at date t+ i by a factor,
0 ≤ 1 − λi+1 < 1 so that there is never an overreaction of the average forecast. The extent of the
underreaction depends on λ with higher values implying a slower updating of firms’ information
sets and a greater underreaction of the response of the average inflation forecast.

Proof of Proposition 4. To prove proposition 4, note that with exogenous marginal cost, the
solution to the SI model can be determined analytically. In particular, inflation evolves according
to:

πt =

∞∑
j=0

bjmct−j (A-57)

With mct = ρmmct−1 + emt, these coefficients satisfy:

b0 =
1− λ
λ

(A-58)

and for j > 0:

bj =
1− λ
λ

[
j−1∑
i=0

ρj−im bi + ρj−1
m (ρm − 1)

]
(A-59)

Using equation (A-58) in equation (A-59) for j = 1 and repeating this substitution pattern, we can
show that for j > 0:

bj =
1− λ
λ

(ρm
λ

)j−1 (ρm
λ
− 1
)

(A-60)

Note that for a non-explosive solution to exist, the persistence of the marginal cost shock can not
be too large. In particular, the persistence of the shock is bounded by the parameter λ so that
ρm < λ.

With this solution in hand, the impulse response of realized inflation one-period ahead as well
as the average forecast across firms can also be characterized analytically. The impulse response of
realized inflation next period is given by:

∂Et+iπt+i+1

∂emt
= Ai+1 (A-61)

where Ai+1 = Aiρm+ bi+1 and A1 = (b0ρm+ b1). The impulse response of average inflation is given
by:

∂Eλt+iπt+i+1

∂emt
= (1− λ)

i∑
j=0

λj
∂Et+i−jπt+i+1

∂emt
(A-62)

Note that because we are taking the impulse response at date t with respect to emt, it is true that:

∂Et+iπt+i+1

∂emt
=
∂Etπt+i+1

∂emt
(A-63)

We can rewrite this expression in expression (A-63) and rewrite the response of the average forecast
as:

∂Eλt+iπt+i+1

∂emt
= (1− λ)

∂Etπt+i+1

∂emt

i∑
j=0

λj = (1− λi+1)Ai+1 (A-64)

Accordingly, the response of the average inflation forecast at each date is proportional to the
response of realized inflation, as described in Proposition 4.
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In this section, we analyse the FHP model’s empirical fit of inflation expectations, with par-
ticular attention to the predictability properties described in the previous section. The basis for
our empirical analysis is (full information) estimation of dynamic stochastic general equilibrium
(DSGE) models using data on inflation expectations in addition to standard macroeconomic ob-
servables. This is a methodological departure from the work of CG (2015) and AHS (2020), who
examine the predictability of inflation forecasts using a limited information approach. One ad-
vantage of our approach is that it allows us to understand the extent to which matching the
predictability of inflation expectations is also consistent with overall time series fit of inflation,
output, short-term interest rates, and inflation expectations. In this regard, an important benefit
of using a completely-specified model is that it also allows to perform historical decompositions
and policy analysis. Second, the limited information approach may lack power to discriminate
against alternative models of expectation formation. This is because, the estimates associated with
the predictability regressions—and impulse response predictability more generally—do not depend
only on imperfect expectations parameters, but also on a broader set of structural parameters. In
section 2 we mostly emphasized the role of expectation formation in influencing the predictability
regressions and predictibility IRFs. However, the model’s other structural parameters including the
persistence of the shock and the discount factor are also important determinants of these statis-
tics. Accordingly, the full information Bayesian approach offers a viable way to deal with these
considerations.

F Estimation of the FHP Model

The solution to the system of equations describing the equilibrium jointly with the observations
equations define the measurement and state transition equations of a linear Gaussian state-space
system. The state-space representation of a DSGE model yields a likelihood function, p(Y |θ),
where Y is the observed data and θ is a vector comprised of the model’s structural parameters. We
estimate θ using a Bayesian approach in which the object of interest is the posterior distribution
of the parameters θ. The posterior distribution is calculated by combining the likelihood and prior
distribution, p(θ), using Bayes theorem:

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

.

Because we can only characterize the solution to our model numerically, following Herbst and
Schorfheide (2014), we use sequential Monte Carlo (SMC) techniques to generate draws from the
posterior distribution. Herbst and Schorfheide (2015) provide further details on SMC and Bayesian
estimation of DSGE models more generally.

We estimate the FHP model as well as several alternative DSGE models using U.S. data on
output growth, inflation, and nominal interest rates from 1966:Q1 through 2007:Q4, a time period
for which there were notable changes in trends in inflation and output. The observation equations
for the other variables are:17

Output Growtht = µQ + yt − yt−1 (A-65)

Inflationt = πA + 4 · πt (A-66)

Interest Ratet = πA + rA + 4 · it, (A-67)

17We reparameterize β to be written in terms in the of the annualized steady-state real interest rate: β =
1/(1 + rA/400).
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where πA and rA are parameters governing a model’s steady state inflation rate and real rate,
respectively. Also, µQ is the growth rate of output, as we view the DSGE models as having been
detrended from an economy growing at a constant rate, µQ. Thus, we are using the DSGE models
to explain low frequency trends in the data but not the average growth rate or inflation rate which
are exogenous.

G CG Regressions

In this section, we reproduce the main regression from Coibion and Gorodnichenko (2015). We use
data from the Survey of Professional Forecasters (SPF). The SPF is a quarterly panel collecting
various economic forecasts from professional forecasters. Our focus will be on forecasts for four-
quarter GDP deflator inflation. Specifically, we report OLS estimates of the coefficient β in the
regression:

πt+h − EtπAt+h = cCG + βCG(Etπ
A
t+h − Et−1π

A
t+h) + errort. (A-68)

Where Etπ
A
t+h is the time t consensus (mean) forecast of annual inflation at time t+h. The actual

inflation πt+h is constructed using the vintage available one year after t+ h from the Philadelphia
Fed’s realtime data set. Table A-1 shows the regression results using data from 1969Q4-2007Q4.
(Results are similar for other sample periods and design choices.)

Table A-1: CG Regression Results

ĉCG 0.056
(0.148)

β̂CG 1.30
(0.50)

n 148
R-squared 0.21

Note: The table shows point estimates and HAC standard errors (parentheses) from the OLS regression of A-68
along with the sample size and adjusted R-squared. The HAC standard errors are Newey-West standard errors with
a Bartlett kernel with trunction equal to 4.
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H AHS VAR

This section describes the algorithm for computing the “shock” as in AHS. Our starting point is
the p-lag vector autoregression for the n dimensional vector yt:

yt = Φ0 + Φ1yt−1 + . . .+ Φpyt−p + ut, ut
iid∼ N(0,Σ).

Write the VAR in companion form:

ξt = F0 + F1ξt−1 + νt,

with

ξt = [y′t, . . . , y
′
t−p−1]′, νt = [u′t, 0, . . . , 0]′, E[νtν

′
t] = Ω, and F1 =


Φ1 Φ2 . . . Φp

I 0 . . . 0
0 I . . . 0
...

...
. . .

...
0 0 . . . 0

 .

Define the n × np selection matrix M such that yt = Mξt. Consider the variance of yt over the
frequency range [ω0, ω1]:

V (ω0, ω1) =

∫ w1

w0

M
(
I − F1e

−iω)−1
Ω
(
I − F1e

−iω)−1′
M ′dω.

Consider now identifing a single structural shock ε1t, given (estimates for) Φ0, . . . ,Φp and Σ.
Decompose the covariance matrix Σ as

Σ = Σtr [α1 · · · αn] ,

where Σtr is the lower cholesky factorization of Σ and {α1, . . . , αn} is a collection of n × 1 or-
thonormal vectors (i.e., αiα

′
j = 1 if i = j and 0 otherwise.) Identifying the structural shock ε1t is

equivalent to finding α1. The variance of innovations attributable to the first structural shock is

Σ1(α1) = Σtrα1α
′
1Σ′tr.

Following AHS, we identify α1 by maximizing contribution of the shock ε1t over a particular fre-
quency band. variance of yt attributable to the first structural shock is given by:

S(ω0, ω1, α1) =

∫ w1

w0

M
(
I − F1e

−iω)−1
Ω1(α1)

(
I − F1e

iω
)−1′‘

M ′dω.

where Ω1(α1) is defined analogously to Σ1(α1). Let i be the index which corresponds to the inflation
observable. Then α1 is such that

α∗1 = argmax|α1|=1[S(ω0, ω1, α1)ii/V (ω0, ω1)ii].

Following AHS, we set the frequencies ω0 and ω1 to corresponds to periods of length 32 and 6,
respectively. In our computations, the integrals are replaced by sum over 100 grid points.
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I Priors, Posteriors, and Selection Figures

I.1 Canonical New Keynesian Model

Table A-2: Prior Distribution: Canonical New Keynesian Model

Name Density Para (1) Para (2) Name Density Para (1) Para (2)

rA Gamma 2.00 1.00 πA Normal 4.00 1.00
γQ Normal 0.50 0.10 κ Gamma 0.05 0.10
σ Gamma 2.00 0.50 ζ Uniform 0.00 1.00
a Uniform 0.00 1.00 Φπ Gamma 1.50 0.25
Φy Gamma 0.25 0.25 σξ Inv. Gamma 1.00 4.00
σy Inv. Gamma 1.00 4.00 σi Inv. Gamma 1.00 4.00
ρξ Uniform 0.00 1.00 ρi Uniform 0.00 1.00
ρy Uniform 0.00 1.00 σFπ Inv. Gamma 0.10 4.00

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta, Gamma,
and Normal distributions and to the upper and lower bounds of the support for the Uniform
distribution. For the Inv. Gamma distribution, Para (1) and Para (2) refer to s and ν, where
p(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2
.

Table A-3: Posterior Distribution: Canonical New Keynesian Model

With Expectations Data Without Expectations Data

rA 2.43 [ 1.68, 3.17] 1.92 [ 1.10, 2.70]
πA 3.93 [ 2.70, 5.27] 4.09 [ 2.47, 5.72]
γQ 0.28 [ 0.22, 0.34] 0.46 [ 0.40, 0.53]
κ 0.87 [ 0.55, 1.31] 0.00 [ 0.00, 0.00]
σ 1.60 [ 1.01, 2.30] 1.74 [ 1.08, 2.52]
ζ 0.26 [ 0.13, 0.38] 0.87 [ 0.77, 0.93]
a 0.97 [ 0.90, 1.00] 0.98 [ 0.93, 1.00]
Φπ 3.14 [ 2.74, 3.59] 1.50 [ 1.10, 1.91]
Φy 0.06 [ 0.03, 0.09] 0.22 [ 0.17, 0.29]
σξ 0.28 [ 0.24, 0.29] 2.56 [ 1.19, 4.67]
σy 0.86 [ 0.76, 0.91] 0.81 [ 0.54, 1.20]
σi 0.91 [ 0.78, 1.07] 0.46 [ 0.38, 0.56]
ρξ 0.83 [ 0.78, 0.89] 0.55 [ 0.41, 0.68]
ρi 0.48 [ 0.42, 0.53] 1.00 [ 0.99, 1.00]
ρy 0.99 [ 0.98, 1.00] 0.96 [ 0.93, 0.98]
σFπ 0.10 [ 0.09, 0.11]
ρF 0.91 [ 0.85, 0.96]
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Figure A-1: Shock Decomposition: HNK Model
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Figure A-2: Impulse Responses: HNK Model
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I.2 FHP Model

Table A-4: Prior Distribution: FHP Model

Name Density Para (1) Para (2) Name Density Para (1) Para (2)

rA Gamma 2.00 1.00 πA Normal 4.00 1.00
γQ Normal 0.50 0.10 ρ Uniform 0.00 1.00
κ Gamma 0.05 0.10 σ Gamma 2.00 0.50
Φπ Gamma 1.50 0.25 Φy Gamma 0.25 0.25
σξ Inv. Gamma 1.00 4.00 σy Inv. Gamma 1.00 4.00
σi Inv. Gamma 1.00 4.00 ρξ Uniform 0.00 1.00
ρi Uniform 0.00 1.00 ρy Uniform 0.00 1.00
γ Uniform 0.00 1.00 γf Uniform 0.00 1.00
φ̄π Gamma 1.50 0.25 φ̄y Gamma 0.25 0.25
σFπ Inv. Gamma 0.10 4.00 ρF Uniform 0.00 1.00

Notes: Para (1) and Para (2) correspond to the mean and standard deviation of the Beta, Gamma,
and Normal distributions and to the upper and lower bounds of the support for the Uniform
distribution. For the Inv. Gamma distribution, Para (1) and Para (2) refer to s and ν, where
p(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2
.
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Table A-5: Posterior Distribution: FHP Model

With Expectations Data Without Expectations Data

rA 2.13 [ 1.07, 3.19] 2.15 [ 1.11, 3.23]
πA 3.72 [ 2.38, 5.10] 3.75 [ 2.37, 5.18]
γQ 0.44 [ 0.42, 0.46] 0.44 [ 0.42, 0.46]
ρ 0.50 [ 0.29, 0.68] 0.47 [ 0.20, 0.68]
κ 0.02 [ 0.01, 0.04] 0.03 [ 0.01, 0.05]
σ 2.67 [ 1.86, 3.60] 2.75 [ 1.93, 3.69]
Φπ 0.85 [ 0.64, 1.11] 0.88 [ 0.66, 1.13]
Φy 0.64 [ 0.43, 0.92] 0.63 [ 0.42, 0.91]
σξ 0.36 [ 0.31, 0.42] 0.36 [ 0.31, 0.43]
σy 8.88 [ 5.77, 13.76] 7.72 [ 4.21, 13.35]
σi 0.52 [ 0.39, 0.71] 0.52 [ 0.38, 0.71]
ρξ 0.87 [ 0.79, 0.94] 0.87 [ 0.79, 0.93]
ρi 0.95 [ 0.91, 0.99] 0.95 [ 0.91, 0.99]
ρy 0.36 [ 0.30, 0.43] 0.46 [ 0.31, 0.61]
γ 0.48 [ 0.32, 0.65] 0.45 [ 0.30, 0.62]
γf 0.20 [ 0.16, 0.24] 0.22 [ 0.14, 0.30]
φ̄π 1.88 [ 1.52, 2.28] 1.86 [ 1.49, 2.27]
φ̄y 0.14 [ 0.04, 0.27] 0.13 [ 0.03, 0.26]
σFπ 0.08 [ 0.07, 0.09]
ρF 0.93 [ 0.89, 0.98]
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Figure A-3: Shock Decomposition: FHP Model
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Figure A-4: Impulse Responses: FHP Model
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