Price Rigidities in U.S. Business Cycles

Camilo Morales Jimenez
Federal Reserve Board

Luminita Stevens
University of Maryland

NBER Summer Institute

◊ July 13, 2023 ◊

The views expressed here are our own and do not reflect those of the Board of Governors of the Federal Reserve System or anyone else associated with the Federal Reserve System.
Levels, Trends & Cycles in Nominal Rigidities?

- How severe are nominal rigidities in the U.S. economy?
- Has this severity changed over time?
- Does it exhibit any meaningful cyclical variation?
 - Important for understanding economy’s response to shocks & effectiveness of demand stabilization policy
Our Contribution

- An estimated time series of the degree of nominal price rigidities in the U.S.

- Using a GE model with flexibly specified pricing frictions + time series of real economic activity, inflation, and moments of the distribution of price changes, between 1978.1 and 2014.12

- Along the way: reassess some aspects of the conventional wisdom on price rigidity
Status Quo

- Research has linked the degree of nominal rigidities \mathcal{R} to moments of the steady state distribution of price changes, constructed using micro price data.

- In particular, frequency and frequency / kurtosis are sufficient statistics for non-neutrality in a wide class of models with time-dependent / state-dependent price adjustment.

Status Quo: Perfect Repricing

- Status quo models: once a firm decides to reprice, the new price (or path) is the deterministic full info optimal choice.

- At odds with overwhelming evidence that actions are based on dispersed beliefs and are only noisily related to optima in numerous contexts:
 - Neuroscience & cognitive psychology evidence on perception, numerosity, probability estimation.
 - Economics evidence from games, forecasting, ...; surveys ..., Coibion & Gorodnichenko (2012), ...
 - The lab ..., Khaw, Stevens & Woodford (2017), ...
 - Dispersion & stochasticity conditional on adjusting.
individual forecasts noisily related to Bayes-optimal forecasts
noisy individual forecasts aggregate to systematically sluggish adjustment
What We Do

- We consider a stochastic price-setting model
- Allowing for imprecision in both the timing of price changes and the chosen price levels
- Endogenizing stochasticity by nesting menu and information costs, the two main ways of generating nominal rigidities
- Precursors:
 - Costain & Nakov (2019): control cost pricing in GE
 - Khaw et al. (2017): individual forecasting model
Generalizing the Basic TD and SD Models

- Calvo: optimal policy is characterized by
 - adjustment rule: adjust w.p. $\bar{\Lambda}$ \forall state
 - repricing rule: $p^* = \arg \max_p V(p, a, \Gamma)$
 - workhorse model, sizable non-neutrality

- Menu cost model: optimal policy is characterized by
 - adjustment rule: adjust w.p. 1 if $V^{adj} - V^{non} > \kappa$, 0 o/w
 - repricing rule: $p^* = \arg \max_p V(p, a, \Gamma)$
 - advantage of optimizing foundations

- Here: generalize to stochastic version:
 - adjust w.p. Λ increasing in $V^{adj} - V^{non} - \kappa$
 - charge price p w.p. $f(p|\cdot)$ increasing in $V(p, a, \Gamma)$
Contribution: What We Find

In this model:

1. Different pricing moments are informative about different frictions

2. Calvo is no longer upper bound on the degree of nominal rigidities \mathcal{R}, as is the case with models of perfect repricing

3. Weak selection is no longer necessary for large \mathcal{R}

→ Depart from conventional wisdom on sources and dynamics of nominal rigidities embedded in standard models
What We Find

In the estimation on U.S. data:

1. Menu cost is very small & stable, small contribution to \mathcal{R}

2. Timing of adjustments has been fairly accurate (strongly SD prob. adj., though asymmetrically so)

3. Inaccurate repricing has significantly contributed to \mathcal{R} (weakly SD pricing rule)

4. Variation in efficiency of info processing has generated volatility in \mathcal{R}, and hence in effectiveness of m.p.
Plan

Model

Stats & Simulations

Estimation
Monopolistic Retailers

- A unit mass of retailers indexed by j sell a continuum of differentiated varieties.

- Retailers are monopolistically competitive price-setters in their product market, and are price-takers in the input market.

- Once a retailer sets a price, they stand ready to purchase whatever quantity of the intermediate good is needed to satisfy the demand at that price.
Monopolistic Retailers

- Demand:
 \[y_{jt} = p_{jt}^{-\varepsilon_t} \ Y_t \]

- Technology:
 \[y_{jt} = e^{a_{jt} + a_t} x_{jt} \]

- Operating profits:
 \[\pi_{jt} = p_{jt} y_{jt} - p_t^x x_{jt} \]
Retailers’ Problem

- Retailers acquire information and set prices to solve

\[
\max_{\{I^a_{jt}, I^p_{jt}, \delta_{jt}, p_t\}} E_{0j} \sum_{t=0}^{\infty} M_{0,t} \left[\pi_{jt} - \theta^a I^a_{jt} - \delta_{jt} \theta^p I^p_{jt} - \delta_{jt} \kappa \right],
\]

\(M_{0,t} \) is the stochastic discount factor

\(\pi_{jt} \) is the retailer’s flow operating profit

\(I^a_{jt} \) and \(I^p_{jt} \) are the info flows for the adjustment and pricing decisions

\(\theta^a \) and \(\theta^p \) are the unit costs of information for the two decisions

\(\kappa \) is the menu cost

\(\delta_{jt} \) is 1 if the retailer changes its price, 0 otherwise
Information Choice

- Information acquisition: rational inattention (Sims, 2003; Woodford, 2009)
 - firms understand environment but do not have free real-time knowledge of the realized state
 - information is abundant but hard to process, use
 - its acquisition is a choice that responds to incentives
 - firms obtain signals about desirable course of action
 - any signal structure is allowed, at a cost
 - signals that are more informative cost more
Information Choice

• From prior work in RI signals directly indicate action: adjust vs. don’t adjust price; if adjust, which price to choose. Woodford (2009); Stevens (2020)

• Their cost is linear in Shannon mutual information (1948, 1959): how much the actions condition on the state, on average, relative to actions drawn from a reference distribution that the firm “has” for free (a default action distribution)

• Shannon mutual info is the average Kullback-Leibler divergence of the choice from the reference distribution (equivalent to reduction of entropy about the state)
Information Acquisition

- Deciding to adjust according to $\Lambda (\tilde{p}, a, \Gamma_t)$ vs. the reference probability $\bar{\Lambda}$ entails information flow

$$\mathcal{I}_t^a = E_t \left\{ \mathcal{D} \left(\Lambda (\tilde{p}, a, \Gamma_t) \parallel \bar{\Lambda} \right) \right\}$$

$$\mathcal{D} (\Lambda \parallel \bar{\Lambda}) = \Lambda \ln \left(\frac{\Lambda}{\bar{\Lambda}} \right) + (1 - \Lambda) \ln \left(\frac{1 - \Lambda}{1 - \bar{\Lambda}} \right)$$

- Pricing according to $f(p \mid a, \Gamma_t)$ vs. $\bar{f}(p)$ entails info flow

$$\mathcal{I}_t^p = E_t \left\{ \mathcal{D} \left(f(p \mid a, \Gamma_t) \parallel \bar{f}(p) \right) \right\}$$

$$\mathcal{D} (f(p \mid a, \Gamma) \parallel \bar{f}(p)) = \sum_p f(p \mid a, \Gamma) \ln \left(\frac{f(p \mid a, \Gamma)}{\bar{f}(p)} \right)$$
Choice & Reference Distributions

- For a given reference, the choice distribution max firm value

- How to specify the reference distributions $\bar{\Lambda}$ and \bar{f}, relative to which the cost of conditioning on the state is measured?

- Exogenous? E.g., control costs (Costain & Nakov, 2019)

- But DMs have strong incentives to use sophisticated defaults

- Well-chosen reference distributions lower both value of conditioning actions on the state in real time (because they improve the default action) and the avg cost of doing so
So DMs would want to use their knowledge of the structure of their environment to choose well-adapted reference distributions.

From the information-theoretic point of view, the optimal reference distribution is the one that minimizes the choice distribution’s average KL divergence from it, integrating over the states to be encountered (“pure RI”).
Consider a less efficient, though still endogenous information structure in which the reference distributions are the steady state cross-sectional distributions.

Motivated by the idea that DMs with prior experience across a range of states may find it “easy” or “intuitive” to implement default rules that are optimal on average.

These defaults should be quite useful, especially in the case of small aggregate shocks.
Cross-Sectional Distributions

- Let $\tilde{\Omega}(p, a)$ be the SS pre-adj. cross-sectional distribution. The reference adjustment probability is

$$\tilde{\Lambda} = \int_a \sum_p \tilde{\Omega}(p, a) \Lambda(p, a, \Gamma_{ss}) \, da$$

- Let $\Omega(p, a)$ denote the SS joint distribution post-adjustment. The pricing reference distribution is

$$\bar{f}(p) = \int_a \Omega(p, a) \, da$$

where

$$\Omega(p, a) = [1 - \Lambda(p, a, \Gamma)] \cdot \tilde{\Omega}(p, a) + \left[\sum_{\hat{p}} \Lambda(\hat{p}, a, \Gamma) \tilde{\Omega}(\hat{p}, a) \right] \cdot f(p | a, \Gamma)$$
Solving the Firm’s Problem

Consider choosing information acquisition for any state \((\tilde{p}, a, \Gamma)\):

\[
V^*(\tilde{p}, a, \Gamma) = \max_{\Lambda} \left\{ \Lambda \cdot [V^a(a, \Gamma) - \kappa] + (1 - \Lambda) \cdot V(\tilde{p}, a, \Gamma) - \theta^a D(\Lambda \parallel \bar{\Lambda}) \right\}
\]

\[
V^a(a, \Gamma) = \max_f \left\{ \sum_p f(p \mid a, \Gamma) V(p, a, \Gamma) - \theta^p D(f(p \mid a, \Gamma) \parallel \bar{f}(p)) \right\}
\]

where

\[
V(p, a, \Gamma) = \pi(p, a, \Gamma) + \mathbb{E}\left\{ M' V^*(\tilde{p}', a', \Gamma') \mid a, \Gamma \right\}
\]

\[
\sum_p f(p \mid a, \Gamma) = 1
\]
Optimal Choices

Optimality yields

$$\ln \left(\frac{\Lambda(\tilde{p}, a, \Gamma)}{1 - \Lambda(\tilde{p}, a, \Gamma)} \right) = \ln \left(\frac{\tilde{\Lambda}}{1 - \tilde{\Lambda}} \right) + \frac{1}{\theta^a} \left[V^a(a, \Gamma) - V(\tilde{p}, a, \Gamma) - \kappa \right]$$

and

$$f(p \mid a, X) = \frac{\tilde{f}(p) \exp \left\{ \frac{V(p, a, X)}{\theta p} \right\}}{\sum_{\hat{p} \in \mathcal{P}} \tilde{f}(\hat{p}) \exp \left\{ \frac{V(\hat{p}, a, X)}{\theta p} \right\}}$$
Closing the Model

Representative household with habits, preference shocks

Competitive intermediate good produced with labor

Monetary authority using Taylor rule

Fiscal authority funding spending with lump-sum taxes
Steady State Frictions
We estimate \(\{\theta^a, \theta^p, \kappa, \rho_a, \sigma_a\} \) to target the averages of five pricing moments over the sample period (1978-2014)

<table>
<thead>
<tr>
<th></th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of price changes</td>
<td>0.108</td>
<td>0.108</td>
</tr>
<tr>
<td>Mean absolute value</td>
<td>0.072</td>
<td>0.073</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.125</td>
<td>0.126</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.113</td>
<td>-0.113</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>11.15</td>
<td>11.03</td>
</tr>
</tbody>
</table>
Steady State Pricing Frictions

- Parameter estimates:

 \[
 \begin{array}{cccccc}
 \theta^p & \theta^a & \kappa & \rho_a & \sigma_a \\
 1.86 & 0.10 & 0.004 & 0.924 & 0.239 \\
 \end{array}
 \]

- Small menu cost \(\Rightarrow \) menu cost spending = 0.05\% of SS sales and yet only 11\% frequency of price changes

- Larger info costs: info acquisition = 2.1\%

- Considerable share of which is to figure out what price to charge: repricing costs = 1.3\%
Steady State Pricing Frictions

- As a result of these pricing frictions
 - steady state price dispersion is 13\% higher
 - steady state consumption is 7\% lower

 compared with the full-info flexible price economy
Adjustment Probability

stochastic adjustment decision

steep, asymmetric - Woodford (2009) - CE-07 - DKW-99
Pricing Policy
Interactions & Implications

1. Without mistakes in repricing, models need sizable menu cost or exogenously low prob. of adj. to get infrequent Δp
 - Imperfect info \Rightarrow infrequent adjustment despite $\kappa \approx 0$

2. Full info menu cost models also need mechanism to
 - (i) mute selection to get meaningful \mathcal{R}
 - (ii) match moments beyond freq and size of Δp
 - Stochastic prices \Rightarrow can end up with suboptimal price even if correctly decide when to adjust $\Rightarrow \mathcal{R}$; can match higher moments of distribution of Δp
Statistics & Simulations
Model Simulations

- Suppose we solve model for different values of $\{\theta^p, \theta^a, \kappa^a\}$
- And compute the CIRs of output to a m.p. shock
- How well can pricing moments predict these CIR?
positive but imperfect correlation
noisy for data-relevant range
Estimation
Estimation

- Data from Jan 1978 to Dec 2014 on macro aggregates (Y, π, r) + pricing moments – we thank Daniel Villar for sharing the CPI pricing moments that were first constructed by Nakamura, Steinsson, Sun & Villar (2018) and also studied by Luo & Villar (2021).

- We apply the sequence-space Jacobian method of Auclert, Bardóczy, Rognlie & Straub (2021) to this model with heterogeneous information → super fast, reliable solution.

- Fundamental shocks to preferences, technologies, policies (unobservable for free by firms) + shocks to the pricing frictions, interpreted as shocks to attention/efficiency of information processing & implementation of decisions.
Estimated Series for Pricing Frictions

\(\theta^p \) (level)

\(\theta^o \) (level)

\(\kappa \) (level)
Estimation

Using the filtered shocks, we compute the implied CIR over time, when the choice distributions are reoptimized given the new parameter values (keeping the reference distributions at the baseline SS averages)
Implied Nominal Rigidity Over Time

cumulative consumption response to a 25 bp FFR shock as a % of quarterly steady state C
Conclusions (1/2)

- Approach to estimating monetary non-neutrality has evolved to be disciplined by
 - aggregate data (e.g., CEE, 2005)
 - micro data (e.g., Midrigan, 2010)
- Moments from the distribution of Δp help pin down \mathcal{R}
- Here we consider implications of the dynamics of these pricing moments using a stochastic generalization of standard models
- We find support for model in which both timing & especially repricing are noisily tied to conditions
Conclusions (2/2)

• Menu cost is very small, makes small contribution to R

• Timing of adjustments has been fairly accurate (strongly state-dependent proba of adjustment)

• Inaccurate pricing (conditional on adjustment) has significantly contributed to R (weakly SD pricing rule)

• Estimation shows that R varies significantly over time
References

References (cont.)

Time-Varying Frequency of Price Adjustment

(correlation with real GDP growth = -0.25)

⇒ volatile, procyclical Calvo parameter

Note: Pricing moments are based on the micro data underlying the U.S. Consumer Price Index (CPI).

We thank Daniel Villar for these pricing series. GDP growth is from FRED.
Time-Varying Size of Price Adjustment

Note: Pricing moments are based on the micro data underlying the U.S. Consumer Price Index (CPI).

We thank Daniel Villar for these pricing series. GDP growth is from FRED.
Time-Varying Dispersion of Price Adjustment

Note: Pricing moments are based on the micro data underlying the U.S. Consumer Price Index (CPI).

We thank Daniel Villar for these pricing series. GDP growth is from FRED.
Time-Varying Kurtosis of Price Changes

Note: Pricing moments are based on the micro data underlying the U.S. Consumer Price Index (CPI).

We thank Daniel Villar for these pricing series. GDP growth is from FRED.