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Abstract

Using workforce data from US firms, this study tests the hypothesis that generating value from
algorithms requires employing domain experts who can also effectively interact with data and
algorithms. This decentralization of technical human capital stands in contrast to earlier genera-
tions of business technologies for which the complementary skills were primarily embodied in IT
specialists, and is due to the task complementarities associated with integrating decision-making
algorithms into a production framework. Using two different data sets, I show that 1) employers
have been shifting hiring towards requiring greater technical expertise from domain experts, 2)
technical human capital in frontier firms has become more dispersed across occupations, and 3)
the market assigns higher value to firms’ investments in algorithms when they have also made
these complementary workforce changes, indicating the presence of valuable intangible assets
that can yield future productivity benefits. Implications for training, education, and algorithmic
decision-making are discussed.
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1 Introduction

The potential impact of algorithmic decision-making technologies on organizations is a topic of
rapidly growing academic interest (Rock, 2019; Wu et al., 2019; Agrawal et al., 2018; Zolas et al.,
2021). Much of the research in this area focuses on the labor reallocation effects of automation and
AI-based technologies (Acemoğlu and Restrepo, 2016; Autor and Salomons, 2018; Brynjolfsson et al.,
2018; Eloundou et al., 2023), with some of this work demonstrating that these technologies are not
simply labor displacing (Agrawal et al., 2019; Gregory et al., 2022). New technologies also are likely
to generate new jobs and new types of jobs (Bessen, 2019; Autor et al., 2022), and scholars have
begun exploring how humans can be most effective when working alongside algorithms (Faraj et al.,
2018; Cowgill, 2018; Beane, 2019; Agrawal et al., 2019; Lebovitz et al., 2022). These perspectives
include questions about how the workforce should be re-skilled to meet the changing needs for
human capital from industry.

This paper develops new theory and evidence that a complement to the use of these new
technologies is the coupling of domain knowledge and expertise with algorithms within many jobs
(Collins, 2004), requiring “algorithmic bilinguals” to fill these positions. Domain knowledge is ex-
pertise accumulated in a business domain such as customer retention, manufacturing quality, or
healthcare delivery outcomes. This paper focuses on technical expertise related to algorithmic tech-
nologies, such as data science, machine learning, and AI tools, which enable firms to convert streams
of data into strategic decisions in the pursuit of business goals. Prior work suggests that both do-
main knowledge and technical expertise are important when placing predictive technologies into a
production context, particularly in sensitive contexts like law or medicine, where the payoff function
for a decision is difficult to define or where the tolerance for machine-based prediction error is low
(Kleinberg et al., 2018; Choudhury et al., 2020).

This migration of some level of algorithmic familiarity to jobs requiring domain knowledge
stands in contrast to one in which firms’ technical expertise is principally confined to specialized
information technology (IT) workers. The explanation for these changes builds on the literature
related to specialization, job design, and productivity (Smith, 1776; Becker and Murphy, 1992;
Teodoridis, 2017) and is based in the notion that information task complementarities raise the
returns to bundling these skills together, particularly in uncertain environments (Lindbeck and
Snower, 2000; Postrel, 2002; Mao et al., 2019). This argument generates hypotheses related to how
firms can be expected to adjust their workforce when they use algorithms for decision-making, and
how workforce adjustments can generate market returns for algorithm-intensive firms.

The paper uses workforce databases to test these hypotheses in the context of empirical shifts
that have been occurring over the last decade in US firms. The first data source captures a “near-
universe” of job listings issued by US firms and has been used in prior work on the changing skill
requirements of jobs (Deming and Kahn, 2018; Acemoglu et al., 2022) and to track the spread
of new technologies (Goldfarb et al., 2023). The second data source is a fourteen-year panel of
how workers with different technical skills move across different occupations in different firms over
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time. We combine these data with administrative data on the knowledge content of occupations
from the Bureau of Labor Statistics O*NET database and with employers’ financial data from the
Compustat-Capital IQ database. Neither of these workforce databases can capture the depth of
technical expertise required for jobs, but how technical skill plays a role at the extensive margin in
the job search and hiring process may itself be informative.

There are three main findings. First, using the job listings data, I show that algorithmic skill
gradually spread across occupations from 2010 to 2016; these skills became more widely dispersed
across occupations than those related to other business technologies. By 2016, only one-third of this
human capital was embedded in IT jobs. This stands in contrast to skills such as network admin-
istration or database management, which has remained highly concentrated in IT jobs. Moreover,
skills related to algorithms were most likely to migrate to occupations requiring domain knowl-
edge, which is consistent with the argument that informational task complementarities drive these
bundling choices.

Second, these trends are consistent with employer workforce changes over a recent fourteen
year sample period (2008-2022). In high-value firms, skills related to algorithms have become dis-
persed across occupations, which as in the job listing data, stands in contrast to other technologies
which have not experienced similar changes. From 2008 to 2022, the steady migration of these skills
led to a 5% reduction in the fraction of these skills that reside in IT occupations. By contrast, there
was no change in this figure for most technical skills.

Third, these workforce adjustments are generating productive, intangible assets for firms.
This finding is in the spirit of prior work that has investigated how employers adjust their workforce
in response to earlier computing technologies (Black and Lynch, 2001; Bresnahan et al., 2002).
Financial markets assign higher value to public firms with investments in algorithms when they
make complementary workforce adjustments, which suggests that firms derive the largest benefits
from these technological investments when their professionals in marketing, service delivery, R&D,
product management, and other disciplines have the skills to effectively integrate these technologies
into business decisions. These findings are persistent to including employer fixed-effects, which
can account for time-invariant differences in employers. Similar patterns on market value are not
observed for other technologies, suggesting that the returns to organizing human capital this way
are specific to algorithmic technologies.

This study contributes to the academic literature in two areas. First, with its focus on firms,
it builds on a literature identifying organizational and human capital complements to information
technology (Bresnahan et al., 2002; Black and Lynch, 2001; Caroli and Van Reenen, 2001; Bartel
et al., 2007; Bloom et al., 2012). These analyses have been rooted in a perspective based in IT
as a technology that performs “routine” tasks, but the application of algorithmic technologies to
contexts where decision rules are not easily codified has reopened the discussion on how IT affects
labor force needs (Brynjolfsson et al., 2018). This paper contributes to emerging work that examines
management practices that complement investments in predictive algorithms (Brynjolfsson et al.,
2021; Zolas et al., 2021; Dixon et al., 2021; Xue et al., 2022).
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Second, it contributes to a literature on how the emergence of new AI and automation tech-
nologies will shape the future of work, an increasingly important area of research as new technologies
subsume many of the tasks done by humans while simultaneously generating new areas of demand
for human labor (Agrawal et al., 2019). Most prior work on technical skills has focused on the IT
workforce (Ang et al., 2002; Levina and Xin, 2007; Mithas and Krishnan, 2008; Wiesche et al., 2019;
Tambe et al., 2020), but there has been limited work on the implications of technical human capital
for broader workforce outcomes (Deming and Noray (2018) is one exception). The absence of work
in this area is important given the growing demand from students and workers from all disciplines
for “coding” and other technical skills. These findings, therefore, contribute to our understanding of
how the connection between humans and algorithms will shape the demand for skills as employers
continue to embrace algorithmic decision-making.

2 Theory and Hypothesis Development

2.1 Background literature

2.1.1 Information technology and the workforce

A large literature analyzes the effects of IT adoption on firms’ demand for labor and the impact
of IT on changes to the skill content of the workforce. The spread of computing technologies over
the last six decades has led to “skill-biased technical change”, which can be defined as a relative
increase in the demand for college-educated workers (Berman et al., 1994; Bresnahan et al., 2002;
Bartel et al., 2007). IT-based production methods complement education because by automating
routine tasks, they raise the relative value of front-line workers who solve problems creatively and
make effective decisions (Autor et al., 2003). When authority is allocated to front-line decision
makers, this system of changes can yield higher productivity (Bresnahan et al., 2002), making IT
investments particularly valuable in turbulent environments where the value of decisions depends on
rapidly changing external conditions (Mendelson and Pillai, 1998; Pavlou and El Sawy, 2006; Tambe
et al., 2012). For example, hotel desk agents can rapidly adapt to changing customer preferences
and factory floor workers trained in problem-solving can fix manufacturing problems as they arise.

These workforce changes have also been linked to higher value for firms that adopt these
practices. For instance, Brynjolfsson et al. (2002) show that public firms that invest in computing
technologies and decentralized work practices are more highly valued in the market. Black and Lynch
(2001) provide evidence that decentralized decision-making, when combined with high-powered
incentives, are associated with more productive firms. Other studies in this literature most often
develop measures of workplace organization based on survey instruments administered to large
samples of employers (Caroli and Van Reenen, 2001; Bresnahan et al., 2002; Bloom et al., 2012) and
they connect these measures through a production framework (or hedonic market value regression)
to firms’ revenue (market value). This body of literature has provided compelling evidence that
generating value from computing technologies requires employers to restructure their human capital
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and to change the methods they use to manage these workers.
Employers can change their human capital by changing their mix of occupations or by changing

the mix of skills within occupations, which is the focus of this paper. The literature on job design
dates back to Adam Smith’s treatise on specialization (Smith, 1776). An advantage of specialization
is that workers become more productive with tasks through repetition (Rosen, 1983). There is a
trade-off, however, between a) the productivity benefits that arise from specialization and b) the
costs of coordinating activities across workers (Becker and Murphy, 1992; Hart and Moore, 2005),
where coordination costs are the costs of information exchange when executing interdependent
activities across workers. The manager’s problem is to balance the productivity gains that arise
from specialization against the coordination costs incurred by agents who have to exchange complex
information.1

Information technologies, by shifting the information content of jobs, have been associated
with a change in job design, and specifically with a move towards multi-task work. Lindbeck and
Snower (2000) argue that informational task complementarities in knowledge-rich jobs have been
driving a move away from specialization towards “holistic” work. Multi-task work organization is
productive because workers’ productivity in a task is interdependent with their levels of activities
in other tasks. In work contexts such as these, bundling tasks to avoid the need for information
exchange between employees can be beneficial (Postrel, 2002). Part of the benefit of an educated
workforce is that educated workers can more effectively adapt to a multi-task job design such as
this one.

The trade-offs between specialization and multi-task are closely related to the knowledge
domain and the costs of acquiring new knowledge. Using academic publication data, Teodoridis
(2017) shows that a decrease in the cost of acquisition of new technical knowledge changes the
optimal mix of expertise when constructing diverse knowledge teams. By doing so, they can derive
the greatest productivity benefits from informational complementarities that arise when engaged
in production, especially when response time must be rapid. Dessein and Santos (2006) relate
environmental uncertainty and adaptation to job specialization, and argue that improvements in
communication technology result in more adaptive organizations with less specialized employees.
This literature suggests that the costs of acquiring new knowledge and the interdependent nature
of tasks and human capital acquisition have implications for how jobs are structured.

2.1.2 The emergence of data-driven technologies

The existing literature is predicated on technologies that excel at performing routine tasks (Levy
and Murnane, 1996). Modern predictive algorithms, however, are distinguished in their ability to
make predictions even when the relationship between inputs and outputs is not easily specified
(Brynjolfsson et al., 2018; Agrawal et al., 2018). Just as importantly, data-driven technologies are

1Here we focus on this trade off, although scholars have of course also examined the role of other factors such as
incentives, output measurement, and incomplete contracts in influencing job design (Holmstrom and Milgrom, 1991;
Baker and Hubbard, 2003).
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often designed to directly facilitate decisions. These changes raise the question of whether the
workforce changes that complement personal computing – employee discretion and high-powered
incentives, for instance – remain central to a work context where algorithms are intensively used for
decision-making.

Decision-support technologies are not new. They date back at least to the 1970’s (Shim et al.,
2002) and provide information at the point of decision. With new data science and AI applications,
an important question relates to the interdependence of data and decisions. The modern data science
process can be typified by CRISP-DM (Chapman et al., 2000).2 A typical workflow has six essential
phases: Business understanding, Data understanding, Data preparation, Modeling, Evaluation, and
Deployment. Challenges with application of data science techniques, however, have motivated a large
body of literature on the challenges associated with successful application of domain knowledge to
different stages of the data science process (Mao et al., 2019; Choudhury et al., 2020; Park et al.,
2021).

There has been growing recognition in data science of the importance of workers who can syn-
thesize technical skill and domain expertise. The most visible example is the famously tight labor
market for “data scientists” who, by definition, combine technical and statistical skills with domain
expertise (Davenport and Patil, 2012; Provost and Fawcett, 2013). The importance of domain ex-
pertise for effective data science has been discussed online3, in industry panels4, and increasingly, in
the business press (Oostendorp, 2019). Beyond data scientists, there has been growing recognition
that “unicorns”, who couple domain expertise with technical skill, are becoming essential in many
algorithmic decision-making contexts (Jha and Topol, 2016).

The educational community has also started to respond to these changes. For instance, the
notion that data-driven employers increasingly demand “bilingual” workers (i.e. individuals who
have both technical skills and subject matter expertise) was underscored by an announcement from
MIT on their investment in a new College for Artificial Intelligence.

The goal of the college, said L. Rafael Reif, the president of M.I.T., is to “educate the bilinguals
of the future.” He defines bilinguals as people in fields like biology, chemistry, politics, history
and linguistics who are also skilled in the techniques of modern computing that can be applied
to them. Additionally, it is expected that the “bilingual” graduates who emerge from this new
College — combining competence in computing and in other fields — will be of enormous value
to employers. 5

2.2 Hypotheses

The background literature above suggests that the application of data science and AI in a production
context, by introducing new challenges related to coordinating domain knowledge with effective
data modeling, analysis, and application, amplify the productivity benefits that arise when hiring

2Annual polls indicate that CRISP-DM is the most widely used of data science processes. For example, see
https://www.datascience-pm.com/crisp-dm-2/.

3For example, see Is domain knowledge necessary for a data scientist? Accessed on March 11, 2019.
4A video of one such industry panel is captured here: https://youtu.be/qKcUsIqoSHE.
5New York Times, Oct 15, 2018. MIT Plans College for Artificial Intelligence, Backed by $1 Billion.
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employees that can synthesize both types of knowledge. For instance, in healthcare applications,
a user of an algorithm must understand how to model complex medical data, how to interpret
diagnostic output, and how to assess the relative costs of misdiagnosis.

For machine learning, the most high-profile algorithmic tool in the current business media
environment, there are many tasks that could require subject matter expertise. In the CRISP-
DM model referenced above, almost of these steps require significant context. Therefore, users of
these technologies must understand the tradeoffs required when choosing which data to include in
a model, what problems might arise with training data, how to construct features, what models
strike the right balance, and how to assign value to the costs of prediction errors (Kleinberg et al.,
2018; Cowgill, 2018). Moreover, data analysis is an inherently iterative process which involves a
substantial amount of learning-by-doing, so it has been argued that exploration, experimentation,
and learning in the data science process favors generalists over specialists (Colson, 2019). Based
on these observations, we argue that skills related to the use of algorithms are more likely to be
bundled with domain knowledge. The first hypothesis tested in this paper is:

H1: Skills related to the use of algorithms are more widely dispersed across occupations
than skills related to other information technologies.

Coordination costs may be particularly high when the domain is complex. For instance in
domains like medicine or engineering, even the process of creating features from the raw data
can require a great deal of subject matter expertise. In pharmaceutical industries, there has been
some recent empirical evidence of the importance of embedding the relevant human capital in
downstream occupations to achieve successful innovation outcomes (Wu et al., 2019). Lebovitz
et al. (2022) describes the challenges arising in a hospital setting when interpreting the output
accuracy of machine learning tools, and Jha and Topol (2016) argues for the importance of medical
practitioners acquiring the skills required to understand the output of predictive algorithms. The
second hypothesis tested in the paper is:

H2: Skills related to the use of algorithms are more likely to be embedded in non-technical
occupations when they require significant levels of domain knowledge.

Firms pursue these workforce adjustments because they are a complement to the use of al-
gorithms in production. As with other economic complements to IT investment, the benefits of
investing in these workforce complements can be expected to raise the value of investing in the
technologies themselves (Black and Lynch, 2001; Bresnahan et al., 2002). In the case of algorithms,
prior work has demonstrated that training in domain knowledge benefits the quality of the output
produced by software developers (Cowgill et al., 2020). Empirically, we should observe that firms
that co-invest in these two factors of production – algorithmic technologies and the employment of
workers with domain knowledge who also have expertise in algorithms – should be assigned higher
values by the financial markets. These higher market values reflect the valuable intangible assets
that can be expected to eventually yield productive benefits. The final hypothesis tested in this
paper is:
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H3: Financial markets assign higher value to firms that use algorithmic technologies
when algorithmic literacy is dispersed across occupations at the firm.

These hypotheses form the core of the analysis below, and in the next sections, we discuss the data,
definitions, and approaches used to test these hypotheses.

3 Data and measures

3.1 Data sources

3.1.1 Job listing data

When employers seek job applicants, they often post job details online on their corporate web sites or
on job boards. These listings generally contain information that identifies the employer and the job
title, the geographic location of the open position, the skills and education sought from candidates,
the wages offered, and other fields relevant to the job search process. This study measures when
specific skills begin to appear in these online job ads and how skills co-occur in these listings. Data
on job listings have been used in a number of papers studying the changing skill requirements of
the IT workforce (Todd et al., 1995; Slaughter and Ang, 1996; Gallivan et al., 2002; Lee and Han,
2008). This study uses data from Lightcast, a labor market analytics firm that 1) uses software to
crawl a “near-universe” of online job postings and 2) uses natural language processing to parse skills
and other job information.6

This data provider uses proprietary software to collect and standardize data from over 17,000
job boards and corporate web sites, and these listings data are processed to ensure that a job listing
is not counted multiple times if an employer posts it several places on the web. The processed data
include posting date, job location (metropolitan area), employer name, job title, educational degrees
required for the position, any certifications required for the position, and the skill expectations
required for each job. A growing number of studies have been published that use this data source to
study labor markets (Hershbein and Kahn, 2018; Deming and Kahn, 2018; Modestino et al., 2019),
includng how AI related skills spread across jobs and industries (Acemoglu et al., 2022; Goldfarb
et al., 2023).

The job title for each listing in the database is associated by the data provider with a stan-
dardized occupational code (BLS O*NET codes) and the employer for each listing was tagged to a
North American Industry Classification Systems (NAICS) industry. Each job opening is associated
with a list of skills, such as Python, Random Forest, Chemistry, Supply Chain, Accounting, Data
Science, Teamwork, or Communication. The skill data in the listings are standardized using a skill
dictionary created and maintained by Lightcast. Of course, the skill data should not be strictly
interpreted as “requirements”. Employers may omit skills from a listing, some skills may be assumed

6Until June of 2022, Lightcast was known as “Burning Glass Technologies”, and is referred to as such in much of
the prior work that has used this data set. In this paper, for consistency, we use the name Lightcast throughout,
including when referencing the use of these data in prior papers.
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but not listed, and there may be successful candidates who do not have some of the skills in a listing.
Nonetheless, employers are thoughtful about the skills they place in listings because the inclusion
of any skill can attract or repel the wrong type of applicant. Therefore, these listings are likely to
provide useful information about aggregate trends in the market.

The provenance of these data also raises questions about the sampling frame. Prior work has
provided useful information on the sampling properties of the data. See, for example, Appendix A
of Deming and Kahn (2018) who make comparisons of these Lightcast data with administratively
collected data sources. Key findings from their comparison are that these job listing data are over-
represented in computer and mathematical occupations, as well as in management, health care,
business, and financial occupations. They represent IT workers particularly well. They are a less
robust indicator for labor in blue-collar occupations.

3.1.2 Corporate workforce data

The workforce data used in this study were collected through a partnership with a workforce intelli-
gence company called Revelio Labs.7 These databases are constructed from a variety of data sources
including online career profiles and federal databases.8 The Revelio data are similar in informational
content to that posted on online professional networks such as LinkedIn, and cover a large fraction
of white-collar work in the US. The data cover public US firms, and many private firms as well,
but only public firms are used in this study so that these workforce data can be connected with
financial market data, which are only available for public firms.

These workforce data are processed to develop measures of annual firm-occupation-skill em-
ployment activity dating from 2008 through 2022. This panel captures skills related to different
technologies embedded across occupations in a firm’s workforce. For instance, the data report how
many employees in each occupation have “machine learning” skills in each year. Moreover, the
data contain CUSIP identifier codes for employers, and so these workforce data can be joined with
external firm-level financial databases such as the Compustat-Capital IQ data (described below).
Together, these data and external identifiers provide scope for an analysis of how the distribution
of technical human capital at the firm is associated with firm value.

As with the job listing data, questions arise about the sampling frame about the corporate
workforce data. These data cover a large fraction of the US workforce; the provider purports to
collect information on most US workers. It is useful, however, to conduct comparisons of these data
with administrative data sets. These comparisons are provided in Appendix A (appendix to be
completed).

7See https://www.reveliolabs.com/
8Scholars have compellingly argued that the lack of firm-level data on workforce skills is a constraint for under-

standing how firms are adjusting to technological change (Frank et al., 2019; Raj and Seamans, 2018).
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3.1.3 Additional data sources

To create job expertise measures, job listing data are connected with the Occupational Informa-
tion Network (O*NET) content model published by the Bureau of Labor Statistics.9 The O*NET
database has been widely used in academic research,10 is government administered, collected by sur-
veying occupational experts, and provides information on employment, wages, and the work content
of US jobs. The O*NET taxonomy reports work requirements including the knowledge needed for
different occupations. A diagram of the O*NET data relationships is shown in Appendix B. The
O*NET data is periodically revised to reflect the changing structure of the US workforce. Although
it was revised in 2019, I use the version of the taxonomy from before this revision in order to match
the O*NET codes in the Lightcast data, which in our version of that database were also based on
the taxonomy structure before the O*NET revision took place. Finally, some of the analyses use
financial data from Compustat-Capital IQ which was collected through WRDS data services.

3.2 Construction of key measures

3.2.1 Algorithmic expertise

The key unit of analysis for the paper is worker skills. A challenge when analyzing large volumes of
skills data is always the development of classifications that can provide meaning to groups of skills.11

This absence of standardized taxonomies on the skill content of jobs is reflected in the existing
academic literature, where there have been notable efforts to develop meaningful taxonomies around
IT skills (Lee et al., 1995; Niederman et al., 2016). Empirical papers that study large quantities
of archival, digitally collected skill data have also used manually constructed mappings of skills
to conceptual measures (Deming and Kahn, 2018). Even foundational papers in the economics
literature in this area have required the authors to use their own discretion (or those of colleagues
or experts) to identify which skills in a database are most relevant to their phenomenon of interest
(Autor et al., 2003). The small number of papers in the emerging literature on the impact of AI
technologies have also generated taxonomies based on their own judgment (Brynjolfsson et al.,
2018).

This paper takes a simpler approach, which is to rely on the categorizations provided by
the data providers. Both data providers have engaged in extensive efforts to use data-mining to
group skills together into different business technology areas, such as “data science”, “AI”, or “Big
data”. For this analysis, we use the taxonomies generated by these providers to assess whether
listings or profiles have skills related to a particular business technology group. We group data
science and AI skills together and refer to them as “algorithmic” tools and we conduct comparisons

9See https://www.onetonline.org.
10Notable examples include (Autor et al., 2003).
11Indeed, precisely because of the growing interest in the “future of work”, the construction of taxonomies that

can make sense of emerging sources of skills data and inform career development pathways is an active and ongoing
area of research among businesses and information agencies. For example, see recent efforts by Nesta in the UK or
Lightcast.
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between these technologies and other business technologies that do not fall into this category. We
focus on data science and AI because, as discussed above, they are the key inputs to the recent
wave of technologies that directly make decisions, and our theoretical arguments are based on the
coordination costs that arise when these automated decision-makers are directly integrated into a
production context. Appendix details which specific skills fall into each of the focal categories used
in this analysis.

3.2.2 Domain knowledge

We encode jobs according to the domain knowledge they require. Domain knowledge is “knowledge
of a specific, specialised discipline or field”. The O*NET program curates a list of all of the possible
knowledge domains with which US jobs may require workers to be familiar.12 Knowledge domains
were extracted from the “Knowledge” O*NET table,13 which delineates “organized sets of principles
and facts applying in general domains.”14 It then assigns occupational titles to these knowledge
requirements. For example, the Accountant occupation receives high scores in this database for the
level of knowledge they require in the “Economics and Accounting” domain.

I use this dictionary of occupational knowledge domains to encode the domain knowledge
required for job listings in the following way. Job listings are encoded as requiring domain knowledge
(binary) if the skill data required for the job listing includes one or more of the terms identified in
the O*NET dictionary of knowledge domains (e.g., Mathematics, Transportation). One limitation
of these data and this approach is that it cannot identify differences in the intensive margin of use
for the different knowledge domains.

It is useful to contrast this approach with one in which job listings are identified as requiring
domain knowledge based solely on their job titles. Since the O*NET database assigns knowledge
requirements to job titles, an alternative approach assigns job listings to knowledge content based
on the job title and O*NET measures for that title, omitting the skill content data for construction
of this measure. It is important to note that this implies that job listings for the same title can
differ in the knowledge they require. One listing for “Financial Manager” may require knowledge of
“Accounting” while another may not. This is important because it allows for a stronger test of the
argument that knowledge, rather than occupation, is driving the bundling of skills studied in this
paper.

12See https://www.onetonline.org/find/descriptor/browse/Knowledge/.
13See https://www.onetonline.org/find/descriptor/browse/2.C.
14The domain categories identified in the O*NET knowledge set are Administration and Management, Biology,

Building and Construction, Chemistry, Clerical, Communications and Media, Customer and Personal Service, Design,
Economics and Accounting, Education and Training, English Language, Fine Arts, Food Production, Foreign Lan-
guage, Geography, History and Archeology, Law and Government, Mathematics, Mechanical, Medicine and Dentistry,
Personnel and Human Resources, Philosophy and Theology, Physics, Production and Processing, Psychology, Public
Safety and Security, Sales and Marketing, Sociology and Anthropology, Therapy and Counseling, and Transportation.
From this list, Computers and Electronics, Engineering and Technology, Telecommunications, and Mathematics were
removed because they overlap with the notion of algorithmic expertise.
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3.2.3 Other job attributes

Beyond technology skills and occupational domain knowledge, some analyses include indicators of a
listing containing skills related to cognitive, social, character, and management job attributes. These
job attributes was based on prior work using the same data source and were constructed using the
methods reported in that paper (Deming and Kahn, 2018).15 More information on the mapping of
skills to job attributes is available in Appendix B.

3.2.4 Financial and industry variables

Financial variables are accessed through the Compustat-Capital IQ database (S&P Global Market
Intelligence). The workforce data provide CUSIP identifiers for public companies in the sample which
can be used to connect them with financial variables in the Capital IQ data. From the Capital IQ
data, I construct measures of employers’ market value, employment, industry, PPE (property, plant,
and equipment), and other assets. Industry variables are extracted at the three-digit NAICS (North
American Industry Classification System) level. Using approaches from the literature that uses
similar methods to study the market impact of investment in human and organizational complements
to technology (Brynjolfsson et al., 2002), market value is computed as the value of the company’s
common stock plus its preferred stock plus total debt, and assets are computed as total assets minus
PP&E.

4 Results

4.1 Descriptive evidence on changes to the skill content of jobs

We use these measures to evaluate changes in the labor market associated with investment in
algorithmic technologies. Before testing the hypotheses discussed earlier in the paper, I provide
some descriptive findings from the workforce data.

Figure 2 illustrates growth in the incidence of algorithmic technologies appearing in listings
within the sample period spanning 2010 to 2016. The listings seeking these skills climbs from 2,000
per month in 2010 to approximately 16,000 per month in 2016. Each stacked bar is divided into three
regions, representing the distribution of these openings over three broad occupational categories that
were manually assigned to the job families already provided in the data: 1) IT jobs, 2) Data science
and business intelligence jobs, and 3) other jobs. Each of these categories is responsible for one third
of the total job listings in each month that require familiarity with these algorithmic technologies.
Second, the shading of each stacked bar is in proportion to the domain knowledge required by

15Deming and Kahn (2018) construct these job attribute measures based on whether a listing has a skill related
to the attribute. These skills, as reported in Table 1 of that paper, are: cognitive [problem solving, research, analyt-
ical, critical thinking, math, statistics], social [communication, teamwork, collaboration, negotiation, presentation],
character [organized, detail oriented, multitasking, time management, meeting deadlines, energetic], and management
[project management, supervisory, leadership, management (not project), mentoring, staff]. Deming and Kahn (2018)
also include writing, customer service, financial, computer, and software job attributes in their analysis but those
attribute families are not included in this analysis.
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workers in that occupational family. IT jobs require the least domain knowledge and non IT and
non data science jobs require the most. During this period, growth in demand for these skills is
driven by growth in all three of these categories.

Figure 3 illustrates the Gini coefficient across different types of technical expertise across
the entire sample of listings, including some of skills most closely related to predictive decision-
making, AI, and analytics.16 These figures indicate that algorithmic expertise is less concentrated
by occupation than other forms of technical expertise, in support of Hypothesis 1. Skills related
to predictive analytics, data science, and analysis are more dispersed to other occupations than
database or software skills and only slightly less so then skills related to the Microsoft Office Suite,
which are commonly used by workers in many occupations. This evidence from the job listing data
is consistent with the claim that there are gains for employers to bundling expertise related to
algorithmic tools in occupations where the appropriate subject matter expertise can already be
found.

Figure 4a illustrates where different technical skills fall on a chart where the x-axis indicates
the level of knowledge of the application domain required in job openings that require the skill, and
the y-axis indicates the fraction of openings with the skill that are for workers in IT professions.
In the bottom left quadrant of the chart are skills that are principally concentrated in traditional
IT workforce jobs, such as programming and database management skills. Towards the top right
quadrant of the chart are those skills that have spread to occupations outside of the IT workforce
and that tend to appear in jobs that also require some domain knowledge. This top right quad-
rant, in addition to business applications such as enterprise systems and office applications such as
spreadsheets and documents, includes most of the algorithmic skills that are the focal point of this
analysis. In short, in their occupational footprint, skills related to the use of algorithmic tools share
more in common with enterprise and office applications than with programming and database skills.

Figure 4b is similar to Figure 4a except that along both axes, it plots the changes that occurred
from 2010 to 2016 along the same two dimensions – the fraction of listings for the skill that require
domain expertise and the fraction of listings that are IT workforce jobs. The dotted horizontal and
vertical lines on the chart indicate where there is no change in the incidence of a skill from 2010 to
2016. This chart illustrates that these skills have been moving out to new domains over the six years
spanned by the panel of listings. A particularly interesting comparison is between algorithmic skills
and Swift, a popular programming language for iOS applications that appeared in 2014 and shares
a common level of maturity with many algorithmic skills. As Swift has matured, it has moved to
non-IT jobs, but the combination of technical skill and domain expertise appears to be restricted to
data analysis and classification skills such as Mahout, SAS, and Data and Cluster Analysis, which is
consistent with the argument that familiarity with algorithmic tools complements domain expertise,
potentially by minimizing coordination costs during the decision making process.

16The Gini coefficient in this context represents the concentration of skills. A higher (lower) Gini coefficient indicates
skills are more (less) concentrated by occupation.
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4.2 Tests of changes in firms’ hiring patterns

I now turn towards using these measures to test the hypotheses developed earlier in the paper. First,
I test for patterns of co-occurence in job listings between technology skills and domain knowledge.
We investigate if domain knowledge is more likely to accompany the use of algorithmic technologies
in job listings than it is to accompany the use of other business technologies in the data pipeline:
namely data management and data cleaning technologies. The specific form of the logistic regression
used to evaluate these correlations is the following:

DOMi = ALGi +DATA MANAi +DATA COLLi + γi + ϵi (1)

The unit of observation i is the job listing. The dependent variable is a binary indicator of
whether a listing i requires the applicant to have domain knowledge (DOM). The measures on the
right-hand side include whether the listing requires technical skills in any of the three data technology
categories. It also includes a vector of control variables (γ) that includes job title, industry, and a
measure of the log of the total number of skills in the job ad. In column (1) of Table 1, we can
observe correlations between domain knowledge and skills related to algorithmic technologies. There
is no evidence of a similar relationship between domain knowledge and the other data technologies.
These empirical tests include job-title fixed effects, so these correlations indicate that algorithmic
technologies are entering jobs that require domain knowledge in a way that has not occurred with
other data-related technologies. This pattern of results provides support for Hypothesis 2.

For comparison, columns (2) through (5) of Table 1 report correlations with other job at-
tributes where the construction of these attributes is described earlier in the paper: social, character,
cognitive, and management. There are positive correlations between the use of algorithmic technolo-
gies and cognitive job attributes and weak correlations with social job attributes, and negative
correlations with management or character-related job attributes.

4.3 Changes in the workforce composition of public US firms

The evidence from job listings, discussed above, documents the growing co-occurence of subject
matter expertise and algorithmic tools, relative to other business technologies. Job listings have
the advantage that they (i) indicate employer preferences and (ii) can be adjusted immediately,
which means they serve as a leading indicator of labor market changes. However, whether these
listings indicate hard requirements or the “wish list” of employers, or whether vacancies with this
combination of skills get filled requires analysis of other data sources. Therefore, we now turn to
data sources that document how the skill composition of firms has been changing over the last
decade.

Figure 5 illustrates how technical skills are dispersed across occupations within public, US
firms. In this figure, all changes in skill trend lines are depicted relative to their base rates in 2008.
We can see from this figure that there is wide variation in how skills are spread between IT and non-
IT occupations. “Infrastructural” technologies, like investments in networks and the Internet became
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increasingly specialized as companies scaled up technical employment from the 2008 baseline. When
all technical skills are visualized as a group, the levels of concentration are relatively flat throughout
the sample. Skills related to algorithmic tools, however, trend markedly downwards. Relative to their
2008 baseline, these skills are spreading to other occupations, and are therefore, less concentrated in
the IT workforce. This is consistent with the evidence provided in the previous section on changes
in hiring requirements indicated by the job listings.

4.4 Complementarities between technology and human capital

Table 2 embeds these workforce measures, along with measures of investment in different technology
classes into a regression framework that tests if the market assigns value to firms that are able to join
these technology and workforce complements. We focus on market value, rather than productivity,
for two reasons. First, firms take time to adjust new technologies to their production context, and
most of the scholarly evidence to date suggests that firms are not yet realizing value from many
of their investments in AI and analytics. Secondly, examining market value has the benefit that
the value of workforce investments captured in rising market value can be interpreted as intangible
assets, which are valuable to the firm and should have implications for future productivity. This
argument and empirical approach is similar to that used in prior work to test whether workforce
complements build new intangibles and raise the returns to broader investments in information
technology (Brynjolfsson et al., 2002). The OLS regression that is tested is:

Log(MV )it = Log(Assets)it + TECHit +WORKit + (TECHit ×WORKit) + γit + ϵit (2)

In this model, i indexes the firm and t indexes years, TECHit is an indicator of investment in
different classes of technology measured using the stock of skills a firm has in the area, WORKit is
how dispersed the skill is across occupations at the firm, and γit is a vector of fixed-effects including
year, industry at the three-digit NAICS level, and depending on the specification, employer fixed-
effects. A positive and significant coefficient estimate on the interaction term indicates that the
market assigns value to firms that co-invest in both the technology and the complementary workforce
characteristics.

Columns (1) through (4) in Table 2 have industry and year fixed-effects but do not include
employer fixed-effects. In all columns, the coefficient on Log(Assets) is significant and explains most
of the variation in market value, as would be expected. Column (1) focuses on technologies related to
algorithms. In this column, the coefficient estimates on algorithmic investment and the interaction
term between these investments and the dispersion of algorithmic expertise are separately positive
and significant. This pattern of estimates suggests that firms that invest in algorithmic decision-
making and are adjusting the skill content of their workforce in the way described in this paper
are building valuable intangibles (t=1.90). Notably, we do not see a similar pattern of results for
column (2), which substitutes infrastructural technologies for data science and algorithm-based
technologies, which is consistent with the argument that the informational complementarities that
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arise when using algorithms drive these workforce changes. There is no reason to expect similar
types of bundling of technical skill and subject matter expertise for infrastructure technologies.

Columns (5) through (8) replicate the specifications from (1) through (4) except that these
regressions include firm fixed-effects. When including firm fixed-effects, any firm-level unobservables
that are being observed by the technology investment variables should be absorbed by these firm
effects. Indeed, when including these fixed-effects, many of the positive coefficients on technical in-
vestment disappear, which suggests that some of the positive coefficient on the investment measures
reflect firm-level heterogeneity. Notably, however, the positive coefficient estimate on the interaction
term for algorithmic technologies is robust to including firm fixed-effects (t=2.60). The pattern of re-
sults in this table indicates that firms that invest in algorithms unlock the value of these investments
when they are able to disperse the human capital related to algorithms throughout the firm. We do
not observe similar results for other technologies, where coordinating technical and subject matter
expertise may not be so important. Collectively, these results provide evidence for Hypothesis 3.

When considered together, the analyses discussed above indicate that in the last decade,
(i) employers adjusted their hiring practices in order to require subject matter experts to have
expertise in algorithms, (ii) human capital related to algorithmic tools began to spread to non-
technical occupations, and (iii) employers that made investments in algorithmic technologies and
jointly made the appropriate workforce adjustments realized higher market values, indicating that
the presence of valuable intangible assets in these firms. Together, these three pieces of corroborating
evidence support the argument that a greater level of technical skill in a firm’s subject matter experts
is a valuable complement to its use of algorithmic tools.

5 Conclusions

Using novel, firm-level data on the workforce, this paper provides corroborating evidence from two
different sources that i) expertise related to algorithms is broadly dispersed across occupations,
ii) that this is due to informational complementarities that arise between technical and subject
matter expertise, and iii) that the market assigns higher value to firms that make these workforce
investments in tandem with investments in algorithmic tools.

A change in the skills required from workers in data-driven firms has potentially important
implications. Many institutions that have not traditionally been focused on producing technical
human capital, such as business schools, have observed a surge in interest in demand for courses
teaching data, analytics, and AI technologies (Eisenmann, 2013; Lohr, 2017; Guetta and Griffel,
2021; Becker, 2023). This study suggests that these changes may be an appropriate response to a
labor market in which successful applicants are increasingly ones who can combine subject matter
expertise with the expertise required to interact with algorithmic decision-making. Within firms,
these findings point to the rising importance of providing some technical training to workers in
occupations outside those that fall under the umbrella of the traditional IT workforce.

These findings also have implications for the adoption of algorithmic technologies. Adoption of

16



these technologies, and particularly AI, has been shown to be difficult and uneven. This concentra-
tion in investment has been linked to the rising importance of superstar firms in the US and abroad
(Autor et al., 2020). Our evidence suggests that the human capital stock of leading, data-driven
firms may differ substantially from that of firms that are lagging in this domain. If complemen-
tary investments to the adoption of algorithmic decision-making tools require substantial workforce
changes, it suggests considerable adjustment costs for firms seeking to adopt algorithmic practices.
High adjustment costs imply higher levels of concentration for investment in AI and algorithms, and
competitive rents for firms that have successfully installed the right human capital complements.

For managers too, these findings have important implications. Perhaps most interesting is that
technical expertise has economic attributes that differentiate it from other types of human capital.
Markets for technical skills are known to derive significant productivity benefits from geographic
agglomeration (Saxenian, 1996; Fallick et al., 2006). Moreover, rapid skill depreciation changes the
economics of professions in which technical human capital plays an important role, and this has
implications for topics like gender diversity and skilled immigration that routinely attract scrutiny
from policy makers. If a growing number of jobs requires expertise with technology and algorithms, it
has implications for the structure of labor markets for these professions. If new technical skills spread
to new occupations, it may introduce challenges normally reserved for IT workforce management to
the management of these occupations.

There is likely to be considerable scope for future work in this area. By most accounts, we
are at the beginning of a very large wave of investment in technologies that aid the conversion
of data to decisions, and research about this phenomenon and its impact on the workforce is in
its infancy. There is yet much that must be learned about how to design organizations such that
humans can effectively work together with algorithms, and therefore, what workforce investments
should be made to complement production contexts where algorithmic decision-making plays an
important role. Firms’ information capabilities will continue to evolve and algorithms will become
easier to deploy as better software and tools become available, which will lower the costs of adoption
and accelerate the diffusion of these technologies into new firms and jobs.

Several limitations of this study are worth noting. The data analyzed here provide limited
visibility into the degree and nature of the expertise required by workers, and our analysis is limited
to the narrow question of which skills are bundled into jobs. We cannot observe whether subject
matter experts require deep expertise with the technology, or the interactional expertise required to
engage with developers and builders of these tools. There are also many broader questions that firms
are facing about how best to organize workers to complement algorithmic decisions, such as how to
restructure decision pipelines and where the firm should place oversight of algorithmic decisions.

Moreover, this paper, like most related research that has come before it, takes a static view.
At this early stage of adoption, there remains little evidence that the use and adoption of these
technologies drives performance at the firm-level or has broad labor market consequences (Acemoglu
et al., 2022). Stronger causal evidence of the impact of these workforce changes on performance will
likely require allowing firms more time to adapt to this new mode of production. Additionally, new
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technologies for data collection, analysis, prediction, and visualization will offer improved capabilities
to generate insights. For instance, the continued evolution of “no-code” tools can lower barriers to
data analysis, further altering where data science is done in the organization. As this boundary
pushes forward, it will continue to change markets for these skills, raising new questions about how
employers can best integrate algorithms into the workflow.
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Figure 1: A job listing requiring both domain expertise and algorithmic expertise

Figure notes: This figure is a sample listing for a job requiring familiarity with algorithmic tools
(highlighted in yellow) and subject matter expertise, related in this example to marine biology (high-
lighted in orange). This listing and screenshot were extracted from the website www.indeed.com.
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Figure 2: Growth in number of job listings requiring algorithmic expertise
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Figure notes: This chart illustrates growth in number of job ads requiring expertise with algorithmic
tools from 2010 to 2016. The different colors indicate the occupational categories in which these
listings appear: IT, Data science and business intelligence jobs, and all other occupations.
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Figure 5: Changes in the locus of technical skills in firms, 2008-2022
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Figure notes: This figure illustrates the movement of different skill categories out of IT occupations from
2008 to 2022 in a large sample of public US firms. For each trend line, differences are reported from their
2008 base value.
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A Revelio workforce data

Pointer to Revelio site comparisons

A.1 O*NET Comparison

A.2 Firm employment comparison

30



B O*NET taxonomy of worker skill requirements

Work Requirements

Education

Basic Skills

Reading Comprehension

Writing

...

Occupation Knowledge

Economics and Accounting

Arts and Sciences

Food Production
...

Cross-Functional Skills

Technical Skills

AI and analytics

Data management

Data collection
...

Social Skills

Complex Problem Solving Skills

Appendix notes: This tree is an illustration of the taxonomy of “Worker Requirements” laid out in the Bureau of
Labor Statistics O*NET database. This information can be found at https://www.onetcenter.org/content.html#cm2.
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C Categorization into skill groups

Major data pipeline area categories

AI, Data Science, and Ana-
lytics

Machine Learning, Mahout, Predictive Analytics, Predic-
tive Models, Support Vector Machines, Neural Networks,
K-Means, Decision Trees, Artificial Intelligence, Predictive
Modeling, Random Forests, Data Mining, Deep Learning,
Language Processing, Cluster Analysis

Data Management Big Data, Apache Hadoop, NoSQL, MongoDB, Apache Hive,
Splunk MapReduce, PIG, Cassandra, SOLR, Sqoop, SQL,
MySQL, Structured query language, database management,
database administration, data cleaning, data extraction,
database querying

Data Collection Objective C, Swift, HTML5, Javascript, iOS, CSS, Cisco,
Network Engineering, Network Administration, Computer
Networking, Network Support, Network Concepts and
Terminology, Data Communications, Network Installation,
Wireless Local Area Network (LAN), Network Management
System, Network Infrastructure

Developer portfolio categories

DBA SQL, Microsoft SQL, SAP, ERP
LAMP Java, Linux, Apache, MySQL, PHP
Front end Javascript, Ruby on Rails, PHP, HTML5, CSS

Deming and Kahn (2018) categories

Cognitive Problem Solving, Research, Analytical, Critical Thinking,
Math, Statistics

Social Communication, Teamwork, Collaboration, Negotiation,
Presentation

Character Organized, Detail Oriented, Multi tasking, Time Manage-
ment, Meeting Deadlines, Energetic

Writing Writing
Customer Service Customer, Sales, Client, Patient
Project Management Project Management
People Management Supervisory, Leadership, Management (not project), Men-

toring, Staff
Financial Budgeting, Accounting, Finance, Cost
Computer general Computer, Spreadsheets, Microsoft Excel, Microsoft Power-

point
Software Java, SQL, Python
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