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Abstract 

Old ideas serve as critical inputs into new ideas, but how do knowledge workers 
innovate when there are only few existing ideas to build on? In this paper, I explore how 
analogical reasoning—and technologies that automate it—can serve as “shortcuts” that allow 
innovators to import knowledge from an adjacent domain, bypassing the need to build 
knowledge from the ground up. Yet, because analogies require the availability of other 
domains as templates, they may also constrain the direction of innovation towards areas 
with available templates. Using the setting of structural biology, I document a tradeoff: 
while the arrival of an analogy-based technology increased the rate of innovation, it led to 
workers herding around solving less impactful problems. 
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1.  Introduction 

Knowledge production is cumulative (Romer 1990; Scotchmer 1991). Innovators use existing 

ideas to produce new ideas—from mechanical engineers relying on the foundation of Newtonian 

physics to applied economists turning to canonical econometric models. But how do knowledge 

workers innovate in new domains where there are only few existing ideas to build on? 

In this paper, I explore how technologies can be used as “shortcuts” that speed up the process 

of acquiring foundational knowledge—and even circumvent it altogether. Much of the prior 

literature on research technologies has focused on vertical shortcuts, those that help innovators 

more quickly understand and apply existing knowledge to climb to the frontier. What is less 

obvious is how to innovate in domains where there is no foundation yet. I argue that horizontal 

shortcuts—specifically, analogies—allow innovators to import knowledge from another domain, 

bypassing the need to build knowledge from the ground up. 

 Consider the early history of aviation, when the physics of aerodynamics were not yet 

discovered. Inventors looked to birds as analogies to design devices that imitate the motion of 

flapping wings. But all of these attempts failed—until George Cayley, a 19th-centry British 

inventor, made a breakthrough. In place of flapping wings, Cayley envisioned the first prototype 

of modern-day airplanes that was later built by the Wright Brothers: a device with fixed wings, 

which glides to sustain lift. 

This history of aviation illustrates both the power and pitfalls of analogies. Not only do 

analogies identify unexpected connections across knowledge domains, they can also circumvent 

the need to build foundational knowledge by borrowing insights from another domain. Yet, 

because analogies require the availability of templates, they may narrow the line of inquiry. Birds 

provided guidance behind the mechanics of flight, but since they were the only known templates 

for flight (and the underlying physics were not yet known), early inventors focused on flapping 

wings and did not consider fixed-wing machines (Spenser 2008; Pollack 2014). 

Analogical reasoning is ubiquitous in both research and managerial practice. A wide range 

of scientific and engineering breakthroughs have been sparked by analogies (Gentner, Holyoak, 

and Kokinov 2001), from Velcros inspired by plant burrs to Ernest Rutherford’s model of the 

atom as a miniature solar system. In strategy, managers often face strategic problems that are 

well-suited for analogical reasoning (Gavetti, Levinthal, and Rivkin 2005; Bingham and Kahl 

2013). Entrepreneurs commonly conceive of new ventures by adopting insights from one industry 
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to another, such as the over hundred startups that claim to be the next “Uber for X” (Madrigal 

2019), from Instacart (Uber for grocery deliveries) to Wag (Uber for dog walkers). 

Although analogical reasoning has played a central role in innovation, automation has made 

it increasingly easier to deploy. In particular, algorithms based on supervised machine learning 

can be seen as the automation of analogical reasoning. Such algorithms mine patterns from known 

training templates and apply those patterns to new areas, mirroring human ability for finding 

patterns that explain the unfamiliar in terms of the familiar. For example, drugmakers refer to 

well-known compounds to identify promising candidates among unexplored compounds, while 

managers rely on their experiences with past employees to screen applicants—and drug discovery 

and hiring algorithms now routinely conduct these types of analogical reasoning on their behalf. 

By taking analogical reasoning out of an individual mind and outsourcing it to machines, some 

believe that analogies can be harnessed at scale with data-reliant technologies (Kittur et al. 2019). 

However, while analogies can help innovators make progress in uncharted terrains, their 

need for templates can also restrict the direction of innovative activities. The automation of 

analogical reasoning makes this tradeoff especially salient: analogy-based technologies like machine 

learning can only be employed in areas with training data. The availability and location of training 

data can thus shape the direction of innovation towards some areas, while neglecting others. 

In addition to providing a framework for how analogies can serve as shortcuts in innovation, 

the goal of this paper is to empirically study the tradeoff of relying on analogies. Although 

analogical reasoning has been a topic of great interest in cognitive psychology (Gentner, Holyoak, 

and Kokinov 2001; Hofstadter and Sander 2013), along with fewer but important studies by 

management scholars (e.g., Gavetti, Levinthal, and Rivkin 2005), much of the prior work on 

analogies has been based on laboratory experiments or case studies. 

The scarcity of empirical studies based on real-world, large-scale data is perhaps 

unsurprising. Analogical reasoning, while pervasive, is a mental shortcut that often goes unnoticed 

(Dunbar 1999). Above all, analogies—and analogy-based technologies—are challenging to study 

empirically. In order to investigate whether the use of an analogy-based technology shifts the 

direction of innovation, it is important to be able to observe what ideas could be pursued in the 

absence of the technology. Finding such a setting is difficult because the counterfactual of ideas 

that could have been pursued—but were not—is often unobservable. There also needs to be a 

credible way to measure distance between ideas, as analogies work by identifying similarities 

between disparate domains. Finally, the analogy-based technology must differentially treat only 
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some areas of the setting, such that outcomes in the areas where the technology was introduced 

can be compared to the areas without the technology. 

I focus on the setting of structural biology, a field with empirical features ideally suited for 

this paper. Structural biology studies the 3D structures of proteins and has contributed to more 

than a dozen Nobel prizes, as proteins play vital roles in virtually every biological process. 

Elucidating a protein structure at atomic resolution—or “solving” the structure—can reveal the 

protein’s function, which helps with applications such as designing vaccines that train human 

antibodies to recognize the spike proteins of SARS-CoV-2. Importantly, structural biology has 

several empirical features that allow me to identify how the introduction of an analogy-based 

technology may have shaped the subsequent rate and direction of innovation. 

First, unlike many settings where only realized ideas are observable, structural biology 

provides a window into the entire idea landscape. Using a database of all known proteins, I observe 

which proteins structural biologists explored versus could have explored but neglected. For 

instance, of the approximately 20,000 human proteins, just one-third of them have had their 

structures experimentally determined as of 2020. In addition, while most settings do not have an 

easy way to quantify the similarity between each potential idea, the distance between ideas can 

be measured in structural biology (Hill and Stein 2020; 2021): proteins are composed of sequence 

of amino acids, so they can be grouped based on their sequence similarity. In other words, it is 

possible to map out the idea landscape of all known proteins and see which areas of the landscape 

have been explored (which I term “bright” clusters of proteins) and which areas remain unexplored 

and thus do not have built-up knowledge (which I term “dark” clusters). 

Second, structural biology is a prime setting for studying analogy-based technologies. 

Solving a protein structure involves deep knowledge of biology, physics, and statistics, but many 

of the steps have now become automated. The specific technology I examine is the software 

program Phaser, released in 2003, which automates a method called molecular replacement (MR). 

Instead of solving a structure from scratch, MR borrows structure information from previously 

solved proteins that are similar to the unknown structure that the scientist is trying to elucidate. 

MR can therefore be viewed as an analogy-based technology since it helps knowledge workers 

make progress in areas of research without existing knowledge (i.e., proteins whose structures are 

unknown) by importing structure templates from neighboring proteins. 

Finally, this analogy-based technology differentially treated some parts of the idea landscape. 

Since MR needs data on previously solved structures, MR only works for bright clusters of proteins 

(i.e., clusters with previously solved structures), and does not work for dark clusters. This allows 



4 
 

me to employ a difference-in-differences design where bright and dark clusters serve as my 

treatment and control groups. By matching data from Swiss-Prot (a database of all known proteins) 

to the Protein Data Bank (a database of all protein structures), I examine the quantity and quality 

of structures solved in bright clusters after the arrival of MR, relative to dark clusters. 

My first set of results focuses on the rate of innovation. Since MR reduced the cost of solving 

unknown structures in bright clusters, one would expect more structures to be solved in those 

clusters. Indeed, I find that bright clusters experienced a relative increase in the total number of 

solved structures after MR was introduced. This effect was sustained throughout the entire sample 

period: bright clusters got brighter and brighter. 

I then turn to how MR impacted quality and distinguish between two dimensions of quality: 

execution and importance. In any type of innovative activity, the innovation should be well-

executed, but it should also solve an important problem. In the case of structural biology, 

execution refers to how meticulously a structure was solved (e.g., the resolution or the level of 

detail found in the structure), while importance refers to whether the structure led to a novel 

understanding of a biological process. The goal of structural biology is not to solve structures for 

the sake of solving them; the goal is to learn the functional roles the proteins might play by 

elucidating their structures. I find that while bright clusters received more well-executed structures, 

these structures were less scientifically important. They provided fewer functional annotations 

about the proteins and had lower publication and patent footprint. 

A potential identification concern is that bright clusters may have been evolving on different 

trends than dark clusters before the introduction of MR. I conduct several robustness analyses to 

address this concern. First, I show that there are no pre-trends in the corresponding event studies. 

Second, I control for predicted brightness; the idea is to compare clusters that share ex-ante similar 

traits, but some clusters just happened to be actually bright while other clusters happened to be 

dark. MR only works when the cluster is actually bright regardless of whether the cluster is 

predicted to be bright or dark, and I verify that only actual brightness matters when estimating 

the impact of MR. 

Taken together, my results suggest a tradeoff: while the arrival of MR increased the rate of 

innovation, it also led to knowledge workers solving less impactful problems. These results from 

structural biology illustrate an inherent limitation of analogies: analogies may serve as shortcuts 

for making progress in new domains (i.e., proteins whose structures are unknown), but they are 

also constrained by the need for templates and thus may be employed in domains with neighbors—
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that is, potentially crowded areas (i.e., bright, already well-explored clusters) that may not be the 

most impactful. 

This paper contributes to several literatures. I first build on a body of evidence that 

examines how technologies can both advance and constrain knowledge production. Much of this 

prior work studies technologies that can be classified as those that help innovators digest and 

apply existing knowledge (Teodoridis 2018; Furman and Teodoridis 2020; Anthony 2021; Miric, 

Ozalp, and Yilmaz 2021; Mannucci 2017). In contrast, by introducing the idea of analogies, this 

paper aims to shed light on technological shortcuts that help knowledge workers innovate in 

domains where little is known. In other words, I distinguish between technologies that reduce the 

“burden of knowledge” (Jones 2009)—the problem of innovators facing an increasing educational 

burden as knowledge accumulates—and technologies that alleviate a different problem of 

innovators lacking existing ideas that can serve as inputs in the production of new ideas. 

By focusing on analogy-based technologies, I also contribute to the emerging literature on 

AI and data-driven exploration. While the literature on AI has extensively documented how 

algorithmic bias can arise from poor-quality training data (Cowgill and Tucker 2020; Cowgill et 

al. 2020; Choudhury, Starr, and Agarwal 2020), this paper joins a smaller literature that focuses 

on how the very availability of training data can dictate where innovations take place (Cockburn, 

Henderson, and Stern 2018; Hoelzemann et al. 2022). 

Lastly, I leverage the setting of structural biology, which was first brought to the attention 

of social scientists by Hill and Stein (2020; 2021). The authors assess the costs of the priority 

reward system in science, which tends to only recognize the first discoverer.1 While I do not study 

priority races and instead examine the impact of an analogy-based technology by exploiting a 

novel identification strategy, I follow Hill and Stein (2020; 2021) in highlighting the strengths of 

the setting. As a field with both rich scientific achievements and empirical features, structural 

biology is an attractive setting for investigating broader questions of how to manage innovation. 

The rest of the paper proceeds as follows. Section 2 provides a taxonomy of shortcuts and 

an overview of the key features and tradeoffs of analogies. Section 3 introduces the institutional 

context and empirical features of structural biology. Section 4 lists the main data sources. Section 

5 describes the difference-and-differences design that underpins this study’s empirical strategy. 

                                                           
1 Specifically, Hill and Stein (2020; 2021) document the effects of being “scooped” on subsequent career 
outcomes, as well as how competition leads to rushing and lower-quality science. Additionally, a recent 
paper by Zhuo (2022) estimates a model of lab decision-making on resource allocation in structural biology. 
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Section 6 presents my main results, along with robustness analyses. Section 7 discusses the 

implications of my results and conclusions. 

 

2.  Shortcuts to Innovation 

The cumulative nature of knowledge production typically characterizes the innovation 

process as a sequence of old ideas generating new ideas (Romer 1990; Scotchmer 1991). This 

section discusses how there can be shortcuts (particularly shortcuts enabled by technologies) that 

can speed up—or even bypass—this sequence of knowledge accretion. 

2.1 Prior Literature on Research Technologies: Vertical Shortcuts 

As knowledge accumulates, every new generation of innovators faces a greater educational 

burden. This “burden of knowledge” has several implications, including increased training length 

and specialization as innovators struggle to learn the growing body of knowledge (Jones 2009). 

The prior literature on research technologies has primarily focused on technologies that I consider 

as “vertical” shortcuts, which mitigate this burden. These are technologies that allow innovators 

to more quickly acquire existing foundational knowledge, such that they can use the knowledge 

as stepping stones to climb to the frontier of knowledge and produce new ideas. 

As shown in Figure 1, vertical shortcuts can be thought of as aiding in either understanding 

or applying foundational knowledge. Summaries—from textbooks 2  to Wikipedia—help with 

understanding existing knowledge by providing a short synopsis of a given domain, saving 

knowledge workers from having to read every research article or replicate every experiment. 

Calculators help with applying foundational knowledge by executing a pre-programmed menu of 

instructions based on such knowledge. Consider programs like Stata, which is embedded with 

canonical econometric models. Stata allows even a college first-year with little training in 

econometrics to run regressions by simply entering “reg y x.” 

A large body of prior work on research technologies can be conceptualized as vertical 

shortcuts, particularly calculators of varying sophistication. Calculators are closely related to the 

idea of modularity, where “information hiding” (Parnas 1972) within modules glued together by 

standardized interfaces can facilitate a division of innovative labor (Baldwin and Clark 1997; 

Sanchez and Mahoney 1996; Simcoe 2015). Examples studied in prior work range from financial 

                                                           
2 A recent work by Greenblatt (2021) on medical guidelines illustrates how summaries can spur innovation.  
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spreadsheet technology (Anthony 2021) to animation toolkit (Mannucci 2017) to videogame 

“middleware” (Miric, Ozalp, and Yilmaz 2021). Although this prior literature does not, for the 

most part, explicitly discuss the burden of knowledge, notable exceptions are Teodoridis (2018), 

Furman and Teodoridis (2020), and Nagle and Teodoridis (2020). The authors examine the arrival 

of an automating motion-sensing technology and suggest the role technologies can have in reducing 

the burden of knowledge. 

2.2 Analogies: Horizontal Shortcuts 

While vertical shortcuts can assist knowledge workers in innovating in domains with deep 

foundation, what about in new domains without such foundation? This paper complements the 

burden of knowledge literature by focusing on a different problem: how to innovate when there 

are few existing ideas that can serve as inputs into new ideas. 

In new domains, knowledge workers face the challenge of having to build foundational 

knowledge from scratch—and analogical reasoning can be used to circumvent this challenge. In 

this section, I describe the key features and tradeoffs of analogies. 

2.2.1 Key Features of Analogies  

Analogical reasoning has been extensively studied by cognitive psychologists as a crucial 

component of human cognition. Analogy has been broadly described as “the ability to identify 

similarities in relations that hold within domains” (Gentner 1982; Gentner, Holyoak, and Kokinov 

2001; Holyoak and Thagard 1996), even if the individual objects are distinct (e.g., how sound 

propagates through the air is analogous to how water waves travel in a pond, even though sound 

and water are not alike). 

While the concept of analogy has been employed in diverse disciplines, ranging from 

linguistics to philosophy,3 I focus on a simple definition of analogy adapted from cognitive science: 

the importing of patterns from one knowledge domain to another. This definition leads to three 

key features of analogies, with respect to their role in knowledge production. 

(i) Analogies can serve as shortcuts. Analogical reasoning can be viewed as a shortcut 

because it can serve as an alternative to other ways in which innovators build knowledge in new 

domains, such as trial-and-error (Thomke 1998) or by generating a theory (Fleming and Sorenson 

                                                           
3 Even before the rise of modern cognitive science, the word analogy had been widely used, prompting the 
19th-century political economist John Stuart Mill to once remark, “There is no word . . . which is used more 
loosely, or in a greater variety of senses, than Analogy” (Mill 1843/1974). 
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2004). As an example, suppose a drugmaker is trying to create a drug for a new disease. One 

approach would be to screen through millions of compounds to detect pharmacological activity 

through trial-and-error. Another approach would be to start by building a theory of how the 

disease operates at the molecular level and then design drugs that target the molecular action 

(Henderson 1994). However, trial-and-error can require extensive resources and does not guarantee 

a solution, while uncovering underlying causal principles is challenging and not always possible. 

Instead of building knowledge from the ground up through trial-and-error or theory 

development, I focus on how innovators can take a “horizontal” shortcut by importing intuition 

and insights from a neighboring field. With the case of drug development, in lieu of brute-force 

screening or rational drug design, drugmakers can rely on pattern recognition by identifying drug 

candidates for a new disease based on already approved drugs for similar diseases. 

This strength of analogical reasoning in helping innovators quickly make progress in new 

domains has been highlighted in prior work. Psychology studies have shown that scientists 

frequently substitute slow, iterative experimentation with analogical reasoning to speed up 

problem solving (Dunbar 2000). In the context of business strategy, using a simulation and a rich 

set of case studies, Gavetti, Levinthal, and Rivkin (2005) demonstrate that managers often face 

strategic problems that are best suited for analogical reasoning: problems that are neither too 

modular (where rational, deductive reasoning can instead be employed) nor too complex (where 

only trial-and-error can work).4  

(ii) Analogies are not simple recombinations. Analogical reasoning’s reliance on 

pattern recognition distinguishes analogies from the traditional concept of recombinant innovation 

(Schumpeter 1934; Weitzman 1998; Uzzi et al. 2013). The key insight in the recombinant literature 

is that new ideas can be generated from existing, well-understood ideas if they are combined in a 

novel way.5 In contrast, rather than mixing well-understood ideas, analogical reasoning involves 

the borrowing of less-understood patterns from another domain. In the bird-airplane analogy, for 

example, inventors of flight did not understand the physics of aerodynamics and therefore did not 

know exactly how birds can fly. But these early inventors speculated that the motion of wings is 

                                                           
4 In economics, Gilboa, Samuelson, and Schmeidler (2015) develop a formal model of reasoning, in which 
economic agents use analogical reasoning when the underlying data generating process is unknown and use 
rule-based reasoning when the data structure is known. 
5  For instance, Brynjolfsson and McAfee (2014) cite Waze, the navigation app that uses real-time, 
crowdsourced traffic data, as a classic example of recombination. The individual components of Waze 
(location sensors, social networks, and smartphones) were all widely known and used, but no one had 
thought to combine them together to optimize driving routes before Waze. 
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important and applied this pattern to human-powered flight. Analogical reasoning is the importing 

of relational patterns—correlations—not causal logic. 

(iii) As shown in Figure 1, analogical reasoning has evolved from solely being 

conceptual in the mind of an individual to being automated and outsourced to 

machines. Conceptual analogies have been fundamental throughout the history of innovation by 

helping individuals understand a new domain through identifying patterns across domains.6 The 

modern field of biomimetics is a prime instance of conceptual analogies as shortcuts; engineers 

often take inspiration from properties found in the natural world and reverse-engineer them, 

instead of beginning with first principles or replicating the millennia of trial-and-error experiments 

that nature conducted through natural selection (Pollack 2014). In managerial practice, conceptual 

analogical reasoning has also served as critical, if underappreciated, sources of strategic visions 

and entrepreneurial ventures (Hill and Levenhagen 1995; Gavetti and Rivkin 2005; Gavetti, 

Levinthal, and Rivkin 2005; Kaplan and Orlikowski 2013; Martins, Rindova, and Greenbaum 2015; 

Glaser, Fiss, and Kennedy 2016).7 

With the rise of data-reliant, pattern-recognition algorithms, conceptual analogical 

reasoning has become increasingly automated (Kittur et al. 2019). This has several consequences. 

First, this automation has allowed innovators to apply the borrowed patterns from another domain, 

without necessarily understanding them. For example, when relying on machine learning software 

libraries like TensorFlow, knowledge workers often do not know why the algorithm made the 

prediction it did. Despite not necessarily understanding the correlations that connect the training 

and test domains, knowledge workers can simply apply those patterns with TensorFlow. Second, 

unlike conceptual analogical reasoning which is unconstrained in the types of templates it requires, 

                                                           
6 Hesse (1966) and Holyoak and Thagard (1996) provide numerous examples. One of the first accounts of 
(conceptual) analogical reasoning was by the ancient Roman architect Vitruvius who proposed the wave-
sound model. Since then, analogies have served as the genesis behind many discoveries, from Charles 
Darwin’s theory of natural selection, which was based on an analogy to artificial selection by farm breeders, 
to the Nobel laureate Salvador Luria’s analogy between slot machines and bacterial mutations. Analogies 
can even be found in mathematics, a field built on causal logic and thus may seem less amenable to analogical 
reasoning. In fact, many difficult problems in algebra have been solved by turning them into geometric 
problems—that is, by finding analogies between algebra and geometry (Hacking 2014; du Sautoy 2021). 
7 In addition to these studies on how analogical reasoning can serve as a source of innovation (i.e., create 
new strategies and ventures), another strand of management literature underscores a different aspect of 
analogies: a dissemination tool once an innovation has been produced. When introducing novel products or 
services, analogies can be used to increase legitimacy (Hargadon and Douglas 2001; Bingham and Kahl 2012; 
Etzion and Ferraro 2010; Cornelissen and Clarke 2010). Apple, for instance, popularized the term “desktop” 
when launching personal computers. By analogizing between the physical and the digital desks, Apple 
intuitively drew in customers who were not used to working in the virtual world (Bingham and Kahl 2012). 



10 
 

automated analogical reasoning needs specific templates: digitized training data. I discuss the 

implications below in Section 2.2.2. 

2.2.2 Tradeoffs in Relying on Analogies 

While analogies—and by extension, analogy-based technologies like machine learning—can 

help knowledge workers innovate in domains where there are no existing ideas yet to build on, 

analogies can also have several costs. First, because analogies require the availability of templates, 

they may constrain the direction of innovation towards areas of research with templates, even if 

those areas are less fruitful. Second, these templates may highlight just superficial similarities 

between the target and adjacent domains, leading to misleading conclusions (Gentner 1982). Third, 

because analogies do not build foundational knowledge from scratch, this leads to a weak 

foundation: knowledge workers may not fully understand the underlying mechanisms of how the 

target domain works; they can only translate the target in terms of the template.8 

This paper focuses on the first cost—that analogies may constrain innovation towards areas 

with templates. This cost of analogies demonstrates an inherent limitation of analogies in 

balancing exploration and exploitation when knowledge workers search through the idea landscape 

(Kauffman 1993; Levinthal 1997; Nelson and Winter 1982; Fleming and Sorenson 2004; Kaplan 

and Vakili 2015). For example, Kneeland, Schilling, and Aharonson (2020) propose that inventors 

often make “long jumps” across disparate domains; analogical reasoning can be one mechanism 

that inventors rely on to make such jumps to uncharted domains. At the same time, its very need 

for templates from which to import patterns may result in anchoring that leads analogical 

reasoning astray and bound to local search (Holyoak and Thagard 1996; Gavetti and Rivkin 2005). 

The automation of analogical reasoning may exacerbate this fixation cost. Although hailed 

as a tool of exploration (Agrawal, Gans, and Goldfarb 2018; Agrawal, McHale, and Oettl 2018), 

supervised machine learning has one critical weakness: it cannot work without digitized training 

data. While the prior literature on AI has focused on algorithmic bias that arises from poor-quality 

training data (Cowgill and Tucker 2020; Cowgill et al. 2020; Choudhury, Starr, and Agarwal 

2020)—for example, how unrepresentative training data can lead to superficial analogies that 

                                                           
8 The importing of correlations via analogies brings to the forefront an aspect of knowledge production that 
is sometimes overlooked: knowledge domains can vary in how “strong” or “shaky” their foundation can be. 
Prior studies have noted how retractions (Azoulay et al. 2015), institutions (Furman and Stern 2011), or 
certification (Greenblatt 2021) can impact the strength of foundational knowledge in a given domain. The 
use of analogical reasoning may also lead to a weaker foundation due to the accumulation of correlations 
(in lieu of causal theories). 
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identify misleading patterns—there has been less attention on how the very availability of training 

data can restrict the direction of innovation (Cockburn, Henderson, and Stern 2018; Hoelzemann 

et al. 2022). Given the growing importance of analogy-based technologies, understanding this cost 

is important as the locus of digitized data can have long-term implications for what gets innovated. 

 

3.  Empirical Setting 

An ideal empirical setting needs three ingredients: (i) an observable idea landscape, where I 

can track which ideas get explored versus unexplored, as well as a measure of distance between 

ideas, (ii) the arrival of an analogy-based technology, and (iii) specifically, the differential arrival 

of the technology, such that it only arrives in some parts (treated) but not other parts of the 

setting (control). In this section, I first introduce the setting of structural biology and its scientific 

importance. I then describe the empirical features of structural biology that make it an attractive 

setting to study analogies. 

3.1  Structural Biology: The Study of Proteins 

Structural biology is a field that studies the 3D structures of proteins and aims to uncover 

the functional roles of proteins by elucidating their structures. As Francis Crick (who discovered 

the helical structure of DNA) remarked, “If you want to understand function, study structure” 

(Crick 1990). Since proteins are responsible for carrying out most functions in cells, insights from 

structural biology have helped with a broad range of applications, from identifying targets for new 

drugs to understanding disease progression. As one evidence of its wide-reaching impact, structural 

biology has been recognized with more than a dozen Nobel prizes. 

Structural biology has also played an important role in the fight against the coronavirus 

pandemic. As shown in Figure 2A, researchers solved the structure of the spike proteins that stud 

the surface of SARS-CoV-2—that is, determined the 3D coordinates of individual atoms in the 

protein. Through this direct visualization, researchers learned how these proteins latch onto 

receptors on human cells like “a key to a lock” (Patel, Lucet, and Roy 2020), enabling the 

development of vaccines that are designed to block these proteins. 
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3.2  Structural Biology as an Empirical Setting 

3.2.1 Observable Idea Landscape 

In order to investigate whether an analogy-based technology changes the direction of 

innovation, it is important to be able to observe the entire idea landscape. In most settings, 

however, researchers can only observe ideas that were realized, while alternative ideas that could 

have been pursued (but were not) remain invisible. For example, in scientific research, not all 

papers that can be written ultimately get written. Only papers that actually became published 

can be observed, while other papers that may have been in consideration (but were not written) 

cannot be observed. An attractive feature of structural biology is that it provides a unique window 

into the idea landscape. As detailed in Section 4, I leverage a database of all known proteins, and 

I can observe which proteins structural biologists chose to explore versus could have explored but 

neglected. 

Furthermore, in most settings, it is difficult to quantify the similarity between each potential 

idea. For instance, in the case of scientific publishing, measuring the distance between each paper 

is challenging; text similarity is often used, but this is an imperfect metric for measuring 

intellectual distance. In contrast, structural biology provides an objective measure (Hill and Stein 

2020; 2021): proteins are composed of sequences of amino acids—which are given by nature—and 

therefore they can be grouped based on their sequence similarity.9 Since analogies work by 

identifying similarities, this measure of distance enables me to track the use of analogies. 

3.2.2. Arrival of an Analogy-Based Technology 

Structural biologists developed various experimental techniques to reveal the atomic 

structure of proteins—or “solve” the structure. Solving a protein structure involves deep knowledge 

of biology, physics, and statistics, and this used to be—and remains—extremely challenging. A 

complex structure could take months, even years, to solve. For instance, determining the structure 

of the ribosome (a macromolecular machine responsible for translating DNA code to produce 

                                                           
9 I build on the works of Hill and Stein (2020; 2021), who study the effect of competition in structural 
biology and cluster structures based on their sequence similarity to identify scientists engaged in “priority 
races” (i.e., competing teams that worked on structures in the same cluster, unbeknownst to each other). In 
this paper, rather than focusing on just proteins whose structures have been characterized, I look at instead 
the entire universe of proteins—both structurally characterized and uncharacterized—and cluster this 
universe of proteins based on their sequence similarity. 
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proteins) took over two decades, culminating in the 2009 Nobel Prize in Chemistry (Ramakrishnan 

2018). 

The dominant method of solving a structure is called X-ray crystallography,10 which proceeds 

in three main steps (Figure 2B). First, the protein sample must be produced in a very specific 

way, which is to crystallize it—packing multiple copies of the protein in a well-ordered crystal 

lattice. Second, once the crystal is obtained, X-ray beams are shot at the crystal, which produces 

diffraction patterns, as electrons in the crystal diffract the X-ray. Third, using a combination of 

physical laws, statistics, and intuition, structural biologists construct a density map of electrons 

from the diffraction patterns and build up a 3D atomic model of the protein structure. I focus on 

this third step of interpreting the diffraction data. Unlike the days of Max Perutz (co-winner of 

the 1962 Nobel Prize in Chemistry) who solved the first protein structure (hemoglobin) through 

painstaking hand-calculations, many of the steps of interpreting the diffraction data have become 

automated. 

The specific technology I examine is a software program called Phaser. Phaser was released 

in September 2003, which automates a method called molecular replacement, or MR. Figure 3 

shows the rise in the number of structures solved by MR at the Protein Data Bank, a global 

repository of all solved structures.11 One of the biggest challenges in interpreting the diffraction 

data is called the “phase problem,” a problem difficult enough that one method to solve it resulted 

in a Nobel prize.12 Prior to MR, structural biologists had to resort to time-consuming experimental 

methods to solve the phase problem, but MR allowed structural biologists to bypass experimental 

phasing. Instead of solving the phase problem from scratch, MR uses previously solved structures 

that share close sequence similarity to the unknown structure and use them as templates to solve 

the phase problem of the unknown structure. One structural biologist I interviewed noted that 

MR could be up to 100 times faster than experimental phasing methods,13 potentially saving 

months of work. 

                                                           
10 In addition to X-ray crystallography, two other methods can be used to solve a structure: nuclear 
magnetic resonance spectroscopy and cryo-EM. However, crystallography is by far the most common 
method, as over 95% of all protein structures are solved using this method. 
11 The method of MR was first proposed in 1962, but MR was not put into wide practice until decades later 
due to lack of available structures, as well as lack of ready-made software programs (Doerr 2014). While 
Phaser was not the first software program to implement MR, it is user-friendly and more efficient  (Scapin 
2013), and the most widely-used program. 
12 X-ray reflections have both amplitudes and phases, but the phase cannot be measured from the diffraction 
patterns. Without knowing the phase, a model of the protein structure cannot be constructed. 
13 There are two experimental methods that solve the phase problem from scratch. The first method is 
called isomorphous replacement, which involves producing a “native” target crystal and a “derivative” crystal 
with a heavy metal ion introduced. By measuring the difference in diffraction patterns between the native 
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In other words, MR can be viewed as an analogy-based technology. The key insight behind 

MR is that sequence similarity has been observed to be highly correlated with structural similarity 

(although little is understood regarding the causal mechanism of why sequences of amino acids 

cause proteins to fold into their particular 3D shapes). By taking advantage of this pattern, 

structural biologists use MR to import phase information from neighboring proteins that share 

sequence similarity, rather than solving the phase problem de novo.14 

3.2.3 Differential Arrival of an Analogy-Based Technology 

Finally, MR arrived in some parts of structural biology but not others. As mentioned earlier, 

I observe the entire map of known proteins and the distance between each protein in terms of 

their sequence similarity. While some clusters of proteins received attention from structural 

biologists before the arrival of MR (which I term “bright” clusters of proteins), other clusters of 

proteins did not get any attention (“dark” clusters). Since MR needs data on previously solved 

structures, MR can be applied in bright clusters but is not useful for dark clusters, so bright and 

dark clusters serve as my treatment and control groups, respectively. This paves the way for a 

difference-in-differences design, as described in Section 5. 

 

4.  Data 

In order to construct my map of proteins, I use two main datasets: UniProtKB/Swiss-Prot, 

a database of all known proteins, and the Protein Data Bank, a database of all protein structures. 

I then cluster proteins based on their sequence similarity to construct my final sample. 

                                                           
and the derivative crystals, structural biologists can recover the phase information. The second method is 
called anomalous dispersion, where structural biologists vary the X-ray wavelength to induce atoms of 
specific elements to produce anomalous scattering. By locating these anomalous scattering atoms, the 
missing phase information of the rest of the protein can be backed out. While isomorphous replacement and 
anomalous dispersion do not rely on the availability of prior solved structures, they can require arduous 
experimental efforts. 
14 In November 2020, a technology that supersedes MR was introduced: the AI program AlphaFold, created 
by Google’s DeepMind team. AlphaFold can predict the structure of a protein based on purely its sequence 
of amino acids. While MR helps with specifically the phase problem of experimental structure solving, 
AlphaFold bypasses the need to conduct experiments at all. While AlphaFold’s success falls outside of the 
time period studied in this paper, I discuss potential implications in Section 7. 
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4.1  UniProt Knowledgebase/Swiss-Prot 

The Universal Protein Resource Knowledgebase (UniProtKB) is a comprehensive database 

of proteins. A protein is composed of sequence of organic compounds called amino acids. 

Information for making a protein is stored in a gene’s DNA, and by translating the DNA sequence 

of a gene, scientists can determine the protein’s existence and the sequence of amino acids that 

will appear in the protein. Protein sequences in UniProtKB are thus sourced by translating genes 

from major genome sequence databases. 

To define the complete set of proteins at risk of being structurally characterized, I focus on 

the Swiss-Prot section of UniProtKB.15 Created in 1986, the Swiss-Prot database is extensively 

reviewed, maintained, and annotated by experts based on experimental results and literature 

review. I also use data constructed by Perdigão et al. (2015), which provides additional 

characteristics on each protein in Swiss-Prot. As of October 2020, Swiss-Prot contains 563,552 

protein entries.  

4.2  Protein Data Bank 

Established in 1971, the Protein Data Bank (PDB) is a repository of protein structures and 

contains over 170,000 structures as of October 2020. Since 1989, most journals have required 

authors to deposit their structures at the PDB as a requirement for publication, and therefore the 

PDB contains the universe of all publicly available structures. The PDB provides detailed 

descriptions about each structure, as well as crosswalks to Swiss-Prot. 

4.3  Sample Construction: Clustering Proteins 

After identifying which proteins in Swiss-Prot were found to be structurally characterized in 

the PDB, the final step is to measure the distance between each protein and cluster proteins that 

share sequence similarity. 

I rely on MMseqs2,16 an algorithm used by both Swiss-Prot and the PDB to cluster similar 

proteins (Steinegger and Söding 2018; Hauser, Steinegger, and Söding 2016). Given that molecular 

replacement will likely be successful if the template and the target proteins share at least 30% 

                                                           
15 In addition to Swiss-Prot, UniProtKB has a database called TrEMBL, which is larger but contains 
computationally annotated proteins whose existence are largely not proven. More details are provided in 
the Data Appendix. 
16 MMseqs2 can be downloaded from https://github.com/soedinglab/MMseqs2. More details on MMseqs2 
are provided in the Data Appendix. 

https://github.com/soedinglab/MMseqs2
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sequence identity (Schmidberger et al. 2010; Phenix), I chose a threshold of 30% sequence identity 

to group all proteins in Swiss-Prot into mutually exclusive clusters. I then restricted the sample 

to clusters with at least one human protein and clusters that had at least one protein discovered 

by 1998, the year before my panel begins. More details on sample construction can be found in 

the Data Appendix. 

 

5.   Empirical Strategy 

5.1  Main Specification 

As described in Section 3.2, since MR relies on having similar, previously solved structures 

as templates, MR only works in clusters of proteins with previously solved structures (i.e., bright 

clusters) and does not work for clusters of proteins that have not yet been structurally 

characterized (i.e., dark clusters). 

This enables me to employ a difference-in-differences approach and estimate the following 

regression equation to examine the impact of MR: 

Yct = β0 + β1PostMRt ×Brightc+ δt + γc + εct          (1) 

 
Yct is the total number of structures that gets solved in cluster c in year t. PostMRt is an 

indicator variable that turns one after the arrival of MR in 2003, and Brightc is an indicator 

variable for bright clusters, defined as whether the cluster had at least one structure by 1998.17 δt 
are calendar-year fixed effects, and γc are cluster fixed effects. β1 is the coefficient of interest and 

can be interpreted as the impact of MR on the number of solved structures. Standard errors are 

clustered at the cluster level. 

In order for the coefficient β1 to capture the causal impact of MR, parallel trends assumption 

must hold: in the absence of MR, trends in outcomes between bright and dark clusters must have 

                                                           
17 The treatment variable, Brightc, is defined as whether the cluster had a structure by 1998 (the year before 
my panel begins) instead of 2003 (when MR arrived). If Brightc is defined using the year 2003, then the 
treatment is mechanically correlated with the outcome variable (the number of structures being solved each 
year) in the pre-period from 1999 to 2003 since the treatment is a lagged outcome of the pre-period. The 
panel was chosen to begin in 1999 because this is (i) early enough to yield at least five years of pre-period 
before the introduction of MR, but (ii) late enough that there has been some accumulation of prior solved 
structures in the PDB (6% of structures that will eventually be deposited at the PDB by 2019 had 
accumulated by 1998). 
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been the same, conditional on cluster fixed effects and year fixed effects (as well as time-varying 

controls that I use in some specifications). I discuss this concern in detail in Sections 6.1 and 6.4. 

5.2 Descriptive Statistics 

As shown in Table 1, my sample consists of 6,944 clusters, with 9% of the clusters classified 

as bright. Not surprisingly, in terms of levels, bright and dark clusters differ on several 

characteristics when MR arrived. First, bright clusters are on average older and bigger. Second, a 

higher share of the proteins in the bright clusters have characteristics that make them more 

amenable to crystallization and hence easier to solve: bright clusters contain proteins that are less 

likely to be membrane, disordered, or have compositional bias.18 Proteins in the bright clusters 

are also on average shorter in sequence length. Third, while bright clusters had more publications 

and drugs related to their proteins, dark clusters are higher in one measure of biological 

significance: the share of human proteins in the cluster (human proteins are of high interest to 

drug developers). This reassuringly suggests that dark clusters are not devoid of biological 

importance.  

While these differences in levels do not threaten my difference-in-difference strategy (as long 

as there are no differences in trends in outcomes in the pre-period), in Section 6.4, I revisit these 

characteristics in a robustness analysis to develop a “predicted brightness” measure, where I control 

for pre-period traits related to crystallization feasibility and biological significance. 

 

6.  Main Results 

6.1  Impact of MR on the Number of Solved Structures  

I begin by examining how MR impacted the number of solved structures. As shown in Table 

2, bright clusters got brighter (i.e., received more structures) after MR, relative to dark clusters. 

The outcome is the total number of solved structures in a cluster each year. Columns 1-2 report 

                                                           
18 Membrane proteins are proteins that are found in (or interact with) cell membranes; these proteins tend 
to be flexible and partially hydrophobic, which make crystallization challenging. Proteins with intrinsically 
disordered regions (i.e., regions that do not adopt a well-defined structure) or extreme sequence length (very 
short or long) can also impede crystallization (Slabinski et al. 2007). Finally, compositional bias refers to 
whether the protein contains regions with overrepresented subsets of amino acids. Proteins are typically 
composed of twenty amino acids, but not all amino acids may show up equally. For example, 
QHQQQGQHHQHHHQQQQHH has a bias for the amino acids Q (glutamine) and H (histidine) (Harrison 
2017). Compositional bias is associated with decreased crystallization potential. 
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the outcome after Log(+1) transformation,19 while Columns 3-4 report the results in levels (scaled 

by the standard deviation). As reported in Column 1, bright clusters experienced a 7% increase 

in the number of solved structures after the arrival of MR, relative to dark clusters. Results in 

levels also indicate that bright clusters got brighter. Bright clusters received an increase of 0.744 

annual number of structures after the arrival of MR, which translates to a 30.1% increase relative 

to the baseline standard deviation of 2.47. 

I conduct several analyses to ensure that these results are being driven by MR. First, one 

concern is that bright clusters may be getting more structures not necessarily due to MR but 

because it is also getting increasingly bigger (i.e., more protein sequences are being discovered) 

relative to dark clusters. In Columns 2 and 4, I additionally control for time-varying cluster size 

while estimating Equation 1; the magnitude of the impact of MR remains similar and significant. 

Second, the impact of MR should only show up in structures that were actually solved by 

MR. If I observe that bright clusters experienced an increase in both structures that were solved 

by MR and non-MR methods, this raises the concern that factors unrelated to MR may be causing 

bright clusters to get brighter. In Appendix Table 2, I confirm that MR only impacts structures 

that were solved by MR and does not impact structures that were not solved by MR. 

Third, since MR needs just one previously solved structure in order to work, the impact of 

MR should be stronger when comparing dark clusters versus bright clusters with a single 

previously solved structure, and weaker when comparing bright clusters with a single structure 

versus bright clusters with multiple structures. Appendix Table 3 shows this exact result. I split 

the bright clusters into whether they had just a single or multiple previously solved structures. I 

then compare the impact of MR, comparing dark versus bright clusters with just a single structure 

(Column 2) and comparing bright clusters with just a single structure versus multiple structures 

(Column 3). The impact of MR is stronger in Column 2 relative to Column 3. 

Fourth, and most importantly, to asses pre-period trends, I show an event studies version of 

Equation 1, replacing the single PostMRt indicator with indicators for every year before and after 

the introduction of MR. Figure 4 plots the dynamic effects of MR on the number of solved 

structures. Reassuringly, in both Panels A (Log(+1) transformation) and B (levels), there appears 

to be no difference in pre-trends between bright and dark clusters. Moreover, the impact of MR 

is sustained over the entire sample period: bright clusters got brighter and brighter. 

                                                           
19 In Appendix Table 1, I provide a robustness analysis using inverse hyperbolic sine transformation. Results 
remain similar. 



19 
 

6.2  Impact of MR on the Quality of Solved Structures 

MR deceased the cost of solving structures in well-explored, bright clusters, and, not 

surprisingly, increased the volume of structures in those areas. But what about quality? In the 

next set of results, I investigate how MR impacted the quality of solved structures. 

I distinguish between two dimensions of quality: execution (how meticulously a project was 

completed) versus importance (whether a project led to a novel insight). While I provide below 

measures of execution and importance in the specific setting of structural biology, these are general 

dimensions of quality that apply to any innovative activity: the innovation should be well-executed, 

but it should also solve an important problem. 

The impact of analogical reasoning on quality is not immediately obvious. On one hand, 

analogical reasoning has the power to make “long jumps” (Kauffman 1993; Kneeland, Schilling, 

and Aharonson 2020) to explore a novel domain and discover creative opportunities. But it may 

be more challenging to rigorously execute innovations stemming from analogies because analogies 

are rooted in correlations, not precise causal logic. On the other hand, one of the pitfalls of 

analogies is that their need for templates could cause fixation and steer the direction of innovation 

towards areas with templates, even if they are less fruitful. In particular, analogy-based 

technologies like MR and supervised machine learning require digitized training data of past 

successful innovations. Analogies may thus lead to “short jumps,” landing on unexplored but near 

crowded areas where it may be harder to unearth new insights. 

6.2.1 Execution 

The first dimension of quality I examine is execution, and I take advantage of measures 

provided in the PDB called the R-free and resolution.20 These are objective metrics used by the 

structural biology community to assess the technical execution—specifically, the accuracy and 

precision—of the structures (Kleywegt and Jones 1997). 

The R-free refers to accuracy or goodness-of-fit: how well the model of the protein structure 

fits the observed experimental data. As discussed in Section 3.2, structural biologists build the 

atomic model of their protein structure from experimentally observed diffraction data. They then 

simulate diffraction patterns based on the model and compare the simulated diffractions to the 

                                                           
20 Hill and Stein (2021) use the R-free and resolution as their main quality measures in their study of how 
competition affects the quality of scientific research. I interpret the R-free and resolution as indicating 
specifically the execution level of the structure. 
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experimentally observed patterns. The R-free can be improved as researchers undergo iterative 

refinement process of their model to better fit the experimental data.  

Resolution refers to precision or the level of detail that can be found in the structure. Figure 

2C shows an example of a protein (tyrosine 103 from myoglobin) at different resolutions, from a 

poor resolution where only general contours are visible to a resolution where individual atoms can 

be plotted. Resolution depends on the degree of order in the crystallized protein. Researchers can 

improve the resolution by obtaining high-ordered crystals (proteins that are packed and aligned 

identically in the crystal), which produce diffraction patterns with fine details. 

With these measures, I investigate the impact of MR on execution in Table 3. Column 1 

reports the same result as Column 1 of Table 2 and shows the impact of MR on the total number 

of structures solved in a cluster. Columns 2-4 decompose this result into terciles based on the 

structure’s R-free values and investigate the impact of MR on the number of structures in the 

bottom tercile (Column 2), middle tercile (Column 3), and top tercile (Column 4) of R-free values. 

Columns 5-7 similarly report results using the resolution of the structures. 

A clear pattern emerges: bright clusters especially received more structures that were well-

executed. For the R-free, there was no difference between bright and dark clusters in the number 

of structures that were solved in the bottom tercile. In contrast, bright clusters received 14% more 

structures that were solved in the top tercile, relative to dark clusters. Likewise, for resolution, 

bright clustered received just 3% more structures from the bottom tercile, but 10% more structures 

from the top tercile. 

6.2.2 Importance 

The second dimension of quality is the scientific importance of the structure: did the structure 

lead to a novel insight about a biological process? When the PDB was established in 1971 with 

only seven structures in its database, every new structure provided valuable information. However, 

as the PDB grew, it became no longer enough to just solve structures for the sake of solving them. 

As early as 1994, the editors of Nature Structural Biology advocated in their inaugural issue, 

“[T]he static image of the molecule is rarely an end in itself, but rather a beginning of 

comprehension” (Nature Structural Biology 1994). Through additional biochemistry or cell biology 

experiments, structural biologists try to explicitly link a protein’s function to its potential function 

to understand the role the protein plays in various biological processes (Cassiday 2014). To 

evaluate whether a structure led to a new biological understanding, I present below three measures. 
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First, did the structure lead to a publication? Structures that were simply deposited at the 

PDB without a corresponding publication to explain their biological significance are structures 

that contributed very little, if at all, to revealing biological insights. As a prominent researcher at 

Yale once declared, “The fact is that protein structures come alive intellectually only when they 

are connected with [other data] indicating what they do” (Moore 2007). There could be several 

reasons why some structures do not have accompanying publications. One structural biologist I 

interviewed noted that a “stamp collection” of structures are sometimes needed to win grants from 

funding agencies. Some of these structures are also from structural genomics consortiums, whose 

goals are to catalogue as many types of structures as possible without necessarily explicating them 

(Petsko 2007; Hill and Stein 2021). 

Second, was the structure cited by Swiss-Prot? The Swiss-Prot database contains extensive 

annotations about a protein’s function and provides references behind each functional annotation. 

Importantly, the references are added manually by experts who follow well-defined curation 

protocols, undergo quality checks, and are updated as new data becomes available, ensuring that 

selection of these references are impartial. 

Finally, I measure whether the structure got cited by a patent, with the assumption that the 

protein must have led to enough functional insights in order for an inventor to develop commercial 

applications. I leverage data from Marx and Fuegi (2020) on patent citations to scientific articles 

to identify structures with papers that were cited by at least one patent. 

Bright clusters especially received more structures that did not reveal functional insights. As 

shown in Table 4, bright clusters received 9% more unpublished structures, which have no 

accompanying articles that describe their function (Column 2). In contrast, bright clusters 

experienced a relative decrease in the number of structures that were cited by a patent (Column 

4), and there were no differences between bright and dark clusters in the number of structures 

that were cited by Swiss-Prot (Column 6)—which are the set of structures that are the most likely 

to have yielded functional insights. 

6.3  How Did the Scientific Community Receive MR? 

How did the scientific community receive this shift in research direction as a result of MR? 

Did the scientific community value the fact that MR led to more structures that are well-executed? 

Or did the community find these types of structures less valuable since they ultimately did not 

lead to new functional insights? 
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To examine this question, I use standard measures of publication impact (citations and 

journal impact factor).21 A natural question is why I interpret these publication measures as 

different from my measures on functional insights. My earlier measures (whether the structure has 

an accompanying publication and whether it was cited by Swiss-Prot or a patent) assess a specific 

fact: did the structure lead to some kind of function insight? In contrast, journal impact factor 

and publication citation serve as proxies for how the scientific community typically rewards a 

piece of research and can be due to either the technical execution or functional insights of the 

research, which is hard to disentangle. For instance, it is unclear whether a structural biology 

paper was published in a prestigious journal because the structure was technically well-executed 

or because it led to a new biological understanding (or a combination). 

The idea behind this analysis is that if the scientific community valued execution more, they 

would have rewarded the well-executed structures in bright clusters by publishing them in 

prestigious journals and highly citing them. In contrast, if the scientific community valued 

functional insights more, they would have punished the structures in bright clusters by publishing 

them in less prestigious journals and citing them less. 

In Table 5, I investigate the effect of MR on the publication impact of the structures, in 

terms of the mean number citations the structure’s publication received and the journal impact 

factor. In Columns 3-5, I decomposed the total number of solved structures in a cluster into terciles 

based on citations, while in Columns 8-10, I decomposed the total number of structures into 

terciles based on the journal impact factor.22 

Bright clusters especially received more structures with less publication impact. After the 

arrival of MR, bright clusters received approximately 7% more structures that were either 

unpublished or published with very few citations, relative to dark clusters. In contrast, bright 

clusters had a 2% decline in the number of structures with the highest number of citations. In 

terms of journal impact factor, bright clusters received 7% more structures that were published 

in the least prestigious journals, but there was no difference between bright and dark clusters in 

the number of solved structures that were published in the most prestigious journals. This suggests 

that the scientific community appears to believe that there has been a decline in the quality of 

research conducted as a result of MR. 

                                                           
21 I linked the primary paper associated with each structure in the PDB to the PubMed data and obtained 
citation data from the Web of Science (specifically, the mean annual number of citations received by each 
structure, within the first five years of paper publication). 
22 Due to data availability, I restricted the panel to end in 2012 for the citation analyses and 2017 for the 
journal impact factor analyses. 
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Taken together, these results indicate that bright clusters received more structures overall 

and particularly structures that were well-executed. However, these structures tended to not lead 

to new functional insights or have a high publication impact. 

6.4  Predicting Brightness 

6.4.1 Specification with Predicted Brightness 

The identification underpinning my difference-in-differences framework hinges on parallel 

trends assumption. While there was no evidence of pre-trends in the event studies as well as in 

other robustness analyses, there may still be concerns over whether bright and dark clusters were 

evolving on different trends for factors unrelated to the introduction of MR. For example, a 

particular concern is that proteins in the dark clusters cannot be crystallized and thus cannot be 

structurally characterized. 

This concern is mitigated by the evidence in the bioinformatics literature, where it has been 

documented that while there are certain traits (e.g., membrane or disordered proteins) that indeed 

make a protein challenging to crystallize, the crystallization process remains an unpredictable art, 

rather than a science. For instance, Perdigão et al. (2015) surveyed the Swiss-Prot data to 

understand the features of dark proteins; they find that most of the dark proteins cannot be 

explained by the “usual suspects,” that a majority of the dark proteins are in fact not membrane 

or disordered proteins. Other studies also point to the difficulty in predicting which proteins will 

crystallize (Elbasir et al. 2019; Terwilliger, Stuart, and Yokoyama 2009). 

Since there are still some characteristics that are known to confound crystallization, I develop 

a predicted brightness measure, Predicted_Brightc, where I measure whether a cluster was 

predicted to be bright in 1998,23 using the pre-period characteristics of the proteins in the cluster. 

I then modify Equation 1 to estimate the following: 

 

      Yct = β0 + β1PostMRt ×Brightc + β2PostMRt ×Predicted_Brightc + δt + γc + εct     (2) 

  
The thought experiment in Equation 2 is that I compare clusters of proteins that are similarly 

predicted to have their structures characterized by 1998 because they are ex-ante similar in traits 

related to biological importance and crystallization feasibility, but some clusters just happened to 

                                                           
23 Recall that (actually) bright clusters are defined as whether they had a structure by 1998. 
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actually have characterized structures before the arrival of MR while other clusters did not. If I 

observe that only being predicted bright has an impact on the number of structures solved after 

MR (i.e., β1 is non-significant but β2 is significant), then there would be a concern that unobserved 

characteristics are driving bright clusters to both have had their structures characterized in 1998 

and subsequent structure characterization after MR. However, if there is an added effect of being 

actually bright in addition to being predicted bright (i.e., β1 is significant), then this reduces the 

concern of omitted variable bias. 

6.4.2 Constructing Predicted Brightness 

I first restrict the sample to proteins that were discovered by 1998 (n = 41,781 proteins). 

For each protein, I focus on several sets of characteristics as of 1998. First, I have characteristics 

on how hard it is to crystallize the protein: whether the protein is a membrane protein, disordered 

protein, has compositional bias, and has long sequence length. Second, I have characteristics on 

the biological importance of the proteins: which species the protein is from (2,814 indictors), the 

number of publications written about the protein (10 indicators), and the number of approved 

drugs that target the protein (8 indicators).24 Finally, I have indicators for the year of when the 

protein was discovered (29 indicators). After dropping collinear variables, this translates to a total 

of 817 predictors. 

I use Lasso to predict whether a protein is predicted to be bright (i.e., structurally 

characterized by 1998). Appendix Figure 1A shows the receiver operating characteristic (ROC) 

curve of the resulting prediction. The ROC curve plots the True Positive Rate (what share of 

actually bright proteins were correctly predicted to be bright?) against the False Positive Rate 

(what share of actually dark proteins were incorrectly predicted to be bright?). The area under 

the curve (AUC) of the ROC curve evaluates the performance of the prediction and can be 

interpreted as the probability that a random actually bright protein will have a higher predicted 

brightness than a random actually dark protein. The AUC can range from 0 to 1, and a general 

rule of thumb considers an AUC above 0.8 to be indicating high performance; the AUC of my 

prediction exercise is 0.91. 

                                                           
24 Information on drugs is provided by DrugBank. This dataset provides comprehensive information on 
drugs at various development phases and their targets (i.e., proteins) and is freely available for academic 
use. A limitation of the free version of the data is that it only provides marketing dates for approved drugs, 
and there are no dates on when a drug entered pre-clinical or clinical trial phases. 
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I then use the fitted values to predict each protein’s brightness in 1998. Appendix Figure 1B 

shows the distribution of this predicted brightness, by whether the protein was actually bright by 

1998. There is variation and overlap in the distributions of predicted brightness between actually 

bright and dark proteins, suggesting that while there are some characteristics that may make 

some proteins more likely to be structurally determined, some proteins just happened to have 

structures actually determined by 1998, while other proteins with similarly predicted brightness 

did not. This supports the findings in the bioinformatics literature which also notes that many of 

the dark proteins cannot be explained by the usual factors that defy crystallization and that it is 

in fact difficult to predict crystallization. From this protein-level prediction, I aggregate up to the 

cluster-level by taking the sum of the predicted brightness of all proteins in each cluster to 

construct Predicted_Brightc. 

6.4.3 Results with Predicted Brightness  

I then estimate Equation 2 that additionally controls for Post-MRt × Predicted_Brightc, 
modifying my baseline difference-in-differences framework. Appendix Table 4 shows the results 

from estimating Equation 2. The coefficients on Post-MRt × Brightc remain positive and significant; 

among clusters predicted to be similarly bright, there is still an effect of being actually bright. 

While it may seem surprising that the coefficients on Post-MRt × Predicted_Brightc are not 

significant, MR only works when there are actually solved prior structures in the cluster and 

should not work if the cluster is only predicted to be bright. Appendix Table 4 therefore supports 

the evidence that the arrival of MR indeed caused the number of solved structures in (actually) 

bright clusters to increase, relative to dark clusters, even among clusters that were ex-ante 

similarly predicted to be bright due to their traits related to biological importance or 

crystallization feasibility. 

 

7.  Discussion & Conclusion 

This paper provides, to my knowledge, the first empirical study of how the automation of 

analogical reasoning may shape the direction of knowledge production. Using the setting of 

structural biology, which provides a unique window into the entire idea landscape, I study the 

introduction of an analogy-based technology, MR, which solves protein structures by relying on 

data of prior structures. 
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I find that MR increased the number of solved structures, specifically in bright clusters with 

already solved structure templates. This result from structural biology highlights the power of 

analogies in reducing the cost of producing innovation in certain areas, thereby shifting the 

direction of innovation. In particular, rather than building knowledge from scratch, analogies can 

provide shortcuts that enable knowledge workers to innovate in domains where there is no existing 

knowledge yet (e.g., structurally uncharacterized proteins) by importing knowledge from 

neighboring domains (e.g., borrowing structure information from similar, already solved proteins). 

Yet, because of their very need for templates, analogies can restrict knowledge workers into 

focusing on domains with neighbors (e.g., bright, already well-explored clusters). 

One may argue that this shift in research direction due to analogies does not necessarily 

imply a decline in the quality of innovation, as analogies allow knowledge workers to quickly make 

progress in previously unexplored domains. An important question then is what quality of 

innovation is ultimately produced. My results suggest that structural biologists used the extra 

time gained from taking a shortcut with MR to improve the technical execution—the resolution 

and the goodness-of-fit—of the structures. These structures, however, had low scientific 

importance and publication impact. That is, at least in this specific setting, knowledge workers 

appear to use the imported knowledge from analogies to focus on incremental execution, rather 

than attempting to discover a fundamental insight. 

Understanding this tradeoff of analogies can have crucial implications for the management 

of knowledge production, given the growing automation of analogical reasoning and, more broadly, 

data-driven exploration. A recent work by Hoelzemann et al. (2022) is close in spirit to this paper: 

using a laboratory experiment, the authors document the “streetlight” effect of data,25 that when 

data reveals a satisfactory—but not the best—option, data can discourage workers from exploring 

further to reach the best. Extending this idea of the streetlight effect, I suggest a “snowballing” 

effect: analogies may steer the direction of innovation towards areas with templates, which in turn, 

gain more templates and thus become more amenable to analogies, while neglected (and 

potentially fruitful) areas without templates may never get attention. 

This snowballing effect can manifest in several ways. In the case of structural biology, bright 

clusters got brighter and brighter after the arrival of MR; among clusters that were predicted to 

have similar crystallization potential and biological importance, clusters that happened to have 

structures before MR took off, while clusters without structures remained dark. This increasing 

                                                           
25 The authors draw from the aphorism of the drunk looking for his keys under the streetlight, despite 
dropping the keys on the other side of the street, because “this is where the light is.” 
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returns to training data can have profound strategic consequences for firms as well. For firms that 

produce products and services based on data, early entrants may use their control over data to 

crowd out competitors (Cockburn, Henderson, and Stern 2018; Bessen et al. 2022). At the frontier 

of AI, there are now even machine learning models (trained on real data) that generate synthetic 

data, which will be fed into other machine learning models, raising the possibility of amplifying 

the influence of the original training data (Zewe 2022). 

A question still remains on what is the net value of increased innovative activities in the 

bright clusters. This is difficult to assess. First, my difference-in-differences framework is limited 

to reporting only the relative increase in solved structures between bright and dark clusters. This 

relative increase can mean either an overall increase in bright clusters or a reallocation of 

innovative efforts from dark to bright clusters. Second, while structures in the bright clusters may 

not have led to novel biological insights, the increased number of (well-executed) structures may 

still be valuable, especially for drug development (which requires precisely solved structures) as 

well as for serving as training data for machine learning algorithms. 

Finally, while this paper focuses on how analogies can potentially constrain the direction of 

innovation, future work can explore other costs of analogies. In particular, because analogies do 

not build foundational knowledge from scratch, innovators may not fully understand the 

underlying mechanisms of how the target domain works. Overreliance on analogies may lead to 

knowledge domains with weak foundation, where only correlations accumulate and causal theories 

are neglected (Zittrain 2019; Tranchero 2023). Popular rhetoric often warns the danger of this 

“black box” nature of AI (and by extension, analogies). For instance, in drug discovery, analogical 

reasoning and pattern recognition can be employed to identify promising drug candidates based 

on prior approved drugs. A downside to this approach is that the drugs’ mechanisms of action 

remain unknown, preventing drugmakers from anticipating side effects or applying the drugs for 

other diseases that may share the same mechanisms. 

The setting of structural biology is currently facing its own AI revolution. In November 

2020, Google’s DeepMind team cracked a 50-year-old grand challenge in biology: to predict how 

a protein folds into its 3D structure from purely its sequence of amino acids. While MR helps with 

only one part of experimental structure solving, AlphaFold bypasses the need to conduct 

experiments at all. Celebrated as one of the most important applications of AI in science as of 

date, the source code of AlphaFold became publicly available in July 2021, followed by the release 

of a database of predicted structures a year later. 
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Despite its breakthrough, however, AlphaFold also serves as a reminder of the limitations 

of analogies. DeepMind’s claim that AlphaFold has produced enough structures to cover the 

“entire protein universe” (Walsh 2022) must be qualified with important caveats. First, these are 

only predicted structures. When comparing AlphaFold’s structures to experimentally determined 

structures, researchers have found that while many of these predicted structures can be 

remarkably accurate, some are still too inaccurate to be useful (Mullard 2021). Second, and most 

importantly, AlphaFold is limited by its training data, the PDB, and can only populate the protein 

structural space based on analogies to known PDB structures. In particular, protein structures 

can change in the presence of small molecule drugs. Because there could be up to one 

novemdecillion26 small molecules (Reymond and Awale 2012), the PDB does not contain enough 

information on structures bound to small molecules for AlphaFold to predict how proteins might 

interact with drugs (Callaway 2022). Furthermore, diseases are often caused by mutations to 

proteins. Since these mutated proteins have no evolutionarily-related sequences, it is difficult for 

AlphaFold to predict their structures (Buel and Walters 2022; Callaway 2022). This is why, at 

least for now, many remain skeptical that AlphaFold will dramatically impact drug development.27 

Finally, AlphaFold illustrates that analogies work by identifying patterns, not causal 

theories. While AlphaFold has advanced the ability to predict structures, scientists still have little 

understanding of the physics of why proteins fold into their shapes (Lowe 2022). The rise of 

AlphaFold may signal the trend of hypothesis-driven science turning into “data science.” As one 

of the scientists in the field lamented, “We’ve focused too much on data and not enough on 

understanding . . [we may be] going away from human-conceived theories and models of natural 

phenomena to more data-driven methods and models” (Samuel 2019).  

                                                           
26 A novemdecillion is equivalent to million billion billion billion billion billion billion (American Chemical 
Society 2012). 
27 While not about AlphaFold, Lou and Wu (2022) demonstrates the limits of AI in drug development; AI 
is less useful for developing drugs that are radically novel and have no known mechanisms of actions. In 
addition, a recent paper by Cavalli (2022) investigates how AlphaFold changed the organizational structure 
of academic labs in computational biology. 
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Figures & Tables 

FIGURE 1. A TAXONOMY OF SHORTCUTS 

 

 
Vertical Shortcuts 

(Used in older domains  
with foundational knowledge)  

Horizontal Shortcuts 
(Used in newer domains  

without foundational knowledge)  

Understanding 

Summaries 
Provide synopses of foundational 
knowledge underlying a domain 

 
e.g., Wikipedia 

Conceptual Analogies 
Understand a new domain by importing 

patterns from a known domain 
 

e.g., biomimetics 

Application 

Calculators 
Execute instructions based on foundational 

knowledge underlying a domain 
 

e.g., Stata 

Automated Analogies 
Apply patterns to a new domain  

from a known domain 
 

e.g., TensorFlow 

 
 
 
 
NOTES: This figure provides a taxonomy of shortcuts that can be used in cumulative knowledge production. 
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FIGURE 2. STRUCTURAL BIOLOGY 

A. Structure of the SARS-CoV-2 Spike Glycoprotein 

 
 

B. Steps of Crystallography 

 
 

C. Resolution 

                              
 
NOTES: Panel A shows the structure of a spike protein on the surface of the coronavirus (PDB entry 6VYB; source: 
https://www.rcsb.org/structure/6VYB). Panel B shows the three main steps of crystallography; this paper focuses on 
the automation of solving the “phase problem” that occurs during the interpretation of the diffraction data. Panel C 
shows an example of the electron density map behind the structure of tyrosine 103 from myoglobin, at three different 
resolutions; lower resolution is better and shows finer details (source: https://pdb101.rcsb.org/learn/guide-to-
understanding-pdb-data/resolution).  
  

https://www.rcsb.org/structure/6VYB
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/resolution
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/resolution
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FIGURE 3. NUMBER OF STRUCTURES SOLVED BY MOLECULAR REPLACEMENT 

 
NOTES: This figure plots the number of X-ray crystallography structures in the Protein Data Bank that were solved by 
molecular replacement (MR) vs. non-MR methods. 
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FIGURE 4. EVENT STUDY: IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES  

Panel A. Log(+1) Transformation 

 

 

Panel B. Levels 

     
 
NOTES: This figure shows the impact of MR on the number of solved structures. The figure plots the coefficients and 
95% confidence intervals from estimating a modified, event studies version of Equation 1 that replaces the pooled 
PostMRt indicator with separate indicators for every year before and after the arrival of MR. The outcome is the total 
annual number of solved structures in a cluster; Panel A reports the outcome after Log(+1) transformation, while Panel 
B reports the outcome in levels. The unit of analysis is a cluster × year, and the sample consists of 6,944 clusters, which 
translates to 145,824 cluster-years. 
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TABLE 1. SUMMARY STATISTICS 

 Bright   Dark 

Mean Median SD   Mean Median SD 
Discovery Year 1983.47 1986.00 7.7  1993.11 1995.00 5.1 
Cluster Size 39.73 15 81.6   7.66 4 15 
Protein Production Feasibility        

Disorder 0.15 0.1 0.2  0.24 0.1 0.2 
Membrane 0.02 0 0.1  0.04 0 0.1 
Compositional Bias 0.01 0 0  0.03 0 0.1 
Sequence Length 513.61 339.1 1,438.50   634.97 457.3 675.5 

Biological Importance        
% of Cluster that is Human 0.18 0.1 0.2  0.36 0.3 0.2 
N of Publications 142.47 75 199.2  26.79 12 57.4 
N of Approved Drugs 3.63 0 14.5   1.23 0 21.8 

N of Solved Structures per Year 1.99 0 5.64  0.23 0 1.78 
N of Clusters 649   6,295 

 
 
NOTES: This table provides the summary characteristics of clusters when MR was introduced. The sample consists of 
6,944 clusters, of which 649 are classified as “bright” (i.e., had at least one structure in 1998) and 6,295 are classified as 
“dark.” 
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TABLE 2. IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES 

 
  (1) (2) (3) (4) 
 Log(+1) Log(+1) Levels Levels 
VARIABLES N Structures N Structures N Structures N Structures 
          
Post-MR × Bright 0.071*** 0.065*** 0.301*** 0.292*** 
 (0.018) (0.018) (0.052) (0.052) 
Cluster Size  0.013**  0.019* 
  (0.006)  (0.011) 
     
R-squared 0.471 0.471 0.400 0.400 
Calendar-year FE YES YES YES YES 
Cluster FE YES YES YES YES 
N of clusters 6,944 6,944 6,944 6,944 
N of cluster-years 145,824 145,824 145,824 145,824 
 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved 
structures. The unit of analysis is a cluster × year, and the panel spans from 1999-2019. The outcome variable is the 
total annual number of solved structures in a cluster, reported after Log(+1) transformation (Columns 1-2) or in levels 
scaled by the standard deviation (Columns 3-4). The treatment variable “Bright” is defined as clusters that had at least 
one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-year and cluster 
fixed effects; Columns 2 and 4 additionally control for time-varying (standardized) cluster size. Standard errors are 
clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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TABLE 3. IMPACT OF MR ON EXECUTION 

  (1) (2) (3) (4) (5) (6) (7) 

VARIABLES 
All 

Structures 
R-Free  

Bottom Tercile 
R-Free 

Middle Tercile 
R-Free 

Top Tercile 
Resolution 

Bottom Tercile 
Resolution 

Middle Tercile 
Resolution 
Top Tercile 

                
Post-MR × Bright 0.071*** -0.001 0.077*** 0.133*** 0.034*** 0.047*** 0.096*** 

 (0.018) (0.011) (0.012) (0.013) (0.011) (0.012) (0.013) 
        

R-squared 0.471 0.381 0.397 0.403 0.365 0.414 0.427 
Calendar-year FE YES YES YES YES YES YES YES 
Cluster FE YES YES YES YES YES YES YES 
N of clusters 6,944 6,944 6,944 6,944 6,944 6,944 6,944 
N of cluster-years 145,824 145,824 145,824 145,824 145,824 145,824 145,824 

 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved structures at different terciles of execution level (a structure’s 
level of execution can be defined in terms of its R-free value and resolution). The unit of analysis is a cluster × year, and the panel spans from 1999-2019. The outcomes of all 
columns are the annual number of solved structures in a cluster, with Log(+1) transformation. Column 1 parallels Column 1 in Table 2 and reports the total number of solved 
structures. Columns 2-4 decompose this result by examining the number of solved structures in the bottom (Column 2), middle (Column 3), and top terciles (Column 4) with 
respect to the structures’ R-free values. Columns 5-6 similarly decompose the number of solved structures into terciles based on their resolution. The treatment variable “Bright” is 
defined as clusters that had at least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-year and cluster fixed effects. Standard 
errors are clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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TABLE 4. IMPACT OF MR ON FUNCTIONAL INSIGHTS  

 
  (1) (2) (3) (4) (5) (6) 

VARIABLES 

All 
Structures 

Unpublished 
Structures 

Published 
Structures 

Not Cited by 
Patent 

Published 
Structures 
Cited by 
Patent 

Published 
Structures 
Not Fxn 

Annotated 

Published 
Structures 

Fxn 
Annotated 

              
Post-MR × Bright 0.071*** 0.085*** 0.117*** -0.064*** 0.039** 0.006 

 (0.018) (0.009) (0.016) (0.011) (0.017) (0.004) 
       

R-squared 0.471 0.221 0.389 0.350 0.473 0.117 
Calendar-year FE YES YES YES YES YES YES 
Cluster FE YES YES YES YES YES YES 
N of clusters 6,944 6,944 6,944 6,944 6,944 6,944 
N of cluster-years 145,824 145,824 145,824 145,824 145,824 145,824 

 
 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved structures at different levels of functional insights (a structure 
is considered to have contributed to new insights about a protein’s function if it is published in a scientific article and additionally cited by a patent or by the functional summary 
section of Swiss-Prot). The unit of analysis is a cluster × year, and the panel spans from 1999-2019. The outcomes of all columns are the annual number of solved structures in a 
cluster, with Log(+1) transformation. Column 1 parallels Column 1 in Table 2 and reports the total number of solved structures. Columns 2-4 decompose this result into the 
number of solved structures that do not get published in a scientific article (Column 2), the number of solved structures that are published but not cited by a patent (Column 3), 
and the number of solved structures that are both published and cited by a patent (Column 4). Columns 5 and 6 parallel Columns 3 and 4 but decompose the number of solved 
structures based on whether they were cited by the functional summary section of Swiss-Prot. The treatment variable “Bright” is defined as clusters that had at least one structure 
by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-year and cluster fixed effects. Standard errors are clustered at the cluster level. Statistical 
significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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TABLE 5. IMPACT OF MR ON PUBLICATION IMPACT 

 

    Citations     Journal Impact Factor    
 (1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

VARIABLES 

All 
Structures 

Unpublished 
Structures 

Citations 
Published 
Structures 
(Bottom 
Tercile) 

Citations 
Published 
Structures 
(Middle 
Tercile) 

Citations 
Published 
Structures 

(Top 
Tercile) 

 

All 
Structures 

Unpublished 
Structures 

JIF 
Published 
Structures 
(Bottom 
Tercile) 

JIF 
Published 
Structures 
(Middle 
Tercile) 

JIF 
Published 
Structures 

(Top 
Tercile) 

                        
Post-MR × Bright 0.056*** 0.075*** 0.067*** 0.012 -0.022**  0.070*** 0.083*** 0.070*** 0.006 0.014 

 (0.017) (0.009) (0.012) (0.012) (0.010)  (0.018) (0.009) (0.012) (0.012) (0.009) 
            

R-squared 0.487 0.227 0.401 0.330 0.331  0.477 0.223 0.378 0.363 0.285 
Calendar-year FE YES YES YES YES YES  YES YES YES YES YES 
Cluster FE YES YES YES YES YES  YES YES YES YES YES 
N of clusters 6,944 6,944 6,944 6,944 6,944  6,944 6,944 6,944 6,944 6,944 
N of cluster-years 97,216 97,216 97,216 97,216 97,216   131,936 131,936 131,936 131,936 131,936 

 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved structures at different terciles of publication impact. A 
structure’s publication impact is measured as the mean number of citations and the journal impact factor (JIF). The unit of analysis is a cluster × year. Due to data availability, 
the panel ends in 2012 for the citation analyses and in 2017 for the JIF analyses. The outcomes of all columns are the annual number of solved structures in a cluster, with Log(+1) 
transformation. Column 1 parallels Column 1 in Table 2 and reports the total number of solved structures. Columns 2-5 decompose this result into the number of solved structures 
that do not get published in a scientific article (Column 2) and the number of solved structures that are published and in bottom (Column 3), middle (Column 4), or top (Column 
5) terciles in terms of citation impact. Columns 6-7 similarly decompose the number of solved structures into terciles based on JIF. The treatment variable “Bright” is defined as 
clusters that had at least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-year and cluster fixed effects. Standard errors are 
clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix Figures & Tables 

APPENDIX FIGURE 1. PREDICTING BRIGHTNESS 

A. ROC Curve 

 

 

B. Distribution of Predicted Brightness 

 

 

NOTES: Panel A plots the ROC curve of a prediction exercise, where I predict whether a protein is bright by 1998. 
Panel B plots the distribution of the resulting predicted brightness by whether the protein was actually bright (i.e., had 
a structure by 1998) or dark (i.e., did not have a structure by 1998). The unit of analysis is a protein. The sample 
consists of 41,781 proteins that were discovered by 1998. Each protein’s predicted brightness was constructed by using 
the fitted values from estimating a Lasso model that predicted whether the protein had a structure by 1998. 
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APPENDIX TABLE 1. IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES, INVERSE 
HYPERBOLIC SINE TRANSFORMATION 

  (1) (2) 
 IHS IHS 

VARIABLES N of Structures N of Structures 
      
Post-MR × Bright 0.083*** 0.075*** 

 (0.022) (0.022) 
Cluster Size  0.017** 

  (0.007) 
   

R-squared 0.464 0.464 
Calendar-year FE YES YES 
Cluster FE YES YES 
N of clusters 6,944 6,944 
N of cluster-years 145,824 145,824 

 
 
NOTES: This table parallels Table 2 but presents a robustness analysis using inverse hyperbolic sine transformation of 
the outcome. The table shows the impact of MR on the number of solved structures. The unit of analysis is a cluster 
× year, and the panel spans from 1999-2019. The outcome variable is the total annual number of solved structures in 
a cluster after inverse hyperbolic sine transformation. The treatment variable “Bright” is defined as clusters that had at 
least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-year and 
cluster fixed effects; Columns 2 additionally control for time-varying (standardized) cluster size. Standard errors are 
clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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APPENDIX TABLE 2. IMPACT OF MR ON MR VS. NON-MR STRUCTURES 

  (1) (2) (3) 

VARIABLES All 
Structures 

MR 
Structures 

Non-MR 
Structures 

    
Post-MR × Bright 0.071*** 0.143*** -0.007* 
 (0.018) (0.017) (0.004) 
    
R-squared 0.471 0.475 0.101 
Calendar-year FE YES YES YES 
Cluster FE YES YES YES 
N of clusters 6,944 6,944 6,944 
N of cluster-years 145,824 145,824 145,824 

  
NOTES: This table parallels Column 1 from Table 2. The table reports results from estimating Equation 1 and shows 
the impact of MR on the total number of solved structures (Column 1) and decomposes this into number of solved MR 
structures (Column 2) and non-MR structures (Column 3). All of the outcomes are Log(+1) transformed. The unit of 
analysis is a cluster × year, and the panel spans from 1999-2019. The treatment variable “Bright” is defined as clusters 
that had at least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-
year and cluster fixed effects. Standard errors are clustered at the cluster level. Statistical significance is indicated as: 
*** p<0.01, ** p<0.05, * p<0.1. 
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APPENDIX TABLE 3. IMPACT OF MR, SPLITTING BRIGHT CLUSTERS 

  (1) (2) (3) 

 
Dark  
vs. 

All Bright Clusters 

Dark 
vs. 

Bright Clusters 
with 1 Structure 

Bright Clusters 
with 1 Structure  

vs. 
Bright Clusters 

with >1 Structures 
        
Post-MR × Bright (1 or 
more structure) 

0.071*** 
(0.018) 

0.072*** 
(0.022)  

 
Post-MR × Bright (more 
than 1 structure)   

-0.002 
(0.034) 

    
R-squared 0.471 0.325 0.595 
Calendar-year FE YES YES YES 
Cluster FE YES YES YES 
N of clusters 6,944 6,558 649 
N of cluster-years 145,824 137,718 13,629 

 

NOTES: Column 1 of this table parallels Column 1 of Table 2 and shows the impact of MR on the total number of 
solved structures in the full sample. Column 2 investigates the impact of MR on the sample of dark clusters and bright 
clusters with just 1 structure solved by 1998; the treatment variable “Bright” is defined as clusters that had just one 
structure by 1998. Column 3 investigates the impact of MR on the sample of bright clusters with 1 or more structures 
solved by 1998; the treatment variable “Bright” is defined as clusters that had more than 1 structure by 1998. All of 
the outcomes are Log(+1) transformed. The unit of analysis is a cluster × year, and the panel spans from 1999-2019. 
All columns include calendar-year and cluster fixed effects. Standard errors are clustered at the cluster level. Statistical 
significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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APPENDIX TABLE 4. IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES WITH PREDICTED 
BRIGHTNESS 

  (1) (2) (3) (4) 
 Log(+1) Log(+1) Levels Levels 

VARIABLES N Structures N Structures N Structures N Structures 
          
Post-MR × Bright 0.049** 0.044** 0.218*** 0.213*** 

 (0.021) (0.021) (0.055) (0.054) 
Post-MR × Predicted Bright 0.024 0.023 0.089 0.087 

 (0.017) (0.016) (0.056) (0.055) 
Cluster Size  0.012**  0.014 

  (0.006)  (0.011) 
     

R-squared 0.472 0.472 0.401 0.401 
Calendar-year FE YES YES YES YES 
Cluster FE YES YES YES YES 
N of clusters 6,878 6,878 6,878 6,878 
N of cluster-years 144,438 144,438 144,438 144,438 

 
 
NOTES: This table reports results from estimating Equation 2 and shows the impact of MR on the number of solved 
structures, controlling for predicted brightness. The unit of analysis is a cluster × year, and the panel spans from 1999-
2019. The outcome variable is the total annual number of solved structures in a cluster, reported after Log(+1) 
transformation (Columns 1-2) or in levels scaled by the standard deviation (Columns 3-4). The treatment variable 
“Bright” is defined as clusters that had at least one structure by 1998, while “Post-MR” includes years 2004 and onwards. 
“Predicted Bright” was constructed after predicting whether a protein was structurally characterized by 1998, using its 
pre-period characteristics and aggregating to the cluster-level. All columns include calendar-year and cluster fixed effects; 
Columns 2 and 4 additionally control for time-varying standardized cluster size. Standard errors are clustered at the 
cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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Data Appendix 

A.1 UniProtKB/Swiss-Prot 

The Universal Protein Resource Knowledgebase (UniProtKB) is a comprehensive database 

of known proteins. A protein is composed of sequence of organic compounds called amino acids. 

Information for making a protein is stored in a gene’s DNA, and, therefore, by translating the 

DNA sequence of a gene, scientists can determine the protein’s existence and the sequence of 

amino acids that will appear in the protein. Protein sequences in UniProtKB are thus sourced by 

translating genes from major genome sequence databases. 

UniProtKB is divided into two parts: Swiss-Prot (manually reviewed) and TrEMBL 

(computationally reviewed). Created in 1986, the Swiss-Prot database is extensively reviewed, 

maintained, and annotated by experts based on experimental results and literature review. As of 

October 2020, Swiss-Prot contains 563,552 protein entries. In contrast, TrEMBL was created in 

1996 and houses computationally annotated protein entries. Once a protein from TrEMBL 

becomes manually reviewed, it is removed from TrEMBL and enters Swiss-Prot. TrEMBL was 

established in recognition that manual curation efforts cannot keep pace with the increased 

number of protein sequences resulting from genome sequence projects and contains nearly two 

hundred million entries. 

To define the complete set of proteins at risk of being structurally characterized, I follow 

Perdigão et al. (2015) —a bioinformatics paper that descriptively mapped out which proteins’ 

structures have been determined—and focus on the proteins in the Swiss-Prot database. While 

smaller than TrEMBL, using the Swiss-Prot database has several advantages. First, Swiss-Prot is 

one of the best datasets of proteins whose existence is experimentally proven (Perdigão et al. 

2015); TrEMBL primarily contains proteins whose existence is only predicted. Second, since Swiss-

Prot tends to include more well-described proteins, this allows me to ensure that I examine 

proteins that share a similar baseline level of documentation and thus similarly at risk of catching 

the attention of structural biologists, instead of looking at unreviewed proteins that may not even 

be real proteins. Third, Swiss-Prot’s expertly curated annotation provides rich descriptions of each 

protein, including its function, clinical impact, and sequence features, which allows me to develop 

a “predicted brightness” measure, as described in Section 6.4.  
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A.2  Linking Swiss-Prot to the Protein Data Bank 

The PDB provides crosswalks to Swiss-Prot, allowing me to observe which proteins in Swiss-

Prot have had their structures characterized in the PDB. However, the level of the crosswalk 

between an entry in the PDB and an entry in Swiss-Prot is not a many-to-one crosswalk as one 

might expect (a many-to-one, since a protein in Swiss-Prot can have its structure solved multiple 

times), but rather a many-to-many crosswalk (i.e., a single protein structure in the PDB can also 

be linked to multiple Swiss-Prot entries). This is because in the PDB, large protein structures are 

composed of discrete regions called “entities”; the crosswalk between the PDB and Swiss-Prot is 

at this entity level. Approximately 80% of the structures in the PDB are composed of a single 

entity, while the remaining 20% have multiple entities and therefore linked to multiple Swiss-Prot 

entries. Whenever a single protein structure from the PDB links to multiple Swiss-Prot entries, I 

split the protein structure into fractions based on the percentage of amino acids each Swiss-Prot 

entry contributes to the protein structure. 

A.3 MMseqs2 

MMseqs2 is a software package that clusters databases of proteins and can be downloaded 

at https://github.com/soedinglab/MMseqs2 (Steinegger and Söding 2018; Hauser, Steinegger, and 

Söding 2016). MMseqs2 uses a greedy set cover algorithm and aims to create the fewest number 

of mutually exclusive clusters, given a set of proteins at a user-specified sequence similarity. In 

this paper, I chose the threshold of 30% sequence similarity, given that MR will likely be successful 

if the template and the target proteins share at least 30% sequence identity. If the sequence 

similarity falls below 30%, MR will be usually challenging, if at all possible, to implement 

(Schmidberger et al. 2010; Phenix). The algorithm takes the following steps:  

 

1. MMseqs2 first computes all pairwise sequence identities between proteins in Swiss-Prot 

2. MMseqs2 chooses a “representative” sequence, which is the protein with the highest number 

of neighbors that share at least 30% sequence similarity 

3. MMseqs2 forms the first cluster with this representative sequence and all of its neighbors 

4. MMseqs2 then looks at the remaining sequences and chooses the next representative 

sequence with the highest number of neighbors 

5. MMseqs2 iterates through Steps 2-4 until all sequences belong in a cluster 

 

https://github.com/soedinglab/MMseqs2
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This ensures that each member of a cluster shares at least 30% sequence similarity with the 

representative sequence of the cluster.28 MMseqs2 is used by both Swiss-Prot and the PDB to 

cluster similar proteins. 

A.4  Sample Construction 

Using the MMseqs2 algorithm, I grouped all 563,552 proteins in Swiss-Prot into 74,017 

mutually exclusive clusters, using 30% sequence identity threshold. 

Restricting to clusters with at least one human protein: I restricted the sample to 

clusters with at least one human protein (n = 13,150 clusters, which is equivalent to 161,392 

proteins). There are two reasons for this restriction. First, restricting to clusters with at least one 

human protein ensures that all of the clusters in the final sample have a minimum baseline level 

of biological importance; one of the main goals of structural biology is to understand human 

biological processes and thus structural biologists are especially interested in proteins from humans 

(and their similarity neighbors). Second, focusing on human proteins mitigates the concern of 

growing cluster size. The total number of possible proteins in the universe is essentially infinite,29 

and new protein sequences are continuously being discovered. However, all human proteins have 

been discovered by the early 2000s when the human genome project was completed; since one 

gene encodes one protein, and humans have approximately 20,000 genes, they also have 20,000 

proteins.30 Since the number of newly discovered human proteins have plateaued since the early 

2000s when MR arrived, this alleviates the concern of whether human proteins are getting more 

structures due to MR or because there are simply more human proteins being discovered. To 

                                                           
28 A caveat is that while it is likely that all possible pairs of sequences within the cluster also share at least 
30% sequence similarity with each other (since they are all similar to the representative sequence), this is 
not guaranteed. Mirdita et al. (2017) performed a cluster quality check that mitigates this concern; the 
authors computed the mean sequence identity among all possible pairs of sequences in a cluster and found 
that MMseqs2 indeed yielded clusters where all possible pairs of sequences shared on average >30% sequence 
similarity. 
29 Given that there are 20 different amino acids and an average protein has a sequence length of 200 amino 
acids, this amounts to 20200 possible proteins, which is larger than the number of electrons in the universe 
(Koonin, Wolf, and Karev 2002). 
30 This is called the “one gene, one protein” rule, which contributed to the 1941 Nobel Prize in Medicine. As 
explained in Section 4.1, by translating the DNA sequence of a gene, scientists can determine the protein’s 
existence, and the sequence of amino acids that will appear in the final protein. Recently, the “one gene, 
one protein” rule has been challenged, as one gene may produce multiple proteins through, for instance, 
alternative splicing. Nonetheless, this paper follows the “one gene, one protein” rule since Swiss-Prot provides 
a non-redundant set of proteins, in that all proteins that are encoded by one gene in a species is folded into 
a single entry (including alternative splicing isoforms). 
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additionally address the concern of changing cluster size, I also control for time-varying cluster 

size in some of my specifications. 

Restricting to clusters born on or before 1998: For each cluster, I compute its 

discovery year by taking the earliest discovery year among the proteins in the cluster. (Discovery 

year is defined as the earliest known documentation of the protein’s existence.) Since my panel 

starts in 1999, I only keep clusters that were born on or before 1998 in my sample.31 This led to 

my final sample of 6,944 clusters of proteins. 

                                                           
31 Alternatively, in a robustness analysis, I restricted the sample to clusters born on or before 2003 when 
MR arrived. This unbalanced sample consists of 12,294 clusters. Results remained similar. 
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