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Abstract

A growing body of evidence suggests that innovation may be fueled by social inter-

actions between individuals with different skills, expertise and ways of thinking. Ex-

ploiting the fact that the extent of such diverse interactions varies among communities

and across time, this paper investigates how such interactions influenced innovation

in U.S. counties from 1850 to 1940. We introduce and validate a new measure of social

interactional diversity based on the distribution of surnames: lower surname diversity

indicates that social interactions are more concentrated among like-minded people.

Leveraging quasi-random variation in counties’ surname compositions—stemming

from the interplay between historical fluctuations in immigration and local factors that

attract immigrants—we find that surname diversity increases both the quantity and

quality of innovation. The results support the view that social interactions between

diverse minds are key drivers of innovation.
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It is hardly possible to overrate the value [...] of placing human

beings in contact with persons dissimilar to themselves, and with

modes of thought and action unlike those with which they are

familiar. [...] Such communication has always been, and is peculiarly

in the present age, one of the primary sources of progress.

John Stuart Mill

Principles of Political Economy

1 Introduction

At least since John Stuart Mill (1871), economists and other scholars have argued that

social interactions among diverse minds encourage innovation and creativity (e.g., Jacobs,

1969; Glaeser et al., 1992; Weitzman, 1998; Muthukrishna and Henrich, 2016; Galor, 2022;

Andrews, 2023). In this view, innovations emerge primarily through the recombination

of ideas created as individuals with diverse knowledge, skills and perspectives interact

and share their ideas (Jones, forthcoming). Recent research has revealed remarkable

variation in the degree to which interactions among diverse individuals occur across

different countries and even among communities within the same country (Banfield, 1958;

Alesina and Giuliano, 2014; Schulz et al., 2019; Enke, 2019; Henrich, 2020; Ghosh et al.,

2023). Some communities exhibit concentrated social networks, often structured around

strong family ties, which can cultivate an inward-looking psychology marked by mistrust

of outsiders and reluctance to engage beyond one’s family or in-group. If this mindset

hampers the free exchange of knowledge and ideas beyond one’s family or in-group, then

less concentrated, or more diverse, social interactions should foster innovation. However,

quantifying the impact of this diversity on innovation has proven elusive due to empirical

challenges related to measurement—the need for a finely grained measure of the diversity

of social interactions, and causal identification—individuals and their social interactions

are not randomly distributed across locations or time.

In this paper, we propose a novel approach to measuring the diversity of social in-

teractions based on the diversity of surnames within U.S. counties, and then use this to

assess the existence of a causal relationship with innovation, as measured using data on

patents. Theoretically, we develop our diversity measure to test the hypothesis that social

interaction among diverse minds spurs innovation, largely because many new ideas arise

from the recombination of existing ideas. The potential informational exchanges that

occur during these social interactions are assumed to depend on two components: an

informational element, in which different individuals possess distinct knowledge, and a
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social-psychological aspect, in which individuals must trust each other and be willing to

share their ideas. Surnames in the U.S. are well suited for capturing both components.

From an informational perspective, surnames, which are typically patrilineally inherited

in the U.S., can serve as markers of different kinds of knowledge, skills and perspectives

that originate from learning within familial, ethnic, or professional networks and persist

across generations because of intergenerational cultural transmission (Boyd and Richerson,

1985; Bisin and Verdier, 1998). From a social-psychological perspective, since individuals

with the same surname are more likely to be related, low diversity in surnames may

indicate the prevalence of family networks, fostering an inward-looking orientation.1 Con-

versely, high surname diversity suggests less concentrated social networks, which makes

broader engagement with strangers relatively more beneficial, nurturing the cultivation of

impersonal trust.

In our empirical approach, we utilize all surnames reported in the full-count U.S.

Census data available from 1850 to 1940. We use this data to compute the diversity

of surnames across U.S. counties, which are presumed to be the primary locations of

social interactions during this period. While counties might not encapsulate every social

interaction, particularly in today’s highly interconnected world, they provide a reasonable

approximation in this pre-1950 historical context.

We validate the use of surname diversity as a measure of the diversity of social interac-

tions using two approaches. First, to evaluate the informational aspect of social interaction

diversity, we analyze the extent to which surnames cluster within specific occupations

and immigrants’ ancestral regions. Using the Census data, we find that two individuals

selected at random, who share the same surname, have a higher than random probability

of also sharing an occupation or having origins in the same country or subnational region.

This finding aligns with recent studies on social mobility (Clark, 2014; Güell et al., 2015;

Bell et al., 2019; Barone and Mocetti, 2021), bolstering the assertion that surnames capture

distinct facets of knowledge tied to specific occupations and ethnicities. Second, for the

psychological aspect of social interaction diversity, we probe the predictive power of

county-level surname diversity for contemporary impersonal trust. In addition, we scruti-

nize the correlation between a historical measure of the strength of family ties (Raz, 2023)

and surname diversity, since previous work has found that strong family ties are tightly

linked to lower trust (Alesina and Giuliano, 2014; Schulz et al., 2019). We find a strong

association with trust as well as a high correlation with the strength of family ties. We do

1In population genetics, low surname diversity is often used as a marker of cousin marriage and other
forms of inbreeding (e.g., Barrai et al., 1996). This approach has recently been adopted by the economics
literature (Ghosh et al., 2023).
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not find these patterns for the more conventional measures of diversity based on country

of birth and race, which is consistent with much prior evidence (Glaeser et al., 2000;

Alesina and La Ferrara, 2000, 2002; Ashraf and Galor, 2013) and underlines the distinctive

nature of surname diversity compared to these other types of diversity. Taken together,

these results support the view that surname diversity is an effective measure of social

interactional diversity, encapsulating both informational and psychological components.

To measure innovation, we rely on two indicators based on U.S. patents. First, we

calculate the total number of patents per capita for each U.S. county for 5 or 10-year

periods from the 1850s to the 1940s based on the Comprehensive Universe of U.S. Patents

(Berkes, 2018). Second, we use the breakthrough patent indicator created by Kelly et al.

(2021) to capture highly important patents. Breakthrough patents are identified via textual

similarity to previous and subsequent patents: breakthrough patents have low similarity

to previous patents but high similarity to subsequent ones.

Using these diversity and innovation measures, our analyses proceed as follows: First,

we study the correlation between surname diversity and both patents and breakthrough

patents per capita across U.S. counties from the 1850s to the 1940s. We find positive and

economically important relationships between surname diversity and both innovation

measures: a one standard deviation increase in surname diversity within a county is

associated with approximately 78% more patents per capita and a slightly larger increase

in breakthrough patents per capita. These relationships are also remarkably stable over

time—our sample spans almost a century of U.S. innovation—and hold when controlling

for county and period-state fixed effects, population-scale effects, and the composition of

immigrants and race within these counties. We find that the more conventional country-

of-birth diversity measure is also a robust predictor of patents in most specifications.

However, surname diversity offers additional explanatory power even when controlling

for country-of-birth diversity and country-of-birth-specific immigrant shares.

Second, we provide evidence that a greater diversity of social interactions results in

faster innovation. As noted, such causal evidence has proven elusive because individuals

do not allocate randomly across space but tend to move into innovative regions, possibly

creating a spurious correlation between surname diversity and patents. To address this

concern, we employ an instrumental variable (IV) strategy, building on the approach

developed by Burchardi et al. (2019). This strategy leverages historical immigration

patterns as a significant determinant of surname diversity in U.S. counties.

Migration, beyond births and deaths, is the key driver of the composition of surnames.

However, immigration does not monotonically increase surname diversity. Its impact

largely depends on the pre-existing surname distribution in specific counties. Influxes
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of individuals carrying rare or new surnames in the county increase surname diversity,

while inflows of people bearing locally common surnames results in the opposite effect.

We hypothesize that this relationship between immigration and surname diversity sub-

stantially affects both the informational and psychological channels (detailed further in

section 2). When individuals carrying locally rare surnames arrive, they enhance surname

diversity, and in turn, may create opportunities for diverse social interactions, knowledge

acquisition, and the cultivation of trust towards individuals with differing cultural and

family backgrounds. On the other hand, an inflow of individuals bearing locally common

surnames decreases surname diversity. This movement of individuals, who are culturally

and genealogically related to the dominant groups within counties, may limit opportuni-

ties for novel knowledge acquisition, strengthen family ties or bonds among culturally

homogeneous groups, and nurture a low-trust mentality towards outsiders.

The IV approach isolates quasi-random variation in counties’ surname composition,

which stems solely from the historical interplay of two forces: (i) the staggered arrival of

migrants with different surnames and (ii) temporal variation in the relative attractiveness

of different destination counties for the average migrant arriving at the time. The interac-

tion of these two historical forces enables us to isolate variation in surname distributions

across counties that is essentially inherited from plausibly exogenous shocks to historical

migrations dating back far into the 19th century.

Using data across counties from 1900 to 1940, we find that a one-standard deviation

increase in surname diversity raises patents and breakthrough patents (per 1,000 people)

by 76-93% and 144-149%, respectively.

These results hold across key robustness checks. First, to scrutinize the potential

for reverse causality—that is, an increase in a county’s innovation leading to increased

diversity—we perform a falsification exercise in which we regress past patents on future

surname diversity. The coefficients from this exercise are near zero, or even negative,

and statistically insignificant, providing strong evidence against the concern that reverse

causality might confound our results.

Second, to address the potential influence of scale effects, including through immigra-

tion, we control for quasi-random variation in population size isolated by the IV procedure.

Once again, the estimates align with our primary findings.

Third, we confront the possibility that our results are region-specific within the U.S.,

given factors like racial segregation that could simultaneously affect innovation, sur-

name diversity and immigration. Estimating the impact of surname diversity on patents

across the four major U.S. census regions (Northeast, Midwest, South, and West), we find

consistently positive coefficients, most of which are accurately estimated.
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Fourth, recent contributions to research on social mobility (e.g., Clark, 2014; Barone

and Mocetti, 2021) raise the concern that unobserved characteristics embedded in specific

(rare) surnames, such as abilities, interests, or knowledge drive the results rather than

diversity per se. To explore this, we change the unit of observation from county-period to

surname-county-period and include surname-fixed effects in our specifications to absorb

any surname-specific traits. We find that our estimates remain highly significant across all

specifications and are minimally affected by the inclusion of these fixed effects.

Last, we address the potential concern that a direct effect of immigration, that is not

channeled through diversity, confounds our estimates. Replicating our analysis within a

subsample of U.S.-born individuals, we find effects of surname diversity on patents and

breakthrough patents that are virtually unchanged, reinforcing the interpretation that it is

diversity rather than immigration per se driving our results.

Next, we examine the mechanisms underlying our findings. First, we use the more

than 140,000 technology codes assigned by the United States Patent and Trademark

Office (USPTO) to categorize patents into three distinct types: (1) novel technologies, (2)

novel combinations, and (3) reuse/refinement combinations (we follow the methodologies

developed by Strumsky et al. (2011) and Akcigit et al. (2013)). We consider a patent a novel

technology for a given county if any of its technology codes appear for the first time in that

county and the grant year of the patent. If a patent is not classified as a novel technology

but includes a unique pairwise combination of technologies appearing for the first time

in the county and grant year, we categorize it as a novel combination. Any remaining

patents are classified as reuse/refinement combinations. We find robust positive effects of

surname diversity across all three patent types, with a particularly noteworthy impact on

novel combinations. This finding is consistent with the hypothesis that diversity spurs the

recombination of existing ideas.

Second, to shed more light on the social-psychological channel, we investigate the

causal relationship between surname diversity and the strength of family ties. We have

already identified a negative correlation between these two factors, but our examination

now moves beyond this to uncover causal effects. We find that an immigration-induced

increase in surname diversity leads to weaker family ties. This finding supports the notion

that immigration shrinks the relative sizes of family networks, increasing the relative

benefits of interacting with non-family members. This effect has downstream effects

on impersonal trust, which promote the exchange of ideas among diverse individuals,

increasing the probability of innovation.

Finally, we explore geographic spillover effects. Not only does a county’s own surname

diversity matter, but we also find effects from the diversity of neighboring counties within
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a 100-mile radius. This suggests that both local diversity and the diversity in neighboring

communities play a significant role in fostering innovation. People can derive inspiration,

knowledge, and novel ideas from individuals they regularly observe and interact within

their everyday activities.

Taken together, these results indicate that the diversity of social interactions is causally

linked to the rate, quality and type of patenting over much of U.S. history. The findings

point to an important role of social interactions between diverse individuals in driving

innovation.

1.1 Contributions and Related Literature

Understanding the drivers of innovation is central to many lines of research in economics,

from endogenous growth (Romer, 1990; Galor and Weil, 2000) to the origins of the

industrial revolution (Mokyr, 2002). Here, we focus narrowly on those recent lines of

research that connect most closely with our efforts.

To start, our paper picks up on ideas related to the impact of cities on innovation and

the role of agglomeration (Carlino and Kerr, 2015; Glaeser et al., 1992; Glaeser, 2011).

Research in this area emphasizes the importance of skill complementaries, localized

knowledge spillovers and other information transfers. Consistent with our approach,

several studies link innovation the formation of immigrant clusters and to a greater

diversity of social interactions (Kerr, 2010, 2008). This paper extends these observations

and insight both more broadly—across the entire U.S. and back to the mid-19th century—

and offers a viable approach to measuring the diversity of social interactions across many

contexts.

Further, our findings directly add to an emerging empirical literature on social in-

teraction and innovation, which explores how social institutions and organizations spur

innovation. For example, the closure of saloons during Prohibition reduced patenting

rates (Andrews, 2023), demonstrating the role of social establishments in innovation.

Similar mechanisms operate today, as illustrated by evidence suggesting that the spread of

coffee shops spurred innovation (Andrews and Lensing, 2020). Potential tapping the same

mechanism, the historical rise of economic societies in Germany reduced information

access costs, thereby fostering innovation (Cinnirella et al., 2022). Further back in time,

de la Croix et al. (2018) emphasize the role of pre-industrial apprenticeship institutions in

Western Europe, including journeymanship, that facilitated the exchange of knowledge

and ultimately contributed to Europe’s growth. These studies, among others, underscore

the premise that social interactions stimulate knowledge diffusion, contributing to human
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capital and innovation-based growth (Akcigit et al., 2018).

Our work intersects with studies exploring how various forms of diversity shape

economic prosperity. Galor (2022) emphasizes the importance of cultural diversity for in-

novation and stresses the importance of diversity as a key factor underlying cross-societal

differences in economic prosperity. Using measures of genetic diversity and appropriate

proxies, Ashraf and Galor (2013) provide cross-country evidence that genetic diversity fos-

ters innovation while it decreases trust, resulting in an inverse U-shaped relation between

genetic heterogeneity and economic prosperity. Conceptually, our measure of surname

diversity is related to genetic heterogeneity since, like genes, surnames are transmitted

vertically from parent to offspring, and research in population genetics has shown that un-

der certain conditions genetic heterogeneity can be approximated using surname diversity

(Barrai et al., 1996). Our paper supports Ashraf and Galor (2013)’s findings by provid-

ing causal evidence on the role of social interaction diversity on innovation within U.S.

counties. Furthermore, consistent with Ashraf and Galor (2013), we empirically establish

that the results are only driven by diversity per se by using surname-fixed effects to rule

out that specific surnames or any genes associated with such surnames are influencing

the results. That is, when comparing people with the same surnames, those located in

counties with greater social interaction diversity are more innovative.

Additionally, previous studies have highlighted the positive effects of birthplace or

country-of-ancestry diversity on local economic growth or wages, both within the U.S.

(Ottaviano and Peri, 2006; Ager and Brückner, 2013; Docquier et al., 2020; Fulford et al.,

2020) and across countries (Alesina et al., 2016). Our use of surname diversity comple-

ments Buonanno and Vanin (2017), who used it as a measure of social closure, although

their focus was on crime.

Our paper also enriches the literature connecting migration to innovation and economic

prosperity (Abramitzky and Boustan, 2017). Drawing on historical data from 1850 to 1920,

Sequeira et al. (2020) show how rising flows of immigrants into U.S. counties resulted

in faster rates of patenting. Based on an analysis of foreign patents and consistent with

the social interaction diversity hypothesis, the authors argue that much of this effect

occurred through making native-born Americans more creative—or at least more likely to

patent. Similarly, focusing on the period from the mid-1920s to the mid-1960s in the U.S.,

Moser and San (2020) show how anti-immigration policies in the form of quotas seeking

to preserve the ethnic homogeneity of 1890 America reduced the inflow of migrants

from Eastern and Southern Europe, which in turn stifled the production of innovations

in the scientific fields favored by such immigrants from these countries prior to the

quotas. Revealing the importance of social tie diversity, their work finds a 62% decline
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in patenting in these particular fields by native-born American scientists. The authors

argue that resident scientists lost the mentorship and fresh approaches that inevitably

flow in with researchers trained elsewhere. Similarly, Abramitzky et al. (2023) show that

quotas did not benefit US-born workers. On the flip side, exploiting the United States’

relative openness to immigrants fleeing Germany and Austria prior to World War II, Moser

et al. (2014) also demonstrate the impact of Jewish immigrant scientists on U.S. patents.

Their analysis reveals not only how refugee chemists stimulated innovation and interest

among native-born individuals, but even how their impact reverberated through the

social networks to impact the patenting of collaborators of the immigrants’ collaborators.

Our work supports these findings by highlighting an important channel through which

immigration acts on innovation, via increasing the diversity of social interactions.

After the U.S.’s broad immigration quotas were lifted in 1964, Burchardi et al. (2021)

provide causal evidence that by the mid-1970s, American innovation was again powerfully

fueled by immigrants, now coming from places like Mexico, China, India, Philippines, and

Vietnam. In our paper, we follow their instrumental variable approach to provide causal

evidence on the role of social interaction diversity for innovation. Importantly, while we

do not directly focus on the role of migration, our approach suggests that immigration

fuels innovation through its effect on the diversity of social interactions.

2 Concepts and Measurement

In this section, we first describe the recombinative process that arguably underlies much

innovation and then highlight supporting lines of evidence. Next, we detail our measure

of surname diversity, explain how and why it proxies for diversity of social interactions,

and then empirically demonstrate the key conceptual linkages using census information

on occupations and ancestral regions along with measures of psychological openness and

family ties. Finally, we discuss how we use U.S. patents as a measure of innovation.

2.1 Diversity of Social Interactions and Innovation

The notion that innovation emerges from the recombination of ideas, propelled by social

interaction, has venerable lineages in both economics (Schumpeter, 1983) and history

(Usher, 2013), and has received persistent attention ever since (Jacobs, 1969; Glaeser

et al., 1992; Henrich, 2009; de la Croix et al., 2018; Ridley, 2020; Johnson, 2011; Mokyr,

2015; Olsson and Frey, 2002; Jones, forthcoming; Nunn, 2021; Lucas Jr and Moll, 2014;

Akcigit et al., 2018). At the level of a population, the meeting and merging of people and
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ideas involves both an informational component—different people possess distinct ideas,

approaches, skills, and perspectives—and a psychological component—individuals have

to interact and ideally be willing to share their thoughts. Both elements are required since

a population of diverse minds that never interact will not generate any recombinations,

and a group of cognitive clones who freely interact but all have the same mentality will

also fail to generate recombinations. Thus, conceptually, social interaction diversity – the

extent to which the free flow of ideas among diverse individuals occurs – should capture

the capacity of local populations to generate novel recombinations, some of which will

turn into inventions (and for us, patents).

The plausibility of the process—as a hypothesis—is supported by three separate lines

of research that (1) suggest a central role of recombination in innovation, (2) reveal the

importance of cultural, genetic, disciplinary, and occupational diversity on innovation, and

(3) demonstrate the role of sociality on innovation by focusing on institutions that provide

opportunities for social interaction or on the role of trust or other psychological factors

that shape social interaction and exchange. We briefly discuss each of these research lines.

Empirically, the idea that all or most innovations are recombinations has been explored

both within economics and in related fields. Using 1.8 million U.S. patents from 1975-

2004 and their citations to other patents, Acemoglu et al. (2016) model the linkages

among patents to show how the production of new patents in particular technological

domains depends on developments in other related domains. That is, developments

in linked technological domains supply the constituent elements or insights for new

patents—supplying the fuel for recombination. Complementing this work and using the

full U.S. patent database, Youn et al. (2015) and Akcigit et al. (2013) use the detailed

patent class codes to show that most patents are indeed recombinations, drawing from

different technological classes. Pushing this further, Clancy (2018a,b) fits a recombinative

model of innovation that captures both the ‘fishing out’ of obvious recombinations and

the innovation-generating impact of each new recombinative idea (patent). The model’s

predictions are consistent with patterns found in U.S. Patents. Using scientific citations

to assess recombination, Uzzi et al. (2013) find that the highest-impact scientific papers

drew on journals rarely referenced by others in the same journal but were, in the main,

otherwise highly conventional in their referencing patterns. Finally, using detailed analyses

of 21,745,538 lines of computer code based on entries in programming competitions over

14 years, Miu et al. (2018) shows that entries largely copied prior earlier leading entries,

which were publicly available, and then added novelty by recombining code drawn from

other prior entries. Recombination was, by far, the key element that led to the gradual

improvement of these algorithms over time. Finally, Thagard (2012) coded lists of the top

9



100 most important inventions and scientific discoveries of all time and found them all to

involve conceptual recombinations. Based on work in cognitive science, he argues that

all creativity arises from recombination based on neuroscientific models of how brains

actually form new ideas.

Alongside such evidence for the centrality of recombination for innovation, many

researchers have studied the impact of diversity on innovation. As summarized above,

researchers have linked measures of genetic, birthplace, academic discipline, and ethnic

diversity to measures of innovation (Ashraf and Galor, 2013; Alesina et al., 2016; Docquier

et al., 2020; Suedekum et al., 2014; Ozgen et al., 2014; Page et al., 2019). AlShebli et al.

(2018), for example, show how both the ethnic and disciplinary diversity of coauthors are

linked to scientific impact. Conceptually, our approach suggests that such diversity fuels

innovation because these factors are associated with individuals possessing different skills,

techniques, knowledge (explicit beliefs), tacit know-how, intuitions and perspectives.

Finally, both social institutions and psychological traits that facilitate the exchange

of ideas have been linked to innovation. As noted above, saloons, cafés and knowledge

societies have all been linked to innovation (Mokyr, 1995; Andrews, 2023; Andrews and

Lensing, 2020; Cinnirella et al., 2022; Henrich, 2020). Similarly, psychological traits that

motivate people to (1) tolerate, trust and cooperate with strangers and (2) reveal non-

conforming ideas, views and perspectives have been linked to innovation. For example,

focusing on trust at the levels of countries and U.S. states, Algan and Cahuc (2014) reveal

positive correlations between impersonal trust, based on the generalized trust question,

and three measures of innovation. Similarly, using U.S. firm-level data, Nguyen (2021)

shows that more trusting CEOs, based on their national ancestry (marked with surnames),

generate an uptick in innovation upon their arrival. Finally, using national-level measures,

Gorodnichenko and Roland (2016) link individualism to innovation. Conceptually, these

social institutions and aspects of psychology foster the flow of ideas among diverse minds,

increasing the likelihood of useful recombinations.

The economics literature often describes the flow of information or exchange of skills

among minds as ‘knowledge spillovers’ or ‘skill complementarities.’ While our approach

here certainly includes these, we think it is important to consider a broader class of cultural

and cognitive diversity (Muthukrishna and Henrich, 2016; Page et al., 2019). Across popu-

lations, people rely on different languages, thinking styles, decision heuristics, reading

preferences, metaphors, attentional biases and ritual practices (Henrich, 2020; Nisbett,

2003). Work in cognitive science, for example, indicates that speaking and thinking in

different languages has consequences for people’s perceptions, attention and reasoning

(Blasi et al., 2022). Indeed, we show that our measure of surname diversity accounts for
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substantial variation in innovation across U.S. counties even when occupational diversity

is held constant (Appendix Table B4).

As such, in this paper we take a broad perspective on the link between diversity and

innovation. A more diverse local population may increase the diversity of the workforce

which then fuels innovation through skill complementarities in production teams. Yet,

casual observations of and interactions with people in non-professional contexts can

likewise inspire and fuel recombinative processes and more so in highly diverse local

populations. So, while we do not disentangle these different channels, the fact that most

patents are attributed to single inventors suggests that at the turn of the 19th century, the

latter channel—interactions other than within production teams—was likely important.

The average number of inventors per (breakthrough) patent is roughly 1.4 and remarkably

flat over most of the period of our analysis, as shown in Appendix Figure C7.2

2.2 Operationalizing the Diversity of Social Interactions with Surnames

To conceptualize the diversity of social interactions, consider a subpopulation consisting

of N individuals, K groups, and each individual belongs to exactly one group, k, with size

Nk such that
∑k=K
k=1 Nk =N . Each group carries unique information (e.g., skills, know-how,

metaphors), labeled as sk ∈ {a,b,c,d, ...} and sk , sh for all k , h. In practice, these groups

could be extended families, occupations, castes, clans, ethnicities, birth country, or other

geographical units, though below we will explain why surnames are a particularly potent

partition. When individuals from different groups meet, the likelihood of recombination

and innovation increases. Information theory tells us that the average informational

content (or the innovation potential) of such a population (Shannon, 1948):

E = −
∑

pk log2pk (1)

where pk = nk
N is the probability that a person with group affiliation k is drawn and log2pk

is the informational content embedded in this individual (expressed in bits). This is a

version of Shannon entropy.

Shannon entropy is a central concept in information theory and is widely used in many

scientific disciplines. The term − log2pk is the self-information of subgroup k and captures

2At the same time, our data do permit us to test whether patenting teams (those with multiple authors)
are more likely to be breakthrough innovations when the surname diversity of the team is greater. Indeed,
as Appendix Table C2 shows, if we focus only on patents with multiple inventors (2+), those with only
inventors who carry the same surname are less likely to generate breakthroughs. This holds with both year
and technology category fixed effects. While this cannot explain our overall effects, because most patents are
solos, it does suggest that surname diversity operates at the level of the individual patent.
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the level of surprise (or the informational content of a specific outcome). The negative

log reflects that rarely-encountered groups carry more surprise (or more information)

compared to more frequent encounters. To arrive at Shannon entropy, the self-information

is weighted by the probability of its occurrence and summed over all possible outcomes.

For example, if the population only consists of one group k, the outcome of a draw is

not surprising (the outcome can be predicted perfectly), the entropy is 0, and thus, no

recombinations can arise through social interaction. On the other hand, entropy for a

population with a fixed number of groups is maximized if all groups are equal in size. An

individual who goes out for a random social interaction in such a diverse population is

most likely to observe someone different from themselves. A random draw will thus have

more informational content (in expectation), which is reflected by higher entropy.3

Conceptually, we expect surname diversity to proxy for both the informational and

psychological aspects of social interaction diversity. Informationally, we hypothesize—and

later provide evidence—that much of the important informational diversity occurs among

groups identified by surnames. The idea here is that people who hold the same surnames

share much information among themselves, which can occur through vertical as well as

both horizontal and oblique forms of cultural transmission (Cavalli-Sforza and Feldman,

1981; Bell et al., 2019). At the same time, people who hold different surnames differ in

their socialization and their social networks as well as their cultural heritage; ultimately,

this results in the clustering of many kinds of information—skills, know-how, customs,

languages and thinking styles—within groups defined by surnames.

Socially and psychologically, we hypothesize—and later test empirically–that surname

diversity is associated with weaker family ties and lower trust in strangers. Consistent with

the literature on the impact of kinship and family ties on sociality (Enke, 2019; Alesina

and Giuliano, 2014; Schulz et al., 2019), we suspect this holds because rising surname

diversity both constrains people’s ability to meet their needs within their own (shrinking)

group and implies more opportunities for exchanges outside of one’s group.

Notably, this proposal may run counter to the intuitions of many readers, who suspect

that rising diversity will create social miscoordinations or activate in-group biases that

inhibit social interactions, thereby thwarting increases in the opportunities for recombi-

native innovation created by informational diversity. First, if this does indeed play an

3In economics, a Herfindahl measure, which population geneticists call Isonomy, is frequently used to
capture diversity. For our purposes, however, Shannon’s entropy has several advantages to conceptualize
informational diversity and has favorable mathematical properties (Carcassi et al., 2021). In particular,
a Herfindahl approach underweights the importance of rare surnames (pk vs. log2pk), i.e., under the
assumption that surnames carry unique pieces of information, rare surnames are more “valuable”—they
carry a higher expected surprise. Empirically, the two measures are highly correlated in our setting (ρ = 0.80,
see Appendix Table B1).
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important role, we should detect it empirically by observing a negative or concave relation-

ship between our surname entropy measure and innovation. As we will show, we do not see

this. Second, conceptually, it is important to distinguish between finely-grained partitions

like surnames from larger-scale divisions like tribes, ethnicities and nationalities. As the

size of extended families and surname groups shrink relative to the entire population,

interactions outside of one’s own group—even if riskier—become both more necessary and

more profitable. So, unlike larger-scale measures of diversity, greater surname diversity is

more likely to also create greater opportunities for beneficial exchange with those outside

one’s group. Relatedly, a large body of anthropological and other evidence indicates that

the scales of preferential interactions occur at the boundaries of languages, ethnicities,

social norms and religions (Handley and Mathew, 2020; White et al., 2021; Desmet et al.,

2017). Consistent with this, we will see that diversity measures based on national origins

and race both do not create the same convex relationship with innovation, and at least

in the case of race diversity it is inversely U-shaped. Indeed, consistent with our view of

surname diversity (but not other forms of diversity), we will show that, ceteris paribus,
surname diversity is associated with possessing more sociality as captured by generalized

trust. This suggests that it is important to distinguish between different forms of diversity.

2.3 U.S. Surname Diversity 1850-1940

Based on the U.S. census, we calculate a measure of surname diversity for each U.S. county,

i, for each time-period, t:

Ei,t = −
K∑
k=1

pk,i,t log2pk,i,t (2)

where pk,i denotes the fraction of people with surname k who live in county i and K

denotes the total number of distinct surnames.

Our data source is the full-count Integrated Public Use Microdata Series (IPUMS)

compiled by Ruggles et al. (2021) and available on the NBER servers. We use the nine

waves from 1850 to 1940 which contain the variable namelast of all individuals and

county identifiers.4 We implement the Philips (1990) phonetic algorithm metaphone to

deal with misspellings in the name string. Following Burchardi et al. (2021), we also obtain

4We harmonize all historical Census data to the 2000 boundaries of U.S. counties using the Ferrara
et al. (2021) crosswalks. Specifically, we use the M4 weights that account for urban and rural areas and
topographic suitability. We use 2000 as the reference year because the patent dataset is geocoded to 2000
county boundaries. The harmonization procedure sometimes results in counties with very few people,
predominantly in the Midwest and West, and for Census years before 1900. As a remedy, we winsorize all
harmonized variables from the lower tail at the 1% level.

13



Figure 1: Geographic variation in surname diversity in 1940
Notes: The figure shows standardized county-level surname diversity residualized by log county
population in 1940.

the variables age and yrimmig (the year of immigration) to estimate surname diversity for

the mid-decades 1895, 1905, 1915, and 1925 by removing all individuals who were born

or immigrated after the mid-decade. Ideally, we would also remove all individuals who

moved to the county after the midyear, but this information is not available.

Figure 1 maps our measure of surname diversity for U.S. counties in the year 1940,

partialing out population size.5 Clear geographical patterns emerge. While counties in

California and most of the Northeast score high on surname diversity (independent of

population size), Utah and the Southern states score substantially lower, i.e., they are

more homogeneous with regard to surnames and hence less culturally diverse. Surname

diversity correlates moderately with more common diversity measures based on country

of birth and occupation (see Appendix Table D1). This moderate correlation provides

support for the notion that surname diversity not only encompasses variation within these

broader categories but also captures a so far unobserved slice of diversity at the level of

families.
5Appendix Figure D1 reports the spatial variation in surname diversity unconditional on log county

population.
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2.4 Surnames Capture Relevant Social Interactional Diversity

Here, we empirically establish that our measure of surname diversity captures both aspects

of the informational dimension—i.e., surnames are indicative of occupation and ancestral

origins—and the psychological aspect— i.e., surname diversity predict contemporary sur-

vey measures of impersonal trust and historical strength of family ties. Our endeavor here

is not to establish causal linkages, but merely to reveal the kinds of empirical relationships

one would expect if surname diversity indeed captures diversity of social interactions, i.e.,

the degree that exchange of ideas among diverse people occurs.

Recent work in the social mobility literature demonstrates that surnames capture

unique skills, socialization, and know-how (Clark, 2014; Güell et al., 2015; Barone and

Mocetti, 2021). This is not surprising given that surnames are indicative of the ancestral

heritage of origin regions, professions, and (family) lineages. And even though very fre-

quent surnames will capture family-, or profession-specific traditions to a lesser degree,

these surnames nevertheless still capture unique knowledge. For example, “Smith” and

“Johnson” are the most frequent surnames in the 1880 census. The Smiths outnumber the

Johnsons by a factor of about 1.65 times. However, among individuals who reported black-

smith as their occupation, there are 2.46 times more Smiths than Johnsons. This makes

sense given that the surname "Smith" has a long history of association with metalworking

and blacksmithing, and the data show that it is still a relatively more common surname

among metalworkers in 1880.

To gain a systematic sense of the degree to which surnames reflect unique knowledge in

our data set, we calculated Herfindahl concentration measures that capture how strongly

surnames cluster in several different domains including occupations, country or region

of origin, and technology categories of patents. The construction of the concentration

measure for each domain proceeds in two steps. For example, in the case of occupation,

we first calculate a normalized Herfindahl index for each surname across all occupations.

This gives us a measure of how strongly a specific surname clusters in occupations. We

normalized this measure such that it is zero in case of a uniform surname distribution

and one if the surname is only found within one single occupation. Second, we average

the surname-specific Herfindahl indices across all surnames, weighted by the number of

people with a given surname. This averaged index reveals the overall surname concen-

tration in occupations based on the U.S. population. In the same way, we construct the

concentration measures for the other domains.

Table 1 reports the surname concentration in the first row. For occupations, columns

1 to 4 reveal substantial concentrations of specific surnames in 1880 and 1940 based on

both the full sample (columns 1 and 2) and an immigrant sub-sample (columns 3 and 4).
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Table 1: Surnames cluster in occupations, birthplaces, and patent fields

Occupation
Country
of origin

Region
of origin

USPO tech
category

Sample: All Immigrants Germans Inventors

Year: 1880 1940 1880 1940 1880 1940 1880 1880-9 1940-9

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Surname 0.117 0.045 0.097 0.065 0.393 0.227 0.189 0.092 0.068
U.S. county of residence 0.171 0.071 0.153 0.080 0.288 0.130 0.159 0.014 0.017
Country of origin 0.120 0.043 0.096 0.060
Age 0.154 0.049 0.101 0.048

Notes: The table reports normalized Herfindahl indices, where larger values indicate greater concen-
tration. The indices are calculated as the average Herfindahl indices of the variable in the header
computed for each value of the variables on the left. For example, we calculate the normalized Herfind-
ahl index of occupations for each surname and then average over all surnames using the number of
individuals with a given surname as weights. Column 1 (2) includes all individuals in the 1880 (1940)
census. Columns 3 and 5 (4 and 6) include all immigrants in the 1880 (1940) census. Column 7 restricts
the sample to German immigrants in 1880. Column 8 (9) includes all inventors of patents issued from
1880 to 1889 (1940 to 1949). In column 7, we use the 31 subnational regions of origin of German
immigrants recorded by the Census (the variable bpld with codes 45301 to 45361).

Focusing on ancestral origin, Columns 5 to 7 reveal immigrants’ surname concentration

across originating countries (columns 5 and 6) and regions within Germany (column 7);

the latter is restricted to German immigrants because fine-grained subregional birthplace

data are available for this country. Lastly, columns 8 and 9 report surname concentrations

across technology categories (USPO).6

The concentration measures in Table 1 show a consistent pattern: surnames are not

distributed uniformly. The concentration indices are well above zero. For example, in

the year 1880, two people with the same surname have a roughly 12% (above chance)

probability of holding the same occupation (out of 249 possible occupations), or two same-

surname immigrants have about a 39% probability of being from the same country of

origin. Further, Column 7 shows that surname even indicates the region of a country where

people come from. Same-surname immigrants from Germany have a 19% probability of

being from the same inner-German region (out of 31 regions).

Having established that certain surnames concentrate in occupations, originating

countries, regions, and patent categories, we can put the concentration indices into context

by comparing them to measures of residence-county (row 2), country of origin (row 3), and

6The patent data set does not allow us to uniquely identify inventors. Hence, we are unable to detect
inventors who file multiple patents in the same technology category, which will bias the concentration
upwards. We still report this statistic because this bias is likely small given the low level of regional
clustering in this variable (row 2), where we would expect a similar upward bias if regional mobility among
inventors is not very high.
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age (row 4) concentration. In the year 1880, occupations are relatively more concentrated

in counties compared to surnames, though this difference markedly narrows in the year

1940 (row 2). Surnames are substantially more indicative of originating countries and

regions compared to immigrants’ residence counties. Compared to country of origin and

age, surnames are about equally indicative of occupation (rows 3 and 4).

A potential concern is that, although surnames may often be nested within courser

categories like country of origin, regional birthplace and race, there have been historical

processes that muddy this hierarchical nesting. For example, many formerly enslaved

Africans carry the European surnames of their enslavers (Cook et al., 2022). Surname

diversity may thus underestimate the diversity stemming from African cultural heritage.

To address this, we construct a more finely-grained measure and check how it relates

to our main indicator. This measure creates additional ‘surname categories’ based on

race-surname combinations. For example, the number of white ‘Jacksons’ enters the

diversity indicator as a separate category from the number of black ‘Jacksons’. Similarly,

we calculate a surname diversity indicator that further differentiate along country of birth.

Appendix table B1 shows that the main surname diversity indicator in 1940 is almost

perfectly correlated with those more finely-grained diversity measures.7

Moving now to focus on the social-psychological side of surname diversity, we analyze

the correlation between surname diversity in 1940 with responses to the generalized trust

question in the General Social Survey (waves from 1972 to 2016). Since the observations of

surname diversity in 1940 precede the trust data by several decades, we supplement this

analysis with an analysis of the correlations between surname diversity and the strength

of family ties from 1860 to 1940 (Raz, 2023).

Appendix Figure C1 depicts the relationship between surname diversity in 1940 and

generalized trust (1972-2016 in the GSS). A positive relationship emerges both in the

raw data and conditional on state fixed effects and log county population, indicating

that greater surname diversity is associated with more trust. Examining the strength of

this relationship over time, the bottom panel in Appendix Figure C1 reveals that this

relationship is quite stable from 1870 to 1940 with a magnitude of roughly 0.1.

Appendix Figure C2 shows a negative relationship between surname diversity and

the strength of family ties.8 Individuals in counties with higher surname diversity tend

7Furthermore, we obtain similarly high correlation coefficients between the main surname diversity
indicator and indicators that are based on (i) phonetically uncorrected surnames, (ii) surnames of men only,
and (iii) surnames of whites only.

8Here, following Raz (2023), the strength of family ties is captured by the first principal component of
four underlying variables: (i) the divorce-to-marriage ratio, (ii) the share of elderly people living without a
relative, (iii) the share of people living with at least one person who is not their relative, and (iv) the mean
size of families.
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to have weaker family ties than those in counties with lower surname diversity in 1940.

The relationship becomes even stronger when we control for log county population size

and state fixed effects. Investigating the strength of this relationship over time, Appendix

Figure C2 shows how the magnitude of the relationship increases over time, from around

−0.2 between 1860-80 to roughly −0.60 by 1940.

Notably, none of these patterns exist for the more conventional measures of diversity

based on country of birth and race (Appendix Figure C3 to C6). These findings underline

the distinctive nature of surname diversity compared to these other types of diversity.

Overall, the analyses presented in this section provide prima facie evidence that our

measure of surname diversity captures both the informational and social components of

recombinative innovation.

2.5 Measuring Innovation

To measure innovation, we rely on patent data. Our first measure is the total number of

patents per 1,000 individuals. We calculate this measure for each U.S. county for 5 and

10-year periods from 1850 to 1940 based on the Comprehensive Universe of U.S. Patents

(CUSP) data set compiled by Berkes (2018). The primary source of this data set is Google

Patents supplemented with information from other sources.

To address the concern that this indicator captures a host of patents that do not

meaningfully push the knowledge frontier forward (and is thus noisy), we rely on a second

indicator, breakthrough patents (per 1,000 individuals). This indicator is created by Kelly

et al. (2021) and captures highly important patents. Applying textual analysis, they

compare a given patent to previous and subsequent ones. Breakthrough patents fulfill

two criteria: they are distinct from previous patents (capturing novelty) and have a high

similarity to subsequent ones (capturing impact). For more details on both indicators, see

Appendix A.

Of course, as a measure of innovation, patent data suffers from a number of well-known

and widely discussed shortcomings (Griliches, 1990; Moser, 2013; Lerner and Seru, 2022),

including the fact that many innovations are never patented, industries vary widely in

their tendencies to patent, types of inventions vary in how easily they can be patented,

and that more patenting in a particular technology category may inhibit innovation rates.

Though, as we show in the appendix our results hold in specifications that control for

technology category fixed effects (see Appendix Table B14).
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Figure 2: Bivariate relationships between surname diversity and our patent-based
innovation measures

Notes: County-level data from 1850 to 1940 (excluding the midyears). Observations are weighted
by county population in 1850 and residualized by census year fixed effects. Binscatter plot created
using the R package written by Cattaneo et al. (2019).

3 Least-squares regressions

Our analysis is structured into four sections. Here, in section 3, we begin by reporting

the estimates from a battery of least-squares regressions to establish a robust positive

relationship between sociocultural diversity and innovation using the full decadal data set

from 1850 to 1940. In the next section 4, we provide causal evidence on this relationship

based on our instrumental variable strategy that exploits the pseudo-random nature of

immigration flows into U.S. counties. Section 5 supplies a variety of additional robustness

and sensitivity checks including the use of surname-fixed effects. Finally, in Section 6, we

delve into the mechanism underlying our main result.

Displaying the relationship between surname diversity and innovation visually, Fig-

ure 2 reveals tight, strong relationships. These patterns indicate few outliers and offer no

hint of a ‘hump shape’; instead, the plots suggest convexity in the relationship between

surname diversity and innovation—that is, greater surname diversity is associated with

relatively more (breakthrough) patents per capita. By contrast, the relationship between

country of birth diversity and innovation is more linear (Appendix Figure B3), and the re-

lationship between race diversity and innovation is concave and hump-shaped (Appendix

Figure B4).
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Table 2 reports the least-squares estimates of the relationship between surname di-

versity and innovation of both patents per 1,000 people and breakthrough patents per

1,000 people in Panels A and B, respectively. Column 1 reports the bivariate relationships

between the two innovation outcomes and surname diversity (including period year fixed

effects to control for trends affecting surname diversity and innovation across all counties).

We find positive and significant relationships: a one standard deviation higher surname

diversity in a county is associated with approximately 1.76 more patents per capita (Panel

A) and 0.15 breakthrough patents per capita (Panel B). Relating these coefficients to the

mean of the dependent variable suggests that a one standard deviation increase in surname

diversity is associated with roughly 80% more patents and slightly more breakthrough

patents.

For ease of exposition, Table 2 reports linear specifications which do not take into

account the non-linearities which are visible in Figure 2. However, the size of the estimated

linear approximations (expressed in percent) is very similar in case we apply the inverse

hyperbolic sine (IHS) transformation to the outcome variable (see Appendix Table B6). A

visual check confirms that such a transformation of the dependent variable linearizes the

relationship to some degree, which is displayed in Figure B6. Throughout the paper we

report on the untransformed dependent variable because the IHS transformation is not

scale invariant (Aihounton and Henningsen, 2020). In any case, all results are qualitatively

and quantitatively similar when using IHS transformed dependent variables.

In column 2 of Table 2, we report estimates of the relationship between innovation

and (standardized) country of origin diversity, a more conventional measure of cultural

diversity (e.g., Ottaviano and Peri, 2006; Ager and Brückner, 2013; Alesina et al., 2016). We

find a qualitatively similar relationship with innovation suggesting that country-of-birth

diversity likewise fuels the recombinative processes.

In column 3, we include both diversity measures in the regression. The coefficient of

surname diversity is significant; surname diversity hence predicts innovation conditional

on controlling for country of origin diversity. This suggests that it captures a distinct type

of diversity.

In column 4, we include the share of immigrants from each of the 59 originating

countries consistently recorded in the census data between 1850 and 1940 to account for

the role of immigration from specific countries. We find that the inclusion of these variables

hardly changes the coefficients on surname diversity. This suggests that recent immigration

does not confound the relationship between innovation and surname diversity.

In column 5, we add period-state fixed effects. The coefficients on surname diversity

are virtually unchanged; thus, the relationship between surname diversity and innovation
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Table 2: Least-squares estimates: surname diversity and innovation from 1850s to 1940s

(1) (2) (3) (4) (5) (6)

Panel A:
Patents per 1,000 people
(mean = 2.26, sd = 2.58)

Surname diversity 1.76∗∗∗ 0.735∗∗∗ 0.705∗∗∗ 0.856∗∗∗ 0.502∗∗∗

(0.175) (0.156) (0.160) (0.176) (0.168)
Country of origin diversity 1.64∗∗∗ 1.10∗∗∗ 1.18∗∗∗ 1.07∗∗∗ 0.165

(0.093) (0.181) (0.175) (0.232) (0.176)

R2 0.503 0.550 0.574 0.607 0.691 0.864

Panel B:
Breakthrough patents per 1,000 people

(mean = 0.18, sd = 0.24)

Surname diversity 0.154∗∗∗ 0.064∗∗∗ 0.059∗∗∗ 0.064∗∗∗ 0.044∗∗

(0.021) (0.012) (0.012) (0.015) (0.021)
Country of origin diversity 0.144∗∗∗ 0.098∗∗∗ 0.106∗∗∗ 0.113∗∗∗ 0.004

(0.013) (0.019) (0.018) (0.024) (0.015)

R2 0.416 0.459 0.480 0.524 0.619 0.787

Immigrant shares by country of origin (59 shares) X X X
Period fixed effects X X X X
Period-State fixed effects X X
County fixed effects X
Observations 22,222 22,222 22,222 22,222 22,222 22,222

Notes: The table reports estimates of least-squares regressions of innovation outcomes on surname diversity
and immigrant diversities. In Panel A (Panel B), the outcome is number of (breakthrough) patents issued in a
given period per 1,000 people. The unit of observation is a county-period from 1850 to 1940 (excluding the
midyears). Observations are weighted by county population in 1850. Standard errors are clustered on states
and reported in parentheses. All independent variables are standardized to mean zero and unit variance. The
sources and construction of all variables are explained in Appendix A. ***, **, and * indicate significance at the
1%, 5%, and 10% levels.

is not driven by persistent or time-varying differences across states, including North-South

differences (e.g., Cook, 2014).

In the final specification in column 6, we include county fixed effects to examine the

relationship between changes in surname diversity and innovation. This specification

harnesses only the variation within each county over time that is distinct from other

counties within the same state and is not due to immigration. As reported in column 6,

the estimates for surname diversity shrink but still remain large: a one standard deviation

increase in surname diversity is associated with an increase of roughly 23% in both patents

and breakthrough patents per 1,000 people. Interestingly, while the coefficient on surname

diversity remains large and well estimated, the coefficients on country-of-origin diversity

are no longer significant when surname diversity is held constant.

Although our specification focuses on innovations per capita, there remains a concern

that this specification is restrictive and does not adequately capture population-scale
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effects. To address this, Appendix Table B2 controls for counties’ population size. The coef-

ficients on surname diversity remain large, well-estimated, and robust across specifications

for both of our measures of innovation.

To gain further insights into the relationship between surname diversity and other di-

versity measures, Appendix Table B4 reports on regressions that also include diversity mea-

sures based on race and occupations. In all specifications, we find that surname diversity

is consistently and at least weakly significantly positively associated with patents—even

in the case of occupational diversity which likely overlaps with surname diversity.

In mechanism section 6.4, we discuss education and show that surname diversity is

a significant predictor of innovation controlling for the average education of a county’s

population in the year 1940.

Lastly, to check the stability of the relationship between surname diversity and innova-

tion over time, we estimate a coefficient for surname diversity for each decade separately

(in a specification that otherwise parallels column 1 of Table 2). Appendix Figure B1 shows

that all the estimated coefficients for surname are positive, significant and sizeable.

4 IV estimates

The previous section established that surname diversity strongly correlates with the

quantity and quality of patenting across counties from 1850 to 1940. However, reverse

causality or unobserved factors may bias these estimates. For example, it is possible

that migrants (with rare surnames) tend to move to innovative counties and that this in-

migration then increases surname diversity (though we controlled for immigration in some

specifications). Similarly, highly-skilled people, who are more likely to innovate, might

prefer to live in more diverse counties. In both cases, we would observe a relationship

between surname diversity and innovation even if no causal relationship exists.

Given such concerns, we implement an estimation strategy that isolates quasi-random

variation in surname diversity. We use this variation as an instrumental variable (IV) for

actual surname diversity to provide estimates that allow us to shed light on the causal

effect of a change in surname diversity on innovation in a county-level panel from 1900 to

1940. As we will detail below, the benefit of this strategy is that it accounts for reversed

causality and local unobservable factors that simultaneously affect innovation and surname

diversity.
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4.1 Construction of the Instrument and Estimating Equations

The central idea underlying our IV strategy arises from the observation that immigration

is a major determinant of the change in counties’ surname diversity. This fact allows us

to build on recent advances in the immigration literature to isolate variation in surname

diversity that is independent of any unobserved determinants of innovation that may bias

our estimates. This approach implies that we are estimating the local average treatment

effect (LATE) of the change in surname diversity on innovation that is induced by immi-

gration to the US. As such, we are not capturing the average treatment effect that would

also take changes in surname diversity into account that stem from births, deaths and

domestic migration.

We note that it is crucial to distinguish between estimating the immigration-induced

LATE of diversity on innovation and investigating the impact of immigration (measured

by the inflow of immigrants) on innovation. While we utilize the changes in surname

composition resulting from immigration, it does not imply a straightforward monotoni-

cally increasing relationship between immigration inflow and surname diversity. In some

instances, an influx of immigrants might decrease surname diversity, while in others, it

may increase it. To reinforce this point, we demonstrate that even when controlling for

the migration-induced changes in population, our IV results on surname diversity remain

consistent (see section 4.2 for a detailed discussion on identification). The key aspect of

our IV strategy is that migration affects surname composition (in complex ways), and we

can capture quasi-random variation in immigration to create an instrument of surname

diversity.

Specifically, we adapt the IV strategy developed by Burchardi et al. (2019) to our context.

The construction of this instrument requires two steps. First, we isolate quasi-random

variation in the stock N t
k,i of each surname k residing in county i in census year t based on

historical migration patterns. Second, we compute the instrument for surname diversity

by calculating diversity based on these (predicted) quasi-random stocks of surnames N̂ t
k,i .

We now explain the details of these two steps.

Step 1: Isolating Quasi-random Variation in Counties’ Surname Stocks We adopt Bur-

chardi et al. (2019)’s historical push-pull approach to isolate quasi-random variation in the

composition of surnames in U.S. counties. The approach assumes that a combination of

push and pull factors jointly determines the allocation of immigrants with given surnames

to counties and that the historical interactions of these two factors generate quasi-random

variation in surname stocks that persists over time.

Empirically, the push factor is summarized by the total number of immigrants with a
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given surname entering the U.S. during a given period; the pull factor is the attractiveness

of a county in this period, which is operationalized by the share of immigrants (out of

all immigrants entering the US) who settle in this county in the same period. These two

factors vary over time, and their interactions, which we can trace back to 1880, generate

quasi-random variation in a county’s distribution of surnames.

Formally, we predict the stock of people N t
k,i (in thousands) with surname k residing in

county i in year t by estimating the following zero-stage equation:

N t
k,i = δi + δk,r(i) +

t−1∑
τ=1880

bτ Iτk,−r(i)︸   ︷︷   ︸
Push

Iτi,−k
Iτ−k︸ ︷︷ ︸
Pull

+
t−1∑

τ=1880

dτ
Iτi,−k
Iτ−k

+ui,k , (3)

where i indexes counties, k denotes surnames, t indexes census years from 1900 to 1940,

including the midyears, and r(i) denotes the census region containing county i. The

variable Iτk,−r(i) is the push factor in the period ending in year τ (1880, 1895, 1900, 1905,

1910, 1915, 1920, 1925, 1930). It is given by the total number of migrants (in thousands)

with surname k who arrive in the U.S. during this period and settle outside the region

containing county i. The pull factor captures the relative attractiveness of a specific county

i during the period ending in τ . It is given by the share of migrants a county attracts
Iτi,−k
Iτ−k

,

where Iτi,−k is the total number of migrants who settle in county i during this period and

who do not have surname k, and Iτ−k =
∑
i I
τ
i,−k is the total number of migrants who settled

in the U.S. during the same period and who do not have surname k.9

Core to the identification strategy are the historical interactions between the push

and pull factors in each period τ (up to period t − 1). We estimate a coefficient for this

interaction, bτ , for each period stretching back to the year 1880 (the earliest period for

which we have data on immigrants or their parents). That is, equation (3) attributes the

stock of each name in a county (in a given year t) to the past inflow of migrants who are

allocated according to the push-pull factors over the course of several decades.

In addition to the push-pull factors, equation (3) also includes the term
∑t−1
τ=1880d

τ I
τ
i,−k
Iτ−k

,

i.e., the relative share of migrants which settle in a county in each period τ . This term

captures the time-varying relative attractiveness of a county in the past. It isolates the

push-pull instruments from county-level conditions that drew migrants in each period

9We follow Burchardi et al. (2019) and estimate equation (3) using a leave-out approach. That is, we
exclude migrants with surname n from the pull factor (denoted by −k), and we exclude the census regions r
that county i is located in from the push factor (denoted by −r(i)). This leave-out approach ensures that
our estimates are not driven by the settlement outcomes of migrants with surname k who settled in region
r(i). We note, though, that at the level of surnames, this is likely less of a concern because the fractions of
surnames relative to all migrants are small.
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τ up to t − 1, which may affect innovation still in period t. Moreover, δi , denotes county

fixed effects. They remove any time-invariant factors that make specific counties more

attractive to all migrants. δk,r(i) are name-region fixed effects. They remove time-invariant

unobserved factors that may make specific census regions more attractive to migrants with

certain surnames.

Based on equation (3) we estimate the coefficients b̂τ for each period τ and then

calculate the predicted stocks of name k in county i at time t as

N̂ t
k,i =

t−1∑
τ=1880

b̂τ
Ç
Iτk,−r(i)

Iτi,−k
Iτ−k

å⊥
where b̂τ is the estimate of bτ from equation (3), and

(
Iτk,−r(i)

Iτi,−k
Iτ−k

)⊥
are residuals of a

regression of the push-pull interaction, Iτk,−r(i)
Iτi,−k
Iτ−k

, on δi , δk,r(i) and
Iτi,−k
Iτ−k

. This residualization

ensures that the predicted stock of each name N̂ t
k,i relies on the component of the push-

pull factors that is orthogonal to the control variables included in equation (3). This

orthogonalization is particularly useful with regard to
Iτi,−k
Iτ−k

, because it ensures that the

instrument is orthogonal to the past attractiveness of a county, which could be driven by

an underlying factor that also determines innovation decades later.

Step 2: Calculating the Instrument for Surname Diversity In step 2, we compute the

instrument for surname diversity by applying the entropy formula on the predicted stock

of each surname N̂ t
k,i : ¤�Surname diversityti = −

∑
k

(
N̂ t
k,i∑

k N̂
t
k,i

log

(
N̂ t
k,i∑

k N̂
t
k,i

))

We repeat steps 1 and 2 eight times to obtain an instrument for diversity in each of the

eight periods (ranging from t = 1900 to t = 1940) that form part of our panel analysis.

Step 3: IV Estimating Equations We implement our IV procedure using 2SLS. The

equations are given by equations (4) and (5), where equation (4) is the first stage and

equation (5) is the second stage.

Surname diversityti = γ ¤�Surname diversityti +µt,s(i) +µi + vti (4)

Y ti = β Surname diversityti +αt,s(i) +αi + εti (5)
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where i indexes counties, s states, and t census years (including the midyears). Y ti is county

i’s number of (breakthrough) patents per 1,000 people in the five-year period starting in t.

Surname diversityti is county i’s surname diversity in t; and ¤�Surname diversityti county i’s

predicted surname diversity in t described above. The coefficient β is our main interest.

Equations (4) and (5) also include state-period fixed effects, µt,s(i) and αt,s(i), and county

fixed effects, µi and αi . By including these fixed effects, β is estimated from changes in

surname diversity within the same county over time while controlling for persistent and

time-varying differences across states.

In addition, several specifications include county-specific linear time trends such that

β captures the relationship between deviations in the changes in diversity and innovation

within counties over time relative to their overall trend. Comparing the estimates of these

specifications to the baseline estimates of equation (5) provides another exogeneity check

of the instrument. If the estimates remain similar, this suggests that the instrument is

orthogonal to persistent or gradually growing county-level confounding factors.

4.2 Identification

Our identification strategy is valid if ¤�Surname diversityti is truly exogenous in the specifi-

cation of equation (5). A sufficient condition for this to hold isÇ
Iτk,−r(i)

Iτi,−k
Iτ−k

å⊥
⊥ εti .

It requires that any factor that affects counties’ innovation in t is independent of the

interaction between the orthogonalized historical push-pull factors. If this condition

holds, the predicted stocks of surnames are exogenous to innovation (Step 1), and so is the

instrument for diversity (Step 2).

An important question regarding the validity of this empirical strategy is whether past

push-pull factors are independent of a county’s future innovative capacity. For example, it

is possible that migrants preferred to settle in counties that were more innovative in the

past, likely increasing their diversity, and those same counties are subsequently still more

innovative. This possibility would give rise to reverse causality. More generally, (persistent)

unobserved factors may determine both the past pull factors and future innovation, which

may create a correlation between the push-pull instrument and the error term.

In their paper, Burchardi et al. (2019) detail why this possibility is unlikely given the

substantial variation in the push-pull factors over time and space. Empirically, we address

this concern in three ways: First, we orthogonalize our push-pull instrument with regard
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to the historical attractiveness of a county as captured by the fraction of immigrants who

settled there over time (see our zero-stage equation (3)). Consequently, our IV estimates

do not reflect unobserved persistent factors that had already manifested themselves in

immigrants’ past settlement decisions. Second, in several specifications, we control for

county-specific linear time trends. To the degree that these linear time-trends capture

persistent unobserved factors, they will mitigate concerns of estimation bias. Lastly,

and most importantly, we conduct a falsification exercise and regress previous-period

innovation on subsequent surname diversity. We do not find any evidence for reverse

causality, i.e., a shock to surname diversity is statistically unrelated to previous-period

innovation. Instead, we find that a shock to diversity has a lasting impact on innovation

(see Section 5.1). Therefore, our estimates are unlikely to be driven by reverse causality or

persistent unobserved confounders.

Another concern is that unobserved individual characteristics co-determine settlement

patterns and innovation. For example, people with a high (unobserved) propensity to

innovate may prefer to settle in relatively more diverse counties. In this case, the observed

relationship between diversity and innovation would be due to settlement preferences

of individuals with high innovative capacity and not due to diversity per se. The IV

approach addresses this concern because the predicted surname stocks in a county are

solely determined by the interaction of the historical push and pull factors, i.e., the

allocation of migrants to counties does not rest on individual preferences.10 This push-

pull instrument is orthogonal to county fixed effects and surname-region fixed effects.

Thus, unobserved stable settlement preferences of people with a certain surname cannot

bias the estimates. In addition, in section 5.4, we further address this concern by devising

specifications with surname-fixed-effects. This specification will absorb any genetic,

environmental, or acquired characteristic embodied in surnames and, thus, captures the

‘pure’ diversity effect that is independent of the type of information embedded in surnames.

Taken together, our results are unlikely to be biased due to individual characteristics that

co-determine settlement patterns and innovation.

A final concern is the possibility that there is a direct effect of immigration (other

than through diversity) that confounds the estimates. Though, while we establish that

immigration impacts counties’ surname composition, conceptually there is not a simple

10The exclusion restrictions could be violated if the push-pull factors primarily reflect the migration
decisions (= preferences) of people with a specific surname. Yet, this is unlikely because any specific surname
makes up only a tiny fraction of all people entering the U.S. in a given period (the push factor) and a small
fraction of migrants settling in a county (the pull factor). Nevertheless, we follow Burchardi et al. (2019)
and report leave-out estimators such that the push factor does not contain individuals with surname n and
the pull factor does not contain regions in which a county is located in r(i).
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monotonously increasing relationship between immigration and surname diversity. The

extent to which immigrants impact surname diversity depends on the surname composi-

tion of the immigrants in comparison to the local population. For example, if migrants

predominantly hold the same names as the dominant local groups then immigration will

decrease surname diversity. The fact that the least-squares estimates in Table 2 hardly

change when we added controls for the share of immigrants from different countries

likely attest to these considerations and provides evidence that the relationship between

surname diversity and innovation is not confounded by a direct effect of immigration that

goes through other channels than diversity.

In the IV-specifications, we avoid controlling for endogenous variables such as the

number of immigrants and our push-pull IV-strategy (which is based on surname stocks

and not flows) does not allow for a straightforward way to instrument it. Rather, we

rely on alternative strategies. First, as explained above, our instrument is orthogonal to

each county’s immigration history, which mitigates endogeneity concerns. Second, we

conduct a robustness check and control for instrumented population. The instrument

for population is likewise based on the push-pull approach (calculated by taking the

sum over all predicted stocks of surnames). As such, the IV-specification controls for the

migration-induced change in counties’ population which is a proxy variable for migration.

We find that our IV-results hold controlling for instrumented population. Finally, we also

conduct a robustness check and estimate IV specifications based on a sub-sample that

does not contain any immigrant innovators. Even though this is a conservative approach

(see Section 5.5 for details), this restricted sample of only US-born individuals likewise

provides IV-evidence that diversity increases innovation.

4.3 Zero-stage Estimates

We report the zero-stage estimates of equation (3) in Table 3. These estimates allow us to

obtain predicted stocks for each surname in each county, which we will use to compute the

diversity instrument. In total, we estimate equation (3) eight times, once for each period

from 1900 to 1940. The reported standard errors are clustered at the surname level.

The results indicate that we identify variation in the stock of surnames based on the

push-pull factors stretching across the full range of periods in our sample. For example,

the estimates reported in column 8 suggest that push-pull factors as far back as 1880

and all the way up to 1930 are significant predictors of the stock of surnames in 1940.

Qualitatively, our results are broadly similar to Burchardi et al. (2019), who estimate the

push-pull factor at the level of originating country (and not surnames). For example, they
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Table 3: Zero-stage panel estimates

No. of people in county i with surname n in year:
1900 1905 1910 1915 1920 1925 1930 1940
(1) (2) (3) (4) (5) (6) (7) (8)

I1880
n,−r(i) ×

I1880
−n,i
I1880
−n

3.181∗∗∗ 3.192∗∗∗ 3.683∗∗∗ 3.982∗∗∗ 4.386∗∗∗ 4.516∗∗∗ 4.945∗∗∗ 5.030∗∗∗

(0.113) (0.121) (0.130) (0.095) (0.113) (0.136) (0.108) (0.101)

I1895
n,−r(i) ×

I1895
−n,i
I1895
−n

1.962∗∗∗ 2.336∗∗∗ 2.902∗∗∗ 2.276∗∗∗ 2.588∗∗∗ 4.071∗∗∗ 4.471∗∗∗ 4.551∗∗∗

(0.274) (0.336) (0.311) (0.125) (0.120) (0.199) (0.243) (0.290)

I1900
n,−r(i) ×

I1900
−n,i
I1900
−n

-2.405 -0.262 -6.766∗∗ -5.988∗∗ -9.868∗∗∗ -10.297∗∗∗ -8.711∗∗∗

(3.101) (3.497) (2.632) (2.742) (3.227) (3.513) (3.312)

I1905
n,−r(i) ×

I1905
−n,i
I1905
−n

12.702∗∗∗ 17.984∗∗∗ 20.613∗∗∗ 27.031∗∗∗ 30.116∗∗∗ 32.922∗∗∗

(0.885) (0.911) (1.110) (1.401) (1.219) (1.250)

I1910
n,−r(i) ×

I1910
−n,i
I1910
−n

14.937∗∗∗ 16.972∗∗∗ 24.672∗∗∗ 26.990∗∗∗ 28.736∗∗∗

(2.540) (2.918) (3.346) (3.213) (2.902)

I1915
n,−r(i) ×

I1915
−n,i
I1915
−n

8.268∗∗∗ 8.023∗∗∗ 9.419∗∗∗ 10.294∗∗∗

(0.803) (0.830) (0.546) (0.602)

I1920
n,−r(i) ×

I1920
−n,i
I1920
−n

3.659∗ 5.087∗∗∗ 9.319∗∗∗

(2.198) (1.181) (1.584)

I1925
n,−r(i) ×

I1925
−n,i
I1925
−n

25.957∗∗∗ 31.662∗∗∗

(1.293) (1.490)

I1930
n,−r(i) ×

I1930
−n,i
I1930
−n

-29.396∗∗∗

(2.731)

Observations 5,933,320 7,336,530 7,806,098 7,365,155 7,448,013 7,977,906 8,053,917 8,811,918
R2 0.710 0.687 0.698 0.701 0.711 0.660 0.706 0.690

County fixed effects X X X X X X X X
Surname-Region fixed effects X X X X X X X X
Iτ−n,i/I

τ
−n controls X X X X X X X X

Notes: This table reports OLS estimates for the specification described in equation (3), corresponding to step 1 of the instrument
construction. An observation is a surname-county in a period from 1900 to 1940. Standard errors clustered at the surname level.
***, **, and * indicate significance at the 1%, 5%, and 10% levels.

likewise obtain a negative coefficient for the interaction for the period ending in 1930, a

period with a high degree of out-migration.

Based on the results of Table 3 we calculate the predicted (and orthogonalized) stock

of each surname in each county for each of the eight periods. Finally, we compute

the instrument for surname diversity by applying the entropy formula to the predicted

surname stocks.

4.4 IV Estimates

We now turn to the IV estimation. Table 4 reports first-stage, reduced-form, and second-

stage estimates. Starting with the first-stage estimates reported in Panel D, we find that

the instrument for surname diversity is strongly correlated with actual surname diversity,

with a Kleibergen-Paap F-statistic of around 51 in our baseline specification in columns
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2 and 5. The F-statistic shrinks to roughly 28 if we additionally control for county-

specific linear time trends in columns 3 and 6. The point estimates imply that a one

standard deviation increase in the instrument is associated with 0.43 standard deviation

greater surname diversity in the baseline (columns 2 and 5) and with a 0.39 standard

deviation greater surname diversity when conditioning on county-specific linear time

trends (columns 3 and 6). Taken together, the first-stage relationship of the instrument

is highly significantly related to surname diversity, and the F-statistics of the excluded

instrument in all specifications are above the conventional thresholds commonly used in

the literature.

Appendix Figure B7 reports binscatter plots that show the first-stage relationship

between the instrument and actual surname diversity, both with and without controls for

county-specific time trends. They demonstrate that the relationship is strong, linear and

not driven by a small set of observations.

We next turn to the estimates relating surname diversity to innovation. Table 4 reports

the estimates for both main outcome variables—patents per 1,000 people (columns 1 to 3)

and breakthrough patents per 1,000 people (columns 4 to 6). Panel A reports least-squares

estimates for comparison, Panel B reports reduced-form estimates and Panel C reports the

IV estimates. All specifications control for county fixed effects and period fixed effects

(column 1 and 4) or state-period fixed effects (columns 2 to 3 and 5 to 6). In addition,

the specification reported in columns 3 and 6 controls for county-specific linear time

trends. We report estimates for weighted regressions, with the weights determined by a

county’s population in 1900. The reported standard errors are clustered at the state level.

The least-squares estimates reveal a significantly positive relationship between surname

diversity and both patents and breakthrough patents. In column 2 and 4, a one standard

deviation increase in a county’s diversity is associated with 1.5 more patents per 1,000

people, roughly a 74% increase relative to the sample mean, and 0.15 more breakthrough

patents per 1,0000 people, a 104% increase in breakthrough patents.11 These estimates

are similar to those reported in Table 2 in the previous section even though they cover a

different time span.

Turning to the IV specifications, Panel B shows statistically significant reduced-form

relationships between the dependent variables and our historical push-pull instrument

(predicted surname diversity based on the zero stage). Appendix Figure B8 reports

partial correlation plots to visualize these relationships. Finally, Panel C reports on the

IV estimates. The coefficients for surname diversity are positive and highly significant

in all specifications and for both innovation outcomes. The estimates in the baseline

11To obtain these percentages, we divide the coefficients by the sample means reported in the table.
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Table 4: Panel estimates of the effect of surname diversity on innovation

Patents
per 1,000 people

(mean = 2.04, sd = 2.60)

Breakthrough patents
per 1,000 people

(mean = 0.14, sd = 0.24)

(1) (2) (3) (4) (5) (6)

Panel A: Least-squares estimates

Surname diversity 1.528∗∗∗ 1.511∗∗∗ 1.319∗∗∗ 0.183∗∗∗ 0.146∗∗∗ 0.131∗∗∗

(0.332) (0.361) (0.320) (0.042) (0.043) (0.046)

Panel B: Reduced-form estimates

Surname diversity (push-pull IV) 0.686∗∗∗ 0.773∗∗∗ 0.734∗∗∗ 0.090∗∗∗ 0.085∗∗∗ 0.080∗∗∗

(0.204) (0.165) (0.173) (0.018) (0.018) (0.024)

Panel C: Instrumental-variable estimates

Surname diversity 1.542∗∗∗ 1.794∗∗∗ 1.902∗∗∗ 0.202∗∗∗ 0.197∗∗∗ 0.208∗∗

(0.382) (0.378) (0.543) (0.043) (0.055) (0.090)

Kleibergen-Paap F-statistic 63.280 51.050 28.341 63.280 51.050 28.341

Panel D: First-stage estimates Surname diversity

Surname diversity (push-pull IV) 0.445∗∗∗ 0.431∗∗∗ 0.386∗∗∗ 0.445∗∗∗ 0.431∗∗∗ 0.386∗∗∗

(0.056) (0.060) (0.073) (0.056) (0.060) (0.073)

County fixed effects X X X X X X
Period fixed effects X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 23,660 23,660 23,660 23,660 23,660 23,660

Notes: The table reports least-squares, reduced-form, and instrumental-variable (IV) estimates for
the specifications described in equation (5) and first-stage estimates for equation (4). An observation
is a county in a period from 1900 to 1940. Observations are weighted by county population in
1900. The endogenous variable is county-level surname diversity in t. In columns 1 to 3, the
dependent variable is number of patents filed in the county in the five-year period starting in t
divided by county population size in 1900. In columns 4 to 6, the dependent variable is number
of breakthrough patents filed in the county in the five-year period starting in t divided by county
population size in 1900. Standard errors are clustered at the state level. All independent variables
are standardized to mean zero and unit variance. The sources and construction of all variables are
explained in Appendix A. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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specifications (columns 2 and 5) suggest that a one standard deviation increase in a

county’s surname diversity increases patents (per 1,000 inhabitants) by about 88% relative

to the sample mean and breakthrough patents by about 141%. When we control for county-

specific linear trends, the effect of surname diversity on patents remains remarkably stable

at around 93% for patents (column 3) and around 149% for breakthrough patents (column

6), bolstering our confidence that the instrument for diversity is orthogonal to persistent

or gradually growing county-level confounding factors. Overall, the estimates suggest that

surname diversity has large positive effects on both the quantity and quality of innovation.

Comparing the least-square (Panel A) with the IV estimates (Panel C) reveals that the

latter are slightly larger in magnitude, but simple t-tests suggests that the differences are

not significant. We believe that a likely explanation for this observation is that the IV

estimates capture the local average treatment effect (LATE), i.e., the average effect of a

change in diversity that is due to immigration. This contrasts with the average treatment

effect that would take into account the overall change in diversity (e.g., including change

brought about by births, deaths, and internal migration). It is plausible that the component

of surname diversity driven by recent immigration has a larger impact on innovation than

other sources of surname diversity—even considering two people who share the same

surname—because recent immigrants might have more distinct ideas, knowledge, skills

and perspectives that are more valuable in the recombination process.12

5 Robustness and Sensitivity Checks

We now check for the robustness of our estimates in five ways: we examine (1) a placebo

test that regresses past innovation on surname diversity, (2) controlling or instrumenting

for population size in our IV estimation, (3) heterogeneity across the four major census

regions, (4) an approach that uses surname fixed effects to assess whether surname-specific

traits affect the results, and (5) the removal of immigrant innovators from our analyses, so

that we only consider how greater surname diversity impacts innovation among native-

born Americans. We also examine the robustness of our results to the use of alternative

procedures to construct an instrument for surname diversity. These results are reported in

Appendix Section B.4.

12Another explanation for the smaller least-square estimates is that they are biased downward due to
negative selection, i.e., migrants settled in regions that were doing economically worse. Sequeira et al. (2020)
discuss the relevant literature and conclude that the negative selection of immigrants into poor regions is
indeed a possibility.
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5.1 Placebo Tests and Reverse Causality

A potential concern with our results is a form of reverse causality, i.e., that innovative

counties attract relatively more immigrants which then increases diversity. This possibility

is unlikely because our instrument is orthogonal to a county’s past attractiveness as

captured by the (time-varying) shares of immigrants who settled in a county over the course

of several decades (see section 4.1 for details). Moreover, we examined specifications that

include county-specific linear time trends, which absorb the effects of trending unobserved

factors associated with innovation and migration.

Nevertheless, to further challenge the validity of our instrument, we conduct a placebo

exercise of whether contemporaneous diversity affects past innovation activity. A sig-

nificant estimate in such a regression would be evidence of reverse causality, i.e., that

innovative counties attract immigrants, and this increases surname diversity. In columns 1

and 2 of Table 5, we regress our measures of innovation for one (in t − 1) and two (in t − 2)

periods prior to our measure of surname diversity in the current period (in t). Column 3

replicates our IV specification in which we regress innovation on same-period diversity

(reported in Table 4, column 5). The estimates demonstrate that there is no significant

positive relationship between previous periods’ innovation and subsequent diversity. This

is the case for both patents (Panel A) and breakthrough patents (Panel B). When we regress

patenting in t (i.e., that occurs between t and t + 1) on diversity in period t, the coefficients

increase in size and become significantly different from zero (column 3). In short, we find

no support for the importance of reverse causality in our identification strategy.

In addition, we investigate the persistence of the impact of a diversity shock on innova-

tion by regressing the one-period lead (innovation in t + 1, column 4), the two-period lead

(t + 2, column 5), and the three-period lead (t + 3, column 6) on surname diversity (in t).

The estimates in columns 4 to 6 of Table 5 suggest that the impact of diversity on patenting

in the two following periods is significantly positive and decreasing in magnitude over

time (panel A). The effect on breakthrough patents shows similar persistence (panel B).

We fail to detect an effect in period t + 3, suggesting that the effect of surname diversity on

innovation persists for about 15 years.

5.2 Sensitivity of Estimates to Population Size

In our IV specifications, population enters through the dependent variables, which is per

capita (per the population in 1900), and each county is weighted based on the population

size in 1900. Here, we follow the literature (e.g., Burchardi et al., 2021) and choose a

time-invariant base year because population growth is likely endogenous—innovative
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Table 5: Placebo test and persistence: IV estimates of the effect of surname diversity on
past and future innovation

t − 2 t − 1 t t + 1 t + 2 t + 3
(1) (2) (3) (4) (5) (6)

Panel A: Patents per 1,000 people

Surname diversity 0.132 -0.047 1.902∗∗∗ 1.348∗∗∗ 1.000∗∗ 0.097
(0.323) (0.218) (0.543) (0.451) (0.429) (0.173)

Panel B: Breakthrough patents per 1,000 people

Surname diversity -0.019 -0.041 0.208∗∗ 0.252∗∗ 0.179∗∗ -0.098
(0.067) (0.083) (0.090) (0.116) (0.073) (0.073)

Kleibergen-Paap F-statistic 24.092 23.922 28.341 20.842 19.700 16.600

County fixed effects X X X X X X
State-Period fixed effects X X X X X X
County-specific linear time trends X X X X X X
Observations 17,743 17,746 23,660 17,746 17,743 14,785

Notes: The table reports IV estimates of the leads and lags of innovation outcomes on surname
diversity for the specifications described in equation (5). Columns 1 and 2 use the two-period
and one-period lag of the dependent variables, respectively. Column 3 repeats the baseline
specification (contemporaneous values of the dependent variables). Columns 4 to 6 use
the one-period, two-period and three-period lead of the dependent variables, respectively.
Observations are county-periods and weighted by county population in 1900. Standard
errors are clustered on states and reported in parentheses. All independent variables are
standardized to mean zero and unit variance. ***, **, and * indicate significance at the 1%,
5%, and 10% levels.

regions may attract more people. A concern with this specification is that it may not be

able to adequately capture scale effects due to an increasing population. The least-squares

estimates reported in Appendix Table B2 suggest that this is unlikely to be the case—the

coefficients on surname diversity are not sensitive to controlling for counties’ population

size. Here, we assess the robustness of our IV estimates to the inclusion of population size

in the specification.

The results of this robustness check are reported in Appendix Table B8. We use actual

population in Panel A, predicted population in Panel B, and we instrument population

with predicted population in Panel C. The construction of predicted population parallels

the construction of the surname-diversity instrument: based on the historical push-pull

interaction of the zero stage (see Section 4), we obtain the predicted stock of each surname

in a county in a given period. By aggregating these stocks, we obtain quasi-random
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estimates of county population at a given point in time.

Appendix Table B8 shows that our IV results are robust to controlling for population.

All estimates hardly change compared to our baseline estimates.

5.3 Estimates for Sub-regions

In Appendix Table B10, we explore whether the relationship between diversity and inno-

vation holds in each of the four major U.S. regions (the Midwest, Northeast, South, and

West). The estimates suggest that this is indeed the case; all region-specific estimates are

positive and in almost all cases the coefficients are statistically significant. The coefficients

for the Midwest tend to be larger than for the other regions, however the estimates are not

precise enough to draw strong conclusions about regional differences. We also note that

some IV estimates may suffer from a weak first stage.

5.4 Surname Fixed Effects

Another potential concern with the interpretation of our findings is that surname-specific

traits, such as abilities, interests, or knowledge, drive innovation rather than the diversity

of these traits. For example, Clark (2014) and Barone and Mocetti (2021) find that rare

surnames are proxies for the vertical transmission of traits, and these traits might affect

innovation. We assess this concern by estimating specifications that include surname fixed

effects which absorb any surname-specific traits. This requires us to change the unit of

observation from county-period to surname-county-period. The estimating equations are

given by equations (6) and (7), where equation (6) is the first stage and equation (7) is the

second stage.

Surname diversityti = γ ¤�Surname diversityti +µt,s(i) +µi +µt,k + vti,k (6)

Y ti,k = β Surname diversityti +αt,s(i) +αi +αt,k + εti,k (7)

where i indexes counties, s states, t census years (including the midyears), and k surnames.

As before, Surname diversityti is county i’s surname diversity in t, and ¤�Surname diversityti
is county i’s predicted surname diversity in t. Y ti,k now is the number of (breakthrough)

patents filed by people with surname k residing in county i per 1,000 of these residents in

the five-year period starting in t. For example, 36,984 individuals with the surname John-

son resided in Cook County (IL) in 1940 and filed about 105 patents and 11 breakthrough

patents between 1940 and 1944. Therefore, the innovation outcomes vary at the surname-
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Table 6: Surname fixed effects

Patents per 1,000 people
(mean = 2.06, sd = 44.86)

Breakthrough patents per 1,000 people
(mean = 0.16, sd = 9.29)

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Least-squares estimates

Surname diversity 1.694∗∗∗ 1.736∗∗∗ 1.667∗∗∗ 1.111∗∗∗ 0.262∗∗∗ 0.267∗∗∗ 0.195∗∗ 0.132∗∗∗

(0.454) (0.466) (0.504) (0.297) (0.079) (0.081) (0.074) (0.039)

Panel B: Reduced-form estimates

Surname diversity (push-pull IV) 0.639∗∗∗ 0.657∗∗∗ 0.655∗∗∗ 0.815∗∗ 0.137∗∗∗ 0.140∗∗∗ 0.126∗∗∗ 0.117∗∗

(0.236) (0.230) (0.223) (0.337) (0.039) (0.040) (0.028) (0.053)

Panel C: Instrumental-variable estimates

Surname diversity 1.477∗∗∗ 1.524∗∗∗ 1.571∗∗∗ 2.205∗∗ 0.316∗∗∗ 0.325∗∗∗ 0.301∗∗∗ 0.317∗∗

(0.458) (0.451) (0.483) (0.941) (0.091) (0.094) (0.091) (0.156)

Kleibergen-Paap F-statistic 61.575 61.793 49.541 31.909 61.575 61.793 49.541 31.909

Panel D: First-stage estimates Surname diversity

Surname diversity (push-pull IV) 0.433∗∗∗ 0.431∗∗∗ 0.417∗∗∗ 0.370∗∗∗ 0.433∗∗∗ 0.431∗∗∗ 0.417∗∗∗ 0.370∗∗∗

(0.055) (0.055) (0.059) (0.065) (0.055) (0.055) (0.059) (0.065)

County fixed effects X X X X X X X X
Period fixed effects X X
Surname-Period fixed effects X X X X X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 30,416,997 30,416,997 30,416,997 30,416,997 30,416,997 30,416,997 30,416,997 30,416,997

Notes: The table reports least-squares, reduced-form, and instrumental-variable (IV) estimates for the specifications described in equation 7 and
first-stage estimates for equation 6. An observation is a surname in a given county in a period from 1900 to 1940. Observations are weighted by
the surname population in a given county in the year 1900. In columns 1 to 3, the dependent variable is number of patents filed by individuals
with surname n residing in county i in the five-year period starting in t divided by surname population size in county i in 1900 (multiplied by
1,000). The dependent variable in columns 4 to 6 is the corresponding number of breakthrough patents. Standard errors are two-way clustered on
states and surnames and reported in parentheses. All independent variables are standardized to mean zero and unit variance. The sources and
construction of all variables are explained in Appendix A. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

county-period level, while surname diversity remains defined at the county-period level.13

Crucially, we can now include surname-period fixed effects, denoted by the parameter αt,k,

which implies we non-parametrically control for surname-specific traits across periods

(i.e., traits specific to all individuals named Johnson in 1940). The remaining parameters

and variables are as in equations (6) and (7). As before, the coefficient of interest is β.

Observations are weighted by the number of people in a county carrying the surname in

the year 1900. Standard errors are clustered in two ways, on states and surnames.

The results reported in Table 6 show that the estimates are highly significant in all

specifications and the inclusion of surname fixed effects (in columns 2 to 4 and 6 to 8)

hardly changes the estimates. The IV specification suggests that a one standard deviation

increase in a county’s surname diversity increases patent filings per 1,000 people with the

same surname by around 1.6 patents (column 3) and 0.3 breakthrough patents (column 7).

13Consequently, the number of observations increases because they are now determined by the total
number of unique surnames in a given county. Consistent with our baseline specification, we normalize the
number of patents and breakthrough patents by the surname population in the year 1900. If a surname does
not exist in a given county in 1900, we drop it from the sample. See Appendix A for all the details on how
we construct the sample.
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Expressed as percent (by relating it to mean values of the dependent variable) this is an

increase of 76% in patents (column 3) and 188% in breakthrough patents (column 7). Even

though we changed the unit of observation, the estimates are comparable to the county-

level estimates for patents reported in Table 4, though they are larger for breakthrough

patents. Crucially, in this specification, the surname fixed effects additionally ensure that

the estimates are independent of any unobserved surname-specific characteristics.14

5.5 Immigrant Innovators

A final concern is that immigration per se, rather than diversity, biases our estimates. To

tackle this in the county-level least-squares specifications reported in Table 2 (Section 3),

we regress innovation on diversity while controlling for immigrant shares (separately by

each country of origin). The coefficients on surname diversity are remarkably robust to the

inclusion of these control variables. This finding is evidence against the possibility that

immigration per se biases our estimates because, for example, immigrants may be more

highly skilled, entrepreneurial, or possess novel patentable knowledge. Furthermore, the

concern that our IV estimates are confounded by immigration is mitigated by the fact that

our instrument is orthogonal to counties’ past immigration history (see Section 4.1 for

details on the construction of the instrument) and are robust to controlling for migration-

induced population changes (see Section 5.2).

Nevertheless, to drive home the point that immigration per se does not fully explain our

findings, we conduct a further robustness check. In the surname-fixed-effects specification,

the unit of observation is surname-county-period. This allows us to drop all names for

which we know that at least one immigrant also holds this name.15 We then estimate

equations (6) and (7) with this non-immigrant sample. We acknowledge that this approach

is coarse because we drop many native innovators who happen to share their surname

with an immigrant living in the same county at the same time. Consequently, the sample

size decreases substantially by roughly 44% from 30.4 to 17.1 million observations. This

will skew the estimates towards zero because the sample average of the number of patents

per 1,000 surnames in the full sample is 2.06, while it is only 0.64, or a third, in the

non-immigrant sub-sample. This difference is even more pronounced for breakthrough

14Using a similar approach (for details see Appendix Section B.5), we estimate specifications that include
patent technology class fixed effects which absorb any patent class-specific factors. These specifications
address the concern that systematic variation in patenting practices across technologies may bias our results.
The estimates, reported in Appendix Table B14, show that the results hold with this patent class fixed effects
specification. This suggests that patent class-specific factors do not bias our estimates.

15We are not able to drop immigrants directly—this individual-level data (in contrast to the surname-level
data) would require us to match the patent data to the Census at the individual level. This is currently not
feasible at a reasonable level of accuracy.
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Table 7: Disentangling diversity from immigration mechanism: Natives subsample

Patents per 1,000 people
(mean = 0.64, sd = 43.76)

Breakthrough patents per 1,000 people
(mean = 0.04, sd = 9.61)

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Least-squares estimates

Surname diversity 0.317∗∗∗ 0.380∗∗∗ 0.331∗∗∗ 0.301∗∗∗ 0.062∗∗∗ 0.063∗∗∗ 0.047∗∗∗ 0.019∗

(0.072) (0.077) (0.081) (0.086) (0.021) (0.020) (0.015) (0.010)

Panel B: Reduced-form estimates

Surname diversity (push-pull IV) 0.213∗∗∗ 0.260∗∗∗ 0.237∗∗∗ 0.246∗∗∗ 0.044∗∗∗ 0.045∗∗∗ 0.039∗∗∗ 0.022∗

(0.064) (0.065) (0.065) (0.066) (0.015) (0.015) (0.013) (0.012)

Panel C: Instrumental-variable estimates

Surname diversity 0.333∗∗∗ 0.406∗∗∗ 0.375∗∗∗ 0.390∗∗∗ 0.069∗∗∗ 0.070∗∗∗ 0.062∗∗∗ 0.035∗

(0.095) (0.095) (0.100) (0.114) (0.023) (0.023) (0.020) (0.019)

Kleibergen-Paap F-statistic 460.250 457.336 343.932 217.417 460.250 457.336 343.932 217.417

Panel D: First-stage estimates Surname diversity

Surname diversity (push-pull IV) 0.638∗∗∗ 0.639∗∗∗ 0.631∗∗∗ 0.631∗∗∗ 0.638∗∗∗ 0.639∗∗∗ 0.631∗∗∗ 0.631∗∗∗

(0.030) (0.030) (0.034) (0.043) (0.030) (0.030) (0.034) (0.043)

County fixed effects X X X X X X X X
Period fixed effects X X
Surname-Period fixed effects X X X X X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 17,061,661 17,061,661 17,061,661 17,061,661 17,061,661 17,061,661 17,061,661 17,061,661

Notes: The table reports least-squares, reduced-form, and instrumental-variable (IV) estimates for the specifications described in equation 7 and
first-stage estimates for equation 6. An observation is a surname in a given county in a period from 1900 to 1940. The sample is restricted to
observations with no immigrants in a given surname-county-period cell. Observations are weighted by the surname population in a given county in
year 1900. Standard errors are two-way clustered on states and surnames and reported in parentheses. All independent variables are standardized
to mean zero and unit variance. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

patents (mean of 0.16 in the full vs. 0.04, or a fourth, in the sub-sample). As such,

in this robustness check we are less concerned about the effects size—the approach is

too coarse—but are interested in whether we can still detect significant effects in this

sub-sample.

Table 7 shows that in this sub-sample, the point estimates are all positive and signifi-

cant; the only exception is the weakly significant estimate in column 8. As expected, the

effect sizes are smaller compared to the ones reported in Table 6. Yet, expressed in relation

to the mean of the dependent variable they are sizeable. We estimate a 59% increase in

patents per 1,000 natives in column 3 and a 155% increase in breakthrough patents per

1,000 natives in column 7. These overall significant and sizable estimates—in a sample

that rules out that a patent was filed by an immigrant—are further evidence of diversity’s

causal impact on innovation.
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6 Mechanisms

Conceptually, following much prior work, we see innovation as arising from the recombi-

nation of ideas due to the social interaction occurring among diverse minds. To explore

this more deeply, we consider (1) if surname diversity spurs recombination of existing

technologies, (2) the impact of surname diversity on the strength of family ties, (3) the

extent of spatial spillovers across counties and (4) the interplay between surname diversity

and education.

6.1 Novel Combinations Patents

One key question about our results concerns what types of patents are generated by

greater surname diversity. Does surname diversity tend to encourage the patenting

of novel technology types, potentially imported from other counties? Or, does such

diversity encourage either the creation of novel recombinations of existing technologies

or the refinement of such combinations? Building on the approach taken by Strumsky

et al. (2011) and Akcigit et al. (2013), we use the more than 140,000 technology codes

assigned by the United States Patent and Trademark Office (USPTO) to categorize each

patent into three distinct types: (1) novel technologies, (2) novel combinations, and (3)

reuse/refinement combinations. Patents are considered a novel technology if, for a given

county, any of its technology codes appear for the first time in that county in the grant

year of the patent. If the patent does not include such novel codes, it is considered as

a novel combination if it includes a unique pairwise combination of technologies that

appear for the first time in the county and grant year. Any remaining patents are classified

as reuse/refinement combinations.

Table 8 show our results. Overall, the impact of surname diversity on patents per capita

is similar in magnitude across our three categories, with the influence on patenting novel

combinations showing the largest positive effects. These results suggest that diversity

increases innovation in different forms, including recombinations of existing technologies.

6.2 Strength of Family Ties

To more directly test for the social-psychological component of our hypothesized mecha-

nism, we now examine the impact of surname diversity on the strength of family ties. In

Section 2, we established that the two variables are highly correlated. Here, we investigate

causality by estimating regressions that replicate our baseline equation (5) but use the

strength of family ties as the dependent variable.
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Table 8: Patent types: novel technologies, novel combinations, and reuse/refinements

Novel technology patents
per 1,000 people

(mean = 1.46, sd = 1.72)

Novel combination patents
per 1,000 people

(mean = 0.09, sd = 0.16)

Reuse/refinement patents
per 1,000 people

(mean = 0.31, sd = 0.47)

(1) (2) (3) (4) (5) (6)

Panel A: Least-squares estimates

Surname diversity 1.124∗∗∗ 0.913∗∗∗ 0.059∗∗∗ 0.034∗∗∗ 0.165∗∗∗ 0.135∗∗∗

(0.257) (0.197) (0.019) (0.012) (0.045) (0.045)

Panel B: Reduced-form estimates

Surname diversity (push-pull IV) 0.526∗∗∗ 0.475∗∗∗ 0.040∗∗∗ 0.028∗∗∗ 0.094∗∗∗ 0.095∗∗∗

(0.113) (0.108) (0.009) (0.008) (0.025) (0.033)

Panel C: Instrumental-variable estimates

Surname diversity 1.221∗∗∗ 1.229∗∗∗ 0.094∗∗∗ 0.072∗∗ 0.219∗∗∗ 0.246∗

(0.248) (0.348) (0.029) (0.032) (0.079) (0.124)

Kleibergen-Paap F-statistic 51.050 28.341 51.050 28.341 51.050 28.341

County fixed effects X X X X X X
State-Period fixed effects X X X X X X
County-specific linear time trends X X X
Observations 23,660 23,660 23,660 23,660 23,660 23,660

Notes: The table reports least-squares, reduced-form, and IV estimates for the specifications described in equation (5) of the
effect surname diversity on three different types of patents per 1,000 people. We classify a patent as a novel technology if any
of the technology codes listed on the patents appear in the grant year of the patent for the first time in the county where the
inventor resides. We classify a patent as novel combination of technologies that have previously been used in the county if a
pairwise combination of technologies is observed in the county for the first time. The third classification is reuse/refinement
patents, where all pairwise combinations of technologies have been observed previously in the county. An observation is a
county in a period from 1900 to 1940. Observations are weighted by county population in 1900. Standard errors are clustered
at the state level. All independent variables are standardized to mean zero and unit variance. The sources and construction of
all variables are explained in Appendix A. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

The results are reported in Table 9. The estimates suggest a negative effect that becomes

statistically significant when we control for state-period fixed effects (column 2). Hence,

greater surname diversity leads to weaker family times, likely because it limits people’s

ability to meet their needs within their family and comes with more opportunities for

exchanges with unrelated individuals.

6.3 Spatial Spillovers

People acquire inspiration, knowledge and ideas from others they frequently observe and

interact with in their daily activities. Mostly, these will be people living in proximity and,

consequently, we expect that local diversity drives innovation. (Carlino and Kerr, 2015).

Here, we investigate how local the relationship between diversity and innovation is

and whether there are spillovers from nearby counties. To do so, we compute surname

diversity among individuals residing in surrounding regions successively further away

from the county. Specifically, for each county i at time t, we pool the individuals and
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Table 9: Panel estimates of the effect of surname diversity on strength of family ties

Strength of family ties
(mean = -0.14, sd = 0.80)
(1) (2) (3)

Panel A: Least-squares estimates

Surname diversity -0.038 -0.183∗∗∗ -0.470∗∗∗

(0.075) (0.037) (0.087)

Panel B: Reduced-form estimates

Surname diversity (push-pull IV) -0.162∗ -0.264∗∗∗ -0.328∗∗∗

(0.091) (0.093) (0.063)

Panel C: Instrumental-variable estimates

Surname diversity -0.365 -0.613∗∗ -0.851∗∗∗

(0.229) (0.277) (0.266)

Kleibergen-Paap F-statistic 63.349 51.127 28.360

County fixed effects X X X
Period fixed effects X
State-Period fixed effects X X
County-specific linear time trends X
Observations 23,639 23,639 23,639

Notes: The table reports least-squares, reduced-form, and IV estimates
for the specifications described in equation (5) with the strength of
family ties as the outcome variable. An observation is a county in
a period from 1900 to 1940. Observations are weighted by county
population in 1900. Standard errors are clustered at the state level.
All independent variables are standardized to mean zero and unit
variance. The sources and construction of all variables are explained in
Appendix A. ***, **, and * indicate significance at the 1%, 5%, and 10%
levels.
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Table 10: Spillover analysis

Patents per 1,000 people
(mean = 2.04, sd = 2.59)

Breakthrough patents per 1,000 people
(mean = 0.14, sd = 2.21)

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Least-squares estimates

Surname diversity 1.474∗∗∗ 1.471∗∗∗ 1.469∗∗∗ 1.180∗∗∗ 0.145∗∗∗ 0.144∗∗∗ 0.144∗∗∗ 0.114∗∗

(0.382) (0.382) (0.382) (0.297) (0.046) (0.046) (0.046) (0.046)
Surname diversity (< 100 miles) 0.872 0.879 0.855 1.505∗∗∗ 0.066 0.067 0.065 0.187∗∗

(0.573) (0.579) (0.604) (0.487) (0.064) (0.064) (0.067) (0.076)
Surname diversity (100 < 200 miles) -0.522 -0.524 -1.278∗ -0.053 -0.053 -0.221∗∗

(0.446) (0.452) (0.661) (0.042) (0.043) (0.093)
Surname diversity (200 < 300 miles) -0.205 0.121 -0.017 -0.024

(0.383) (0.458) (0.042) (0.084)

Panel B: Reduced-form estimates

Surname diversity (push-pull IV) 0.780∗∗∗ 0.780∗∗∗ 0.783∗∗∗ 0.751∗∗∗ 0.086∗∗∗ 0.086∗∗∗ 0.087∗∗∗ 0.084∗∗∗

(0.161) (0.161) (0.162) (0.176) (0.019) (0.019) (0.019) (0.026)
Surname diversity (push-pull IV, < 100 miles) 0.815∗∗∗ 0.814∗∗∗ 0.837∗∗∗ 0.653∗∗∗ 0.076∗∗ 0.075∗∗ 0.081∗∗ 0.059

(0.280) (0.284) (0.304) (0.179) (0.031) (0.031) (0.034) (0.036)
Surname diversity (push-pull IV, 100 < 200 miles) -0.016 0.020 0.303 -0.007 0.002 0.023

(0.174) (0.188) (0.301) (0.017) (0.021) (0.037)
Surname diversity (push-pull IV, 200 < 300 miles) 0.106 0.235 0.026 0.046

(0.166) (0.194) (0.026) (0.040)

Panel C: Instrumental-variable estimates

Surname diversity 1.674∗∗∗ 1.668∗∗∗ 1.668∗∗∗ 1.855∗∗∗ 0.188∗∗∗ 0.187∗∗∗ 0.188∗∗∗ 0.209∗∗

(0.357) (0.358) (0.357) (0.573) (0.058) (0.058) (0.057) (0.099)
Surname diversity (< 100 miles) 2.533∗∗ 2.558∗∗ 2.552∗∗ 1.458∗∗ 0.217 0.222 0.227 0.115

(1.202) (1.204) (1.190) (0.660) (0.143) (0.146) (0.151) (0.157)
Surname diversity (100 < 200 miles) -0.279 -0.286 0.698 -0.054 -0.047 0.050

(0.552) (0.552) (1.029) (0.068) (0.072) (0.132)
Surname diversity (200 < 300 miles) -0.055 0.628 0.053 0.162

(0.679) (0.872) (0.115) (0.168)

F-statistic: Surname diversity 88.191 59.925 44.633 26.361 88.191 59.925 44.633 26.361
F-statistic: Surname diversity (< 100 miles) 17.373 14.392 12.706 37.700 17.373 14.392 12.706 37.700
F-statistic: Surname diversity (100 < 200 miles) 13.568 13.652 25.706 13.568 13.652 25.706
F-statistic: Surname diversity (200 < 300 miles) 6.150 10.814 6.150 10.814

County fixed effects X X X X X X X X
State-Period fixed effects X X X X X X X X
County-specific linear time trends X X
Observations 23,093 23,093 23,093 23,093 23,093 23,093 23,093 23,093

Notes: The table reports least-squares, reduced-form, and instrumental-variable (IV) estimates of regressions of innovation outcomes
on surname diversity. The unit of observation is a county-period from 1900 to 1940 (including the midyears). The table sequentially
adds surname diversity in areas within 100 miles (excluding i), 100 miles to 200 miles, and 200 miles to 300 miles of county i.
Observations are weighted by county population in 1900. Standard errors are clustered on states and reported in parentheses. All
independent variables are standardized to mean zero and unit variance. ***, **, and * indicate significance at the 1%, 5%, and 10%
levels.
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compute surname diversity and construct a separate instrument for individuals living

within 100 miles, excluding i itself, individuals living between 100 miles and 200 miles,

and between 200 miles and 300 miles.16

Table 10 reports the results for patents (columns 1 to 4) and breakthrough patents

(columns 5 to 8). According to columns 1 to 4 (panel C), an increase in surname diversity

just outside and within 100 miles of county i increases its number of patents. A similar

relation is observed for breakthrough patents, though these estimates are less accurate.

Moving to regions still further away from county i (i.e., between 100 and 200 miles or 200

and 300 miles), we do not find evidence for spillover effects. Our findings suggest that the

causal link between diversity and innovation tends to be local, including the neighboring

areas that fall within a 100-mile radius of the county.

6.4 Education

The role of human capital features prominently in the literature on innovation. Here,

we explore the interplay between education and diversity. We report on a least-square

specification that controls for the average educational attainment of a county’s population.

In addition, we interact surname diversity with educational attainment. This specification

allows us to gain insights on the role of education; in particular, the interaction term

reveals whether the relationship between diversity and innovation is more pronounced if

average education of the population is higher. Clearly, such a least-square specification

has to be interpreted cautiously because education is endogenous. Furthermore, the

availability of education data restricts us to a cross-sectional analysis of the year 1940.

With these caveats in mind, table B5 reports the regression results for patents (columns

1–3) and breakthrough patents (columns 4–6). Column 1 and 4 only contain average

education as a regressor. In both specification, the coefficient for education is highly

significant. Once we add surname diversity and its interaction with education in the

remaining columns, the picture changes. Educational attainment is either no longer

significant (columns 2 and 5) or decreases in size in the specification that controls for state

fixed effects (columns 3 and 6). At the same time, in all specification surname diversity

is at least weakly significant and its interaction term with educational diversity is highly

significant. A possible interpretation of this finding is that educational attainment plays

out its innovative strength mostly in a diverse environment. Without the opportunity to

learn from a diverse population educational attainment is less important for innovation.

16We use the NBER’s County Distance Database to compute these areas for each county.
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7 Conclusion

Focusing on the United States, during the period when it rose to dominate global inno-

vation (1850 to 1940), we study the impact of diverse social interactions on innovation.

The core idea is that many, if not most, innovations arise from the recombinations of

existing ideas, approaches and techniques that come together through the connections

among diverse minds. To measure such diversity, we introduce and benchmark an entropic

diversity measure that exploits a widely available data source, surnames, obtained from

the complete U.S. Census. To measure innovation, we use patents per capita at the county

level and a text-based measure of breakthrough patents per capita. In our analysis, we

first use least-squares regressions across U.S. counties. These analyses show that surname

diversity is robustly correlated with both patent-based innovation measures across the

entire period and that it holds controlling for more common diversity measures such as

those based on birth country. Next, we employ an instrumental variable approach that

uses immigrant flows to extract an exogenous component of surname diversity to examine

the effect of surname diversity on our innovation outcomes. These analyses suggest that

greater surname diversity causes greater innovation. Third, we subject these results to a

battery of robustness and sensitivity checks including a placebo test for reverse causality,

explorations of the role of population size, and surname fixed effects, which shows that

people with the same surname get more innovative when they live in a more diverse county.

Our analysis closes by showing that surname diversity increases novel combinations of ex-

isting technologies, weakens family ties and that the impact of surname diversity degrades

rapidly with spatial distance and that it is partially driven by weakening family ties.
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Online Appendix
Surname Diversity, Social Ties and Innovation

Max Posch, Jonathan Schulz, and Joseph Henrich

A Data Sources and Construction

Surname-based surname diversity

To construct county-level surname diversity up until the year 1940, we use the 1850, 1860,

1870, 1880, 1900, 1910, 1920, 1930, and 1940 waves of the full-count Integrated Public

Use Microdata Series (IPUMS) compiled by Ruggles et al. (2021) and available on the

NBER servers. For each wave, we obtain county identifiers and the variable namelast of

all individuals. We perform the following steps to clean the surname variable. First, we

transform non-ASCII characters into ASCII characters—e.g., we convert characters with

accents or umlauts to the closest letter in English. Second, we convert all characters to

upper case. Third, we remove all non-alphabetic characters, including all spaces (e.g.,

‘MAC ARTHUR’ becomes ‘MACARTHUR’). Fourth, we drop entries with one or fewer

letters. Last, we apply the Philips (1990) phonetic algorithm metaphone to deal with

misspellings.

We harmonize all historical Census data to the 2000 boundaries of U.S. counties using

the Ferrara et al. (2021) crosswalks. Specifically, we use the M4 weights, which account

for urban and rural areas and topographic suitability. We use 2000 as the reference year

because the patent dataset is geocoded to 2000 county boundaries. The harmonization

procedure sometimes results in counties with very few people, predominantly in the

Midwest and West, and for Census years before 1900. As a remedy, we winsorize all

harmonized variables from the lower tail at the 1% level.

Following Burchardi et al. (2021), we also obtain individuals’ age and year of immigra-

tion, the variables age and yrimmig, to estimate surname diversity for the midyears 1895,

1905, 1915, and 1925 by removing all individuals who were born or immigrated after the

midyear. Ideally, we would also remove all individuals who moved to the county after

the midyear, but this information is unavailable. We also compute alternative measures

of surname diversity by interacting surnames with the main categories of race (race),

birthplace (bpl), and education (higrade). We recode U.S. states and territories (bpl codes

<10000) to a single code and use an indicator equaling one if the individual completed

elementary school.
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Construction of the instrumental variable

We build on the Burchardi et al. (2019) approach to construct an instrumental variable for

surname-based surname diversity. We identify the number of individuals in a given U.S.

county i at the time of each census who immigrated to the U.S. since the prior census and

have the surname k. For the 1900 to 1930 census waves, we separate this immigration into

five-year periods based on the year each migrant arrived in the U.S. We obtain immigration

flows for the following bins: 1881-1895, 1896-1900, 1901-1905, 1906-1910, 1911-1915,

1916-1920, 1921-1925, and 1926-1930. From the 1880 census wave, we count all first- and

second-generation immigrants, regardless of the date of arrival in the U.S.

When we predict the stock of people N t
i,k in equation (3), we obtain negative values

for some observations. The logarithmic transformation of a negative value is undefined.

To obtain Shannon entropy for counties containing N t
i,k with negative values, we truncate

those negative values at the smallest positive value we observe in the data in a given year.

The resulting variable is highly correlated with the original variable (ρ = 0.965).

Construction of other demographic measures

We collect county-level data on population size, ethnic and birthplace diversity, and

immigrant shares for each census year from 1850 to 1940. All data are taken from the

full-count IPUMS available on the NBER servers. To compute ethnic diversity, we obtain

the variable race and use the nine main categories. To compute birthplace diversity and

immigrant shares, we draw on the variable bpl with 188 main categories. As before, we

recode U.S. states and territories (codes <100) to a single category, transform the data

from each period to 2000 U.S. counties using the M4 weights from the Ferrara et al. (2021)

cross-walks, and winsorize all demographic variables from the lower tail at the 1% level.

We follow the instructions in Raz (2023) to construct the strength of family ties measure

from the full-count census data for all census waves from 1860 to 1940. The strength of

family ties is captured by the first principal component of four underlying variables: (i)

the divorce-to-marriage ratio, (ii) the share of elderly people living without a relative, (iii)

the share of people living with at least one person who is not their relative, and (iv) the

mean size of families. We use the variables age and yrimmig to estimate the strength of

family ties for the midyears 1895, 1905, 1915, and 1925 by removing all individuals who

were born or immigrated after the midyear.
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Construction of the innovation measures

We use the Comprehensive Universe of U.S. Patents (CUSP) compiled by Berkes (2018). The

data set contains U.S. patents from 1836-2015 and is primarily constructed from Google

Patents with supplementary information from other sources. For each patent, the data set

provides inventor names and location of residence (geocoded to 2000 county boundaries),

filing and issuing years of patents, and the U.S. Patent and Trademark Office technology

classification.

We also draw on the breakthrough patent indicator created by Kelly et al. (2021). The

authors use the text in patent documents to estimate patent quality. They assign a higher

quality to patents that are novel in terms of cosine similarities. Patents are considered

novel if they have low similarity with the existing stock of patents and are impactful in

that they have high similarity with subsequent patents. We use this measure of patent

quality rather than the number of citations an individual patent has received because the

U.S. Patent and Trademark Office did not consistently begin to record patent citations

until after 1947.

We construct the innovation outcome variables at the county-period and surname-

county-period levels. The county-period-level outcomes are per capita number of (break-

through) patents filed by inventors residing in county i during the period starting t. If

a patent is filed by more than one inventor, possibly residing in different counties, we

divide the patent count by the number of inventors. We use county population sizes at the

beginning of t, computed using the full-count IPUMS and the Ferrara et al. (2021) border

harmonization procedure (winsorized from the lower tail at the 1% level), to get per capita

rates of (breakthrough) patents filed. We use patent issuing years rather than filing years

in the least-squares analysis in Section 3, because filing years are not consistently recorded

in the CUSP data set before 1870. When the unit of observation is county-period, we

winsorize the innovation outcome variables from the upper tail at the 99% level to reduce

the influence of outlier counties with a very large number of patents. We do not winsorize

the surname-county-period-level outcomes because the number of breakthrough patents

filed by inventors with a given surname in a given county during a given period is typically

small. We also report results using non-winsorized, inverse hyperbolic sine transformed

patent counts.

The surname-county-period-level outcomes are per capita number of (breakthrough)

patents filed by inventors with surname k residing in county i during the period starting

t. The construction of these outcome variables requires inventor surnames. The CUSP

data includes inventor names. This string variable contains the surname, first name, and

sometimes middle names or initials. Identifying surnames from this string variable is not
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straightforward because the order of first names and surnames is inconsistent: surnames

follow first names in some entries but not in others. When a semicolon, colon, or comma

delineates surnames from first and middle names, we use these characters to discern the

surnames. When the string variable starts with initials followed by a token of two or

more characters, or when it ends with a whitespace followed by “DE”, “DU”, “DE LA”,

“DI”, “DEL”, “DELLA”, “VAN”, “VON”, “LE”, “LA”, or “ST”, we distinguish the surnames

accordingly. For the remaining entries, we tokenize the string variable based on whitespace

and keep the first token and the last token, which are the first name and surname in most

cases. To determine which of the two tokens is the surname, we compute the frequencies

of all names (first name and surname) from the pooled census years 1900, 1910, 1920,

1930, and 1940 and compare which constellation is more common. For example, for the

tokens “JOHN” and “PETER”, we identify the surname based on whether there were more

individuals named “JOHN PETER” or “PETER JOHN”. Finally, we clean the surname

variable following the steps described above.
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B Robustness of Main Results

B.1 Alternative Definitions of Surname Diversity

Table B1: Correlations between baseline surname diversity and alternative surname
diversity measures

Herfindahl
surname

Surname,
uncorrected

Surname,
men

Surname,
whites

Surname-
race

Surname-
country of birth

0.80 0.96 1.00 0.99 0.98 0.98

Notes: This table reports the correlations between county-level surname diversity
(based on Shannon entropy) and (i) a surname-based Herfindahl index, (ii) diversity
of surnames that are not phonetically corrected, (iii) surname diversity among
men, (iv) surname diversity among white individuals, and (v) alternative diversity
measures that interact surnames with race or birthplace. An observation is a county
from 1850 to 1940 (exluding the midyears). The sources and construction of all
variables are explained in Appendix Section A.
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B.2 Least-Squares Results
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Figure B1: Correlations between surname diversity in years 1850-1940 and innovation
Notes: Each figure shows coefficients of a regression of an innovation outcome on surname diversity
interacted with year dummies conditional on year fixed effects.
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Table B2: Least-squares estimates: population size

(1) (2) (3) (4) (5) (6)

Panel A:
Patents per 1,000 people
(mean = 2.26, sd = 2.58)

Surname diversity 1.51∗∗∗ 0.677∗∗∗ 0.665∗∗∗ 0.802∗∗∗ 0.602∗∗∗

(0.134) (0.149) (0.154) (0.168) (0.187)
Population 0.345∗∗∗ 0.115∗∗∗ 0.058∗∗∗ 0.043∗∗ 0.070∗∗∗ -0.070∗∗∗

(0.050) (0.033) (0.021) (0.021) (0.021) (0.015)
Country of origin diversity 1.03∗∗∗ 1.13∗∗∗ 0.930∗∗∗ 0.147

(0.177) (0.177) (0.239) (0.196)

R2 0.305 0.521 0.579 0.609 0.695 0.865

Panel B:
Breakthrough patents per 1,000 people

(mean = 0.18, sd = 0.24)

Surname diversity 0.123∗∗∗ 0.054∗∗∗ 0.052∗∗∗ 0.057∗∗∗ 0.057∗∗

(0.014) (0.011) (0.011) (0.014) (0.024)
Population 0.033∗∗∗ 0.015∗∗∗ 0.010∗∗∗ 0.007∗∗∗ 0.009∗∗∗ -0.009∗∗∗

(0.005) (0.004) (0.002) (0.002) (0.002) (0.002)
Country of origin diversity 0.085∗∗∗ 0.098∗∗∗ 0.095∗∗∗ 0.002

(0.016) (0.016) (0.024) (0.018)

R2 0.283 0.448 0.494 0.530 0.626 0.790

Immigrant shares by country of origin (59 shares) X X X
Period fixed effects X X X X
Period-State fixed effects X X
County fixed effects X
Observations 22,299 22,299 22,299 22,299 22,299 22,299

Notes: The table reports least-squares estimates of regressions of innovation outcomes on surname diversity,
immigrant diversities and population size. In Panel A (Panel B), the outcome is number of (breakthrough)
patents per 1,000 people. The unit of observation is a county-period from 1850 to 1940 (excluding the midyears).
Standard errors are clustered on states and reported in parentheses. All independent variables are standardized
to mean zero and unit variance. The sources and construction of all variables are explained in Appendix A. ***,
**, and * indicate significance at the 1%, 5%, and 10% levels.
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Table B3: Least-squares estimates: log population size

(1) (2) (3) (4) (5) (6)

Panel A:
Patents per 1,000 people
(mean = 2.26, sd = 2.58)

Surname diversity 0.944∗∗∗ 0.143 0.148 0.212 0.747∗∗∗

(0.160) (0.206) (0.206) (0.168) (0.257)
Log Population 2.17∗∗∗ 1.16∗∗∗ 0.946∗∗∗ 0.847∗∗∗ 0.947∗∗∗ -0.432∗

(0.221) (0.317) (0.196) (0.170) (0.126) (0.238)
Country of origin diversity 1.03∗∗∗ 1.14∗∗∗ 0.975∗∗∗ 0.124

(0.146) (0.152) (0.200) (0.172)

R2 0.503 0.534 0.594 0.619 0.700 0.864

Panel B:
Breakthrough patents per 1,000 people

(mean = 0.18, sd = 0.24)

Surname diversity 0.054∗∗∗ -0.014 -0.017 -0.009 0.071∗∗

(0.014) (0.016) (0.016) (0.014) (0.032)
Log Population 0.200∗∗∗ 0.142∗∗∗ 0.124∗∗∗ 0.114∗∗∗ 0.108∗∗∗ -0.047∗

(0.024) (0.030) (0.019) (0.016) (0.013) (0.023)
Country of origin diversity 0.087∗∗∗ 0.102∗∗∗ 0.102∗∗∗ -0.0003

(0.015) (0.014) (0.020) (0.015)

R2 0.457 0.469 0.520 0.549 0.632 0.788

Immigrant shares by country of origin (59 shares) X X X
Period fixed effects X X X X
Period-State fixed effects X X
County fixed effects X
Observations 22,299 22,299 22,299 22,299 22,299 22,299

Notes: The table reports least-squares estimates of regressions of innovation outcomes on surname diversity,
immigrant diversities and log population size. In Panel A (Panel B), the outcome is number of (breakthrough)
patents per 1,000 people. The unit of observation is a county-period from 1850 to 1940 (excluding the midyears).
Standard errors are clustered on states and reported in parentheses. All independent variables are standardized
to mean zero and unit variance. The sources and construction of all variables are explained in Appendix A. ***,
**, and * indicate significance at the 1%, 5%, and 10% levels.
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Figure B2: Conditional relationships between surname diversity and (breakthrough)
patents

Notes: County-level data from 1850 to 1940 (excluding the midyears). Observations are weighted
by county population in 1850 and residualized by census year fixed effects and county population.
Bottom graphs: observations are additionally residualized by state-period fixed effects. Binscatter
plot created using the R package written by Cattaneo et al. (2019).
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Table B4: Least-squares estimates: race and occupational diversity

(1) (2) (3) (4) (5) (6) (7)

Panel A:
Patents per 1,000 people
(mean = 1.20, sd = 0.90)

Surname diversity 1.76∗∗∗ 0.734∗∗∗ 0.692∗∗∗ 0.342∗∗ 0.577∗∗∗ 0.488∗∗

(0.175) (0.157) (0.161) (0.128) (0.130) (0.203)
Country of origin diversity 1.62∗∗∗ 1.10∗∗∗ 1.16∗∗∗ 1.08∗∗∗ 1.03∗∗∗ 0.137

(0.103) (0.184) (0.178) (0.179) (0.242) (0.194)
Race diversity -0.086 -0.010 -0.135 -0.146 -0.086 -0.478∗∗∗

(0.107) (0.113) (0.094) (0.092) (0.082) (0.148)
Occupational diversity 0.535∗∗∗ 0.422∗∗∗ 0.180

(0.095) (0.133) (0.134)

R2 0.503 0.550 0.574 0.608 0.620 0.696 0.866

Panel B:
Breakthrough patents per 1,000 people

(mean = 0.18, sd = 0.27)

Surname diversity 0.154∗∗∗ 0.067∗∗∗ 0.060∗∗∗ 0.036∗∗∗ 0.046∗∗∗ 0.044∗

(0.021) (0.012) (0.012) (0.009) (0.011) (0.023)
Country of origin diversity 0.148∗∗∗ 0.100∗∗∗ 0.108∗∗∗ 0.103∗∗∗ 0.110∗∗∗ 0.002

(0.015) (0.019) (0.018) (0.019) (0.025) (0.016)
Race diversity 0.018 0.025∗∗ 0.015 0.015 0.003 -0.047∗∗∗

(0.011) (0.012) (0.010) (0.011) (0.009) (0.017)
Occupational diversity 0.037∗∗∗ 0.027∗∗ 0.013

(0.009) (0.011) (0.008)

R2 0.416 0.461 0.485 0.525 0.531 0.622 0.789

Immigrant shares by country of origin (59 shares) X X X X
Period fixed effects X X X X X
Period-State fixed effects X X
County fixed effects X
Observations 22,206 22,206 22,206 22,206 22,206 22,206 22,206

Notes: The table reports least-squares estimates of regressions of innovation outcomes on surname diversity and other
dimensions of sociocultural diversity, including race and occupational diversity. In Panel A (Panel B), the outcome is
number of (breakthrough) patents per 1,000 people. The unit of observation is a county-period from 1850 to 1940
(excluding the midyears). Standard errors are clustered on states and reported in parentheses. All independent variables
are standardized to mean zero and unit variance. The sources and construction of all variables are explained in Appendix A.
***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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Figure B3: Bivariate relationships between country of origin diversity and
(breakthrough) patents

Notes: County-level data from 1850 to 1940 (excluding the midyears). Observations are weighted
by county population in 1850 and residualized by census year fixed effects. Bottom graphs:
observations are additionally residualized by state-period fixed effects and county population size.
Binscatter plot created using the R package written by Cattaneo et al. (2019).
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Figure B4: Bivariate relationships between race diversity and (breakthrough) patents
Notes: County-level data from 1850 to 1940 (excluding the midyears). Observations are weighted
by county population in 1850 and residualized by census year fixed effects. Bottom graphs:
observations are additionally residualized by state-period fixed effects and county population size.
Binscatter plot created using the R package written by Cattaneo et al. (2019).
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Figure B5: Bivariate relationships between occupational diversity and (breakthrough)
patents

Notes: County-level data from 1850 to 1940 (excluding the midyears). Observations are weighted
by county population in 1850 and residualized by census year fixed effects. Bottom graphs:
observations are additionally residualized by state-period fixed effects and county population size.
Binscatter plot created using the R package written by Cattaneo et al. (2019).
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Table B5: Least-squares estimates: education

Patents
per 1,000 people

(mean = 1.78, sd = 1.88)

Breakthrough patents
per 1,000 people

(mean = 0.18, sd = 0.21)

(1) (2) (3) (4) (5) (6)

Average years of schooling 1.10∗∗∗ 0.072 0.292∗∗ 0.114∗∗∗ 0.009 0.037∗∗

(0.125) (0.114) (0.140) (0.015) (0.009) (0.014)
Surname diversity 0.589∗∗∗ 0.360∗∗ 0.056∗∗∗ 0.028∗

(0.145) (0.146) (0.013) (0.014)
Surname diversity × Average years of schooling 0.573∗∗∗ 0.653∗∗∗ 0.064∗∗∗ 0.069∗∗∗

(0.105) (0.121) (0.013) (0.016)
Constant 1.28∗∗∗ 0.147∗∗ 0.129∗∗∗ 0.012∗

(0.096) (0.061) (0.011) (0.007)

R2 0.282 0.563 0.650 0.247 0.495 0.592

State fixed effects X X
Observations 3,078 3,078 3,078 3,078 3,078 3,078

Notes: The table reports least-squares estimates of regressions of innovation outcomes on surname diversity
and individuals’ average years of schooling. The unit of observation is a county-period in 1940. Observations
are weighted by county population in 1940. Standard errors are clustered on states and reported in
parentheses. All independent variables are standardized to mean zero and unit variance. The sources and
construction of all variables are explained in Appendix A. ***, **, and * indicate significance at the 1%, 5%,
and 10% levels.

66



Table B6: Least-squares estimates: inverse hyperbolic sine transformed outcomes

(1) (2) (3) (4) (5) (6)

Panel A:
IHS Patents per 1,000 people

(mean = 1.20, sd = 0.90)

Surname diversity 0.688∗∗∗ 0.435∗∗∗ 0.435∗∗∗ 0.441∗∗∗ 0.123∗∗∗

(0.038) (0.041) (0.045) (0.050) (0.038)
Country of origin diversity 0.590∗∗∗ 0.273∗∗∗ 0.284∗∗∗ 0.215∗∗∗ 0.033

(0.027) (0.045) (0.046) (0.054) (0.060)

R2 0.635 0.600 0.671 0.697 0.768 0.901

Panel B:
IHS Breakthrough patents per 1,000 people

(mean = 0.18, sd = 0.27)

Surname diversity 0.164∗∗∗ 0.063∗∗∗ 0.053∗∗∗ 0.059∗∗∗ 0.063∗

(0.027) (0.014) (0.014) (0.017) (0.033)
Country of origin diversity 0.155∗∗∗ 0.109∗∗∗ 0.120∗∗∗ 0.131∗∗∗ 0.002

(0.020) (0.027) (0.026) (0.036) (0.019)

R2 0.366 0.412 0.428 0.467 0.573 0.760

Immigrant shares by country of origin (59 shares) X X X
Period fixed effects X X X X
Period-State fixed effects X X
County fixed effects X
Observations 22,222 22,222 22,222 22,222 22,222 22,222

Notes: The table reports estimates of least-squares regressions of innovation outcomes on surname diversity
and other dimensions of sociocultural diversity. In Panel A (Panel B), the outcome is inverse hyperbolic
sine transformed number of (breakthrough) patents issued in a given period per 1,000 people. The unit of
observation is a county-period from 1850 to 1940 (excluding the midyears). Observations are weighted by
county population in 1850. Standard errors are clustered on states and reported in parentheses. All independent
variables are standardized to mean zero and unit variance. The sources and construction of all variables are
explained in Appendix A. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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Figure B6: Bivariate relationships between surname diversity and inverse hyperbolic sine
transformed innovation outcomes

Notes: County-level data from 1850 to 1940 (excluding the midyears). Observations are weighted
by county population in 1850 and residualized by census year fixed effects. Binscatter plot created
using the R package written by Cattaneo et al. (2019).
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Table B7: Least-squares estimates: Herfindahl

(1) (2) (3) (4) (5) (6)

Panel A:
Patents per 1,000 people
(mean = 2.26, sd = 2.58)

Herfindahl surname diversity 2.25∗∗∗ 0.497∗∗∗ 0.361∗∗∗ 0.317∗∗∗ 0.152
(0.419) (0.139) (0.132) (0.100) (0.091)

Herfindahl country of origin diversity 1.66∗∗∗ 1.55∗∗∗ 1.59∗∗∗ 1.49∗∗∗ 0.155
(0.113) (0.138) (0.124) (0.183) (0.160)

R2 0.238 0.528 0.534 0.574 0.660 0.862

Panel B:
Breakthrough patents per 1,000 people

(mean = 0.18, sd = 0.24)

Herfindahl surname diversity 0.191∗∗∗ 0.034∗∗ 0.022∗ 0.019∗∗ 0.024∗

(0.041) (0.013) (0.011) (0.009) (0.012)
Herfindahl country of origin diversity 0.146∗∗∗ 0.139∗∗∗ 0.144∗∗∗ 0.145∗∗∗ 0.011

(0.015) (0.018) (0.015) (0.021) (0.015)

R2 0.171 0.445 0.448 0.502 0.597 0.786

Immigrant shares by country of origin (59 shares) X X X
Period fixed effects X X X X
Period-State fixed effects X X
County fixed effects X
Observations 22,299 22,299 22,299 22,299 22,299 22,299

Notes: The table reports least-squares estimates of regressions of innovation outcomes on Herfindahl surname
diversity, immigrant diversities and population size. In Panel A (Panel B), the outcome is number of (break-
through) patents per 1,000 people. The unit of observation is a county-period from 1850 to 1940 (excluding
the midyears). Standard errors are clustered on states and reported in parentheses. All independent variables
are standardized to mean zero and unit variance. The sources and construction of all variables are explained in
Appendix A. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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B.3 IV Results
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Figure B7: Binned scatter plots of surname diversity (pull-push IV) and actual surname
diversity from 1900 to 1940

Notes: County-level data from 1900 to 1940 (including midyears). Observations are weighted by
county population in 1900 and residualized by county fixed effects and state-period fixed effects
(left plot) and county-specific time trends (right plot).
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Figure B8: Binned scatter plots of surname diversity (pull-push IV) and innovation
outcomes from 1900 to 1940

Notes: County-level data from 1900 to 1940 (including midyears). Observations are weighted by
county population in 1900 and residualized by county fixed effects and state-period fixed effects
(top plots), and county-specific time trends (bottom plots).
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Table B8: Controlling and instrumenting for population size

Patents
per 1,000 people

(mean = 2.04, sd = 2.6)

Breakthrough patents
per 1,000 people

(mean = 0.14, sd = 0.24)

(1) (2) (3) (4) (5) (6)

Panel A: Least-squares estimates

Surname diversity 1.428∗∗∗ 1.425∗∗∗ 1.206∗∗∗ 0.170∗∗∗ 0.136∗∗∗ 0.111∗∗∗

(0.322) (0.339) (0.292) (0.041) (0.041) (0.038)
Population 0.069∗∗ 0.079∗∗ 0.118∗∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.021∗∗∗

(0.030) (0.036) (0.042) (0.003) (0.002) (0.007)

Panel B: Reduced-form estimates

Surname diversity (push-pull IV) 0.651∗∗∗ 0.753∗∗∗ 0.638∗∗∗ 0.084∗∗∗ 0.081∗∗∗ 0.060∗

(0.184) (0.131) (0.164) (0.018) (0.021) (0.034)
Population (push-pull IV) 0.023 0.013 0.082 0.004 0.003 0.017

(0.043) (0.062) (0.121) (0.004) (0.005) (0.018)

Panel C: Instrumental-variable estimates

Surname diversity 1.460∗∗∗ 1.707∗∗∗ 1.523∗∗∗ 0.189∗∗∗ 0.184∗∗∗ 0.137
(0.363) (0.352) (0.522) (0.044) (0.056) (0.096)

Population 0.032 0.031 0.163 0.005 0.005 0.031
(0.043) (0.058) (0.178) (0.003) (0.004) (0.027)

KP F-statistic, Surname diversity 44.298 39.749 17.979 44.298 39.749 17.979
KP F-statistic, Population 76.245 93.742 295.820 76.245 93.742 295.820

County fixed effects X X X X X X
Period fixed effects X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 23,660 23,660 23,660 23,660 23,660 23,660

Notes: The table reports the estimates of the least-squares, reduced-form, and IV estimates for
the specification described in equation (5) but additionally controlling or instrumenting for (the
instrument for) county population size, as predicted by our estimates for equation (3). An observation
is a county-period from 1900 to 1940. Observations are weighted by county population in 1900.
Standard errors are clustered at the state level. All independent variables are standardized to mean
zero and unit variance. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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Table B9: Placebo test and persistence: Instrumenting for population size

t − 2 t − 1 t t + 1 t + 2 t + 3
(1) (2) (3) (4) (5) (6)

Panel A: Patents per 1,000 people

Surname diversity -0.569 0.074 1.523∗∗∗ 1.198∗∗∗ 1.280∗ 0.851
(0.515) (0.358) (0.522) (0.373) (0.671) (0.570)

Population 0.166 -0.027 0.163 0.049 -0.143∗∗∗ -0.226
(0.142) (0.037) (0.178) (0.098) (0.040) (0.144)

Panel B: Breakthrough patents per 1,000 people

Surname diversity -0.115 -0.005 0.137 0.261∗∗ 0.198∗∗ 0.071
(0.101) (0.085) (0.096) (0.100) (0.095) (0.097)

Population 0.023∗ -0.008 0.031 -0.003 -0.010 -0.050
(0.013) (0.015) (0.027) (0.021) (0.012) (0.035)

KP F-statistic, Surname diversity 15.161 15.802 17.979 26.215 21.463 30.603
KP F-statistic, Population 52.137 11.091 295.820 54.947 156.464 55.557
Observations 17,743 17,746 23,660 17,746 17,743 14,785

County fixed effects X X X X X X
State-Period fixed effects X X X X X X
Surname-Period fixed effects X X X X X X
County-specific linear time trends X X X X X X

Notes: The table reports IV estimates of the leads and lags of innovation outcomes on surname
diversity for the specifications described in equation (5), but instrumenting county population
using the push-pull instrument for county population size, as predicted by our estimates
for equation (3). Columns 1 and 2 use the two-period and one-period lag of the dependent
variables, respectively. Column 3 repeats the baseline specification (contemporaneous values
of the dependent variables). Columns 4 to 6 use the one-period, two-period and three-period
lead of the dependent variables, respectively. Observations are county-periods and weighted by
county population in 1900. Standard errors are clustered on states and reported in parentheses.
All independent variables are standardized to mean zero and unit variance. ***, **, and *
indicate significance at the 1%, 5%, and 10% levels.
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Table B10: Regional heterogeneity in the effect of surname diversity on innovation

Patents
per 1,000 people

(mean = 2.04, sd = 2.60)

Breakthrough patents
per 1,000 people

(mean = 0.14, sd = 0.24)

(1) (2) (3) (4) (5) (6)

Panel A: Least-squares estimates

Surname diversity × Region = Midwest 2.927∗∗∗ 2.807∗∗∗ 3.069∗∗∗ 0.251∗∗∗ 0.241∗∗∗ 0.286∗∗∗

(0.433) (0.446) (0.509) (0.038) (0.038) (0.068)
Surname diversity × Region = Northeast 1.596∗∗ 3.112∗∗ 1.983∗∗∗ 0.264∗∗∗ 0.378∗∗ 0.358∗

(0.697) (1.171) (0.721) (0.084) (0.156) (0.178)
Surname diversity × Region = South 0.826∗∗∗ 0.433∗∗∗ 0.367∗∗ 0.071∗∗∗ 0.037∗∗∗ 0.015∗∗

(0.150) (0.140) (0.153) (0.017) (0.008) (0.008)
Surname diversity × Region = West 1.697∗∗∗ 0.941∗∗ 1.325∗∗∗ 0.201∗∗ 0.066∗∗∗ 0.071∗∗∗

(0.564) (0.380) (0.380) (0.090) (0.023) (0.021)

Panel B: Reduced-form estimates

Surname diversity (push-pull IV) × Region = Midwest 1.685∗∗∗ 1.919∗∗∗ 1.648∗∗∗ 0.151∗∗∗ 0.175∗∗∗ 0.168∗∗∗

(0.362) (0.328) (0.419) (0.035) (0.039) (0.062)
Surname diversity (push-pull IV) × Region = Northeast 0.430 0.646∗∗∗ 0.547∗∗∗ 0.099∗∗∗ 0.114∗∗∗ 0.098∗∗∗

(0.305) (0.170) (0.120) (0.036) (0.018) (0.026)
Surname diversity (push-pull IV) × Region = South 0.540∗∗∗ 0.357∗∗ 0.287∗∗∗ 0.056∗∗∗ 0.035∗∗∗ 0.012∗∗

(0.155) (0.170) (0.106) (0.014) (0.011) (0.005)
Surname diversity (push-pull IV) × Region = West 0.729∗∗∗ 0.369∗∗∗ 0.660∗∗∗ 0.061∗∗∗ 0.002 0.031∗

(0.197) (0.085) (0.128) (0.022) (0.010) (0.019)

Panel C: Instrumental-variable estimates

Surname diversity × Region = Midwest 3.300∗∗∗ 3.721∗∗∗ 3.978∗∗∗ 0.313∗∗∗ 0.339∗∗∗ 0.405∗∗

(0.653) (0.670) (1.093) (0.065) (0.079) (0.171)
Surname diversity × Region = Northeast 1.237∗ 2.875∗∗∗ 2.889∗∗∗ 0.254∗∗∗ 0.509∗∗∗ 0.517∗∗

(0.631) (0.640) (0.893) (0.077) (0.139) (0.246)
Surname diversity × Region = South 1.098∗∗∗ 0.606∗∗ 0.464∗∗∗ 0.122∗∗∗ 0.060∗∗∗ 0.019∗

(0.244) (0.265) (0.169) (0.025) (0.017) (0.010)
Surname diversity × Region = West 1.637∗∗ 0.928∗ 1.753∗ 0.142∗ 0.005 0.083

(0.697) (0.461) (0.910) (0.073) (0.023) (0.071)

Kleibergen-Paap F-statistic 1st coefficient 200.951 105.238 27.024 200.951 105.238 27.024
Kleibergen-Paap F-statistic 2nd coefficient 21.441 3.995 2.791 21.441 3.995 2.791
Kleibergen-Paap F-statistic 3rd coefficient 106.312 29.253 21.172 106.312 29.253 21.172
Kleibergen-Paap F-statistic 4th coefficient 30.594 2.363 1.981 30.594 2.363 1.981

County fixed effects X X X X X X
Period fixed effects X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 23,660 23,660 23,660 23,660 23,660 23,660

Notes: The table reports regional heterogeneity in the least-squares, reduced-form, and instrumental-variable (IV)
estimates for the specifications described in equation (5). An observation is a county in a period from 1900 to
1940. Observations are weighted by county population in 1900. Standard errors are clustered at the state level. All
independent variables are standardized to mean zero and unit variance. ***, **, and * indicate significance at the 1%,
5%, and 10% levels.
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Table B11: Inverse hyperbolic sine transformed outcomes

IHS Patents
per 100,000 people

(mean = 1.08, sd = 0.91)

IHS Breakthrough patents
per 100,000 people

(mean = 0.15, sd = 0.97)

(1) (2) (3) (4) (5) (6)

Panel A: Least-squares estimates

Surname diversity 0.479∗∗∗ 0.458∗∗∗ 0.381∗∗∗ 0.211∗∗∗ 0.159∗∗∗ 0.122∗∗∗

(0.081) (0.075) (0.068) (0.057) (0.053) (0.041)

Panel B: Reduced-form estimates

Surname diversity (push-pull IV) 0.204∗∗∗ 0.228∗∗∗ 0.200∗∗∗ 0.107∗∗∗ 0.098∗∗∗ 0.086∗∗∗

(0.053) (0.042) (0.026) (0.026) (0.021) (0.027)

Panel C: Instrumental-variable estimates

Surname diversity 0.457∗∗∗ 0.528∗∗∗ 0.517∗∗∗ 0.240∗∗∗ 0.226∗∗∗ 0.224∗∗

(0.086) (0.082) (0.119) (0.060) (0.065) (0.091)

Kleibergen-Paap F-statistic 63.280 51.050 28.341 63.280 51.050 28.341

Panel D: First-stage estimates Surname diversity

Surname diversity (push-pull IV) 0.445∗∗∗ 0.431∗∗∗ 0.386∗∗∗ 0.445∗∗∗ 0.431∗∗∗ 0.386∗∗∗

(0.056) (0.060) (0.073) (0.056) (0.060) (0.073)

County fixed effects X X X X X X
Period fixed effects X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 23,660 23,660 23,660 23,660 23,660 23,660

Notes: The table reports least-squares, reduced-form, and instrumental-variable (IV) estimates for
the specifications described in equation (5) and first-stage estimates for equation (4). An observation
is a county in a period from 1900 to 1940. Observations are weighted by county population in 1900.
The endogenous variable is county-level surname diversity in t. In columns 1 to 3, the dependent
variable is inverse hyperbole sine (IHS) transformed number of patents filed in the county in the
five-year period starting in t divided by county population size in 1900. In columns 4 to 6, the
dependent variable is IHS transformed number of breakthrough patents filed in the county in
the five-year period starting in t divided by county population size in 1900. Standard errors are
clustered at the state level. All independent variables are standardized to mean zero and unit
variance. The sources and construction of all variables are explained in Appendix A. ***, **, and *
indicate significance at the 1%, 5%, and 10% levels.
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Table B12: Herfindahl surname diversity

Patents
per 1,000 people

(mean = 2.04, sd = 2.60)

Breakthrough patents
per 1,000 people

(mean = 0.14, sd = 0.24)

(1) (2) (3) (4) (5) (6)

Panel A: Least-squares estimates

Herfindahl surname diversity 0.476∗∗∗ 0.374∗∗∗ 0.389∗∗∗ 0.046∗∗∗ 0.029∗∗ 0.024∗∗

(0.125) (0.104) (0.099) (0.017) (0.012) (0.011)

Panel B: Reduced-form estimates

Herfindahl surname diversity (push-pull IV) -0.013 0.094 0.402∗∗∗ 0.027∗∗∗ 0.036∗ 0.064∗∗∗

(0.138) (0.155) (0.128) (0.010) (0.019) (0.015)

Panel C: Instrumental-variable estimates

Herfindahl surname diversity -0.102 0.668 3.568∗ 0.214∗ 0.253 0.571
(1.092) (1.232) (1.927) (0.122) (0.208) (0.375)

Kleibergen-Paap F-statistic 7.434 6.131 3.020 7.434 6.131 3.020

Panel D: First-stage estimates Herfindahl surname diversity

Herfindahl surname diversity (push-pull IV) 0.126∗∗∗ 0.141∗∗ 0.113∗ 0.126∗∗∗ 0.141∗∗ 0.113∗

(0.046) (0.057) (0.065) (0.046) (0.057) (0.065)

County fixed effects X X X X X X
Period fixed effects X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 23,660 23,660 23,660 23,660 23,660 23,660

Notes: The table reports the estimates of the least-squares, reduced-form, and IV estimates for the
specification described in equation (5) but using Herfindahl surname diversity as endogenous variable.
An observation is a county-period from 1900 to 1940. Observations are weighted by county population in
1900. Standard errors are clustered at the state level. All independent variables are standardized to mean
zero and unit variance. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.
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B.4 Alternative Shift-share Instruments

The conventional shift-share approach in the immigration literature rests on the observa-

tions that migrants locate near people from the same country of origin (Altonji and Card,

1991; Card, 2001). We can adapt this approach to our context because migrants also settle

near family members. That is, other than in the push-pull approach, we allocate newly

arriving migrants (i.e., between t and t − 1) according to the preexisting share of people in

a county (in year t − 1) with the same surname. This procedure allows us to calculate the

predicted inflow of migrants by surnames in this period.

The construction of the instrument for surname diversity based on this method requires

counties’ previous-period stocks (and not just inflow) of each surname. To get the current

stocks (i.e., in t), we add the last-period inflow (predicted via shift-share) to counties’

previous-period stocks of each surname (i.e., in t −1). Then, we apply the entropy formula

to obtain the instrument for diversity.17

A concern with this calculation is that previous-period surname stocks are endogenous.

The inclusion of county fixed effects in the estimation mitigates this concern somewhat

because it shifts the focus from levels to changes in diversity; the previous period surname

stocks are hence less important as a source of bias. Nevertheless, we follow the approach

in Burchardi et al. (2021) and construct an additional shift-share instrument of surname

diversity, which relies on the predicted stock of surnames in the previous period. These

predicted previous-period stocks are calculated based on the historical push-pull approach.

We add the predicted stock of surname in t−1 (calculated based on the push-pull approach)

to the predicted inflow between t and t − 1 (calculated based on the shift-share approach)

to arrive at the predicted surname stocks in t.

Appendix Table B13 reports the estimates for both the IV specification that rests on the

shift-share instrument alone (Panel A) and on the one that combines the shift-share and

historical push-pull approach (Panel B). Consistent with our baseline results, the estimates

are positive and highly significant for both patents and breakthrough patents per capita.

Their point estimates are larger, though, they also estimated with more noise. In summary,

our results are robust to the use of more conventional shift-share IV strategies.

17Since the 1940 census does not provide information on the immigration year, we cannot calculate a
shift-share instrument for this period. Therefore, the sample in this robustness check is restricted to 1900 to
1930.
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Table B13: Robustness: Alternative shift-share instruments

Patents
per 1,000 people

(mean = 2.10, sd = 2.59)

Breakthrough patents
per 1,000 people

(mean = 0.14, sd = 0.25)

(1) (2) (3) (4) (5) (6)

Panel A: Shift-share IV using realized surname shares

Surname diversity 2.216∗∗∗ 2.197∗∗∗ 3.624∗∗∗ 0.301∗∗∗ 0.222∗∗∗ 0.474∗∗∗

(0.449) (0.488) (0.706) (0.061) (0.063) (0.140)

Kleibergen-Paap F-statistic 1,697 1,845 87 1,697 1,845 87

Panel B: Shift-share IV using push-pull predicted surname shares

Surname diversity 2.539∗∗∗ 3.223∗∗∗ 4.917∗∗∗ 0.394∗∗∗ 0.379∗∗∗ 0.816∗∗

(0.670) (0.697) (1.142) (0.075) (0.090) (0.373)

Kleibergen-Paap F-statistic 85 60 16 85 60 16

County fixed effects X X X X X X
Period fixed effects X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 20,704 20,704 20,704 20,704 20,704 20,704

Notes: The table reports IV estimates for the specifications described in equation (5), but based
on alternative shift-share procedures to construct the instrument for surname diversity. Panel
A reports estimates for a shift-share instrument using realized surname shares, akin to Card
(2001). Panel B reports estimates for a shift-share instrument using predicted surname shares
based on the push-pull approach described in equation (3), akin to Burchardi et al. (2021).
An observation is a county-period from 1900 to 1940. Observations are weighted by county
population in 1900. Standard errors are clustered on states and reported in parentheses. All
independent variables are standardized to mean zero and unit variance. ***, **, and * indicate
significance at the 1%, 5%, and 10% levels.
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B.5 Patent Technology Class Fixed Effects

Another potential concern with the interpretation of our findings is that patenting practices

vary across industries and technologies (Moser, 2013), and these differences might affect

our results.

Using the fact that the USPTO assigns a technology class to each granted patent, we

assess this concern by estimating specifications that include patent class fixed effects to

absorb any technology-specific traits. Similar to the surname fixed effects specifications in

our main analysis, this requires us to change the unit of observation from county-period

to patent class-county-period. The estimating equations are given by equations (8) and (9),

where equation (8) is the first stage and equation (9) is the second stage.

Surname diversityti = γ ¤�Surname diversityti +µt,s(i) +µi +µt,c + vti,c (8)

Y ti,c = β Surname diversityti +αt,s(i) +αi +αt,c + εti,c (9)

where i indexes counties, s states, t census years (including the midyears), and c patent

class. There are 408 patent classes in our sample from 1900 to 1944. Examples of the

patent class level are “Geometrical Instruments”, “Stoves and Furnace”, and “Chemistry:

Electrical and Wave Energy”. As before, Surname diversityti is county i’s surname diversity

in t, and ¤�Surname diversityti is county i’s predicted surname diversity in t. Y ti,c now is the

number of (breakthrough) patents (per 1,000 residents) in patent class c, filed in county i

in the five-year period starting in t. Therefore, the innovation outcomes vary at the patent

class-county-period level, while surname diversity remains defined at the county-period

level. Importantly, we can now include patent class-period fixed effects, denoted by the

parameter αt,c, which implies we non-parametrically control for patent class-specific

confounders across periods, including differences in patenting practices across industries.

The coefficient of interest is β. Observations are weighted by the number of people in a

county in the year 1900. Standard errors are clustered in two ways, on states and patent

class.

The results are reported in Table B14 and show that estimates are virtually unaffected

by the inclusion of patent class fixed effects (in columns 2 to 4 and 6 to 8). All the estimates

are highly significant in all specifications. Thus, we conclude that differences across

technological categories do not affect our results.
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Table B14: Patent technology class fixed effects

Patents
per 1,000 people

(mean = 0.01, sd = 0.03)

Breakthrough patents
per 1,000 people

(mean = <0.01, sd = 0.01)

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Least-squares estimates

Surname diversity 0.006∗∗∗ 0.006∗∗∗ 0.006∗∗∗ 0.004∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.000∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Panel B: Reduced-form estimates

Surname diversity (push-pull IV) 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗

(0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Panel C: Instrumental-variable estimates

Surname diversity 0.005∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.007∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗

(0.001) (0.001) (0.001) (0.003) (0.000) (0.000) (0.000) (0.000)

Kleibergen-Paap F-statistic 57.355 57.355 46.053 30.024 57.355 57.355 46.053 30.024

Panel D: First-stage estimates Surname diversity

Surname diversity (push-pull IV) 0.423∗∗∗ 0.423∗∗∗ 0.407∗∗∗ 0.356∗∗∗ 0.423∗∗∗ 0.423∗∗∗ 0.407∗∗∗ 0.356∗∗∗

(0.056) (0.056) (0.060) (0.065) (0.056) (0.056) (0.060) (0.065)

County fixed effects X X X X X X X X
Period fixed effects X X
Patent class-Period fixed effects X X X X X X
State-Period fixed effects X X X X
County-specific linear time trends X X
Observations 8,264,856 8,264,856 8,264,856 8,264,856 8,264,856 8,264,856 8,264,856 8,264,856

Notes: The table reports least-squares, reduced-form, and instrumental-variable (IV) estimates for the specifications described in equation 9
and first-stage estimates for equation 8. An observation is a patent class in a given county in a period from 1900 to 1940. Observations are
weighted by the population in a given county in the year 1900. In columns 1 to 3, the dependent variable is number of patents with c as
the main technological category and filed by individuals in county i in the five-year period starting in t divided by population size in
county i in 1900. The dependent variable in columns 4 to 6 is the corresponding number of breakthrough patents. Standard errors are
two-way clustered on states and technological category and reported in parentheses. All independent variables are standardized to mean
zero and unit variance. ***, **, and * indicate significance at the 1%, 5%, and 10% levels.

80



C Additional Results
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Figure C1: Relationship between surname diversity and impersonal trust
Notes: An observation is an individual. Top left: Bivariate relationship in 1940. Top right: Variables
residualized by state fixed effects and log county population in 1940. Bottom: Coefficients of
regressions of impersonal trust today on surname diversity conditional on state fixed effects and
log county population by census year (1850-1940) and survey year, sex, age, and race fixed effects.
The trust question is taken from the General Social Survey, waves 1972 to 2016.
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Figure C2: Relationship between surname diversity and strength of family ties
Notes: An observation is a county. Top left: Bivariate relationship in 1940. Top right: Variables
residualized by state fixed effects and log county population in 1940. Bottom: Coefficients of
regressions of strength of family ties on surname diversity conditional on state fixed effects and
log county population by census year (1860-1940). The strength of family ties data is constructed
following Raz (2023).
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Figure C3: Relationship between country of origin diversity and impersonal trust
Notes: An observation is an individual. Top left: Bivariate relationship in 1940. Top right: Variables
residualized by state fixed effects and log county population in 1940. Bottom: Coefficients of
regressions of impersonal trust today on country of origin diversity conditional on state fixed
effects and log county population by census year (1850-1940) and survey year, sex, age, and race
fixed effects. The trust question is taken from the General Social Survey, waves 1972 to 2016.
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Figure C4: Relationship between race diversity and impersonal trust
Notes: An observation is an individual. Top left: Bivariate relationship in 1940. Top right: Variables
residualized by state fixed effects and log county population in 1940. Bottom: Coefficients of
regressions of impersonal trust today on race diversity conditional on state fixed effects and log
county population by census year (1850-1940) and survey year, sex, age, and race fixed effects. The
trust question is taken from the General Social Survey, waves 1972 to 2016.
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Figure C5: Relationship between country of origin diversity and strength of family ties
Notes: An observation is a county. Top left: Bivariate relationship in 1940. Top right: Variables
residualized by state fixed effects and log county population in 1940. Bottom: Coefficients of
regressions of strength of family ties on country of origin diversity conditional on state fixed
effects and log county population by census year (1860-1940). The strength of family ties data is
constructed following Raz (2023).
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Figure C6: Relationship between race diversity and strength of family ties
Notes: An observation is a county. Top left: Bivariate relationship in 1940. Top right: Variables
residualized by state fixed effects and log county population in 1940. Bottom: Coefficients of
regressions of strength of family ties on race diversity conditional on state fixed effects and log
county population by census year (1860-1940). The strength of family ties data is constructed
following Raz (2023).
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Table C1: Number of technologies on patents

Average number of
technologies on patents
(mean = 2.34, sd = 0.67)

(1) (2) (3)

Panel A: Least-squares estimates

Surname diversity 0.131∗∗∗ 0.071∗∗ 0.040
(0.035) (0.033) (0.062)

Panel B: Reduced-form estimates

Surname diversity (push-pull IV) 0.090∗∗∗ 0.071∗∗ 0.045
(0.029) (0.035) (0.055)

Panel C: Instrumental-variable estimates

Surname diversity 0.214∗∗ 0.175∗ 0.128
(0.085) (0.104) (0.172)

Kleibergen-Paap F-statistic 57.192 45.938 25.609

County fixed effects X X X
Period fixed effects X
State-Period fixed effects X X
County-specific linear time trends X
Observations 20,257 20,257 20,257

Notes: The table reports the estimates of the least-squares, reduced-
form, and IV estimates for the specification described in equation (5)
with average number of technologies on patents as dependent vari-
able. An observation is a county-period from 1900 to 1940. Ob-
servations are weighted by county population in 1900. Standard
errors are clustered at the state level. All independent variables are
standardized to mean zero and unit variance. ***, **, and * indicate
significance at the 1%, 5%, and 10% levels.
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Figure C7: Average number of inventors per (breakthrough) patent over time
Notes: The figures show the average number of distinct inventors per (breakthrough) patent from
1850 to 1990. Error bars indicate standard errors.
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Table C2: Do same-surname inventors produce lower-quality patents?

Breakthrough patent indicator
(1) (2) (3)

Constant 0.107∗∗∗

(0.001)
Same-surname indicator -0.048∗∗∗ -0.030∗∗∗ -0.011∗∗∗

(0.002) (0.002) (0.002)

R2 0.002 0.033 0.184
Observations 200,818 200,818 200,818

Year fixed effects X X
Patent technology class fixed effects X

Notes: An observation is a patent from 1850 to 1949 with at least two
or more distinct inventors. The same-surname indicator takes value
one if all inventors on the patent have the same surname. * p < 0.1, **
p < 0.05, *** p < 0.01.
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D Additional Descriptives

Figure D1: The figures show the geographic variation in surname diversity in 1940.

Table D1: Correlations between surname diversity and other diversities

Country of origin
diversity

Share
immigrants

Race
diversity

Occupational
diversity

Raw Corr. 0.39 0.27 -0.24 0.60
Partial Corr. (Log Population) 0.60 0.50 -0.29 0.57
Partial Corr. (State FE, Log Population) 0.40 0.27 0.08 0.48

Notes: This table reports standardized coefficients of regressions of county-level surname diversity on
other dimensions of sociocultural diversity from 1850 to 1940. The first row reports the relationship
conditional on year fixed effects. The second row reports the coefficients of regressions additionally
controlling for log county population. The third row reports the correlations additionally controlling
for state fixed effects. An observation is a county from 1850 to 1940 (exluding the midyears). The
sources and construction of all variables are explained in Appendix Section A.
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