The Impact of Multinationals Along the Job Ladder

Ragnhild Balsvik*, Doireann Fitzgerald† and Stefanie Haller‡

*Institute of Marine Research, †Minneapolis Fed1, ‡University College Dublin,

July 2023

 $^{^{1}}$ The views expressed here are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

- Multinational affiliates are more productive than domestic firms
- Governments often provide incentives to attract them
- ▶ How do they impact a host country through the labor market?

Our view of the labor market:

- Multinational affiliates are more productive than domestic firms
- Governments often provide incentives to attract them
- ▶ How do they impact a host country through the labor market?

Our view of the labor market:

- ▶ Due to search frictions, firms pay less than marginal product
- ▶ But workers are mobile: outside options along job ladder
- Can climb job ladder both inside and outside current firm

- Multinational affiliates are more productive than domestic firms
- Governments often provide incentives to attract them
- ▶ How do they impact a host country through the labor market?

Our view of the labor market:

- ▶ Due to search frictions, firms pay less than marginal product
- But workers are mobile: outside options along job ladder
- Can climb job ladder both inside and outside current firm

- 1. Direct effect on workers employed at multinationals
- 2. Indirect effect on outside options of workers at local firms
 - Low productivity firms: workers more likely to leave
 - ► High productivity firms: better outside options bid up wages

- Multinational affiliates are more productive than domestic firms
- Governments often provide incentives to attract them
- ▶ How do they impact a host country through the labor market?

Our view of the labor market:

- ▶ Due to search frictions, firms pay less than marginal product
- But workers are mobile: outside options along job ladder
- Can climb job ladder both inside and outside current firm

- 1. Direct effect on workers employed at multinationals
- 2. Indirect effect on outside options of workers at local firms
 - Low productivity firms: workers more likely to leave
 - ► High productivity firms: better outside options bid up wages
- Overall workers gain, local firms lose
- Impact heterogeneous across workers and local firms

What we do & what we find

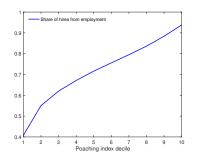
- 1. Matched employer-employee data for Norway
 - Confirm existence of a job ladder
 - ► (New) Multinationals high up on this job ladder
- 2. GE job ladder model of labor market with multinationals
 - Helpman-Melitz-Yeaple (2004) meets
 Cahuc-Postel-Vinay-Robin (2006) + DMP
- 3. Calibration: match firm size dist (MN and non-MN), wage dist, labor share, unemployment, labor market transitions
- 4. Counterfactual: infinite entry cost for multinationals
 - Multinational presence on avg helps workers, hurts local firms
 - ► But heterogeneous effects across workers, local firms
 - Multinational presence increases wage inequality, unemployment

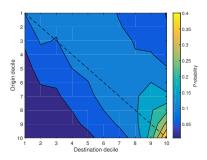
Data

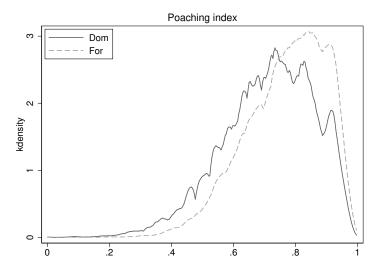
Data

- Matched employer-employee data for Norway 1996-2007
- 1. For each individual, annual earnings (all sources) & establishment identifier for main employer each November
- 2. Ownership of establishments (MN vs domestic)
- ► Focus on private sector establishments & linked individuals

Summary statistics


	All	Domestic	MN	MN share
Worker-years	12,001,918	9,815,230	2,186,688	0.18
Establishment-years	1,166,928	1,091,231	75,687	0.06
Avg establishment size	10.29	8.99	28.89	




Job-to-job transitions are not random: job ladder

- ▶ Use November cross-sections to code transitions: EE, NE, EN
- ► Rank establishments by sample share of hires from employment: poaching index
 - ▶ Revealed preference, consistent with model

Multinationals are high up on the job ladder

Model

Model overview

- Discrete time
- ► Homogeneous workers, firms with hetereogeneous productivity
- Convex vacancy cost pins down firm size
- On-the-job and off-the-job search, random matching
- Wages determined by bargaining
- ► Look for stationary equilibrium

How do multinational affiliates differ from domestic firms?

- 1. Different entry cost, draw from different productivity dist
- 2. Entry cost paid by foreigners, profit rebated to foreigners

Model assumptions 1/4: Workers

- ► Continuum of infinitely-lived workers on [0,1]
- Linear utility, discount future at rate β
- Flow utility in unemployment is b
- ► Flow income for employed is endogenous wage *w*
- lacktriangle Match with employer breaks with probability $oldsymbol{\delta}$ each period
 - Pass through one period of unemployment before searching
- Unemployed search for jobs with probability 1
- ▶ Employed search with probability $s \le 1$

Model assumptions 2/4: Firms

- ▶ Firm is a draw of productivity p from cdf $\tilde{\Gamma}^i(p)$, $i \in \{D, F\}$
- Output per worker employed by firm of type p is p
- Firms discount future at rate β , die at rate δ_f
- lacktriangle Surviving firms lose workers exogenously at rate δ_m

Model assumptions 2/4: Firms

- ▶ Firm is a draw of productivity p from cdf $\tilde{\Gamma}^i(p)$, $i \in \{D, F\}$
- Output per worker employed by firm of type p is p
- Firms discount future at rate β , die at rate δ_f
- ightharpoonup Surviving firms lose workers exogenously at rate δ_m
- ▶ Each firm pays c(v) to post $v \in \mathbb{R}$ vacancies with

$$c(0) = 0, c'(v) > 0, c''(v) > 0$$

▶ Choose: optimal v(p) given wage setting protocol

Model assumptions 2/4: Firms

- ▶ Firm is a draw of productivity p from cdf $\tilde{\Gamma}^i(p)$, $i \in \{D, F\}$
- Output per worker employed by firm of type p is p
- Firms discount future at rate β , die at rate δ_f
- lacktriangle Surviving firms lose workers exogenously at rate δ_m
- ▶ Each firm pays c(v) to post $v \in \mathbb{R}$ vacancies with

$$c(0) = 0, c'(v) > 0, c''(v) > 0$$

- ▶ Choose: optimal v(p) given wage setting protocol
- Free entry condition:

$$C^{i} = \int_{b}^{\underline{p}} 0 d\tilde{\Gamma}^{i}(p) + \int_{p}^{\bar{p}} \frac{B(p)}{1 - (1 - \delta_{f})\beta} d\tilde{\Gamma}^{i}(p)$$

- ▶ B(p) value to entrant of draw p
- ightharpoonup p > 0: endogenous cutoff below which firm attracts no workers
- ightharpoonup Prod dist of active firms: $\Gamma(p)$, mass of firms M

Model assumptions 3/4: Matching

▶ Total measure of vacancies is V:

$$V = M \int_{\underline{p}}^{\overline{p}} v(p) d\Gamma(p)$$

► Total measure of searching workers is *S*:

$$S = u + s(1 - \delta)(1 - u)$$

- ▶ *u*: unemployment rate & number of unemployed
- ▶ CRS matching function $\mu(S, V)$
 - ightharpoonup Probability unemployed worker meets vacancy: λ
 - Prob vacancy meets worker: χ

$$\lambda = \frac{\mu(S, V)}{S}, \ \chi = \frac{\mu(S, V)}{V}$$

Model assumptions 4/4: Bargaining & wages

- ► Follow Cahuc-Postel-Vinay-Robin (2006)
- ▶ When worker and firm match, they split match value
 - ▶ i.e. appropriately discounted flow of p
- Morker gets value of outside option + share ϕ of match surplus (i.e. value of match less value of outside option)
- ▶ Implemented by constant wage until outside option increases
- ▶ Outside option depends on origin / best on-the-job meeting
- ▶ If outside option is better than current match, worker moves

Model results 1/2: Wages

▶ Wage for worker at firm p with outside option $q \le p$ is

$$w(\mathbf{q}, p) = \phi p + (1 - \phi) \mathbf{q} - \underbrace{\int_{\mathbf{q}}^{p} \frac{(1 - \phi)^{2} \beta (1 - \delta) \lambda s (1 - F(x))}{1 - \beta (1 - \delta) (1 - \phi \lambda s (1 - F(x)))} dx}_{\text{discount due to value of moving up ladder in firm } p$$

▶ F(x): cdf of job offer distribution (endogenous)

$$dF(x) = \frac{v(x) d\Gamma(x)}{\int_{p}^{\bar{p}} v(y) d\Gamma(y)}$$

- Note: w(q, p) need not be monotonic in p
- ▶ Multinational presence affects joint distribution of $\{p,q\}$
- ▶ Multinational presence affects F(x), λ , and therefore wages conditional on $\{p, q\}$

Aside: Ranking firms

- Average wage at the firm level need not be monotonic in p
 - Due to value of option to move up
- ▶ But share of hires from employment *is* increasing in *p*:

$$poach(p) = \frac{(1-u)(1-\delta)s\int_{\underline{p}}^{p} dL(x)}{u+(1-u)(1-\delta)s\int_{\underline{p}}^{p} dL(x)}$$

► Intuition: All firms hire all the unemployed workers they meet, but higher *p* firms hire more employed workers

Model results 2/2: Vacancy posting

► Value to firm with productivity *p* of posting *v* vacancies:

$$B(p, \mathbf{v}) = \mathbf{v} \chi \begin{bmatrix} \frac{\underline{u}}{S} J(\underline{p}, \mathbf{p}) + \\ \frac{(1-u)(1-\delta)s}{S} \int_{\underline{p}}^{\mathbf{p}} J(x, \mathbf{p}) dL(x) \end{bmatrix} - c(\mathbf{v})$$

where

- ▶ J(x,p): value to firm p of worker w/ outside option $x \le p$
- ightharpoonup dL(x): pdf of dist of workers by their firm's productivity
- foc implicitly defines v(p), optimal vacancy posting
- ▶ Note: current employment does not enter B(p) = B(p, v(p))
- ▶ Multinational presence affects incentives to post vacancies through impact on J(x,p), and vacancy yield
- ▶ Multinational presence therefore affects size conditional on p

Calibration

Calibration

Functional forms:

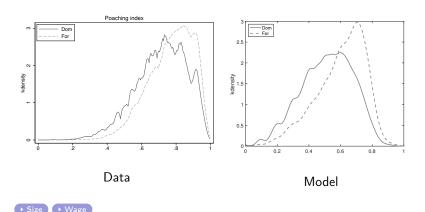
$$\mu(S, V) = AS^{\theta} V^{1-\theta}$$
$$c(v) = \frac{v^{1+\frac{1}{\alpha}}}{1+\frac{1}{\alpha}}$$

$$\tilde{\mathsf{\Gamma}}^D \sim \textit{BddPareto}\left(b, \pmb{\sigma}^D, \bar{p}\right) \text{ and } \tilde{\mathsf{\Gamma}}^F \sim \textit{BddPareto}\left(\pmb{\tau}, \pmb{\sigma}^F, \bar{p}\right)$$

 \bar{p} : bounded above at 99th pctile of more dispersed dist.

- ▶ Production function: Cobb-Douglas in capital, labor with capital share κ , all firms face same rental price of capital
- Solve for mass of active firms M, share ω of foreign firms in potential entrants
- ▶ \rightarrow recover C^D , C^F

Parameters and targets


▶ Preset: $\beta=0.95^{1/4}$, $\kappa=1/3$, b=1 (normalize), $\theta=0.5$ (literature), $\delta=0.038$ (Eurostat), $\delta_f=0.01$ (Balsvik & Haller)

Parameters	and	Targets
-------------------	-----	----------------

Target description	Data	Model		Value
Outside data				
EE quarterly transition rate (Eurostat)	0.03	0.03	S	0.54
Labor share (Statistics Norway)	0.60	0.60	φ	0.84
Nonemp rate 25-54 (Statistics Norway)	0.155	0.155	A	0.43
Our data				
Std dev In estab. employment	1.13	1.12	α	0.22
Average establishment size	10.29	10.29	M	0.08
Share active estabs that are domestic	0.94	0.94	ω	0.005
Std dev In estab. wage	0.63	0.63	σ_D	1.57
Std dev In estab. employment, MN	1.32	1.33	σ_F	0.72
Diff in In av size betw dom & MN estabs	0.96	0.96	$ au/ar{p}$	0.02

Nontargeted moment: poaching index distribution

► Simulate quarterly model for 10 years with 1 million workers, calculate poaching index as in data

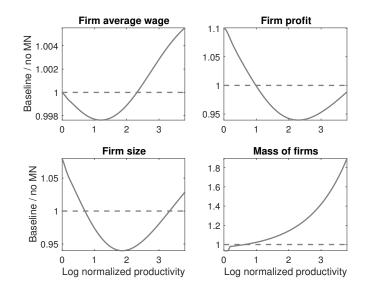
Counterfactual

Counterfactual: No multinationals

- ▶ Let $C^F \to \infty$, hold C^D fixed ▶ Productivity
- Solve for counterfactual measure of firms, active firm productivity dist s.t. domestic free entry condition holds

Impact of multinationals on output, components

l I	امریم ا		Sh. of output	
Levei		on output		
MN	No MN	MN	No MN	
1	0.86			
1	0.87	0.60	0.60	
1	1.13	0.04	0.05	
1	0.00	0.01	0.00	
1	0.84	0.01	0.01	
1	0.86	0.33*	0.33*	
1	0.89	0.64	0.65	
1	0.88	0.62	0.63	
	MN 1 1 1 1 1 1 1 1 1 1 1	1 0.86 1 0.87 1 1.13 1 0.00 1 0.84 1 0.86 1 0.89	MN No MN MN 1 0.86 1 0.87 0.60 1 1.13 0.04 1 0.00 0.01 1 0.84 0.01 1 0.86 0.33* 1 0.89 0.64	

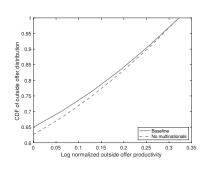

^{*} By assumption

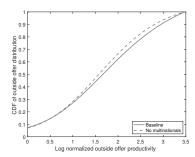
Impact of multinationals on workers & local firms

	Baseline	No MN
	Workers	
Payments to labor	1	0.87
Avg worker-level wage	1	0.86
Employment	1	1.004
Wage Gini	0.51	0.49
	Firms	
Measure of firms	1	1.09
Measure of local firms	1	1.16
Avg firm size	10.29	9.49
Avg local firm size	9.29	9.49

- Overall, multinationals benefit workers, hurt local firms
- ► But heterogeneous effects (next slide)

Heterogeneous effects across firm productivity distribution




Intuition: shift in outside option distribution

▶ Wage for worker at firm p with outside option $q \le p$ is

$$w(\mathbf{q}, \mathbf{p}) = \phi \mathbf{p} + (1 - \phi) \mathbf{q} - \int_{q}^{p} \frac{(1 - \phi)^{2} \beta (1 - \delta) \lambda s (1 - F(x))}{1 - \beta (1 - \delta) (1 - \phi \lambda s (1 - F(x)))} dx$$

discount due to value of moving up ladder in firm p

Low productivity firm

High productivity firm

Relation to reduced form evidence

Alfaro-Ureña, Manelici & Vasquez (2021)

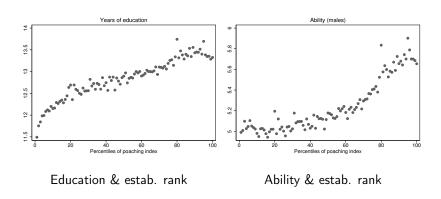
- Positive impact of (instrumented) multinational presence in local labor market on wages of employees of domestic firms
- Insufficient college workers to distinguish effects for high and low skill groups

Setzler & Tintelnot (2021)

- Positive impact of (instrumented) multinational presence in local labor market on wages of employees of domestic firms
- ► Increase bigger for high-paid workers (don't see education)
- Employment at domestic firms increases

We find:

► Heterogeneous effects across workers & local firms


Conclusion

- ► Labor market is characterized by a job ladder, with multinationals at the top
- Multinational presence increases productivity and labor market competition: on average helps workers, hurts local firms
- But impact is heterogeneous:
 - Low productivity local firms lose workers, shrink, may pay lower wages due to fewer outside options low down on the job ladder
 - High productivity local firms pay higher wages due to more outside options high up on the job ladder
- Wage inequality rises

Extensions

▶ Worker heterogeneity and sorting: between-group inequality

Worker heterogeneity and sorting

Model extension: Worker heterogeneity and sorting

- ▶ Three (observable) labor types, $h \in \{1,2,3\}$
- Firms can post vacancies in each skill market
- Random matching within each skill market
- ▶ Marginal product of skill type h at firm p is

$$y = \eta_h p^{v_h}$$

with

$$1=\eta_1\leq\eta_2\leq\eta_3$$

and

$$1 = v_1 \le v_2 \le v_3$$

- $v_h > 1 \rightarrow \text{sorting}$
- ▶ Identification of $\{\eta_h, v_h\}$: skill premium & skill group share of employment along job ladder

Related literature

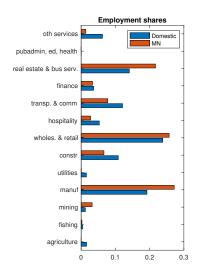
Applications of general equilibrium job ladder models with firms

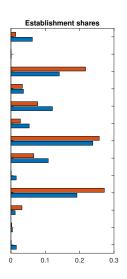
▶ Bagger & Lentz (2019), Engbom & Moser (2021), Gouin-Bonenfant (2022)

Impact of multinationals through the labor market

▶ Alfaro-Ureña et al (2021), Setzler & Tintelnot (2021)

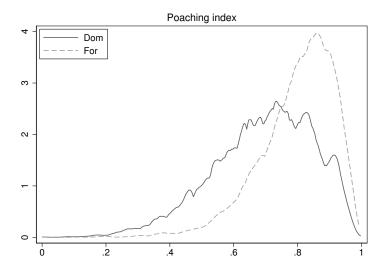
Empirical literature on job ladders


 Haltiwanger, Hyatt, Kahn & McEntarfer (2018), Moscarini & Postel-Vinay (2018)


Search and matching models of distributional impact of trade

► Helpman, Itskhoki, Redding (2010), Cosar, Guner and Tybout (2016), Helpman, Itskhoki, Muendler & Redding (2017), Fajgelbaum (2020)


Industries: Domestic vs MN



Occupations: Domestic vs MN

Poaching index distribution by ownership: firms

Model assumptions: Bargaining & wages

▶ Worker at firm p with outside option q gets w(q, p) s.t.

$$W(q,p) = \underbrace{W(q,q)}_{\text{outside option}} + \phi \underbrace{(W(p,p) - W(q,q))}_{\text{match surplus}}$$

where

$$W(q,p) = w(q,p) + \beta$$

$$(1-\delta)\lambda s$$

Model results: Profits

Per period profit of firm of type p with age a is

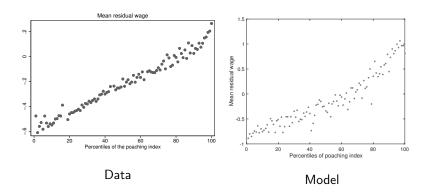
$$\pi(p) = \left(p - \underbrace{\int_{\underline{p}}^{p} w(x, p) dG(x|p)}_{\text{average wage at firm } p}\right) e(p, a) - c(v(p))$$

- ▶ dG(x|p): pdf of outside options for workers at firm of type p
- ightharpoonup e(p,a): employment at firm of type p with age a
- ▶ Multinational presence affects w(x,p), G(x|p), \underline{p} and therefore average wage conditional on p
- ▶ Multinational presence also affects e(p, a), v(p)

Model results: Firm age and size

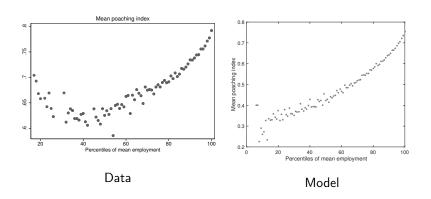
Firms of type *p* which survive to age *a* have employment:

$$e(p,a) = \frac{h(p)}{1-x(p)} (1-x(p)^a)$$

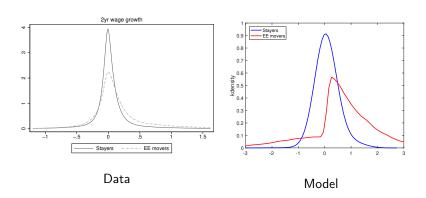

with

$$h(p) = v(p)\chi\left(\frac{u + (1 - u)(1 - \delta)s\int_{\underline{p}}^{p} dL(x)}{S}\right)$$
$$\chi(p) = \frac{(1 - \delta)}{(1 - \delta_f)}(1 - \lambda s(1 - F(p)))$$

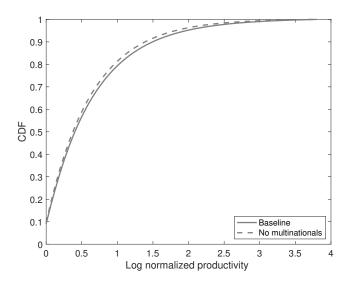
• Fraction of firms of age a is $(1-\delta_f)^{a-1}\delta_f$


Nontargeted moment: joint dist of poaching index & wages

► Simulate quarterly model for 10 years with 1 million workers, calculate poaching index, wages as in data • Back

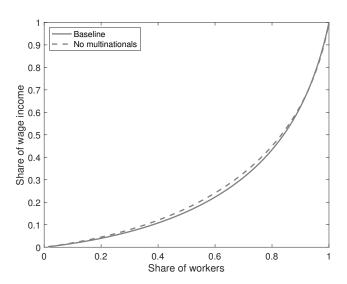

Nontargeted moment: joint dist of poaching index & size

► Simulate quarterly model for 10 years with 1 million workers, calculate poaching index, size as in data ▶ Back

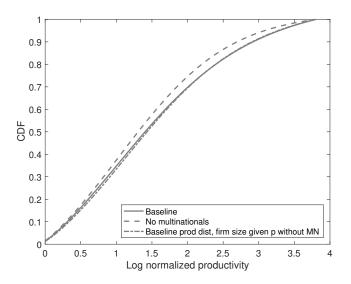


Nontargeted moment: 2-year log wage growth

► Simulate quarterly model for 10 years, with 1 million workers calculate transitions, wages as in data



Shift in active firm productivity distribution



Shift in worker-level wage distribution

Shift in employment distribution

