Will Central Bank Digital Currency Disintermediate Banks?

NBER Summer Institute: Risks of Financial Institutions

Toni M. Whited Yufeng Wu Kairong Xiao
Michigan & NBER Ohio State Columbia

July 2023
What is a CBDC?

A central bank digital currency (CBDC) is a country’s official currency in digital form.
What is a CBDC?

A central bank digital currency (CBDC) is a country’s official currency in digital form.

- Different from **existing digital money**: CBDC is a direct liability of the central bank rather than that of a commercial bank
- Different from **existing central bank accounts**: CBDC can be held by the public, not just banks
The increasing popularity of CBDC

data source: https://www.atlanticcouncil.org/cbdctracker/
The increasing popularity of CBDC

data source: https://www.atlanticcouncil.org/cbdctracker/

- CBDC countries account for over 95% of global GDP
Concerns about CBDC

“A widely available CBDC [...] could reduce the aggregate amount of deposits in the banking system, which could in turn increase bank funding expenses, and reduce credit availability or raise credit costs.”

Concerns about CBDC

“A widely available CBDC [...] could reduce the aggregate amount of deposits in the banking system, which could in turn increase bank funding expenses, and reduce credit availability or raise credit costs."

“Given that the average loan-to-deposit ratio for banks is generally around 1:1, every dollar that migrates from commercial bank deposits to CBDC is one less dollar of lending.”

—“Confronting the hard truths and easy fictions of a CBDC”, President of Bank Policy Institute, 2021
To what extent would CBDC disintermediate banks?
To what extent would CBDC disintermediate banks?

- We estimate a dynamic banking model:
 - households: demand assets, based on interest rate & non-rate factors (estimated via BLP)
 - banks: take deposits/supply loans, in the presence of frictions (estimated via SMD)
To what extent would CBDC disintermediate banks?

- We estimate a dynamic banking model:
 - households: **demand** assets, based on interest rate & non-rate factors (estimated via BLP)
 - banks: take deposits/supply loans, in the presence of **frictions** (estimated via SMD)

- We counterfactually add CBDC to examine its impact:
To what extent would CBDC disintermediate banks?

We estimate a dynamic banking model:
- households: demand assets, based on interest rate & non-rate factors (estimated via BLP)
- banks: take deposits/supply loans, in the presence of frictions (estimated via SMD)

We counterfactually add CBDC to examine its impact:
- model CBDC as a new bundle of existing characteristics (convenience, interest, ...)
To what extent would CBDC disintermediate banks?

- We estimate a dynamic banking model:
 - households: demand assets, based on interest rate & non-rate factors (estimated via BLP)
 - banks: take deposits/supply loans, in the presence of frictions (estimated via SMD)

- We counterfactually add CBDC to examine its impact:
 - model CBDC as a new bundle of existing characteristics (convenience, interest, ...)

Quantify: the elasticity of substitution between CBDC and bank deposits
the pass-through from deposits to loans
Model overview

Time: 1, 2, 3 ...

Three players:

1. Depositors: simple, choose where to invest wealth
2. Borrowers: simple, choose (whether or not) how much to borrow
3. Banks: make dynamic optimization decisions ...
Imperfect competition in the deposit market

- Households choose from: savings/transaction deposits from J oligopolistic banks, cash (and CBDC, in the counterfactual exercise), outside option (short-term bonds) to:

$$\max_{j \in A_d} \pi_{i,j}^d = \alpha_{i,j}^d r_{i,j}^d + q_{i,j}^d + \epsilon_{i,j}^d$$

- $r_{i,j}^d$ is the rate
- $q_{i,j}^d \equiv \beta_{i,j}^d \times x_{i,j}$ is the "quality" non-rate characteristics: #branch network, transaction convenience, ...
- $\epsilon_{i,j}^d$ is a preference shock (imperfect substitution)

Households differ in sensitivities to rate/non-rate characteristics ($\{\alpha, \beta\}$ are heterogeneous)
Imperfect competition in the deposit market

Households choose from: savings/transaction deposits from J oligopolistic banks, cash (and CBDC, in the counterfactual exercise), outside option (short-term bonds) to:

$$\max_{j \in A^d} \pi_{i,j}^d = \alpha_{i,j}^d r_{j}^d + q_{i,j}^d + \epsilon_{i,j}^d$$

— r_{j}^d is the rate
— $q_{i,j}^d \equiv \beta_i^d \times x_{j}^d$ is the “quality”
 * non-rate characteristics: #branch network, transaction convenience, ... and FEs
— $\epsilon_{i,j}^d$ is a preference shock (imperfect substitution)

Households differ in sensitivities to rate/non-rate characteristics ($\{\alpha, \beta\}$ are heterogeneous)
Imperfect competition in the loan market

Same set of J oligopolistic banks & mass 1 of borrowers (firms) who can borrow from a bank, issue a bond, or not borrow, to

$$\max_{j \in A^d} \pi^l_{i,j} = q^l_{i,j} - \alpha^l_i r^l_j + \epsilon^l_{i,j}$$

- $q^l_{i,j}$ is benefit from borrowing (and thus being able to invest), minus the issuance costs
- $r^l_{i,j}$ is the interest rate charged
- $\epsilon^l_{i,j}$ captures any firm-bank relationship
Banks’ problem

- Impose the standard assumption that ϵ follows a type I extreme value distribution
- We can calculate the total deposit and loan demanded for bank j:

\[
D_j^S(r^d, S) = \int \frac{\exp \left(\alpha_i^d r_j^d, S + q_{i,j}^d, S \right)}{\sum_{k \in A^d} \exp \left(\alpha_i^d r_k^d + q_{i,k}^d \right)},
\]

\[
D_j^T(r^d, T) = \int \frac{\exp \left(\alpha_i^d r_j^d, T + q_{i,j}^d, T \right)}{\sum_{k \in A^d} \exp \left(\alpha_i^d r_k^d + q_{i,k}^d \right)},
\]

\[
B_j(r^l) = \int \frac{\exp \left(q_{i,j}^l - \alpha_i^l r_j^l \right)}{\sum_{k \in A^l} \exp \left(q_{i,k}^l - \alpha_i^l r_k^l \right)}.
\]
The remaining bank balance sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing loans</td>
<td>Deposits</td>
</tr>
<tr>
<td>New loans</td>
<td>$D^{S}(r^{d,S})+D^{T}(r^{d,T})$</td>
</tr>
<tr>
<td>Required Reserves</td>
<td>Wholesale borrowing</td>
</tr>
<tr>
<td>Government securities</td>
<td>Equity</td>
</tr>
<tr>
<td>Total Assets</td>
<td>Total Liabilities and Equity</td>
</tr>
<tr>
<td>L</td>
<td>$D + N + E$</td>
</tr>
<tr>
<td>$B_{(r'_1)}$</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>$L + B + R + G$</td>
<td></td>
</tr>
</tbody>
</table>
The remaining bank balance sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing loans</td>
<td>L</td>
<td>Deposits</td>
</tr>
<tr>
<td>New loans</td>
<td>$B(r)$</td>
<td>$D^S(r^d,s) + D^T(r^d,T)$</td>
</tr>
<tr>
<td>Required Reserves</td>
<td>R</td>
<td>Wholesale borrowing</td>
</tr>
<tr>
<td>Government securities</td>
<td>G</td>
<td>Equity</td>
</tr>
<tr>
<td>Total Assets</td>
<td>$L + B + R + G$</td>
<td>Total Liabilities and Equity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$D + N + E$</td>
</tr>
</tbody>
</table>

This table illustrates the balance sheet of a typical bank at the beginning of the period. The bank's assets consist of existing plus new loans, reserves, and holdings of government securities; its liabilities consist of deposits and non-reservable borrowings.
Bank’s choice in a static, frictionless world

1. No financial frictions
2. No regulatory constraints
3. No maturity mismatch

\[\Pi = \max_{\{r^l, r^d\}} \left(r^l L_j - r^d, S D_j^S - r^d, T D_j^T - f \left(L_j - D_j^S - D_j^T \right) \right) \]

* \(\left(L_j - D_j^S - D_j^T \right) \) is the bank’s funding surplus/gap
Bank’s choice in a static, frictionless world

1. No financial frictions
2. No regulatory constraints
3. No maturity mismatch

\[\Pi = \max_{\{r^l, r^d\}} r^l L_j - r^{d,S} D^S_j - r^{d,T} D^T_j - f (L_j - D_j^S - D_j^T) \]

* \((L_j - D_j^S - D_j^T) \) is the bank’s funding surplus/ gap
* the optimal lending and deposit rates:

\[r^{d,T/S}_j = f - \left(\frac{D_j^{T/S}'}{D_j^{T/S}} \right)^{-1}; \quad r^l_j = f + \left(-\frac{L_j'}{L_j} \right)^{-1} \]
Bank’s choice in a static, frictionless world

1. No financial frictions
2. No regulatory constraints
3. No maturity mismatch

\[\Pi = \max_{\{r^l, r^d\}} \left(r^l L_j - r^{d,S} D^S_j - r^{d,T} D^T_j - f \left(L_j - D^S_j - D^T_j \right) \right) \]

* \((L_j - D^S_j - D^T_j) \) is the bank’s funding surplus/gap
* the optimal lending and deposit rates:

\[r^{d,T/S}_j = f - \left(\frac{D^T_j}{D^T_j / S_j} \right)^{-1} \]
\[r^l_j = f + \left(-\frac{L_j}{L_j} \right)^{-1} \]

Irrelevance result: deposit-taking and loan-origination are **separable** in the frictionless benchmark
Intuition behind the irrelevance result

- If banks can frictionlessly access wholesale funding, then loans should be priced w.r.t. the market interest rate rather than deposit rates.
Intuition behind the irrelevance result

- If banks can frictionlessly access wholesale funding, then loans should be priced w.r.t. the market interest rate rather than deposit rates.

- Accessing cheap deposits makes banks overall more profitable but does not make lending more profitable at the margin.
Intuition behind the irrelevance result

- If banks can frictionlessly access wholesale funding, then loans should be priced w.r.t. the market interest rate rather than deposit rates.

- Accessing cheap deposits makes banks **overall more profitable** but does not make lending more profitable **at the margin**.

- Clarify some confusions in the current discussion of CBDC:
 - e.g., “given that loan-to-deposit ratio is 1:1, every dollar that migrates from deposits to CBDC is one less dollar of lending.”
Potential disintermediation channels

- The irrelevance result also guides us to isolate channels that do allow CBDC to impact lending:
Potential disintermediation channels

The irrelevance result also guides us to isolate channels that do allow CBDC to impact lending:

1. External financing frictions:
 — Additional costs in accessing wholesale funding
Potential disintermediation channels

The irrelevance result also guides us to isolate channels that do allow CBDC to impact lending:

1. External financing frictions:
 — Additional costs in accessing wholesale funding

2. Regulation, e.g. capital requirement:
 — CBDC reduces bank capital, constraining lending capacity
Potential disintermediation channels

The irrelevance result also guides us to isolate channels that do allow CBDC to impact lending:

1. External financing frictions:
 — Additional costs in accessing wholesale funding

2. Regulation, e.g. capital requirement:
 — CBDC reduces bank capital, constraining lending capacity

3. Maturity transformation:
 — Banks’ market power makes deposits effectively long duration; CBDC changes banks’ asset composition and their interest risk exposure
Banks’ choice in a dynamic model with frictions

\[V = \max_{\{\text{prices, BS var}\}} \beta \{\text{Dividend} = \text{frictionless } \Pi - \text{financing costs} - \Delta \text{ Equity}\} + \beta \mathbb{E} V' \]

*Bank defaults and is auctioned off when \(V < 0 \)
Banks’ choice in a dynamic model with frictions

\[V = \max_{\{\text{prices, BS var}\}} \beta \{\text{Dividend} = \text{frictionless} \ \Pi - \text{financing costs} - \triangle \ \text{Equity}\} + \beta \mathbb{E}V' \]

*Bank defaults and is auctioned off when \(V < 0 \)

1. **Regulatory constraints:**
 - Reserve regulation: \(\theta \times \text{Deposits} \leq \text{Reserves} \)
 - Capital regulation: \(\kappa \times \text{Loans} \leq \text{Equity} \)
Banks’ choice in a dynamic model with frictions

\[V = \max_{\{prices, BS \text{ var}\}} \beta \{Dividend = frictionless \Pi - financing costs - \triangle Equity\} + \beta \mathbb{E} V' \]

*Bank defaults and is auctioned off when \(V < 0 \)

1. **Regulatory constraints:**
 - Reserve regulation: \(\theta \times \text{Deposits} \leq \text{Reserves} \)
 - Capital regulation: \(\kappa \times \text{Loans} \leq \text{Equity} \)

2. **Financial frictions** for wholesale borrowing = \(\phi(N) + r^N \)
 - \(\phi(N) \) is the exogenous cost to search/maintain relationships
 - \(r^N \) is endogenous credit spread so that lenders break even
Banks’ choice in a dynamic model with frictions

\[V = \max_{\{ \text{prices}, \text{BS var} \}} \beta \{ \text{Dividend} = \text{frictionless } \Pi - \text{financing costs} - \Delta \text{Equity} \} + \beta \mathbb{E} V' \]

*Bank defaults and is auctioned off when \(V < 0 \)

1. **Regulatory constraints:**
 - Reserve regulation: \(\theta \times \text{Deposits} \leq \text{Reserves} \)
 - Capital regulation: \(\kappa \times \text{Loans} \leq \text{Equity} \)

2. **Financial frictions** for wholesale borrowing = \(\phi(N) + r^N \)
 - \(\phi(N) \) is the exogenous cost to search/maintain relationships
 - \(r^N \) is endogenous credit spread so that lenders break even

3. **Maturity mismatch:** liabilities are ST; loans are LT and s.t. stochastic delinquency shocks
Banks’ choice in a dynamic model with frictions

\[V = \max_{\{prices, BS\, var\}} \beta \left\{ Dividend = frictionless \, \Pi - financing \, costs - \triangle \, Equity \right\} + \beta \mathbb{E} V' \]

*Bank defaults and is auctioned off when \(V < 0 \)

1. **Regulatory constraints:**
 - Reserve regulation: \(\theta \times \text{Deposits} \leq \text{Reserves} \)
 - Capital regulation: \(\kappa \times \text{Loans} \leq \text{Equity} \)

2. **Financial frictions** for wholesale borrowing = \(\phi(N) + r^N \)
 - \(\phi(N) \) is the exogenous cost to search/maintain relationships
 - \(r^N \) is endogenous credit spread so that lenders break even

3. **Maturity mismatch:** liabilities are ST; loans are LT and s.t. stochastic delinquency shocks

\(1 + 2 + 3 \) connects banks’ optimal deposit and lending decisions
Characterize our solution

- We solve the model by value function iteration:

- A Perfect Bayesian Equilibrium occurs when:
We solve the model by value function iteration:

A Perfect Bayesian Equilibrium occurs when:

1. All agents optimize
2. All markets clear
3. Everyone has rational expectation
IO estimation in a dynamic banking model

We divide our estimation into two stages:

1. **First stage:** estimate deposit/loan demand via BLP
 - how consumers’ utilities (portfolio share) vary with rates
 - value attached to non-rate characteristics
IO estimation in a dynamic banking model

We divide our estimation into two stages:

1. **First stage**: estimate deposit/loan demand via BLP
 - how consumers’ utilities (portfolio share) vary with rates
 - value attached to non-rate characteristics

2. **Second stage**: estimate remaining parameters (banks’ operating, financial costs) via SMD
 - match banks’ profit margin, funding structure, ...
IO estimation in a dynamic banking model

We divide our estimation into two stages:

1. **First stage:** estimate deposit/loan demand via BLP
 - how consumers’ utilities (portfolio share) vary with rates
 - value attached to non-rate characteristics

2. **Second stage:** estimate remaining parameters (banks’ operating, financial costs) via SMD
 - match banks’ profit margin, funding structure, ...

▶ Untargeted moments:
 - bank credit spread
 - time series variations of deposit and loan rates
We introduce CBDC

- We model a new product (CBDC) as a "bundle" of characteristics
 1. may bear some interest rate (baseline: 0%)
 2. offers transaction convenience like transaction deposits
 3. has the same issuer FE as cash
 4. carries a "digital premium"
 * Koont (2022): deposit demand 20% after commercial banks go "digital"
We introduce CBDC

- We model a new product (CBDC) as a “bundle" of characteristics
 1. may bear some interest rate (baseline: 0%)
 2. offers transaction convenience like transaction deposits
 3. has the same issuer FE as cash
 4. carries a “digital premium”
 * Koont (2022): deposit demand 20% after commercial banks go "digital"

- Large *uncertainty in the “quality" perception of CBDC
 — we vary the CBDC “quality” parameter and calculate the elasticity of bank behaviors ...
Counterfactuals: varying CBDC quality

<table>
<thead>
<tr>
<th>(1) CBDC Share</th>
<th>(2) 25%</th>
<th>(3) 50%</th>
<th>(4) 75%</th>
<th>(5) 100%</th>
<th>(6) Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) No CBDC</td>
<td>0.000</td>
<td>0.005</td>
<td>0.012</td>
<td>0.030</td>
<td>0.076</td>
</tr>
<tr>
<td>(2) Deposits</td>
<td>0.876</td>
<td>0.872</td>
<td>0.868</td>
<td>0.851</td>
<td>0.814</td>
</tr>
<tr>
<td>(3) Cash</td>
<td>0.070</td>
<td>0.069</td>
<td>0.068</td>
<td>0.066</td>
<td>0.062</td>
</tr>
<tr>
<td>(4) Loan</td>
<td>1.021</td>
<td>1.016</td>
<td>1.015</td>
<td>1.016</td>
<td>1.007</td>
</tr>
<tr>
<td>(5) Deposit spread (%)</td>
<td>1.125</td>
<td>1.117</td>
<td>1.117</td>
<td>1.113</td>
<td>1.092</td>
</tr>
<tr>
<td>(6) Loan spread (%)</td>
<td>2.177</td>
<td>2.182</td>
<td>2.183</td>
<td>2.182</td>
<td>2.189</td>
</tr>
<tr>
<td>(7) Bank credit spread (%)</td>
<td>0.100</td>
<td>0.112</td>
<td>0.112</td>
<td>0.112</td>
<td>0.132</td>
</tr>
<tr>
<td>(8) Funding cost (%)</td>
<td>1.291</td>
<td>1.305</td>
<td>1.321</td>
<td>1.335</td>
<td>1.357</td>
</tr>
<tr>
<td>(9) Bank value</td>
<td>1.846</td>
<td>1.843</td>
<td>1.835</td>
<td>1.833</td>
<td>1.821</td>
</tr>
</tbody>
</table>

— One dollar increase in CBDC decreases deposits by 82 cents,

...the effect on loans is much smaller (19 cents)
Alternative implementation

Interest-bearing CBDC: pays an interest ranging from 0% to 100% of FFR

- crowds out bank deposits more strongly
- stronger substitution with high-rate products
- $1 of CBDC crowds out lending by 27 cents
Alternative implementation

Interest-bearing CBDC: pays an interest ranging from 0% to 100% of FFR
- crowds out bank deposits more strongly
- stronger substitution with high-rate products
- $1 of CBDC crowds out lending by 27 cents

Intermediated model: (1) CBDC managed by private banks, inheriting their branch convenience
(2) central bank will reimburse private banks for their service

(1) could lead to larger outflow of deposits from the banking system (dominates mostly)
(2) makes banks better capitalized, enhancing lending capacity
Alternative implementation

Interest-bearing CBDC: pays an interest ranging from 0% to 100% of FFR
- crowds out bank deposits more strongly
- stronger substitution with high-rate products
- $1 of CBDC crowds out lending by 27 cents

Intermediated model: (1) CBDC managed by private banks, inheriting their branch convenience
(2) central bank will reimburse private banks for their service

(1) could lead to larger outflow of deposits from the banking system (dominates mostly)
(2) makes banks better capitalized, enhancing lending capacity

Across all cases: a small fraction of deposit market effect ($< \frac{1}{3}$) is passed through to loan provision
The heterogeneous Impact of CBDC

1. Among smaller banks:
 — $1 CBDC decreases lending of big (small) banks by 14.6 (40.7) cents
 — $1 CBDC decreases deposits by similar magnitudes
 — smaller banks face much higher costs of accessing wholesale funding
The heterogeneous Impact of CBDC

1. Among smaller banks:
 — $1 CBDC decreases lending of big (small) banks by 14.6 (40.7) cents
 — $1 CBDC decreases deposits by similar magnitudes
 — smaller banks face much higher costs of accessing wholesale funding

2. In more competitive markets:
 — $1 CBDC decreases lending by 5 cents (42 cents) when the county-level market concentration is at the 50th (90th) percentile
 — less well capitalized banks find it harder to adapt to competition shocks
The heterogeneous Impact of CBDC

1. Among smaller banks:
 — $1 CBDC decreases lending of big (small) banks by $14.6 ($40.7) cents
 — $1 CBDC decreases deposits by similar magnitudes
 — smaller banks face much higher costs of accessing wholesale funding

2. In more competitive markets:
 — $1 CBDC decreases lending by 5 cents (42 cents) when the county-level market concentration is at the 50th (90th) percentile
 — less well capitalized banks find it harder to adapt to competition shocks

▶ CBDC is likely to have important redistributional effects
Robustness

- Treasuries have a liquidity premium
 - can increase if the central bank invests funds raised from CBDC into treasuries
Robustness

- Treasuries have a liquidity premium
 - can increase if the central bank invests funds raised from CBDC into treasuries

- Alternative forms of wholesale borrowing cost
 - pin the curvature of banks’ wholesale borrowing cost
 - let the cost depend on aggregate deposit/loan market variables
Robustness

- Treasuries have a liquidity premium
 - can increase if the central bank invests funds raised from CBDC into treasuries

- Alternative forms of wholesale borrowing cost
 - pin the curvature of banks’ wholesale borrowing cost
 - let the cost depend on aggregate deposit/loan market variables

- Consider banks’ costly equity issuance
Conclusion: we provide a framework to quantify the impact of CBDC on bank behavior

CBDC can replace a significant fraction of bank deposits

...but unlikely to disintermediate banks too much on average
Conclusion: we provide a framework to quantify the impact of CBDC on bank behavior

CBDC can replace a significant fraction of bank deposits

...but unlikely to disintermediate banks too much on average

Subsample analysis implies that the effect can be more significant for smaller & more competitive banks