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Abstract

The paper examines whether competitive R&D grants incentivize private firms to pursue

innovation in unexplored directions or more conventional ones. We use applicant-level data from

the largest ever European program awarding R&D grants to individual small and medium-sized

enterprises. We do not find any evidence of systematic bias against novelty in grant allocation,

as firms with more unconventional patents before the program are not ranked lower than firms

with more conventional patents. We then exploit the discontinuity in the program design to

infer the effects of grants and find that: i) they induce firms to innovate in domains that are

new and distant from their past technological trajectories; ii) they increase the likelihood of

introducing unconventional patents without increasing the chances of filing conventional ones.

These results are driven by firms that are cash-constrained, which is consistent with the idea

that financial frictions hinder more risky and experimental research endeavors.
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1 Introduction

Competitive research and development (R&D) grants are one of the most widely used policy in-

struments to promote innovation in the private sector. As a result, extant literature in the field

has primarily focused on whether grants increase the quantity of R&D. Firms, however, do not

just decide how much R&D to conduct; they also choose how to direct their resources across R&D

projects that may be relatively conventional and safe, or atypical and risky. To understand how

grants affect the direction of innovative activities it is then important to study these policies across

two dimensions. The first concerns how funding agencies allocate grants. Do these institutions

systematically favor projects that explore uncharted territory or safer and more conventional ones?

This is important as potential biases towards more exploratory projects may impede or delay break-

throughs. The second dimension has to do with the effects of grants on the nature of subsequent

innovations. Do grants allow firms to explore technological areas that are similar or different from

their past technological trajectory? Are grants responsible for the emergence of safe and conven-

tional inventions or risky and unconventional ones? Addressing how R&D policy affects the novelty

of innovation bears particular relevance in light of recent evidence documenting a secular decline

in the degree of novelty embedded in inventions (Park et al., 2023; Kalyani, 2022). Moreover, these

questions are important as the market frictions characterizing private R&D investments (Nelson,

1959; Arrow, 1962) may be more severe when R&D efforts pursue unexplored and riskier path-

ways (Kamien and Schwartz, 1978) and that inventions departing from established technological

paradigms and taking explorative routes can have deep long-term impacts on the economy and

society as a whole (Dosi, 1982).1 Finally, investigating whether public grants affect the nature

of inventive activities amounts to take into account their impact on the direction of technological

change, which is arguably one of the central intended goal of these programs.2

In this paper we provide evidence on the effects of direct public R&D support on the novelty

1There is increasing evidence documenting that innovations combining together disparate pre-existing ideas tend
to be particularly impactful (see, e.g. Fleming 2001; Uzzi et al. 2013; Arts and Veugelers 2015; Kim et al. 2016;
Berkes and Gaetani 2021). Also, innovations stemming from more radical R&D projects generate more spillovers
than those created by incremental R&D efforts (see, e.g., Frankel et al. (2022)).

2In contrast with other innovation policies (e.g. R&D tax credits) which are considered ‘technology neutral’,
grants are supposed to influence both the rate and the direction of technological change. In fact, they are employed to
prioritize technological areas characterized by heavier market failures, featuring potentially large positive externalities
or high societal returns (Bloom et al., 2019). Understanding if different types of policies have different effects in terms
of the nature - and not only the quantity - of innovations is essential to design the optimal policy mix.
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of innovation. To that end, we examine the SME Instrument, a European grant program explicitly

designed to provide financial support to small and medium-sized enterprises (SMEs) aiming to

commercialize breakthrough innovations. We link data on applicants with ORBIS Intellectual

Property and PATSTAT to retrieve information about their patent applications. Based on these

data, we measure the degree of unconventionality embedded in those inventions by defining two

different indicators of patent novelty, as developed by Uzzi et al. (2013) and Stirling (2007). Those

indicators identify innovations that are based on an unusual combination of knowledge (i.e. patents’

technology classes) and deviate from more standard patterns of knowledge generation.

Motivated by recent concerns about research and innovation funding agencies’ bias against

the most novel ideas, we start by providing evidence on the patterns of grants allocation. In

particular, we examine whether there is any bias against applicants with an ex-ante record of

atypical innovations. By leveraging confidential information on competition rankings and awards,

we show that firms featuring prior atypical innovations do have a higher chance of being ranked

higher and securing a grant. Yet, these positive associations disappear when controlling for a

number of observable characteristics. Hence, these results indicate the absence of any systematic

bias against novelty in grant allocation to private firms.

We then exploit the discontinuity in grant assignment and adopt a regression discontinuity

design (RDD) to study whether grants have an impact on the nature of ex-post innovations. First,

we address whether R&D grants increase the novelty of innovation in relative terms. That is, we

investigate if they induce firms to introduce innovations in domains that are novel relative to their

past technological capabilities. Results indicate that grants increase the likelihood of patenting in

technology classes that are new to the firm. Moreover, these technology classes are distant from

those already used by the firm before the competition. This evidence supports the conjecture that

grants allow firms to explore novel avenues rather than following their previous technological paths.

Second, we investigate if R&D grants trigger the introduction of innovations that are the result of

unconventional combinations of knowledge in absolute terms (i.e. with respect to the combinations

carried out in the universe of patent applications). Results show that grants induce an increase in

the probability of filing very unconventional patents. On the contrary, we do not find any evidence

that grants lead to the filing of conventional patents. In sum, these findings document that, absent

direct public support for private R&D, we would miss out on innovations that are particularly novel
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and unconventional.

We also investigate heterogeneous treatment effects in order to uncover potential underlying

mechanisms. The baseline results show that grants increase the chances to produce novel, and ar-

guably riskier, patents both in relative and absolute terms, while leaving unaffected the probability

of producing conventional and safer patents. This finding already provides some support for the

idea that financial frictions affect innovative investments in heterogeneous ways depending on the

degree of risk and uncertainty (Kamien and Schwartz, 1978). To directly corroborate this hypoth-

esis, we test whether treatment is sensitive to the availability of internal financial resources before

the competition. Results confirm this conjecture as we find that firms with lower cash-holdings

before the competition drive the overall results.

This paper contributes to several strands of literature. It speaks to the growing literature on

grant allocation processes in research and innovation funding (see, e.g. Li 2017; Myers 2020; Azoulay

and Li 2022; Lane et al. 2022). In particular, several studies have documented that researchers with

a track-record of novel research tend to be evaluated less favorably by funding agencies.3 Against

this backdrop, there is increasing concern that competitive research grants prioritize relatively

safe, conventional projects over risky, novel ones (Wang et al., 2018; Franzoni and Stephan, 2023).

Beyond the potential biases against ex-ante novelty, there is only limited and mixed evidence on

whether competitive grants stimulate high-risk, high-reward innovations ex-post (Azoulay et al.,

2011; Veugelers et al., 2022).4 A common feature of this literature is that it largely focuses on

scientific funding to researchers. To the best of our knowledge, this is the first study addressing

these issues in the context of a competitive program assigning innovation grants to private firms.5

The paper also contributes to the R&D evaluation literature. Most empirical work in this field

3For instance, Boudreau et al. (2016) find in an experimental setting that evaluators assign lower scores to highly
novel proposals. Ayoubi et al. (2021), based on applications data to Swiss National Science Foundation’s SINERGIA
program, document that novel scientists receive lower scores by evaluators and have lower likelihood of being awarded
a grant. Veugelers et al. (2022) examine the selection procedure of the European Research Council (ERC) and show
that applicants with a track-record of risky research are less likely to be awarded funding. In contrast with these
findings, Packalen and Bhattacharya (2020) show that the NIH funds edge science more often than less novel science,
but with a delay.

4Azoulay et al. (2011) compare the research output of HHMI funded researchers with that of a matched sample of
NIH-funded researchers. The program influences a shift in their research direction towards exploring novel avenues
of investigation. Veugelers et al. (2022) find no clear evidence that ERC grants induce researchers to conduct more
novel and riskier research.

5One of the few studies assessing bias against novelty in the private sector is Krieger et al. (2022). Based on an
internal start-up program of a pharmaceutical company, they show that R&D projects perceived as more risky tend
to be penalized more.
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looks at whether grants have an impact on terms of the quantity of innovation (see, e.g., Bronzini

and Piselli 2016; Howell 2017; Santoleri et al. 2022). On the contrary, very few studies address

the relationship between R&D subsidies and the nature of innovation. Bérubé and Mohnen (2009)

use survey data from Canadian firms and find that subsidized firms introduced more world-first

innovations. Beck et al. (2016), using firm-level Swiss CIS data, find that R&D subsidies increase the

introduction of radical innovations (i.e. the sales percentage of products being radically new to the

firm or to the market) as opposed to incremental innovations (i.e. the sales share of products that

are significantly improved compared to already existing ones).6 Yet, these studies have generally

two main drawbacks. The first is the use of self-reported measures of novelty. The second is the

lack of applicant data and the reliance on matching on observables to build control groups. Hence,

unobserved characteristics of firms that have applied for R&D support may be systematically

different from those of firms that may not even be willing to commit to R&D, which makes the

treatment-control comparison misleading. Differently from such studies, we combine patents –

which we use to define the type of innovation produced by firms – with applicant-level data, and

employ a clearer identification strategy to infer the effect of grants on the direction of innovation.

Our work also adds to the literature on financial frictions and firms’ R&D investments (see,

e.g., Bond et al. 2005; Brown et al. 2009; Hall and Lerner 2010; Kerr and Nanda 2015) and on

whether financial frictions have a differential impact depending on the degree of novelty embodied

in innovative efforts (Kamien and Schwartz, 1978; Czarnitzki and Hottenrott, 2011). Recently, two

papers have dealt with financing frictions and firm investment in novel, risky projects. Krieger et al.

(2022) show that exogenous cash flow shocks to pharmaceutical companies affect their decisions

to develop more novel drugs, while leaving unaffected the chances to develop marginal “me-too”

drugs. Widmann (2022) finds that R&D grants in Austria lead firms to file more unconventional

patents. Differently from Krieger et al. (2022) and Widmann (2022), whose contributions focus

respectively on the US pharmaceutical sector and on Austria, we leverage a much broader setting

spanning various countries and sectors. Moreover, they focus on relatively larger firms, whereas

6Other studies focus on public R&D funding in general, that is, not confined to private firms. Corredoira et al.
(2018) find that patents stemming from US federally funded R&D tend to have more influence on subsequent inno-
vations and are in technological areas that private corporations eschew. Fleming et al. (2019) provide descriptive
evidence that patents relying on federal research are more likely to introduce words not seen in previous patents,
suggesting they are more novel and foundational.
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our context encompasses small, young, and mainly high-tech firms,7 which play a crucial role for

aggregate economic dynamism (Haltiwanger et al., 2016).

2 Empirical setting

2.1 Institutional framework

In this paper we examine the SME Instrument, a program established in 2014 and managed by the

Executive Agency for Small and Medium-sized Enterprises (EASME) of the European Commission.8

The policy was explicitly designed to provide support for companies conducting high-risk, high-

reward innovations. The scheme is in fact “the first ever attempt of EU research and innovation

funding programmes to invest in high potential and high risk, disruptive innovation in single SMEs”

(European Commission and Executive Agency for Small and Medium-sized Enterprises, 2017, p.6).

The program awards grants that can be worth between e0.5 and e2.5 million to fund R&D

activities.9 Firms have four deadlines every year by which to submit their proposals. They apply to

topic-specific contests that are divided into 13 categories. Proposals submitted by eligible SMEs10

are then evaluated by four independent experts appointed by EASME. The evaluation is carried

out remotely. Experts work independently from one another, they are unaware of each other’s

assessments and the final number of grants to be awarded. Evaluators are required to rate proposals

on three criteria (impact, excellence, and quality & efficiency of implementation), on a scale from

0 to 5. Each project receives a final score that ranges from 0 to 15 by summing the median scores

for each of the three categories. Based on these scores, the projects are then ranked. Proposals

that score higher than the minimum quality threshold (i.e. 12 points) can be awarded the grant.

Yet, not all of them will receive it as the budget allocated to each competition is limited and this

ultimately determines the number of grants to be disbursed.11 Projects deemed worthy of funding

7Our sample is composed by firms that, on average, have 20 employees. In Widmann (2022), firms have 119
employees on average.

8Both the agency and the program were recently re-branded. Since 2019, the SME Instrument is known as
European Innovation Council (EIC) Accelerator. In 2021, EASME became EISMEA (i.e. European Innovation
Council and SMEs Executive Agency).

9Grants cover 70% of all project costs for a 12-24 month period.
10A proposal will be evaluated if all three of the following conditions are met: i) the applicant is a for-profit SME;

ii) the applicant is established in a EU Member State or a Horizon2020-associated country; iii) the applicant does
not have concurrent submissions or executions of another SME Instrument proposals.

11It is important to note that the funding amount for each competition is set beforehand and does not change based
on the number of applicants or eligible firms. Grants will be awarded to firms above the minimum quality standard
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but that are not awarded a grant due to budgetary constraints receive the “Seal of Excellence”

(SOE). The SOE serves as a recognition of the proposal’s high value and it is intended to help

companies increase their visibility and access alternative funding from private or public sources.

We use data from all competitions organized by EASME throughout 2014-2017. We have

information on the applicant’s company name, address, funded status, and award notice date.

While the identity of beneficiaries is publicly disclosed, information on ranks and unsuccessful

applicants is not. Descriptive statistics on competitions are reported in the top panel of Table 1.

The average competition features around 81 applicants and four winners. The average grant size

is e1.6 million.12

2.2 Measuring the novelty of innovation

New inventions are often the result of the recombination of pre-existing bits of knowledge (see,

e.g., Schumpeter 1939; Fleming 2001). This process can lead to relatively safe and conventional

innovations when it involves pieces of knowledge that are frequently recombined together. Riskier

and unconventional projects, instead, usually propose atypical combinations of previous knowledge.

Following this idea, existing literature has measured the nature of innovation and its degree of

novelty by looking at the type of recombination carried out in scientific research or inventions.

For instance, Uzzi et al. (2013) define the novelty of scientific articles by identifying the relevance

of atypical combinations of knowledge (i.e. journals in articles’ references) in each paper. The

higher the importance of combinations that deviate from what is observed in the past, the higher

the article’s novelty. Kim et al. (2016) follow this methodology to measure novelty in patents by

considering technological classes as the bits of knowledge recombined in the inventive process.13

In the same vein, we use similar indicators to detect the degree of novelty associated with the

inventions of SME Instrument applicants by analyzing the presence of unconventional and risky

combinations of previous knowledge in their patent portfolio. Since we aim to study how the

grants deviate firms’ R&D activities from pre-existing paths at the firm and global level and open

until all competition funds run out.
12For additional details and summary statistics about the institutional context and evaluation procedures, see

Santoleri et al. (2022).
13Technological (sub)classes represent the standard classification of technology embedded in a patent and are

assigned, and continuously updated, by intellectual property offices to each patent application. They are widely used
in the literature to represent the units of technological knowledge that are recombined to generate new inventions
(see, among others, Fleming 2001).
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up unprecedented research trajectories, our approach focuses on the detection of atypical or distant

knowledge (i.e. technology classes) combinations.14 To that end, we link applicant data with ORBIS

Intellectual Property and PATSTAT databases, which allow us to retrieve information on firms’

patent applications at the patent offices of all countries participating to the SME Instrument.15

We then include each invention only once (even if it has been patented in multiple patent offices)

by considering data at the patent-family level (i.e. DOCDB families). For each patent family we

retrieve the earliest application date and the list of associated technology classes at the 4-digit

level according to the Cooperative Patent Classification (CPC). Exploiting this information, we

can establish the degree of unconventionality and novelty of the knowledge produced by SME

Instrument applicants before and after the competition. To assess this novelty, we consider a four-

year time window for each period (pre- and post-competition), and we introduce a one-year lag

between the competition and the patent application dates to properly select inventions developed

in the post-competition phase.

Specifically, we introduce two different categories of novelty indicator for each applicant-competition

pair:

• Absolute novelty, that measures the nature of innovation produced by the applicant before

and after the competition compared to the novelty of patents filed in all considered patent

offices in the same period and assigned to same technology classes (i.e., novelty relative to

the universe of inventions).

• Relative novelty, that detects how different and atypical is the knowledge produced in the

post-competition phase compared to the one generated before the competition by the same

applicant (i.e., novelty with respect to applicants’ past trajectories).

14While we are observing an increasing number of novelty indicators in science and technology based on text
analysis (see, e.g., Arts et al. 2021; Balsmeier et al. 2018; Fleming et al. 2019; Kelly et al. 2021), the use of patent
technology classes allows a simpler representation of the technological knowledge space and an easier detection of
deviations from standard technological trajectories. Firstly, technology classes represent a standardized and well-
established map of technologies, while there is no agreement on text-mining indicators and their ability to represent a
technological space. Secondly, technology classes allow the analysis of patents independently of the language of their
texts. This aspect is particularly relevant in our setting since we study patents in different languages from different
patent offices and we work at the patent-family level. Text-mining measures are usually tested on patents written
in a single language (mostly English) and their application to a multi-language setting would create issues in the
interpretability of results. Indicators based on technology classes are, therefore, a better choice for our purpose.

15These encompass all patent offices of the EU-28 Member States and Horizon2020-associated countries, including
the European Patent Office (EPO).
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Both indicators are based on the definition of atypical combinations of technologies and the detec-

tion of the relevance of these atypical combinations in the inventions produced by SME Instrument

applicants. Therefore, we are interested in detecting the degree of unconventionality of knowledge

recombination in absolute and general terms. To this purpose, we define a knowledge space in

which the location of each technology class is based on its proximity to all other technologies. This

proximity is computed on the universe of patents filed in all patent offices in order to obtain an

indicator of similarity among technology classes that is as objective as possible. From this per-

spective, atypical combinations of technology are those that are distantly located in the knowledge

space.

While our measures of novelty are grounded on the literature that detect atypical combinations

of knowledge in science and technology (Uzzi et al. 2013, Kim et al. 2016, Berkes and Gaetani

2021, among others), they differ from previous indicators for two crucial reasons. Firstly, we define

indicators at the applicant level instead of considering only the micro perspective (scientific article

or patent levels). Secondly, previous measures focus on what we call ‘absolute novelty’. Instead, in

this paper we introduce a generalization of atypical-combinations indicators in dynamic terms to

detect the relative novelty produced by applicants.

In what follows, we detail the construction of the novelty measures and the knowledge space

that we use to detect atypical combinations.

Knowledge space Since novelty indicators are based on the detection of atypical (distant) com-

binations of technology classes, we first assess the technology-class proximity, intended as the

normalized frequency of co-occurrence between two different classes (CPC codes). Atypical and

unconventional combinations of knowledge are those that are distant in this knowledge space. In

this respect, we define technological spaces for each time period by computing the normalized

co-occurrence of the technology classes that are assigned to the universe of patent families in all

considered patent offices. Since larger technological classes will occur more frequently, these co-

occurrences are normalized by the size of the various classes across time by introducing a null

model that estimates the number of co-occurrences if the CPC codes were randomly assigned to

each patent family. The obtained technology-class proximity is equal to the ratio between the

observed and the estimated CPC co-occurrences (as in Berkes and Gaetani 2021), re-scaled by the
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arctangent function to obtain a number between 0 and 1 and, most importantly, to ensure the

symmetry in the distribution of typical and atypical combinations in proximity values:16

pjk = arctan
CObserved
jk

CExpected
jk

, (1)

where j and k are two CPC codes at the 4-digit level, pjk is their proximity and CObserved
jk (CExpected

jk )

is the observed (expected) number of co-occurrence between j and k.17

Absolute novelty The first novelty indicator addresses whether firms with R&D grants present

a higher likelihood of filing patents that are the result of unconventional combinations of technology

classes in absolute terms (i.e. relative to the universe of patent families). Based on this definition,

we have firstly to asses the novelty of patent families filed by SME Instrument applicants.

We can detect patent novelty in terms of the unconventionality of their knowledge recombination

by considering the previously defined knowledge space. Specifically, following Uzzi et al. (2013), we

introduce an indicator that detects the relevance of atypical (distant) combinations of knowledge

in patents’ technology classes. For each patent family f , we define an indicator of novelty as:

Patent Noveltyf = 1− 10th percentile (Ff (pjk)) , (2)

where Ff (pjk) is the cumulative distribution of proximity among pairs of CPC codes associated to

the patent family f .18

We also provide an alternative definition of patent novelty, i.e. the disparity index (Stirling,

2007). This indicator is equal to the average distance among CPC codes associated to each patent

family and grows with the degree of unconventionality of CPC combinations.19 The disparity of a

16With this re-scaling, the value 0.5 discerns between typical and atypical combinations. Strongly atypical combi-
nations are close to 0, while common ones are close to 1. Without the arctangent function, a value between 0 and
1 would correspond to atypical combinations (observed value lower than the expected one) while a value between 1
and infinity would indicate typical combinations (observed value greater than the expected one).

17It is worth noticing that we consider rolling windows of four years to define these knowledge spaces for what
concerns absolute novelty measures (pre- or post-competition periods) and rolling windows of eight years for relative
novelty indicators (since these measures are related to both the periods before and after the competition). This
approach allows us to consider the evolution of technology proximity and provide a more precise measure of novelty.

18Following Uzzi et al. (2013) and Berkes and Gaetani (2021), we selected the 10th percentile of the proximity
distribution to detect highly atypical (distant) combinations of CPC pairs. To obtain a value that grows with the
degree of unconventionality we define our index as 1 minus this percentile.

19This indicator is widely applied in the interdisciplinarity literature (see, for instance, Stirling 2007). However, it
can also be interpreted as a measure of novelty as atypical combinations. Fontana et al. (2020), indeed, show that
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patent family f is equal to:

Patent Disparityf =

∑
j,k∈Tf ; j ̸=k(1− pjk)

nf (nf − 1)
, (3)

where Tf and nf are, respectively, the set and the number of technology classes in the patent family

f and pjk is the proximity between these technology classes.

To control for novelty heterogeneity in different technology classes over time, we compute the

patent novelty and patent disparity for the universe of patent families filed in all considered patent

offices, and we assign to each patent family in our sample the corresponding percentile of the novelty

distribution of patents filed in the same year and same technology classes.

We then use those indicators to define dummy variables that capture applicants’ absolute novelty

and disparity in the pre- and post-competition periods. Specifically, for each period, we identify a

firm as novel (non-novel) in absolute terms if its best patent in terms of novelty belongs to the top

(bottom) tercile of the novelty distribution. The same procedure is applied to the disparity index.

Specifically, for each firm-competition pair ic, we define:

Top Absolute Novelty
Pre(Post)
ic = 1|

[
∃f for f ∈

(
PP

Pre(Post)
i ∩ PN

top33

)]
, (4)

where PP
Pre(Post)
i is the firm’s patent portfolio in the pre (post) competition period and PN

top33

is the top tercile of the patent novelty distribution. To better assess the novelty of each patent

independently of the year and field of the invention, we define novelty distributions that are nor-

malized by year and technology class.20 Analogously, we define Bottom Absolute Novelty
Pre(Post)
ic

as a dummy variable equal to 1 for firms with their best patent in term of novelty in the bottom

tercile of the patent novelty distribution.

Similarly, the absolute disparity of firms is:

Top Absolute Disparity
Pre(Post)
ic = 1|

[
∃f for f ∈

(
PP

Pre(Post)
i ∩ PD

top33

)]
, (5)

it is highly correlated to the novelty indicator presented by Uzzi et al. (2013) and that the two measures provide
similar information. Moreover, Yang et al. (2022) use a generalized version of the disparity index, i.e. the Rao-Stirling
diversity, as an alternative indicator of novelty. Results using this indicator are very similar and they are reported in
the Appendix.

20We consider novelty distributions for each application year and technology class. Since patents are usually
assigned to more than one technology class, we associate to each patent the weighted average of the its percentiles in
the patent novelty distributions of the technology classes of the patent itself.
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where PD
top33 is the top tercile of the patent disparity distribution. The Bottom Absolute Dispar-

ity
Pre(Post)
ic is instead a dummy variable equal to 1 for firms with their best patent in term of

disparity in the bottom tercile of the patent disparity distribution.

Descriptive statistics on absolute novelty indicators are reported in the bottom panel of Table 1.

Around 30% (20%) of all applicants filed for at least one patent before (after) the competition.

Both novelty measures indicate that approximately 12% (9%) has an unconventional (conven-

tional) patent before the program. After the program, around 7% (7%) has an unconventional

(conventional) patent.

[Table 1 here]

Relative novelty The second set of novelty measures examines the impact of R&D grants on

exploring technological domains that are novel to a given firm, relative to its prior patenting

behavior. To do so, we restrict the analysis to firms with at least one patent filed before the

competition. We then consider several measures by comparing the technology classes assigned to

patent families of the same firm between the pre-competition and the post-competition period.

Before moving to novelty indicators based on typical and atypical combinations, we assess whether

the firm introduces new technological knowledge in the post-competition period. For each firm-

competition pair, we record all distinct technology classes that are assigned to any patent family

filed by the firm during the post-competition period. Then we count how many of these technology

classes had not been assigned to any patent family filed by the same firm in the pre-competition

period. We compute i) whether firms have introduced new technology classes, ii) the number of

new technology classes, and iii) the number of new technology classes over the number of patent

families filed in the post-competition period. These measures are then employed to test whether

grants induce firms to patent in new technology areas. Yet, they are not informative as to whether

firms keep patenting in areas that are close or distant to what the firm has done in the past. To that

end, we consider indices that capture the technological distance, as defined in the knowledge space,

between firms’ patenting behavior before and after the competition. In particular, we propose

a dynamic version, at the firm-competition level, of the novelty indicator proposed in Eq. 2.

This measure captures the novelty of newly introduced technology classes with respect to the pre-

competition ones, i.e. the relevance of atypical combinations in pairs of pre-competition/newly
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introduced technology classes. For each firm i and competition c, we define the relative novelty as:

Relative Noveltyic = 1− 10th percentile (Fi(prs)) , (6)

where F (prs) is the cumulative distribution of proximity (as defined in equation 1) among pairs of

pre-competition CPC codes (r) in the firm’s patent families and CPC codes (s) introduced in the

period after the competition by the same firm.

As for the absolute novelty indicators, we introduce an alternative measure of relative novelty,

which is defined as the average distance between old and new CPC codes for each firm-competition

pair. This indicator is a dynamic generalization of the disparity index introduced in Eq. 3. The

relative disparity of a firm i in competition c is equal to:

Relative Disparityic =

∑
r∈T old

i , s∈Tnew
i

(1− prs)

nold
i · nnew

i

, (7)

where T old
i is the set of technology classes in the firm’s patent families before the competition, Tnew

i

is the set of newly introduced CPC codes, nold
i and nnew

i are the number of old and new CPC codes,

and prs is the proximity between old and new technology classes.

We then define dummy variables indicating whether the firm-competition pair is in the top

(bottom) tercile of the relative novelty (Top (Bottom) Relative Novelty ic) and relative disparity

(Top (Bottom) Relative Disparity ic) distributions.

3 Estimation strategy

Our first goal is to understand whether firms with a track record of atypical innovations before the

program have higher (lower) likelihood of being ranked higher and win a given competition. To

that end we estimate the following regression by means of ordinary least squares (OLS):

Grantic = α+ βY Pre
ic + γXPre

ic + δc + εic (8)

where the dependent variable is a dummy variable indicating whether applicant i has received

a grant or not in competition c. Alternatively, we use the (log) raw ranking assigned to applicant
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i in competition c on the left hand side. Our variable of interest is Y Pre
ic , which proxies the

innovation novelty of applicant i in the period preceding the competition (see Eq. (4) and (5)).

We always include competition fixed effects (δc), while some specifications also feature a set of

control variables (XPre
ic ) encompassing a dummy for patents, number of patent citations, amount

of funding requested, proposal duration, 2-digit (NACE rev.2) sector fixed effects, country fixed

effects, age fixed effects, consortium fixed effects and first applicant fixed effects. Standard errors

are robust and clustered at the competition level to adjust for potential serial correlation in errors.

After assessing whether grant and ranking assignment are biased against novelty, we move on

to examine the causal effects of grants in terms of the direction of innovation. The identification

strategy exploits the policy’s assignment mechanism: firms’ proposals are ranked according to

experts’ evaluation and funding availability ultimately determines the number of grants awarded

in each competition. We leverage this discontinuity and employ a sharp RDD comparing firms

around the threshold. The RDD approach is based on the idea that treatment assignment around

the threshold is approximately random. In this context, firms that are close to the threshold

on either side are supposed to be very similar, and potential differences in the post-treatment

performance of beneficiaries and non-beneficiaries can be attributable to the grant. In light of this,

we estimate the following equation by means of OLS:

Y Post
ic =α+ βGrantic + f (Rankic) + γY Pre

ic + δc + εic

where − r ≤ Rankic ≤ r

(9)

Y Post
i is one of the unconventionality measures during the post-treatment period for firm i in

competition c; Rankic is the centered rank assigned by experts to firm i in competition c, Grant is an

indicator for firm i winning the competition c (i.e. Rankic > 0); f (Rankic) is a polynomial control

for centered ranks. All regressions feature the pre-assignment dependent variable (Y Pre
i ) to reduce

variability (Lee and Lemieux, 2010) and competition fixed effects (δc). The latter effectively restrict

the comparison to applicants on either side of the threshold, but within the same competition, thus

controlling for time and topic specific factors.21 Finally, r is the bandwidth, εic is the idiosyncratic

error term and standard errors are robust and clustered at the competition-level.

21Competitions have a thematic nature as detailed in Santoleri et al. (2022).
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We use variants of Eq. (9) to address two potential effects stemming from grants. The first one

relates to the possibility that grants allow firms to deviate in terms of their pre-existing technological

trajectory. In this case, we limit the analysis to applicants that have already patented in the period

preceding the competition. The second case concerns the possibility that grants induce a higher

chance to produce patents that are novel not only with respect to the previous activity of a given

firm, but in relation with the universe of patent applications. In other words, the first approach

examines whether grants increase relative novelty (i.e. relative to the firm’s past), whereas the

second approach investigates whether they induce absolute novelty (i.e. relative to the entire

technological space).

The validity of the research design hinges on the absence of manipulation of the running variable

and of discontinuity in pre-competition observables between firms on either sides of the threshold.

Santoleri et al. (2022) discuss manipulation and provide evidence of continuity of baseline co-

variates around the threshold. In the Appendix we provide additional evidence focusing on the

pre-intervention dependent variables considered in this paper (see Table A2). Graphical evidence

of local continuity in pre-intervention dependent variable is reported in Figure 1. Results confirm

that before applying, grantees and non-grantees do not differ in terms of having filed for patents

that are either typical or atypical, which reassures on the validity of the research design.

4 Results

This section presents the main results. Section 4.1 examines whether there is any evidence of bias

against novelty in grant allocation. Section 4.2 describes the effects grants have on the novelty of

innovation. Finally, section 4.2 tests for heterogeneous effects to uncover potential mechanisms.

4.1 Bias against novelty?

Table 2 contains the results from Eq. (8), where we regress theGrantic or the (log) raw ranks against

a dummy indicating whether a firm has filed atypical (typical) patents before the competition. Odd

columns report regression results controlling for competition fixed effects only. They indicate that

firms with unconventional innovations enjoy a 3 p.p. higher chance of securing the grant. In line

with this, having an unconventional innovation before the competition decreases by around 23%
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the raw ranking obtained by a given applicant (i.e. a higher position in the final ranking). We then

test whether these findings hold when accounting for a host of additional observable characteristics.

Even columns in Table 2 report regression results controlling for a dummy for patents, number of

patent citations, amount of funding requested, proposal duration, 2-digit (NACE rev.2) sector

fixed effects, country fixed effects, age fixed effects, consortium fixed effects and first applicant

fixed effects. The inclusion of these covariates substantially reduces the size of the coefficient which

loses statistical significance. When estimating regressions using a dummy indicating whether a

firm has filed for a typical innovation before the competition, we find similar results with grants

increasing the likelihood of securing a grant (1.5-2 p.p) and ranking higher (16-18%). This suggests

that what matters in terms of achieving a higher ranking or being awarded a grant is actually

having patented before the competition, irrespective of the degree of novelty of that innovation. In

Appendix Table A1 we restrict the sample to those applicants that filed at least one patent before

the competition. Results seem to suggest that there is some positive discrimination in favor of

unconventional innovators: having an unconventional (conventional) patent increases (decreases)

the chances to secure the grant and rank higher in a competition, though point estimates are never

statistically significant when controlling for the additional covariates.

In sum, these findings do not provide support for the the idea that having a track-record of

atypical innovations leads applicants to be discriminated against in terms of winning or being

ranked higher in a grant competition.

[Table 2 here]

4.2 The effects of grants on the novelty of innovation

Do grants induce firms that have patented in the past to introduce patents in new technological do-

mains? Table 3 answers this question by estimating our baseline RDD Eq.(9). As we are interested

in learning whether grants affect the behavior of firms with patents prior to the competition, we

only include applicants with at least one filed patent before participating. Regression results using

different bandwidths around the threshold indicate that grants increase the likelihood of patenting

in new technology classes by around 12-15 p.p. Similar findings are obtained when using different

dependent variables: grants induce a 17-24% increase in the the (log) number of new technology
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classes plus one, and a 20-25% increase in the number of new technology classes divided by the

number of patent families. This evidence combined suggests that grants lead firms to patent in

novel areas in terms of both intensive and extensive margins.

[Table 3 here]

While these estimates suggest that grants induce firms to explore new technological domains,

they are not informative of how new and unexplored these technological domains are relative to

firms’ past trajectories. In fact, firms may just innovate in new fields that are extremely close to

those of prior inventions. To examine whether this is the case, we use our proxies for innovation

novelty which measure the distance between what the firm has produced prior and after the com-

petition. In particular, we create two dummy variables that take the value of 1 if the patent is in

the top (bottom) tercile of the novelty distribution, and 0 otherwise. Results in Table 4 indicate

that grants increase by 8-15 p.p. the chances to produce innovations that are distant from previous

ones. On the contrary, we find a negative effect of grants on the production of patents that are

closer to what the firm produced in the past, though point estimates are generally not statistically

significant.

[Table 4 here]

We now move to assess whether grants induce firms to produce patents that are unconventional

with respect to the entire technological space. Here we consider the full sample of applicants,

regardless of whether they have already applied for a patent before the competition takes place.

Table 5 reports our main results. Effects for patents that pertain to the top tercile unconven-

tionality score distribution are positive, around 5-11 p.p., and generally statistically significant at

the 0.05 level. On the contrary, estimation results for the effect of the grant on the propensity to

file a conventional patent tend to be considerably smaller (between 0-3 p.p.) and statistically in-

significant. These results suggest that grants helps firms push the technological frontier by building

on more disparate ideas to introduce novel technologies.

[Table 5 here]
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4.3 Heterogeneous effects and potential channels

In this section we explore heterogeneous effects which speak to potential mechanisms. Prior litera-

ture has shown that financial frictions represent a significant hurdle for innovative firms in general

(see, e.g., Hall and Lerner 2010), and that they are especially binding for firms with radical R&D

projects as opposed to those firms doing routine R&D (Kamien and Schwartz, 1978).22 The ev-

idence reported so far already provides partial support for this conjecture: grants lead firms to

produce unconventional patents, whereas they do not affect the production of conventional ones.

Absent frictions, we would not observe the effects on unconventional patents. One possibility be-

hind these findings is exactly the presence of financial frictions, which hinder firms’ investments

in novel and risky projects. As a result, we expect firms that have lower availability of internal

finance, to be more responsive to treatment. To provide evidence on this point, we re-run all of our

main specifications by splitting the sample across firms that before the competition have an above

(below) median level of cash holdings over total assets. Results reported in Tables 6, 7, and 8 indi-

cate that the coefficient on the treatment effect is positive and statistically significant for the firms

with lower cash-holdings. For those with higher cash-holdings, point estimates are considerably

smaller and never statistically significant. Though the difference between the two sub-groups is not

always statistically significant, firms with lower cash-holdings clearly drive the overall results.

[Tables 6, 7, 8 here]

5 Robustness

We test the sensitivity of our results in the following ways, as reported in Appendix. Figure A2

displays estimates using a variety of bandwidths around the threshold. Tables A3, A4, and A5

report results obtained by augmenting our baseline equations with a number of additional controls.

Estimates using robust standard errors are in Tables A6, A7, and A8. Table A9 contains placebo

tests. Table A10 reports results using a local randomization inference approach, while Tables A13,

A14, A11, and A12 display results with a non-parametric approach. Tables A15, A16, A17 contain

results obtained using different measures of innovation novelty. Tables A18, A19, A20 report

22Santoleri et al. (2022) documented that grants indeed have a positive effect on the quantity of innovation by
alleviating financial frictions.
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estimates with alternative thresholds that define what is considered conventional vs unconventional.

6 Conclusions

The paper investigates whether government intervention through competitive R&D grants affects

the novelty of innovation. Based on the European SME Instrument, we find that grant allocation

is not biased towards applicants with a track-record of unconventional and arguably riskier inno-

vations. Leveraging the discontinuity in the assignment mechanism of the policy, the paper also

documents that grants induce firms to undertake innovations in new and distant technological fields

compared to their prior technological trajectories. Grants also trigger the emergence of innovations

that are unconventional with respect to the universe of patent applications. These results tend to

be stronger for firms that are more prone to suffering from financial frictions. Overall, these findings

suggests that competitive R&D grants help directing innovation efforts towards the exploration of

more novel and original technologies whose emergence, development and diffusion might arguably

be prevented, or slowed down, if left to pure market selection mechanisms.
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Figures and Tables

Table 1: Descriptives on competitions and applicants

(1)
Mean SD Median Max Count

# competitions 179.01 176
# applicants per competition 81.23 71.37 66 438 14296
# winning applicants per competition 3.99 2.96 3 15 703
Grant amount (e1,000) 1646.33 610.31 1530 4115 703

Mean SD Median Max N

1|PatentPre
i 0.304 0.460 0 1 14296

1|PatentPost
i 0.194 0.396 0 1 14296

Top Absolute DisparityPre
i 0.130 0.336 0 1 14296

Bottom Absolute DisparityPre
i 0.086 0.280 0 1 14296

Top Absolute DisparityPost
i 0.072 0.258 0 1 14296

Bottom Absolute DisparityPost
i 0.065 0.246 0 1 14296

Top Absolute NoveltyPre
i 0.120 0.325 0 1 14296

Bottom Absolute NoveltyPre
i 0.095 0.293 0 1 14296

Top Absolute NoveltyPost
i 0.068 0.252 0 1 14296

Bottom Absolute NoveltyPost
i 0.069 0.253 0 1 14296

Notes: summary statistics for competitions and applicants participating to the SME Instrument during
2014-2017. The top panel reports summary statistics at the competition-level for the estimation sample.
The last column (i.e. Count) reports the total number of competitions, applicants, and winning applicants
contained in the samples. The remaining columns in the top panel report the mean, standard deviation and
median of the number of (winning) applicants per competition. The bottom presents summary statistics
at the firm-level for different patent outcomes before and after the competitions
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Table 2: Bias against novelty?

(1) (2) (3) (4)
Grant Grant log(Ranks) log(Ranks)

Top Absolute DisparityPre
ic 0.030*** 0.009 -0.232*** -0.009

(0.007) (0.008) (0.028) (0.033)

Controls No Yes No Yes

N 14296 13757 14296 13757
R2 0.03 0.06 0.37 0.43
AIC -3640.92 -3670.40 38297.19 35632.42

Top Absolute NoveltyPre
ic 0.029*** 0.007 -0.236*** -0.018

(0.007) (0.008) (0.026) (0.030)

Controls No Yes No Yes

N 14296 13757 14296 13757
R2 0.03 0.06 0.37 0.43
AIC -3635.40 -3669.69 38299.63 35632.12

Bottom Absolute DisparityPre
ic 0.019*** -0.001 -0.162*** 0.008

(0.007) (0.008) (0.028) (0.034)

Controls No Yes No Yes

N 14296 13757 14296 13757
R2 0.03 0.06 0.37 0.43
AIC -3617.75 -3668.75 38360.86 35632.45

Bottom Absolute NoveltyPre
ic 0.015** -0.008 -0.182*** 0.002

(0.006) (0.008) (0.025) (0.029)

Controls No Yes No Yes

N 14296 13757 14296 13757
R2 0.03 0.06 0.37 0.43
AIC -3615.44 -3669.99 38348.10 35632.51

Notes: results obtained by means of OLS estimating variants of the following equation: Yic =
α + βY Pre

ic + γX + δc + εic. Dependent variable in columns 1 and 2 is a dummy variable
indicating whether a firm has received a grant. In columns 3 and 4 the dependent variable is the
log of uncentered rankings. All regressions include competition fixed effects. Even columns add
the following controls: a dummy for patents, number of citations, amount of funding requested,
proposal duration, 2-digit sector fixed effects, country fixed effects, age fixed effects, consortium
fixed effects and first applicant fixed effects. Standard errors are robust and clustered at the
competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 3: Effects on introduction of new technological classes

(1) (2) (3)
All ±15 ±10

LHS: 1|new classesPost
ic

Grant 0.132** 0.148*** 0.121*
(0.051) (0.056) (0.063)

N 4364 1151 861
R2 0.13 0.25 0.29
AIC 4935.62 1227.63 875.27

LHS: log(new classes+1)
Post
ic

Grant 0.198*** 0.235*** 0.169*
(0.072) (0.078) (0.088)

N 4364 1151 861
R2 0.14 0.25 0.29
AIC 7479.60 1922.30 1412.84

LHS: (new classes/families)
Post
ic

Grant 0.223*** 0.251*** 0.195*
(0.083) (0.094) (0.103)

N 4364 1151 861
R2 0.05 0.17 0.21
AIC 9781.66 2400.42 1723.75

Notes: results obtained estimating our baseline RDD equation by means of
OLS with pre-determined observables as dependent variables: Y Post

ic = α +
βGrantic + f (Rankic) + δc + εic. Estimates are obtained using different
bandwidths around the threshold (i.e. an infinite one, ±10 or ±5 centered
ranks). The sample includes only applicants that have filed a patent before
the competition. All regressions include linear polynomials of the running
variable on both sides of the threshold, competition fixed effects and the pre-
competition number of patents. Standard errors are robust and clustered at
the competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4: Effects on relative novelty

(1) (2) (3)
All ±15 ±10

LHS: Top Relative DisparityPost
ic

Grant 0.091** 0.139*** 0.111**
(0.043) (0.048) (0.055)

N 4364 1151 861
R2 0.14 0.21 0.26
AIC 2657.71 747.20 507.42

LHS: Top Relative NoveltyPost
ic

Grant 0.080* 0.145*** 0.112*
(0.045) (0.054) (0.059)

N 4364 1151 861
R2 0.12 0.20 0.24
AIC 2759.05 743.52 493.92

LHS: Bottom Relative DisparityPost
ic

Grant -0.002 -0.045 -0.094*
(0.038) (0.047) (0.056)

N 4364 1151 861
R2 0.05 0.12 0.19
AIC 3027.48 797.76 533.79

LHS: Bottom Relative NoveltyPost
ic

Grant -0.003 -0.035 -0.080
(0.036) (0.046) (0.054)

N 4364 1151 861
R2 0.05 0.12 0.18
AIC 2962.71 772.29 512.23

Notes: results obtained estimating our baseline RDD equation by means of OLS
with pre-determined observables as dependent variables: Y Post

ic = α+βGrantic+
f (Rankic) + δc + εic. Estimates are obtained using different bandwidths around
the threshold (i.e. an infinite one, ±10 or±5 centered ranks). The sample includes
only applicants that have filed a patent before the competition. All regressions
include linear polynomials of the running variable on both sides of the threshold,
competition fixed effects and the pre-competition number of patents. Standard
errors are robust and clustered at the competition level. * p < 0.1, ** p < 0.05,
*** p < 0.01.

27



Table 5: Effects on absolute novelty

(1) (2) (3)
All ±10 ±5

LHS: Top Absolute DisparityPost
ic

Grant 0.067*** 0.057** 0.108***
(0.020) (0.027) (0.036)

N 14296 2338 1378
R2 0.11 0.20 0.24
AIC 194.23 467.51 322.68

LHS: Top Absolute NoveltyPost
ic

Grant 0.069*** 0.047* 0.095***
(0.020) (0.025) (0.034)

N 14296 2338 1378
R2 0.11 0.18 0.24
AIC -557.09 457.30 307.79

LHS: Bottom Absolute DisparityPost
ic

Grant 0.016 -0.017 0.000
(0.019) (0.024) (0.033)

N 14296 2338 1378
R2 0.04 0.10 0.15
AIC -96.59 551.69 300.95

LHS: Bottom Absolute NoveltyPost
ic

Grant 0.030 -0.018 -0.013
(0.020) (0.025) (0.034)

N 14296 2338 1378
R2 0.04 0.10 0.14
AIC 612.07 756.60 465.87

Notes: results obtained estimating our baseline RDD equation by means of OLS
with post-competition outcomes as dependent variables: Y Post

ic = α+βGrantic+

f (Rankic)+θY Pre
ic +δc+εic. Estimates are obtained using different bandwidths

around the threshold (i.e. an infinite one, ±10 or ±5 centered ranks). All re-
gressions include linear polynomials of the running variable on both sides of the
threshold, the pre-grant dependent variable and competition fixed effects. Stan-
dard errors are robust and clustered at the competition level. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table 6: Effects on the introduction of new technology classes (high vs low cash)

Low-cash High-cash

All ±15 ±10 All ±15 ±10

LHS: 1|new classesPost
ic

Grant 0.184* 0.127 0.153 0.088 0.153 0.106
(0.094) (0.136) (0.166) (0.087) (0.098) (0.115)

N 1367 327 221 1555 426 313
R2 0.21 0.46 0.56 0.19 0.39 0.42
AIC 1347.40 256.29 120.19 1696.25 366.33 260.24

LHS: log(new classes+1)
Post
ic

Grant 0.310** 0.303* 0.325 0.132 0.204 0.136
(0.126) (0.182) (0.226) (0.124) (0.132) (0.159)

N 1367 327 221 1555 426 313
R2 0.21 0.46 0.52 0.20 0.39 0.41
AIC 2116.10 452.26 267.77 2583.12 618.24 471.53

LHS: (new classes/families)
Post
ic

Grant 0.397** 0.403* 0.410 0.043 0.094 0.090
(0.176) (0.225) (0.249) (0.125) (0.151) (0.183)

N 1367 327 221 1555 426 313
R2 0.16 0.43 0.48 0.11 0.25 0.28
AIC 2606.29 551.94 286.97 3565.04 878.18 663.34

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 7: Effects on relative novelty (high vs low-cash)

Low-cash High-cash

All ±15 ±10 All ±15 ±10

LHS: Top Relative DisparityPost
ic

Grant 0.175** 0.223* 0.299* -0.013 0.029 -0.031
(0.082) (0.119) (0.151) (0.063) (0.074) (0.082)

N 1367 327 221 1555 426 313
R2 0.22 0.38 0.48 0.16 0.35 0.41
AIC 622.37 179.58 68.72 861.74 134.67 92.76

LHS: Top Relative NoveltyPost
ic

Grant 0.153** 0.260** 0.314** 0.012 0.089 0.038
(0.075) (0.106) (0.127) (0.069) (0.082) (0.092)

N 1367 327 221 1555 426 313
R2 0.20 0.36 0.45 0.15 0.30 0.36
AIC 611.35 153.69 48.26 976.54 193.71 130.22

LHS: Bottom Relative DisparityPost
ic

Grant -0.067 -0.150 -0.192 0.020 -0.074 -0.108
(0.073) (0.108) (0.124) (0.068) (0.080) (0.094)

N 1367 327 221 1555 426 313
R2 0.11 0.31 0.40 0.12 0.33 0.42
AIC 795.10 124.37 71.32 1093.27 239.95 119.13

LHS: Bottom Relative NoveltyPost
ic

Grant -0.082 -0.132 -0.147 0.017 -0.074 -0.108
(0.071) (0.110) (0.128) (0.068) (0.080) (0.094)

N 1367 327 221 1555 426 313
R2 0.10 0.29 0.38 0.12 0.33 0.42
AIC 769.65 112.30 66.14 1106.55 239.95 119.13

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 8: Effects on absolute novelty (high vs low-cash)

Low-cash High-cash

All ±10 ±5 All ±10 ±5

LHS: Top Absolute DisparityPost
ic

Grant 0.088** 0.106** 0.190*** 0.044 0.032 0.055
(0.038) (0.050) (0.071) (0.030) (0.039) (0.056)

N 4701 734 399 4704 871 494
R2 0.11 0.27 0.34 0.16 0.27 0.34
AIC -1137.34 20.03 25.35 370.36 83.07 43.48

LHS: Top Absolute NoveltyPost
ic

Grant 0.099*** 0.090* 0.181** 0.044 0.049 0.063
(0.037) (0.047) (0.075) (0.029) (0.039) (0.052)

N 4701 734 399 4704 871 494
R2 0.12 0.27 0.37 0.16 0.24 0.32
AIC -1190.78 4.58 24.48 -6.11 63.06 26.95

LHS: Bottom Absolute DisparityPost
ic

Grant -0.026 -0.060 -0.015 0.026 -0.029 0.000
(0.028) (0.040) (0.059) (0.036) (0.048) (0.066)

N 4701 734 399 4704 871 494
R2 0.07 0.26 0.37 0.05 0.23 0.28
AIC -376.09 22.65 -64.95 602.19 139.92 97.75

LHS: Bottom Absolute NoveltyPost
ic

Grant 0.013 -0.032 -0.003 0.024 -0.027 0.010
(0.034) (0.044) (0.064) (0.036) (0.049) (0.067)

N 4701 734 399 4704 871 494
R2 0.08 0.25 0.37 0.05 0.22 0.28
AIC -236.59 104.98 -5.33 763.11 196.92 122.69

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 1: RDD plots

Notes: Circles represent centered rank-level means of the pre-competition (left) and post-competition (right)
firm-level outcomes. The sample includes firms with centered ranks between -5 and 3.
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Online Appendix

Additional tables

Table A1: Bias against novelty? (only patent-active firms)

(1) (2) (3) (4)
Grant Grant log(Ranks) log(Ranks)

Top Absolute DisparityPre
ic 0.012 0.010 -0.046 -0.033

(0.008) (0.009) (0.029) (0.035)

Controls No Yes No Yes

N 4333 4203 4333 4203
R2 0.06 0.10 0.30 0.35
AIC 131.05 1.12 12089.50 11432.02

Top Absolute NoveltyPre
ic 0.008 0.007 -0.053* -0.042

(0.008) (0.009) (0.027) (0.032)

Controls No Yes No Yes

N 4333 4203 4333 4203
R2 0.06 0.10 0.30 0.35
AIC 132.38 1.87 12088.77 11431.46

Bottom Absolute DisparityPre
ic -0.004 0.000 0.049 0.024

(0.008) (0.009) (0.032) (0.034)

Controls No Yes No Yes

N 4333 4203 4333 4203
R2 0.06 0.10 0.30 0.35
AIC 133.31 2.49 12089.60 11432.65

Bottom Absolute NoveltyPre
ic -0.009 -0.007 0.031 0.023

(0.008) (0.009) (0.029) (0.031)

Controls No Yes No Yes

N 4333 4203 4333 4203
R2 0.06 0.10 0.30 0.35
AIC 132.35 1.77 12090.81 11432.67

Notes: results obtained by means of OLS estimating variants of the following equation: Yic =
α+βY Pre

ic +γX+δc+εic. Dependent variable in columns 1 and 2 is a dummy variable indicating
whether a firm has received a grant. In columns 3 and 4 the dependent variable is the log of
uncentered rankings. All regressions include competition fixed effects. Even columns add the
following controls: a dummy for patents, number of citations, amount of funding requested,
proposal duration, 2-digit sector fixed effects, country fixed effects, age fixed effects, consortium
fixed effects and first applicant fixed effects. Standard errors are robust and clustered at the
competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A2: Balancing tests

(1) (2) (3)
All ±10 ±5

LHS: 1|PatentPre
ic

Grant 0.032 -0.041 -0.047
(0.034) (0.040) (0.060)

N 14296 2338 1378
R2 0.08 0.14 0.20

LHS: log(Patents+1)
Pre
ic

Grant 0.020 -0.074 -0.100
(0.042) (0.051) (0.073)

N 14296 2338 1378
R2 0.08 0.15 0.21

LHS: log(Fwd citations+1)
Pre
ic

Grant 0.049 -0.142 -0.171
(0.082) (0.100) (0.151)

N 14296 2338 1378
R2 0.08 0.15 0.21

LHS: Bottom Absolute DisparityPre
ic

Grant -0.005 -0.031 -0.014
(0.020) (0.027) (0.036)

N 14296 2338 1378
R2 0.02 0.08 0.13

LHS: Top Absolute DisparityPre
ic

Grant 0.048** 0.033 0.016
(0.023) (0.031) (0.047)

N 14296 2338 1378
R2 0.04 0.10 0.15

LHS: Bottom Absolute NoveltyPre
ic

Grant -0.011 -0.030 -0.015
(0.021) (0.027) (0.038)

N 14296 2338 1378
R2 0.02 0.08 0.12

LHS: Top Absolute NoveltyPre
ic

Grant 0.030 0.012 -0.024
(0.023) (0.031) (0.047)

N 14296 2338 1378
R2 0.04 0.09 0.15

Notes: results obtained estimating our baseline RDD equation by means of OLS
with pre-determined observables as dependent variables: Y Pre

ic = α+βGrantic+
f (Rankic)+ δc + εic. Estimates are obtained using different bandwidths around
the threshold (i.e. an infinite one, ±10 or ±5 centered ranks). All regressions
include linear polynomials of the running variable on both sides of the threshold
and competition fixed effects. Standard errors are robust and clustered at the
competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Additional controls

Table A3: Effects on new technology classes

(1) (2) (3)
All ±15 ±10

LHS: 1|new classesPost
ic

Grant 0.100** 0.148** 0.171***
(0.050) (0.058) (0.065)

N 4234 1113 818
R2 0.22 0.39 0.46
AIC 4363.22 967.28 619.70

LHS: log(new classes+1)
Post
ic

Grant 0.167** 0.251*** 0.251***
(0.071) (0.078) (0.093)

N 4234 1113 818
R2 0.22 0.38 0.43
AIC 6865.56 1660.44 1167.23

LHS: (new classes/families)
Post
ic

Grant 0.189** 0.192** 0.227*
(0.079) (0.096) (0.116)

N 4234 1113 818
R2 0.13 0.32 0.37
AIC 9169.27 2110.45 1454.94

Notes: results obtained estimating our baseline RDD equation by means
of OLS with pre-determined observables as dependent variables: Y Post

ic =
α + βGrantic + f (Rankic) + δc + εic. Estimates are obtained using differ-
ent bandwidths around the threshold (i.e. an infinite one, ±10 or ±5 centered
ranks). The sample includes only applicants that have filed a patent before the
competition. All regressions include linear polynomials of the running variable
on both sides of the threshold, competition fixed effects, pre-competition num-
ber of patents, a dummy for patents, number of citations, amount of funding
requested, proposal duration, 2-digit sector fixed effects, country fixed effects,
age fixed effects, consortium fixed effects and first applicant fixed effects. Stan-
dard errors are robust and clustered at the competition level. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table A4: Effects on relative novelty

(1) (2) (3)
All ±15 ±10

LHS: Top Relative DisparityPost
ic

Grant 0.073* 0.137*** 0.139**
(0.038) (0.047) (0.054)

N 4234 1113 818
R2 0.21 0.36 0.41
AIC 2183.17 510.07 304.13

LHS: Top Relative NoveltyPost
ic

Grant 0.059 0.146*** 0.136**
(0.042) (0.053) (0.061)

N 4234 1113 818
R2 0.20 0.36 0.41
AIC 2212.62 480.09 267.82

LHS: Bottom Relative DisparityPost
ic

Grant 0.011 -0.058 -0.133**
(0.038) (0.051) (0.058)

N 4234 1113 818
R2 0.14 0.28 0.34
AIC 2536.08 564.03 359.86

LHS: Bottom Relative NoveltyPost
ic

Grant 0.011 -0.041 -0.119**
(0.036) (0.050) (0.057)

N 4234 1113 818
R2 0.14 0.28 0.35
AIC 2466.92 532.40 332.58

Notes: results obtained estimating our baseline RDD equation by means of OLS
with pre-determined observables as dependent variables: Y Post

ic = α+βGrantic+
f (Rankic) + δc + εic. Estimates are obtained using different bandwidths around
the threshold (i.e. an infinite one, ±10 or ±5 centered ranks). The sample
includes only applicants that have filed a patent before the competition. All
regressions include linear polynomials of the running variable on both sides of the
threshold, competition fixed effects, pre-competition number of patents, a dummy
for patents, number of citations, amount of funding requested, proposal duration,
2-digit sector fixed effects, country fixed effects, age fixed effects, consortium fixed
effects and first applicant fixed effects. Standard errors are robust and clustered
at the competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A5: Effects on absolute novelty

(1) (2) (3)
All ±10 ±5

LHS: Top Absolute DisparityPost
ic

Grant 0.061*** 0.053** 0.118***
(0.019) (0.026) (0.036)

N 13757 2247 1305
R2 0.16 0.28 0.35
AIC -594.90 237.11 128.45

LHS: Top Absolute NoveltyPost
ic

Grant 0.062*** 0.042* 0.098***
(0.019) (0.023) (0.033)

N 13757 2247 1305
R2 0.16 0.27 0.36
AIC -1198.60 218.72 90.59

LHS: Bottom Absolute DisparityPost
ic

Grant 0.013 -0.013 -0.002
(0.019) (0.026) (0.037)

N 13757 2247 1305
R2 0.08 0.21 0.28
AIC -559.40 272.90 74.28

LHS: Bottom Absolute NoveltyPost
ic

Grant 0.024 -0.015 -0.024
(0.020) (0.027) (0.039)

N 13757 2247 1305
R2 0.09 0.21 0.29
AIC 89.45 484.71 224.96

Notes: results obtained estimating our baseline RDD equation by means of OLS
with post-competition outcomes as dependent variables: Y Post

ic = α+ βGrantic +

f (Rankic) + θY Pre
ic + δc + εic. Estimates are obtained using different bandwidths

around the threshold (i.e. an infinite one, ±10 or ±5 centered ranks). All re-
gressions include linear polynomials of the running variable on both sides of the
threshold, competition fixed effects, pre-competition number of patents, a dummy
for patents, number of citations, amount of funding requested, proposal duration,
2-digit sector fixed effects, country fixed effects, age fixed effects, consortium fixed
effects and first applicant fixed effects. Standard errors are robust and clustered at
the competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Alternative standard error adjustment

Table A6: Effects on new technology classes

(1) (2) (3)
All ±15 ±10

LHS: 1|new classesPost
ic

Grant 0.132*** 0.148*** 0.121*
(0.047) (0.057) (0.066)

N 4364 1151 861
R2 0.13 0.25 0.29
AIC 4937.62 1229.63 877.27

LHS: log(new classes+1)
Post
ic

Grant 0.198*** 0.235*** 0.169*
(0.067) (0.081) (0.095)

N 4364 1151 861
R2 0.14 0.25 0.29
AIC 7481.60 1924.30 1414.84

LHS: (new classes/families)
Post
ic

Grant 0.223*** 0.251** 0.195*
(0.079) (0.098) (0.111)

N 4364 1151 861
R2 0.05 0.17 0.21
AIC 9783.66 2402.42 1725.75

Notes: results obtained estimating our baseline RDD equation by means of
OLS with pre-determined observables as dependent variables: Y Post

ic = α +
βGrantic + f (Rankic) + δc + εic. Estimates are obtained using different
bandwidths around the threshold (i.e. an infinite one, ±10 or ±5 centered
ranks). The sample includes only applicants that have filed a patent before
the competition. All regressions include linear polynomials of the running
variable on both sides of the threshold, competition fixed effects, and pre-
competition number of patents. Robust standard errors in parentheses. *
p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A7: Effects on relative novelty

(1) (2) (3)
All ±15 ±10

LHS: Top Relative DisparityPost
ic

Grant 0.091** 0.139*** 0.111**
(0.040) (0.048) (0.055)

N 4364 1151 861
R2 0.14 0.21 0.26
AIC 2659.71 749.20 509.42

LHS: Top Relative NoveltyPost
ic

Grant 0.080** 0.145*** 0.112**
(0.040) (0.048) (0.055)

N 4364 1151 861
R2 0.12 0.20 0.24
AIC 2761.05 745.52 495.92

LHS: Bottom Relative DisparityPost
ic

Grant -0.002 -0.045 -0.094
(0.037) (0.048) (0.058)

N 4364 1151 861
R2 0.05 0.12 0.19
AIC 3029.48 799.76 535.79

LHS: Bottom Relative NoveltyPost
ic

Grant -0.003 -0.035 -0.080
(0.036) (0.047) (0.057)

N 4364 1151 861
R2 0.05 0.12 0.18
AIC 2964.71 774.29 514.23

Notes: results obtained estimating our baseline RDD equation by means of OLS
with pre-determined observables as dependent variables: Y Post

ic = α+βGrantic+
f (Rankic) + δc + εic. Estimates are obtained using different bandwidths around
the threshold (i.e. an infinite one, ±10 or ±5 centered ranks). The sample
includes only applicants that have filed a patent before the competition. All
regressions include linear polynomials of the running variable on both sides of
the threshold, competition fixed effects, and pre-competition number of patents.
Robust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A8: Effects on absolute novelty

(1) (2) (3)
All ±10 ±5

LHS: Top Absolute DisparityPost
ic

Grant 0.067*** 0.057** 0.108***
(0.020) (0.026) (0.037)

N 14296 2338 1378
R2 0.11 0.20 0.24
AIC 196.23 469.51 324.68

LHS: Top Absolute NoveltyPost
ic

Grant 0.069*** 0.047* 0.095***
(0.020) (0.026) (0.036)

N 14296 2338 1378
R2 0.11 0.18 0.24
AIC -555.09 459.30 309.79

LHS: Bottom Absolute DisparityPost
ic

Grant 0.016 -0.017 0.000
(0.018) (0.025) (0.036)

N 14296 2338 1378
R2 0.04 0.10 0.15
AIC -94.59 553.69 302.95

LHS: Bottom Absolute NoveltyPost
ic

Grant 0.030 -0.018 -0.013
(0.019) (0.026) (0.038)

N 14296 2338 1378
R2 0.04 0.10 0.14
AIC 614.07 758.60 467.87

Notes: results obtained estimating our baseline RDD equation by means of OLS
with post-competition outcomes as dependent variables: Y Post

ic = α+βGrantic+

f (Rankic)+θY Pre
ic +δc+εic. Estimates are obtained using different bandwidths

around the threshold (i.e. an infinite one, ±10 or ±5 centered ranks). All re-
gressions include linear polynomials of the running variable on both sides of the
threshold, competition fixed effects, and pre-competition number of patents. Ro-
bust standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Estimates by bandwidth

Figure A2: Point estimates with varying bandwidths
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Falsification tests

Table A9: Placebo tests

(1) (2) (3) (4)
[0;10] [-10;0] [0;5] [-5;0]

LHS: Top Relative DisparityPost
ic

Placebo Grant [2] -0.056 -0.042
(0.041) (0.059)

Placebo Grant [-2] -0.066 -0.044
(0.056) (0.079)

N 648 1650 507 831
R2 0.29 0.23 0.32 0.31

LHS: Top Relative NoveltyPost
ic

Placebo Grant [2] -0.055 -0.014
(0.044) (0.060)

Placebo Grant [-2] -0.029 0.007
(0.059) (0.079)

N 648 1650 507 831
R2 0.29 0.20 0.35 0.31

LHS: Bottom Relative DisparityPost
ic

Placebo Grant [2] 0.024 0.048
(0.040) (0.054)

Placebo Grant [-2] 0.042 0.124
(0.060) (0.079)

N 648 1650 507 831
R2 0.23 0.13 0.27 0.20

LHS: Bottom Relative NoveltyPost
ic

Placebo Grant [2] 0.004 -0.016
(0.042) (0.059)

Placebo Grant [-2] -0.022 0.047
(0.060) (0.083)

N 648 1650 507 831
R2 0.23 0.13 0.27 0.22

Notes: results obtained using a placebo threshold between ranks -3 and -2 or, alternatively,
between rank 2 and 3. For the placebo threshold above the actual one, estimates are obtained
using bandwidths from centered ranks 0 to 10 (or 0 to 5). For the placebo threshold below
the actual one, estimates are obtained using bandwidths from centered ranks -10 to 0 (or
-5 to 0). All regressions include linear ranks on both sides of the threshold, the pre-grant
dependent variable and competition fixed effects. Standard errors are robust and clustered
at the competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Local Randomization estimates

Table A10: Local Randomization Estimates

Top Abs. DisparityPre
ic Top Abs. NoveltyPre

ic

Diff-in-Means 0.018 0.006
p-value [ 0.656] [ 0.928]

Window 1 1
Nleft 163 163
Nright 173 173
N 336 336

Bottom Abs. DisparityPre
ic Bottom Abs. NoveltyPre

ic

Diff-in-Means 0.006 -0.012
p-value [ 0.906] [ 0.698]

Window 1 1
Nleft 163 163
Nright 173 173
N 336 336

Top Abs. DisparityPost
ic Top Abs. NoveltyPost

ic

Diff-in-Means 0.119 0.077
p-value [ 0.000] [ 0.004]

Window 1 1
Nleft 163 163
Nright 173 173
N 336 336

Bottom Abs. DisparityPost
ic Bottom Abs. NoveltyPost

ic

Diff-in-Means -0.024 -0.006
p-value [ 0.272] [ 0.878]

Window 1 1
Nleft 163 163
Nright 173 173
N 336 336

Notes: results obtained employing the regression-discontinuity local randomization ap-
proach (Cattaneo et al., 2015) restricting the window around the threshold to [-1,1].
Models are estimated with rdrandinf (Cattaneo et al., 2016). Fisherian p-values are
obtained using 1,000 permutations. Dependent variables are demeaned to account for
competition fixed effects. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Non-parametric RDD estimates

Table A11: Non-parametric RDD estimates - relative novelty

1|new classesPost
ic 1|new classesPost

ic

RD Estimate 0.140 0.136
[0.044] [0.046]

BW 16.8 12.6
BW type mserd cerrd
Eff. Number of obs (left) 920 694
Eff. Number of obs (right) 300 297
Robust p-value 0.047 0.047

log(new classes+1)
Post
ic log(new classes+1)

Post
ic

RD Estimate 0.205 0.181
[0.063] [0.069]

BW 15.5 11.7
BW type mserd cerrd
Eff. Number of obs (left) 864 638
Eff. Number of obs (right) 300 295
Robust p-value 0.056 0.081

(new classes/families)
Post
ic (new classes/families)

Post
ic

RD Estimate 0.222 0.178
[0.076] [0.084]

BW 14.9 11.2
BW type mserd cerrd
Eff. Number of obs (left) 806 638
Eff. Number of obs (right) 299 295
Robust p-value 0.076 0.152

Notes: results obtained employing local polynomial RD estimators with automated bandwidth selection
developed by Calonico et al. (2014). Specifications employ either a mean-squared error (MSE) or a
Coverage Error Rate (CER) optimal bandwidth that vary for each outcome. All models include a
linear adjustment of the running variable on both sides of the threshold, competition fixed effects and
use a triangular kernel. Standard errors are clustered at the competition level.
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Table A12: Non-parametric RDD estimates - relative novelty

Top Relative NoveltyPost
ic Top Relative NoveltyPost

ic

RD Estimate 0.130 0.119
[0.041] [0.044]

BW 15.8 11.9
BW type mserd cerrd
Eff. Number of obs (left) 864 638
Eff. Number of obs (right) 300 295
Robust p-value 0.026 0.045

Top Relative DisparityPost
ic Top Relative DisparityPost

ic

RD Estimate 0.123 0.110
[0.039] [0.042]

BW 14.9 11.2
BW type mserd cerrd
Eff. Number of obs (left) 806 638
Eff. Number of obs (right) 299 295
Robust p-value 0.029 0.048

Bottom Relative NoveltyPost
ic Bottom Relative NoveltyPost

ic

RD Estimate -0.066 -0.069
[0.039] [0.043]

BW 13.6 10.2
BW type mserd cerrd
Eff. Number of obs (left) 750 587
Eff. Number of obs (right) 299 292
Robust p-value 0.087 0.135

Bottom Relative DisparityPost
ic Bottom Relative DisparityPost

ic

RD Estimate -0.090 -0.090
[0.041] [0.046]

BW 12.7 9.6
BW type mserd cerrd
Eff. Number of obs (left) 694 539
Eff. Number of obs (right) 297 291
Robust p-value 0.031 0.065

Notes: results obtained employing local polynomial RD estimators with automated bandwidth selection devel-
oped by Calonico et al. (2014). Specifications employ either a mean-squared error (MSE) or a Coverage Error
Rate (CER) optimal bandwidth that vary for each outcome. All models include a linear adjustment of the
running variable on both sides of the threshold, competition fixed effects and use a triangular kernel. Standard
errors are clustered at the competition level.
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Table A13: Non-parametric RDD estimates - balancing tests

Top Absolute NoveltyPost
ic Top Absolute NoveltyPost

ic

RD Estimate 0.017 0.004
[0.025] [0.028]

BW 18.8 14.0
BW type mserd cerrd
Eff. Number of obs (left) 2830 2261
Eff. Number of obs (right) 703 701
Robust p-value 0.877 0.926

Top Absolute DisparityPost
ic Top Absolute DisparityPost

ic

RD Estimate 0.038 0.024
[0.025] [0.028]

BW 17.7 13.2
BW type mserd cerrd
Eff. Number of obs (left) 2692 2111
Eff. Number of obs (right) 703 699
Robust p-value 0.545 0.733

Bottom Absolute NoveltyPost
ic Bottom Absolute NoveltyPost

ic

RD Estimate -0.029 -0.030
[0.022] [0.023]

BW 19.2 14.3
BW type mserd cerrd
Eff. Number of obs (left) 2971 2261
Eff. Number of obs (right) 703 701
Robust p-value 0.472 0.444

Bottom Absolute DisparityPost
ic Bottom Absolute DisparityPost

ic

RD Estimate -0.018 -0.023
[0.021] [0.023]

BW 17.5 13.0
BW type mserd cerrd
Eff. Number of obs (left) 2692 2111
Eff. Number of obs (right) 703 699
Robust p-value 0.492 0.432

Notes: results obtained employing local polynomial RD estimators with automated bandwidth selection developed
by Calonico et al. (2014). Specifications employ either a mean-squared error (MSE) or a Coverage Error Rate
(CER) optimal bandwidth that vary for each outcome. All models include a linear adjustment of the running
variable on both sides of the threshold, competition fixed effects and use a triangular kernel. Standard errors are
clustered at the competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.

14



Table A14: Non-parametric RDD estimates - absolute novelty

Top Absolute NoveltyPost
ic Top Absolute NoveltyPost

ic

RD Estimate 0.059 0.057
[0.020] [0.022]

BW 17.7 13.2
BW type mserd cerrd
Eff. Number of obs (left) 2692 2111
Eff. Number of obs (right) 703 699
Robust p-value 0.054 0.054

Top Absolute DisparityPost
ic Top Absolute DisparityPost

ic

RD Estimate 0.066 0.066
[0.021] [0.022]

BW 18.4 13.7
BW type mserd cerrd
Eff. Number of obs (left) 2830 2111
Eff. Number of obs (right) 703 699
Robust p-value 0.021 0.023

Bottom Absolute NoveltyPost
ic Bottom Absolute NoveltyPost

ic

RD Estimate -0.002 -0.010
[0.020] [0.022]

BW 18.5 13.8
BW type mserd cerrd
Eff. Number of obs (left) 2830 2111
Eff. Number of obs (right) 703 699
Robust p-value 0.690 0.522

Bottom Absolute DisparityPost
ic Bottom Absolute DisparityPost

ic

RD Estimate -0.006 -0.011
[0.019] [0.020]

BW 18.7 13.9
BW type mserd cerrd
Eff. Number of obs (left) 2830 2111
Eff. Number of obs (right) 703 699
Robust p-value 0.634 0.507

Notes: results obtained employing local polynomial RD estimators with automated bandwidth selection developed
by Calonico et al. (2014). Specifications employ either a mean-squared error (MSE) or a Coverage Error Rate
(CER) optimal bandwidth that vary for each outcome. All models include a linear adjustment of the running
variable on both sides of the threshold, competition fixed effects and use a triangular kernel. Standard errors are
clustered at the competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Rao-Stirling

We use here the Rao-Stirling index as an alternative indicator of innovation novelty. Rao-Stirling

diversity was introduced by Stirling (2007) to measure diversity in article references. More re-

cently, it has been used by Yang et al. (2022) to measure novelty as an alternative to the atypical

combination index proposed by Uzzi et al. (2013).

Computed at the patent level, Rao-Stirling diversity is a generalization of disparity since it

includes in its definition the relative frequency of the different technology codes assigned to the

patent and not only their distance. For each patent family f , we can define:

Patent Rao-Stirlingf =
∑

j,k∈Tf ;j ̸=k

sjfskf (1− pjk) , (10)

where Tf is the set of technology classes in the patent family f , sjf and skf are the relative

frequencies of classes j and k in the patent family and pjk is the proximity between these technology

classes.

By replicating the procedure followed to obtain the relative and absolute disparity at the firm-

competition level, we can define for each firm i and competition c:

Relative Rao-Stirlingic =
∑

j∈T old
i , k∈Tnew

i

sjiski (1− pjk) , (11)

where T old
i is the set of technology classes in the firm’s patent families before the competition, Tnew

i

is the set of newly introduced classes, sji is the frequency of class j among the technological classes

assigned to the firm before the competition, ski is the frequency of class k in the newly introduced

technological classes, and pjk is their distance. From this continuous variable, we obtain dummy

variables that identify firms in the top (bottom) tercile of the relative Rao-Stirling distribution

(Top (Bottom) Relative Rao-Stirling ic).

We then define the absolute Rao-Stirling dummies as:

Top Absolute Rao-Stirling
Pre(Post)
ic = 1|

[
∃f for f ∈

(
PP

Pre(Post)
i ∩ PRS

top33

)]
, (12)

where PP
Pre(Post)
i is the patent portfolio of firm i in the pre (post) competition period and PRS

top33
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is the top tercile of the patent Rao-Stirling distribution. This distribution is determined for each

year and technology class. The percentile of a patent in this distribution is equal to the weighted

average of its percentile in the distributions of its technology classes.

The dummy variable Bottom Absolute Rao-Stirling
Pre(Post)
ic , instead, refers to firms whose best

patent in terms of novelty is in the bottom tercile of the distribution.

Table A15: Bias against novelty?

(1) (2) (3) (4)
Grant Grant log(Ranks) log(Ranks)

Top Absolute Rao-StirlingPre
ic 0.025*** 0.000 -0.236*** -0.018

(0.006) (0.008) (0.029) (0.034)

Controls No Yes No Yes

N 14296 13757 14296 13757
R2 0.03 0.06 0.37 0.43
AIC -3629.65 -3668.74 38294.82 35632.12

Bottom Absolute Rao-StirlingPre
ic 0.014** -0.009 -0.163*** 0.017

(0.006) (0.008) (0.027) (0.031)

Controls No Yes No Yes

N 14296 13757 14296 13757
R2 0.03 0.06 0.37 0.43
AIC -3613.94 -3670.17 38359.61 35632.20

Notes: results obtained by means of OLS estimating variants of the following equation: Yic =
α+ βY Pre

ic + γX + δc + εic. Dependent variable in columns 1 and 2 is a dummy variable indicating
whether a firm has received a grant. In columns 3 and 4 the dependent variable is the log of uncentered
rankings. All regressions include competition fixed effects. Even columns add the following controls:
a dummy for patents, number of citations, amount of funding requested, proposal duration, 2-digit
sector fixed effects, country fixed effects, age fixed effects, consortium fixed effects and first applicant
fixed effects. Standard errors are robust and clustered at the competition level. * p < 0.1, ** p < 0.05,
*** p < 0.01.
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Table A16: Effects on relative novelty

(1) (2) (3)
All ±15 ±10

LHS: Top Relative Rao-StirlingPost
ic

Grant 0.094** 0.089* 0.081
(0.040) (0.047) (0.056)

N 4364 1151 861
R2 0.06 0.15 0.20
AIC 3033.14 761.65 540.29

LHS: Bottom Relative Rao-StirlingPost
ic

Grant -0.006 -0.040 -0.091*
(0.036) (0.046) (0.055)

N 4364 1151 861
R2 0.05 0.12 0.18
AIC 2998.97 787.64 524.79

Notes: results obtained estimating our baseline RDD equation by means of OLS
with pre-determined observables as dependent variables: Y Post

ic = α + βGrantic +
f (Rankic) + δc + εic. Estimates are obtained using different bandwidths around the
threshold (i.e. an infinite one, ±10 or ±5 centered ranks). The sample includes only
applicants that have filed a patent before the competition. All regressions include
linear polynomials of the running variable on both sides of the threshold, competition
fixed effects and the pre-competition number of patents. Standard errors are robust
and clustered at the competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A17: Effects on absolute novelty

(1) (2) (3)
All ±10 ±5

LHS: Top Absolute Rao-StirlingPost
ic

Grant 0.062*** 0.047* 0.078**
(0.020) (0.026) (0.036)

N 14296 2338 1378
R2 0.12 0.20 0.23
AIC 195.58 540.22 342.66

LHS: Bottom Absolute Rao-StirlingPost
ic

Grant 0.011 -0.025 -0.016
(0.018) (0.024) (0.033)

N 14296 2338 1378
R2 0.04 0.11 0.14
AIC 85.66 558.32 290.21

Notes: results obtained estimating our baseline RDD equation by means of OLS
with post-competition outcomes as dependent variables: Y Post

ic = α + βGrantic +

f (Rankic) + θY Pre
ic + δc + εic. Estimates are obtained using different bandwidths

around the threshold (i.e. an infinite one, ±10 or ±5 centered ranks). All regressions
include linear polynomials of the running variable on both sides of the threshold,
the pre-grant dependent variable and competition fixed effects. Standard errors are
robust and clustered at the competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Top 50 vs Bottom 50

Table A18: Bias against novelty?

(1) (2) (3) (4)
Grant Grant log(Ranks) log(Ranks)

Top Absolute DisparityPre
ic 0.031*** 0.012 -0.247*** -0.029

(0.006) (0.008) (0.023) (0.030)

Controls No Yes No Yes

N 14296 13757 14296 13757
R2 0.03 0.06 0.37 0.43
AIC -3651.27 -3671.76 38250.72 35631.45

Top Absolute NoveltyPre
ic 0.031*** 0.010 -0.240*** -0.009

(0.006) (0.008) (0.023) (0.030)

Controls No Yes No Yes

N 14296 13757 14296 13757
R2 0.03 0.06 0.37 0.43
AIC -3650.14 -3670.91 38262.60 35632.41

Bottom Absolute DisparityPre
ic 0.015*** -0.012 -0.173*** 0.029

(0.005) (0.008) (0.024) (0.030)

Controls No Yes No Yes

N 14296 13757 14296 13757
R2 0.03 0.06 0.37 0.43
AIC -3616.28 -3671.76 38341.54 35631.45

Bottom Absolute NoveltyPre
ic 0.015*** -0.010 -0.184*** 0.009

(0.005) (0.008) (0.024) (0.030)

Controls No Yes No Yes

N 14296 13757 14296 13757
R2 0.03 0.06 0.37 0.43
AIC -3617.06 -3670.91 38332.45 35632.41

Notes: results obtained by means of OLS estimating variants of the following equation: Yic =
α + βY Pre

ic + γX + δc + εic. Dependent variable in columns 1 and 2 is a dummy variable
indicating whether a firm has received a grant. In columns 3 and 4 the dependent variable is the
log of uncentered rankings. All regressions include competition fixed effects. Even columns add
the following controls: a dummy for patents, number of citations, amount of funding requested,
proposal duration, 2-digit sector fixed effects, country fixed effects, age fixed effects, consortium
fixed effects and first applicant fixed effects. Standard errors are robust and clustered at the
competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A19: Effects on relative novelty

(1) (2) (3)
All ±15 ±10

LHS: Top Relative DisparityPost
ic

Grant 0.091** 0.139*** 0.111**
(0.043) (0.048) (0.055)

N 4364 1151 861
R2 0.14 0.21 0.26
AIC 2657.71 747.20 507.42

LHS: Top Relative NoveltyPost
ic

Grant 0.080* 0.145*** 0.112*
(0.045) (0.054) (0.059)

N 4364 1151 861
R2 0.12 0.20 0.24
AIC 2759.05 743.52 493.92

LHS: Bottom Relative DisparityPost
ic

Grant -0.002 -0.045 -0.094*
(0.038) (0.047) (0.056)

N 4364 1151 861
R2 0.05 0.12 0.19
AIC 3027.48 797.76 533.79

LHS: Bottom Relative NoveltyPost
ic

Grant -0.003 -0.035 -0.080
(0.036) (0.046) (0.054)

N 4364 1151 861
R2 0.05 0.12 0.18
AIC 2962.71 772.29 512.23

Notes: results obtained estimating our baseline RDD equation by means of OLS
with pre-determined observables as dependent variables: Y Post

ic = α+βGrantic+
f (Rankic) + δc + εic. Estimates are obtained using different bandwidths around
the threshold (i.e. an infinite one, ±10 or ±5 centered ranks). The sample includes
only applicants that have filed a patent before the competition. All regressions
include linear polynomials of the running variable on both sides of the threshold,
competition fixed effects and the pre-competition number of patents. Standard
errors are robust and clustered at the competition level. * p < 0.1, ** p < 0.05,
*** p < 0.01.
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Table A20: Effects on absolute novelty

(1) (2) (3)
All ±10 ±5

LHS: Top Absolute DisparityPost
ic

Grant 0.079*** 0.062** 0.088**
(0.023) (0.030) (0.042)

N 14296 2338 1378
R2 0.14 0.22 0.27
AIC 4089.28 1124.63 637.76

LHS: Top Absolute NoveltyPost
ic

Grant 0.076*** 0.059** 0.080**
(0.023) (0.029) (0.039)

N 14296 2338 1378
R2 0.14 0.23 0.29
AIC 3833.67 1083.41 595.11

LHS: Bottom Absolute DisparityPost
ic

Grant 0.041* -0.009 -0.015
(0.023) (0.030) (0.043)

N 14296 2338 1378
R2 0.05 0.11 0.16
AIC 4585.41 1325.92 762.23

LHS: Bottom Absolute NoveltyPost
ic

Grant 0.043* -0.006 -0.009
(0.023) (0.030) (0.042)

N 14296 2338 1378
R2 0.05 0.12 0.16
AIC 4700.29 1335.76 778.23

Notes: results obtained estimating our baseline RDD equation by means of OLS
with post-competition outcomes as dependent variables: Y Post

ic = α+ βGrantic +

f (Rankic) + θY Pre
ic + δc + εic. Estimates are obtained using different bandwidths

around the threshold (i.e. an infinite one, ±10 or ±5 centered ranks). All re-
gressions include linear polynomials of the running variable on both sides of the
threshold, the pre-grant dependent variable and competition fixed effects. Stan-
dard errors are robust and clustered at the competition level. * p < 0.1, ** p < 0.05,
*** p < 0.01.

21



Quadratic adjustment

Table A21: Effects on new technology classes

(1) (2) (3)
All ±15 ±10

LHS: 1|new classesPost
ic

Grant 0.088 0.094 0.159
(0.070) (0.080) (0.112)

N 4364 1151 861
R2 0.13 0.25 0.30
AIC 4938.48 1230.84 876.84

LHS: log(new classes+1)
Post
ic

Grant 0.132 0.134 0.191
(0.103) (0.113) (0.158)

N 4364 1151 861
R2 0.14 0.25 0.30
AIC 7482.26 1924.68 1412.83

LHS: (new classes/families)
Post
ic

Grant 0.169 0.162 0.111
(0.119) (0.143) (0.191)

N 4364 1151 861
R2 0.06 0.17 0.21
AIC 9784.91 2403.45 1722.15

Notes: results obtained estimating our baseline RDD equation by means of
OLS with pre-determined observables as dependent variables: Y Post

ic = α +
βGrantic + f (Rankic) + δc + εic. Estimates are obtained using different
bandwidths around the threshold (i.e. an infinite one, ±10 or ±5 centered
ranks). The sample includes only applicants that have filed a patent before
the competition. All regressions include quadratic polynomials of the running
variable on both sides of the threshold, competition fixed effects, and pre-
competition number of patents. Standard errors are robust and clustered at
the competition level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table A22: Effects on relative novelty

(1) (2) (3)
All ±15 ±10

LHS: Top Relative DisparityPost
ic

Grant 0.068 0.098 0.148
(0.061) (0.075) (0.098)

N 4364 1151 861
R2 0.14 0.21 0.27
AIC 2661.07 750.21 504.11

LHS: Top Relative NoveltyPost
ic

Grant 0.072 0.113 0.148
(0.069) (0.084) (0.101)

N 4364 1151 861
R2 0.12 0.20 0.25
AIC 2763.01 746.69 486.93

LHS: Bottom Relative DisparityPost
ic

Grant -0.021 -0.107 -0.105
(0.053) (0.073) (0.098)

N 4364 1151 861
R2 0.05 0.12 0.19
AIC 3030.60 799.43 535.84

LHS: Bottom Relative NoveltyPost
ic

Grant -0.020 -0.088 -0.066
(0.051) (0.069) (0.095)

N 4364 1151 861
R2 0.05 0.12 0.19
AIC 2966.10 774.54 513.36

Notes: results obtained estimating our baseline RDD equation by means of OLS
with pre-determined observables as dependent variables: Y Post

ic = α+βGrantic+
f (Rankic) + δc + εic. Estimates are obtained using different bandwidths around
the threshold (i.e. an infinite one, ±10 or ±5 centered ranks). The sample
includes only applicants that have filed a patent before the competition. All
regressions include quadratic polynomials of the running variable on both sides of
the threshold, competition fixed effects, and pre-competition number of patents.
Standard errors are robust and clustered at the competition level. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Table A23: Effects on absolute novelty

(1) (2) (3)
All ±10 ±5

LHS: Top Absolute DisparityPost
ic

Grant 0.080** 0.109** 0.166**
(0.031) (0.044) (0.075)

N 14296 2338 1378
R2 0.11 0.20 0.24
AIC 197.70 468.70 325.44

LHS: Top Absolute NoveltyPost
ic

Grant 0.074** 0.094** 0.084
(0.029) (0.042) (0.078)

N 14296 2338 1378
R2 0.11 0.19 0.24
AIC -553.84 458.93 311.44

LHS: Bottom Absolute DisparityPost
ic

Grant -0.007 0.006 -0.027
(0.025) (0.036) (0.068)

N 14296 2338 1378
R2 0.04 0.10 0.15
AIC -101.77 554.57 303.01

LHS: Bottom Absolute NoveltyPost
ic

Grant 0.005 0.014 0.030
(0.028) (0.039) (0.070)

N 14296 2338 1378
R2 0.05 0.10 0.14
AIC 602.39 758.04 466.75

Notes: results obtained estimating our baseline RDD equation by means of OLS
with post-competition outcomes as dependent variables: Y Post

ic = α+βGrantic+

f (Rankic)+θY Pre
ic +δc+εic. Estimates are obtained using different bandwidths

around the threshold (i.e. an infinite one, ±10 or ±5 centered ranks). All re-
gressions include quadratic polynomials of the running variable on both sides of
the threshold, competition fixed effects, and pre-competition number of patents.
Standard errors are robust and clustered at the competition level. * p < 0.1, **
p < 0.05, *** p < 0.01.
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