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1 Introduction

The Covid-19 pandemic led to drastic changes in where people work. Physical office oc-

cupancy in the major office markets of the U.S. fell to 10% of pre-pandemic levels at the

end of March 2020, and has remained depressed ever since, creeping back to 50% by May of

2023. In the intervening period, work-from-home (WFH) practices have become more estab-

lished, with many firms announcing permanent remote or hybrid work arrangements and

shrinking physical footprints. These shifts in current and projected future office demand

have led to concerns that commercial office buildings may become a stranded asset in the

wake of disruptions resulting from remote work. Because office assets are often financed

with debt which resides on banks’ balance sheets and in Commercial Mortgage-Backed Se-

curity (CMBS) portfolios, large declines in value would have consequences for institutional

investors and for financial stability.1 The spatial concentration of office assets in urban cen-

tral business districts also poses fiscal challenges for local governments, which rely heavily

on property taxes levied on commercial real estate to provide public goods and services. A

decline in office and adjacent retail real estate valuations may activate a fiscal “urban doom

loop” that lowers the quality of life for urban residents and worsens the business climate.

In this paper, we ask what these changes in remote work arrangements imply for the

value of office buildings. To answer this challenging question, we combine new data with

a new asset pricing model. A central model ingredient is uncertainty about future WFH

arrangements.

The value of office reflects the expected present discounted value of its cash flows. We

begin by analyzing the shock to cash flows between the end of 2019 and the end of 2022.

Using a unique data set from CompStak, we study lease-level data for 105 office markets

throughout the United States over the period from January 2000 until December 2022. We

1Investable commercial real estate assets were worth about $4.7 trillion at the end of 2019, of which office
represents the largest component. They make up an important part of the portfolio allocation to “real assets”
of a growing number of institutional investors (Goetzmann, Spaenjers and Van Nieuwerburgh, 2021). Banks
have about $2.4 trillion in commercial real estate loans on their balance sheets as of June 2022 according to Call
Report data. They account for 61% of CRE debt.
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document a 18.51% decrease in lease revenue in real terms between December 2019 and

December 2022. Two-thirds of this decline reflects decreases in the quantity of in-force leases.

The remainder is accounted for by declines in real rents on in-force leases. The quantity of

newly-signed leases in our data set falls from 285.38 million square feet per year just before

the pandemic to 62.39 million square feet in December 2022. Rents on newly-signed leases

fell by 9.16% in real terms between December 2019 and December 2020 before reversing to

pre-pandemic levels by the end of 2021, with meaningful heterogeneity across cities. Because

a large fraction of leases in-force at the end of 2019 did not come up for renewal in 2020,

2021, or 2022 (63.95% in the U.S., 73.52% in New York), and vacancy rates are already at

30-year highs in several major markets (22.2% in New York in 2023.Q1), rents may not have

bottomed out yet.

We establish a direct connection between firms’ remote work plans, measured from cor-

porate announcements on work schedules and their actual reductions in leased office space.

We find that firms that allow their employees to work more days from home reduce their

office space demand by more over the past three years. The same is true for firms with a

larger share of remote job postings. We also find that industries and cities with more WFH

exposure see larger declines in office demand.

The effects on lease revenue are not uniform across properties. We find evidence of a

“flight to quality,” particularly in rents. Higher quality buildings, those that are in the high-

est rent tier or are built more recently (informally called class A+), appear to be faring better.

Their rents on newly-signed leases did not fall as much or even went up. This is consistent

with the notion that firms need to improve office quality to induce workers to return to the

office. In contrast, lower quality office appears to be a more substantially stranded asset,

given lower demand, raising questions about whether such assets will ultimately need to be

repurposed towards other uses.

Because most of the office stock is not publicly-traded (and this segment is also dispro-

portionate high-quality) and sales of privately-held office properties slowed down dramati-

cally during the pandemic, it is not possible to rely on transaction data to infer the changes

2



that remote work wrought onto office values. To address this challenge, a central contribu-

tion of our paper is to build a novel asset pricing model to infer the changing values.

Office values reflect expectations of future cash flows and discount rates. The model is a

bottom-up valuation tool, adapted to the details of commercial real estate assets. A property

is a portfolio of long-term leases. The model features long lease duration, leasing risk, mar-

ket rent risk, and supply growth risk. We aggregate lease revenues to the property level and

subtract costs to arrive at net operating income (NOI). We discount NOI with the stochastic

discount factor (SDF) to obtain the property’s value. The model aggregates so we can com-

pute the value of (a segment of) the office market as a portfolio of office properties. There

are two sources of aggregate risk: standard business cycle risk and aggregate uncertainty re-

garding the state of remote work, with stochastic transitions between a no-WFH and a WFH

state. Rent growth, supply growth, lease renewals, new lease signings, and operating costs

vary across aggregate states.

Our main calibration exercise focuses on the New York City (NYC) office market. The

model matches market rent, supply, and vacancy dynamics in the data. This includes the

sharp increase in office vacancy rates between the end of 2019 and 2022. The model’s SDF

is chosen to match the observed risk-free interest rate, the equity risk premium in the stock

market (and its fluctuation across recessions and expansions), and the returns on a new WFH

risk factor, which we create. The WFH risk factor goes long stocks that benefit from remote

work (i.e., Zoom) and goes short stocks which are hurt by it (i.e., airlines).

A key parameter that affects the change in office valuations due to WFH is the persis-

tence of WFH practices. We back out this parameter from the (unlevered) stock return on

NYC-centric office REITs observed between December 2019 and December 2020. Since REITs

predominantly invest in A+ office product, we do a separate calibration to the A+ segment of

the NYC office market. The model matches the 2020 (unlevered) office return for an annual

persistence parameter of 0.94, indicating that office investors believe remote-work practices

to be long-lasting. We show sensitivity of our conclusions to the value of this persistence

parameter.
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With this parameter in hand, we return to the full NYC office market calibration. We

obtain a 46.1% reduction in the value of the entire NYC office stock between December 2019

and December 2020. Simulating the model forward for ten years, we characterize the mean

value of the office stock and—just as importantly—the uncertainty around this valuation,

which depends on the sequence of shocks that hits the economy. Along the average path,

office occupancy stabilizes and the economy returns to the no-WFH state with some prob-

ability. These mean-reversion forces push office valuations towards an average office value

in 2029 that is about 43.9% below 2019 values. Along paths where the economy remains

in the WFH state, office values in 2029 are 51.6% below their 2019 values. Hence, there is

substantial uncertainty about future office values, WFH risk, that our approach quantifies.

We repeat the calibration exercise for San Francisco and Charlotte, the former an example

of an office markets that is hit even harder by remote work and the latter an example of a

market that has been more resilient. Naturally we find larger valuation reductions in the

former, compared to NYC, and smaller reductions in the latter. However, both markets see

declines, suggesting that spatial reallocation of activity (for example, from New York City to

Charlotte) cannot (fully) account for our results.

What do these numbers imply for the aggregate value of the office stock? We calculate

a reduction in value of the office stock between the end of 2019 and 2022 of $69.6 billion for

NYC, $32.7 billion for San Francisco, and $5.1 billion for Charlotte. For the remaining office

markets, we combine market-specific lease revenue declines with valuation ratio changes

for NYC to compute the value decline. Nationwide, we find a $506.3 billion decline in office

values in the three-year period.

The key takeaway from our analysis is that remote work is shaping up to massively

disrupt the value of commercial office real estate in the short and medium term. This con-

clusion is consistent with our finding that firms appear to demand substantially less office

space when they adopt hybrid and remote work practices, and that such practices appear to

be persistent. In the long run, firms may discover that the productivity or innovation impact

from remote work is worse or better than expected, remote-work technologies may improve
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further, and cities may repurpose existing office assets to alternative use. These changes are

likely to play out over decades and are beyond the horizon of our analysis. That said, our

model calibration features a reduction in office supply in the WFH state, capturing reduced

construction activity and adaptive reuse of office assets in the WFH state.

Related Literature Our work relates to four literatures. We relate closely to the rapidly

growing literature on the measurement of remote work and its impact on real estate, sur-

veyed in Van Nieuwerburgh (2023). Bick, Blandin and Mertens (2023); Bartik, Cullen, Glaeser,

Luca and Stanton (2020); Barrero, Bloom and Davis (2021); Aksoy, Barrero, Bloom, Davis,

Dolls and Zárate (2022); Brynjolfsson, Horton, Makridis, Mas, Ozimek, Rock and TuYe (2023)

measure the prevalence of WFH, including with new survey instruments, tie the bulk of its

growth to new work arrangements, and argue that WFH is expected to last. Rosenthal,

Strange and Urrego (2021) documents a decline in the commercial rent gradient in the city

center and transit cities as compared to car-oriented cities with COVID-19. Hoesli and Malle

(2022) analyze the effect of the pandemic on commercial real estate in Europe and Cohen,

Friedt and Lautier (2020) in New York City. Gupta, Mittal, Peeters and Van Nieuwerburgh

(2022); Brueckner, Kahn and Lin (2021); Ramani and Bloom (2021); Mondragon and Wieland

(2022) study the impact of work from home on residential real estate prices and rents.

An important urban economics branch of this literature explores the effects of remote

work in quantitative general equilibrium models of labor and real estate markets (Delven-

thal, Kwon and Parkhomenko, 2021; Davis, Ghent and Gregory, 2021; Li and Su, 2021;

Gokan, Kichko, Matheson and Thisse, 2022; Monte, Porcher and Rossi-Hansberg, 2023).

These models are well-suited for thinking about long-run implications of remote work on

city structure, including how office space could be repurposed for alternative purposes. This

paper uses micro data on office leases to document changes in commercial real estate mar-

kets with the rise in remote work, and uses these data as inputs in a new asset pricing model.

The finance perspective, which places WFH risk at the core, focuses on risk and transition

dynamics and is a useful complement to the urban economics perspective. An important
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challenge for future work is to integrate these two approaches.

Our work relates to literature examining commercial real estate as an asset class. Cvi-

janović, Milcheva and van de Minne (2021); Badarinza, Ramadorai and Shimizu (2022) study

the role of investor characteristics in commercial real estate. Geltner (1993) assesses valua-

tion given existing appraised values. A key contribution of our paper to this literature lies

in developing a tractable, yet rich bottom-up model of commercial building valuation. The

valuation model has broad applicability to study pricing of publicly- and privately-traded

assets in different contexts.

Finally, an interesting strain of finance research has focused on identifying disruptive

technological shocks to asset prices. An important topic in this literature has been that of

stranded assets: whether innovation or climate change have the potential to transform exist-

ing assets into liabilities, with consequences for the creative destruction of economic activity

(Gârleanu, Kogan and Panageas, 2012; Kogan and Papanikolaou, 2014, 2019; Barnett, Brock

and Hansen, 2020; Pástor, Stambaugh and Taylor, 2022; Eisfeldt, Schubert and Zhang, 2023).

We contribute to this literature by documenting a novel disruptive shock in the form of re-

mote work, proposing a WFH risk factor, and highlighting exposure of urban commercial

real estate assets to the WFH factor.

The rest of the paper is organized as follows. Section 2 overviews changes in the office

leasing market during the pandemic, highlighting the contemporaneous losses to lease rev-

enue, and identifying remote work as the key driver. Section 3 estimates the valuation of

office buildings in the context of a structural model, and Section 4 highlights the implica-

tions for office valuation. Section 5 concludes. Appendix A contains additional empirical

results. Appendix B details the construction of the WFH risk factor. Appendix C provides

model derivations. Appendix D details the calibration algorithm. Appendix E reports model

results for high-quality offices. Appendix F contains the calibration details for San Francisco

and Charlotte. Appendix G reports additional results from the model.
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2 The Office Market During the Pandemic

2.1 Data

In comparison to other real estate markets, such as residential real estate, the market for

commercial office buildings is relatively opaque. We combine cash flow and pricing data

from both public and private markets in order to understand the valuation of the entire

office sector in light of disruptions introduced by the shift to remote work.

Our main data set is CompStak, a data platform where commercial real estate brokers

exchange leasing information. The data set contains lease-level transaction data for a large

sample of offices leases in the U.S. for the period January 2000–December 2022. Data cover-

age improves in the first part of the sample and stabilizes around 2015.

Our data contain information on the lease, the building, and the tenant. Lease character-

istics include: the execution date, lease commencement date, lease expiration date, the start-

ing rent, the rent schedule, free rent period, tenant improvements, the size (in square feet)

of the lease, floor(s) of the building, lease type (new lease, extension, expansion), and other

lease options. Building characteristics include: building location, building class (A, B, or C),

building age, market, and submarket. Tenant characteristics include: tenant name, tenant

industry (SIC and NAICS code), tenant employees, and tenant ticker (if publicly traded).

We use this data to study the evolution of the lease market over the course of the pandemic,

in terms of quantities, prices, and contract features. We augment the CompStak data with

city-level vacancy information from Cushman & Wakefield.

In public markets, we obtain monthly returns for office REITS included in the National

Association of Real Estate Investment Trust (NAREIT) office index for the period 2019–2022.

To measure remote working conditions at the firm level, we use information from Scoop,

which provides a Flex Index containing information on the full time, hybrid, and fully re-

mote working practices of over 3,000 firms. This allows us to measure remote working plans

by office tenants and connect them to their leasing decisions.2

2We also explore a job postings measure drawn from Ladders, an online job search service site. The platform
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2.2 Shock to Leasing Revenue

We begin by highlighting the first component of the valuation shock: the reduction in current

leasing revenue. The total value of annualized leasing revenue on in-force office leases was

$74.19 billion prior to the pandemic in December 2019 (all numbers expressed in December

2022 dollars). Total leasing revenue experienced a 18.51% decline nationwide, falling to

$60.46 billion in December 2022. This decline is substantial in light of the long-term nature

of office leases. It indicates substantial shifts in leasing activity among those tenants in a

position to make a choice about their office space needs. Figure 1, Panel A, plots the time

series of total leasing revenue.

Figure 1: Revenues on In-Force Leases

Panel A: Revenue
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Panel C: Quantity
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Notes: The graph shows the time series of annualized lease revenue (Panel A), rent per square foot (Panel B), and total leased space in
square foot (Panel C) for in-force leases. Revenues and rent are expressed in December 2022 dollars. Data are sourced from CompStak.

This decline can be separated into the shocks to rents and to quantities. Throughout the

paper, we use the concept of net effective rent (NER).3 Annualized NER on in-force leases

fell in real terms throughout the pandemic. Most leases in force in 2020–22 were signed

before 2020 and have built-in nominal rent escalation clauses. However, the scheduled rent

increases were not large enough to keep pace with inflation, leading to a real NER drop on

in-force leases of 6.40% (Panel B of Figure 1). Below, we also show that NERs on new leases

signed in the first year of the pandemic fell substantially below pre-Covid rent levels.

focuses on job positions paying in excess of $100,000 a year, and so has high coverage of many remote working
positions for knowledge workers. We measure the fraction of job postings which mention fully remote terms
at the firm level.

3The NER augments the standard contract rent schedule—a rent for each month over the course of the
lease—with additional provisions including rent concessions (free rent) as well as tenant improvements (work
paid for by the landlord). The resulting NER reflects the average rent earned by the landlord, and is the most
relevant object in understanding changing market rent dynamics.
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The quantity of in-force leases (in square feet) fell substantially during the pandemic. The

decline is 12.93% between December 2019 and December 2022 (Panel C). This decline reflects

(i) difficulties in filling vacant space with new tenants, (ii) lack of lease renewals by existing

tenants whose lease is up for renewal, and (iii) renewals for less space than the prior lease.

This suggests that understanding the quantity dimension is of utmost importance when it

comes to understanding shocks to pandemic cash flows.

2.3 Physical Occupancy, Contractual Occupancy, and Lease Expiration

In Figure 2 (Panel A) we highlight the key shift which is the focus of our paper: the sudden

drop in physical office presence for white-collar workers. Physical office occupancy is mea-

sured from turnstile data provided by Kastle.4 Over the course of the pandemic, about 70%

of college-educated workers did some or all of their work from home. In the initial wave

of the pandemic, physical office occupancy rates fell to just 20% among the top-10 largest

office markets (10% in NYC). Average occupancy recovered to about 30% (20%) by the end

of 2020. It saw several more dips as the pandemic intensified in early 2021. The recovery

continued in the second half of 2021 to about 40% (35%), before falling sharply due to the rise

of the Omicron variant at the end of 2021. The latest data as of early May 2023 show a 49.9%

occupancy rate among the largest 10 office markets (48.4% in NYC). With over three years

of remote work experience, many employers and employees have formed new habits and

expectations. Employees have come to like remote work and report being more productive.

Employers have revised upward their own longer-run expectations on average employee

days worked from home (Barrero et al., 2021; Aksoy et al., 2022), and have begun to adjust

their demand for office space, as shown in more detail below.

These large drops in physical occupancy did not translate into large immediate drops in

commercial office cash flows, as shown above. The reason for the gradual reaction is the

staggered nature of commercial leases, highlighted in Figure 3. Because most commercial

4The Kastle data cover more than 2,600 buildings in 138 cities. Other data sources, such as subway usage or
the Partnership for New York survey, accord well with the Kastle data.
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Figure 2: Office Occupancy
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Notes: The figure shows office physical (Panel A) and contractual (Panel B) occupancy over time. Physical occupancy is sourced from
Kastle. Contractual occupancy is sourced from Cushman & Wakefield.

leases are long-term, and not up for immediate renewal, only a fraction of office tenants

have had to make active choices about their future office demand so far. Among all in-force

leases as of the end of December 2019, only 36.05% by square feet came up for renewal in

2020, 2021, and 2022 combined. Nearly all of the tenants not up for renewal have continued

to make rent payments, despite their lack of physical occupancy. When more leases come up

for renewal in the future, the office demand of tenants who have made limited use of office

space during the pandemic remains highly uncertain and is a crucial determinant of office

valuation.

Despite the modest share of tenants that have seen lease expirations so far, we already

observe drastically higher vacancy rates reflecting lease non-renewals and partial renewals

among that sample. The contractual occupancy rate in Manhattan, the country’s largest of-

fice market, was at a 30-year low of 77.8% in the fourth quarter of 2022 (Cushman & Wake-

field), as shown in Figure 2 (Panel B).
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Figure 3: Lease Expiration Schedule
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Notes: The figure shows the percentage of leases expiring per year in square feet for leases that were in force as of December 2019 (left
panel) and for leases that were in force as of December 2022 (right panel). Data are sourced from CompStak.

2.4 Impact on Quantities and Prices of New Leases

Pandemic Impact on New Lease Quantities

Next, we investigate the effects of changes in office demand related to the pandemic on the

volume of new lease agreements. To do so, we aggregate the total number of new com-

mercial office leases signed in the CompStak data.5 We observe a dramatic decrease in the

quantity of new leases signed, sometimes called absorption in the industry, in the left panel

of Figure 4. The volume of newly signed leases fell from 285.38 million square feet (sf) per

year in the six months before the pandemic to 62.39 million sf per year over the most re-

cent six months.6 The graph indicates a large drop in office demand from tenants who are

actively making space decisions.

Pandemic Impact on New Lease Duration

Even when tenants do renew leases, they may not do so under the same set of terms. The

right panel of Figure 4 shows that the share of new leases signed that are less than three

5In unreported analysis, we find that the changes are similar in major and non-major office markets. The
major office markets are: New York City, Philadelphia, Boston, Houston, Dallas, Austin, Nashville, Chicago,
Atlanta, Miami, Washington D.C., Denver, Los Angeles, Bay Area, and San Francisco.

6In future data updates, more leases may be added to the data set for the last few months of the sample.
Our experience with several such prior data updates is that the revisions are modest.
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Figure 4: New Leases Signed and Lease Duration Changes
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duration, in orange) and the share of long-term (more than 7 year duration, in blue) leases over time. Dashed lines denote raw data while
the solid lines remove state, major/non-major market, industry, and renewal fixed effects.

years in duration increased substantially during the pandemic, to account for almost half

of our sample, while the share of leases with a duration more than seven years decreased

meaningfully. The shortening of lease duration suggests important shifts in the commercial

office market, even conditional on lease renewal. As a result, the coming years 2023–2025

will feature even larger than expected lease expiration from two channels: the pre-scheduled

expiration of long-term leases signed before the pandemic, as well as the expiration of short-

term leases signed during the pandemic. The distribution of lease maturities at the end of

2022 is shown in Panel B of Figure 3.

Pandemic Impact on New Lease Rents

We next explore the dynamics of net effective rents on new leases. We compute the square-

foot weighted average NER. Figure 5 shows large changes in real NERs on new leases signed

over the course of the pandemic. Panel A shows results for for all markets and Panel B

subsets on New York City. Nationally, the NER fell by 9.16% in 2020. Starting in January

2021, the NER on newly-signed leases experienced a sharp reversal with the NER ending up

back at its pre-pandemic level at the end of our sample.

The national average NER dynamics could reflect composition effects, either in terms
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Figure 5: Net Effective Rent on New Leases
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Notes: Panel A (Panel B) shows annualized net effective rents for all markets (NYC). Graphs on the left show rents for all building types
(in black), while graphs on the right show rents by building class–A+ (in orange), A- (in blue), B+C (in green). Dashed lines denote raw
data while solid lines remove state, major/non-major market, industry, and renewal fixed effects. Major markets are defined in footnote 5.

of the markets in which new leases are being signed or in terms of the types of tenants

signing new leases. To control for such selection effects, we remove tenant-industry and

geographical fixed effects. Once fixed effects are removed (solid line), both the decline in

NER in 2020 and the rebound in 2021 become weaker. Much of the recent rebound in NER

in the raw data turns out to be a spatial composition effect.

In NYC, the NER decline on new leases in 2020 is sharper at 11.55%, and the rebound in

2021 and 2022 is much weaker. The measurement in NYC is less sensitive to the removal of

tenant and submarket fixed effects.
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2.5 Flight to Quality

Figure 6 highlights the heterogeneity in changes in rents and occupancy across building

quality for New York City. The left panels of the graph define class A+ properties based on

rent levels.7 The remaining buildings (“Other”) are classes “A-” (A without A+), B, and C.

The right panels use an alternative definition of high-quality buildings based on building

age: younger buildings are those constructed in or after 2010. Panel A displays changes

in NER per square foot on newly-signed leases. Properties defined as A+ sustain rent levels

much better in both New York compared to other properties. Younger buildings even ex-

perience sizable rent increases, compared to substantial rent decreases for other properties.

This divergence suggests a “flight to quality” in office demand in these markets.

Panel B of Figure 6 shows changes in occupancy, which are the other main driver of rev-

enue. The left panel breaks out trends in occupancy for A+ buildings and others, relative

to December 2019. The right panels similarly break out trends in occupancy across build-

ings of different ages. The clearest expression of quality differentiation occurs in the right

panel where the youngest buildings experienced strong occupancy growth while the older

buildings struggled to retain tenants.

The top right panel of Figure 5 paints a similar picture for the nation as a whole. We focus

on the solid lines, which remove fixed effects. Nationally, A+ rents on new leases show re-

silience, rising modestly between December 2019 and December 2022. Lower-quality office

rents, by contrast, see a much steeper decline over the pandemic.

Figure 7 illustrates the flight-to-quality dimension further by plotting the relationship

between building age and NER in Panel A for New York and San Francisco leases. The

NER is residualized with respect to month, submarket, and tenant fixed effects, so as to

control for shifting geographic or tenant composition. It shows that the rent-quality gradient

7Specifically, we isolate leases that are in the top ten percent of the NER distribution in each quarter and
submarket among all properties that are ranked as Class A by CompStak. We categorize a building that has
such a lease as A+ and assume that the A+ status remains for ten years, unless another top-10% lease is signed
in that building at which point the ten-year clock resets. By this definition, 34.25% of square feet and 41.05% of
lease revenue is in A+ office buildings in New York City.
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Figure 6: Changes in Office Rents and Occupancy

Panel A: Net Effective Rent by Quality Segment in NYC

Panel B: Occupancy Rates by Quality Segment in NYC
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Notes: Panel A shows the annualized NER in December 2022 dollars in NYC. The left panel shows the split by building class (A+ in orange,
all others in blue), while the right panel shows the split by building age (built in 2010 or later in orange, all others in blue). Panel B shows
occupancy rates in NYC by building class (left), and building age (right).

steepens substantially for leases signed in March 2020 or after. Rather than sorting buildings

by age, Panel B sorts them by their rent rank, where 0.9 indicates the 90th percentile of the

NER distribution. Again, we find a strong association between building quality and rents in

general in the cross-section of building quality (consistent with the general role for filtering

as in Baum-Snow and Rosenthal (2022)), but a steeper gradient after the pandemic. Quality

becomes a more highly-valued attribute in the recent period.

Appendix Table A1 provides detailed regression evidence confirming the negative rela-

tionship between building age and NER, after controlling for month and submarket fixed

effects, as well as tenant fixed effects, and even building fixed effects. Rents increase by

more in March 2020 or after versus before in young buildings than in old buildings. The

additional 2.4% point rent elasticity to age is economically and statistically significant. This
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Figure 7: Building Quality and Changes in Rents

Panel A: By Building Age Panel B: By Building Rent Rank

Notes: The graph shows the changing gradients of building quality and commercial rents, before and after the beginning of the pandemic
for New York City and San Francisco. Quality is measured by building age (Panel A) and the building rent rank: the highest ranking that
any lease in a building had in the previous ten years. Our definition of “A+” buildings corresponds to those in the top ten percentile of this
rent rank (Panel B). To estimate these specifications, we first residualize all office lease data in San Francisco against: the commencement
month of the lease, a tenant fixed effect, and a submarket fixed effect. We then plot the residuals from that regression (adding back the
average level of rents) separately for pre-pandemic (February 2020 and before, in blue) and the post-pandemic data (March 2020 and after,
in red).

association is largely driven by shifts in major markets, and is particularly strong in New

York and San Francisco.

2.6 Connecting Remote Work and Office Demand

While many shifts in the pandemic could have in principle contributed to lower office de-

mand, we identify changes in remote work policies as being critical to this change. Many

employers have shifted to rely more on fully-remote workers, while a much larger fraction

of employers have instead moved to hybrid work (Bloom, Han and Liang, 2022). Employees

are expected to return to the office for some number of days in the week. The implications

of hybrid work for office demand are less clear than for fully-remote positions because firms

will still require an office presence. That said, firms may have the ability to stagger staff to

come into the office on different days or rearrange the workspace to use it more efficiently

through the use of techniques such as hot-desking, hoteling, office neighborhoods, and per-

haps with the assistance of software.

To examine the role of remote and hybrid work on office demand, we use the Scoop
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data which estimates firm back to office plans as of the end of 2022 for a sample of over

3,000 firms. We sort these firms by the number of workdays that employees are allowed to

be remote in a typical week. While return-to-office plans remain in flux, our classification

provides an estimate of firms’ expected office plans at a time that they are making important

choices on physical footprint. We merge tenants’ WFH plans from Scoop with changes in

office demand from CompStak, measured as the percentage change in active lease space

in square feet from December 2019 to December 2022. Tenants will have a more negative

change in office demand if they do not renew leases that come up for renewal during the

pandemic or if they renew and take less space.

Panel A of Figure 8 shows that hybrid work is strongly associated with lower office space

demand. Firm-level office demand drops by 10% for firms whose employees are expected

in the office 4 or 5 days per week, by 17% for tenants whose workers will be on site 2-3

days, and by 25% for tenants whose workers are expected to be in the office only 1 day per

week or fully remote. The latter decline is likely not even larger because tenants have prior

lease commitments that remain in force over the February 2020–December 2022 period over

which we compute the change in office demand.

Since firm-level office demand and back-to-office plans may be measured with some er-

ror, we also examine the relationship between remote plans and office demand at higher

levels of aggregation. We use the tenant industry code to aggregate both tenant office de-

mand and WFH plans to the industry level. Panel B of Figure 8 shows a strongly negative

relationship, with industries such as technology that are more remote showing much larger

declines in office demand.

We also examine the relationship between remote working plans and office demand

across cities in Panel C. Here, we take advantage of the fact that cities differ in their mix

of industries which can be more or less conducive to remote work. We estimate the pre-

dicted number of remote working days for each city, based on each city’s mix of industries.

San Francisco, for instance, has a high predicted number of remote days due to its heavier

reliance on the technology industry.
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Figure 8: Hybrid Work and Office Demand

Panel A: Firm Work Mode and Office Demand

Panel B: Industry-Level Remote Work and Office De-
mand

Panel C: City-Level Predicted Remote Work and Office
Demand

Notes: Panel A plots the relationship between firm space demand and stated back-to-work office plans. We measure firm space demand,
as elsewhere in the paper, by comparing the firm’s total leased square footage in December 2022 against the amount pre-pandemic in
December 2019. We then calculate the firm’s back to office plans by using Scoop data on firm remote plans. We sort these by assessing
how many days a week the firm anticipates workers being back in the office: 0–1 (close to fully remote positions), 2–3 days/week, and
4–5 days a week (including fully in person requirements). Panel B shows the relationship between industry-level remote work and
industry-level firm demand, aggregating both the WFH plans and office demand to the industry level. Panel C shows the relationship
between city-level remote work predicted based on the city-level industry mix and city-level change in overall occupancy level drawn
from Cushman & Wakefield.
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We plot the predicted remote work days against city-level estimates of changes in office

vacancy from Cushman & Wakefield. While the relationship is slightly weaker than at the

industry-level, we find that cities such as San Francisco which have more predicted remote

work see larger decreases in overall city-level occupancy, suggesting again that remote work

appears to be driving cross-sectional differences in office demand.

Table 1 provides numerical estimates which correspond to this figure. At the firm level,

in column (1), we find that a unit increase in the remote work index is associated with a ten

percentage point decline in square footage at the firm level. Our remote work index is a three

point scale, so a one unit increase corresponds to an increase in two days a week remotely

for a firm going from 0–1 allowable remote days to 2–3, or from 2–3 days to 4–5 days a week.

While these are large economic magnitudes we observe them with greater imprecision.

To partially address the issue of statistical imprecision, we next move to the industry-

and city-levels. We estimate, in column (2) of Table 1, that an industry increasing its remote

work index by one point (i.e., allowing an additional two days of remote work each week)

decreases its overall space demand by eight percentage points.

In column (3), we aggregate remote working plans up to the city-level, and regress this

against city-level office occupancy (measured by Cushman & Wakefield). We also find a

negative relationship, indicating that more remote work is associated with lower office oc-

cupancy. We observe even large magnitudes in column (4), which instruments for city-level

remote work using the city’s mix of industries. We take each industry’s average remote

work score, and predict the amount of remote work in each city based on the local industrial

composition. San Francisco, for instance, obtains a high predicted remote work score based

on its heavy concentration of technology firms. Here, we find that a one-unit increase (two

additional remote work days a week) in the remote work index results in a 22 percentage

point decrease in office vacancy. This instrumental variable specification helps to address

possible endogeneity and measurement error problems in our baseline specification, and

suggests a large causal role for remote work in driving trends in office demand, particularly

at the city level which we focus on.
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Table 1: Remote Work and Office Space Demand

OLS OLS OLS IV
(1) (2) (3) (4)

Remote Work Index (Firm) -10.11
(10.07)

Remote Work Index (Industry) -8.28∗∗∗

(2.08)
Remote Work Index (City) -4.30 -22.56∗∗

(3.45) (10.34)

N 573 14 63 63
Industry FE Yes No No No
City FE Yes No No No

Notes: This table shows the relationship between remote work plans and change in office space
demand at different levels of aggregation. As elsewhere in the paper, we compare firm’s total
leased square footage in December 2022 against the amount leased in December 2019. Our remote
work index collapses plans into three levels (4–5 days a week in person, 2–3 days a week, and 0–1
days a week). A one unit increase therefore corresponds to allowing two additional remote days
a week. Column (1) shows the relationship at the firm level. Column (2) shows the relationship
at the industry-level, collapsing average remote work plans and change in office demand to the
industry-level. Columns (3)–(4) measure the relationship between remote work plans aggregated
to the city level against city-level change in vacancy in the Cushman & Wakefield data. Column
(4) instruments for the city-level remote work index using the predicted remote work level based
on industrial composition. All specifications weight observations based on office space for firms,
industries, and cities, respectively. Standard errors in column (1) are clustered at the city-level.

As an alternative measure of firms’ WFH plans, we measure the fraction of a firm’s job

listings that are for fully-remote positions from Ladders. Table A2 finds a negative and

significant relationship between a tenant’s change in office demand and the fraction of that

tenant’s job postings that are for remote positions. A 10% point increase in the share of

remote job postings lowers office demand by 3.9–4.9% points. This result is consistent with

the idea that durable shifts in remote work are changing the demand for office space.

Combined, our empirical results show that office space demand has declined consider-

ably over the course of the pandemic and that changes in remote work policies appear to be

driving this trend. Firms with more fully-remote positions or that have low on-site work re-

quirements experience the largest declines in office demand. Decreases in office demand are

still substantial among firms with hybrid back-to-office plans, suggesting that even hybrid

work plans pose major disruption to aggregate office demand, with significant implications

for aggregate office values.
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3 Office Valuation Model

How do changes in remote work and the accompanying changes in office rent revenues

affect the value of office buildings? To answer this important question, we develop a valu-

ation model. The value of a building (or portfolio of buildings or the market overall) is the

expected present discounted value of rent revenues Revt+j minus expenditures Costt+j:

Vt = Et

[
∞

∑
j=1

Mt,t+j
(

Revt+j − Costt+j
)]

= Et

[
∞

∑
j=1

Mt,t+jRevt+j

]
− Et

[
∞

∑
j=1

Mt,t+jCostt+j

]
= VR

t −VC
t (1)

where Mt,t+j is the cumulative stochastic discount factor (SDF) between t and t + j. Vt is

an end-of-period (ex-dividend) price. By value additivity, the value of the building is the

difference between the value of the (positive) rents minus the value of the (positive) costs.

This gets around the issue that the difference between revenues and costs (before-tax net

cash flow) can be negative.

Several real-world complications arise regarding a property’s cash flows which make this

valuation more difficult than the valuation of, say, a stock’s dividend stream. Each building

is a portfolio of leases with different lease terms and maturity dates. Physically identical

buildings therefore have different valuations as a result of different lease structures in place.

The leases are finite, but there is additional rental revenue after the leases mature. After

some initial vacancy, tenant improvements, and concessions (e.g., free rent) the space will

be released at the market rent. Furthermore, the building may not be fully leased, in which

case vacancy creates cash flow shortfalls. Hence, the key sources of risk are vacancy risk and

market rental risk. On the cost side, the operating expenses including the reserve account to

provision for regular capital expenditure or maintenance. A part of the costs is fixed, while

another part is variable (with occupancy). Costs also include leasing commissions, which

are different for new leases and lease renewals. Finally, there is the risk of supply growth.

The model we propose includes most of these real world features in a tractable way. It can
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be used to value an individual building, or a (sub-)market, which is a portfolio of buildings.

The full derivation of the model is in Appendix C. This model should be useful for valuing

income-generating properties in any sector or location. Section 3.3 describes the calibration

of the model, which will focus on the New York City office market.

3.1 Modeling Revenues

The central challenge in modeling leases is incorporating the process of expiration and lease

renewal, at potentially different lease rates. This is important because commercial leases

are long-term in nature, but much shorter in duration than the expected life of the build-

ing. In our model, leases comes due in the current period with probability χ. Under the

law of large numbers, χ is also the share of all leases coming due in a given period in that

building/market. The random arrival of lease expiration absolves us from having to keep

track of the history of past lease executions. Under this assumption, we only need two state

variables to describe the evolution of rental revenues in a building/market: Q̂O
t and R̂O

t .

Let QO
t be the occupied space (in square feet) in a building/market at the end of period

t and QV
t be the vacant space in a building/market at the end of period t. If Qt is the total

size of the building/market, then QV
t = Qt − QO

t . The law of motion for occupied space in

a building/market is:

QO
t+1 = min

{
QO

t (1− χ) + QO
t χsO

t+1(z
′) + (Qt −QO

t )s
V
t+1(z

′), Qt+1

}
.

The first term denotes the space that was occupied at the end of last period which is not up

for renewal. The second term denotes the space that was up for renewal and is renewed for

the same or for less space. Here, 0 ≤ sO
t+1(z

′) ≤ 1 is the share of office space that was up for

renewal which is being renewed in period t + 1. This is a stochastic process whose realized

value depends on the state of the world z′ in period t+ 1. It combines the extensive margin of

renewal (the share of space that gets renewed versus not-renewed) and the intensive margin

of renewal (the share of space in square feet which is renewed conditional on renewal). The
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third term denotes space that was vacant at the end of last period and is being newly rented.

The stochastic process 0 ≤ sV
t+1(z

′) is the share of office space that was vacant which is being

newly rented out in period t + 1 if period t + 1 is in state z′. This term includes the part of

lease expansions that exceeds the original space (renewals for more space). This share is not

bounded from above by 1, to allow for growth in a building/market due to changes in the

supply. The minimum operator guarantees that space occupancy in a building/market is

weakly below available supply. It will not be binding in our calibration.

The growth in available space in a building/market is a stochastic process which de-

pends on the model regime:
Qt+1

Qt
− 1 = ηt+1(z′).

Growth reflects new construction (renovation of a building that adds floor space or new

construction in a market) net of depreciation.

We define the scaled state variable Q̂O
t :

Q̂O
t =

QO
t

Qt

with the law of motion:

Q̂O
t+1(Q̂

O
t , z′) = min

{
Q̂O

t (1− χ) + Q̂O
t χsO

t+1(z
′) + (1− Q̂O

t )s
V
t+1(z

′)

1 + ηt+1(z′)
, 1

}
. (2)

The rent revenue in a building/market in period t + 1 takes the following form:

Revt+1 = QO
t (1− χ)RO

t +
[

QO
t χsO

t+1(z
′) + (Qt −QO

t )s
V
t+1(z

′)
]

Rm
t+1

in which RO
t is the average net effective rent per square foot on existing leases and Rm

t+1

is the market’s net effective rent (NER) per square foot on newly executed leases. The net

effective rent incorporates concessions (free rent) and tenant improvements. We assume that

all new leases are signed at the market NER. The rent on existing leases is a geometrically-
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decaying weighted average of all past market rents, where the weights capture the shares of

outstanding leases signed in each of the prior periods:

RO
t = χ

∞

∑
k=0

(1− χ)kRm
t−k.

The law of motion for this second state variable is given by:

RO
t+1 = (1− χ)RO

t + χRm
t+1.

We define the state variable R̂O
t :

R̂O
t =

RO
t

Rm
t

.

The growth rate of the market’s NER per square foot is a stochastic process: its value

depends on the aggregate state realization z′ in period t + 1:

Rm
t+1

Rm
t
− 1 = εt+1(z′).

The law of motion for the scaled state variable becomes:

R̂O
t+1(R̂O

t , z′) =
1− χ

1 + εt+1(z′)
R̂O

t + χ. (3)

We can now rewrite rent revenue as a function of the scaled state variables. The rent

revenue in a building/market in period t + 1 takes the following form:

Revt+1 = QtR
m
t

{
(1− χ)Q̂O

t R̂O
t +

[
Q̂O

t χsO(z′) + (1− Q̂O
t )s

V(z′)
]
(1 + ε(z′))

}
.

Define potential rent as the rent revenue based on full occupancy at the prevailing market
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rent: QtRm
t . Denote the rent revenue scaled by last period’s potential rent with a hat:

R̂evt+1(Q̂O
t , R̂O

t , z′) =
Revt+1

QtRm
t

= (1− χ)Q̂O
t R̂O

t +
[

Q̂O
t χsO(z′) + (1− Q̂O

t )s
V(z′)

]
(1 + ε(z′)).

Recall the expected present discounted value (PDV) of lease revenues VR
t :

VR
t = Et

[
∞

∑
j=1

Mt,t+jRevt+j

]
.

Scale this price by potential rent to obtain a price-dividend ratio:

V̂R
t =

VR
t

QtRm
t

.

The price-dividend ratio of the lease revenue claim solves the Bellman equation:

V̂R
t (Q̂O

t , R̂O
t , z) = ∑

z′
π(z′|z)M(z′|z)

{
R̂evt+1(Q̂O

t , R̂O
t , z′) + (1 + η(z′))(1 + ε(z′))V̂R

t+1(Q̂
O
t+1, R̂O

t+1, z′)
}

(4)

subject to the laws of motion for the scaled state variables (2) and (3).

3.2 Modeling Costs

On the cost side, there are three types of costs: operating expenditures, capital expenditures,

and leasing commissions. Note that tenant improvements and concessions (free rent) are

already reflected on the revenue side since we consider net effective rent as our rent concept.

We fold the per-period equivalent of capital expenditures into the operating expenses, a

common practice (the capital reserve account). These per-period capital expenditures are in-

dependent of building occupancy. Other operating costs that are independent of occupancy

are: property insurance, property taxes, and the fixed part of utilities and maintenance. We

refer to these combined fixed costs per square foot as C f ix
t . The presence of fixed costs acts

25



as operational leverage to the asset. Utilities and maintenance also contain a variable com-

ponent that depends on building occupancy. Variable costs per square foot are denoted as

Cvar
t . Finally, leasing commissions (or broker fees) capture costs associated with bringing in

new tenants. When a lease expires, leasing commissions are higher for new leases than for

renewals: LCN > LCR. Commissions are variable costs, proportional to the first-year rental

revenue from the lease.

Adding the costs associated with fixed and variable expenses, along with broker com-

missions, yields an expression for total building costs:

Costt+1 = C f ix
t+1(z

′)Q+QO
t Cvar

t+1(z
′)+

[
QO

t χsO
t+1(z

′)LCR
t+1(z

′) + (Qt −QO
t )s

V
t+1(z

′)LCN
t+1(z

′)
]

Rm
t+1.

We scale costs by lagged potential rent:

Ĉostt+1 =
Costt+1

QtRm
t

= c f ix
t+1(z

′) + Q̂O
t cvar

t+1(z
′) +

[
Q̂O

t χsO
t+1(z

′)LCR
t+1(z

′) + (1− Q̂O
t )s

V
t+1(z

′)LCN
t+1(z

′)
]
(1 + ε(z′))

where cost per square foot to market rent per square foot ratios are defined as:

c f ix
t+1(z

′) =
C f ix

t+1(z
′)

Rm
t

and cvar
t+1(z

′) =
Cvar

t+1(z
′)

Rm
t

.

Note that Ĉostt+1 only depends on Q̂O
t and on z′, not on R̂O

t .

Recall the expected PDV of costs VC
t :

VC
t = Et

[
∞

∑
j=1

Mt,t+jCostt+j

]
.

We scale this price by potential rent to obtain a price-dividend ratio:

V̂C
t =

VC
t

Q̄tRm
t

.
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The price-dividend ratio of the building cost claim solves the Bellman equation:

V̂C
t (Q̂O

t , z) = ∑
z′

π(z′|z)M(z′|z)
{

Ĉostt+1(Q̂O
t , z′) + (1 + η(z′))(1 + ε(z′))V̂C

t+1(Q̂
O
t+1, z′)

}
(5)

subject to the law of motion for the scaled state variable in (2).

Bellman equations (4) and (5) have closed-form solutions spelled out in Appendix C.

3.3 Calibration

Since we are interested in understanding how the value of office is affected by remote work,

we want to calibrate the model to the entire stock of office. While risk and return are likely

to vary across space, we focus here on New York City: America’s largest office market. One

key parameter will be identified from the A+ segment of the NYC office market, so we also

need a separate calibration for that segment of the NYC office market. We then repeat the

calibration exercise for two more cities: San Francisco and Charlotte. The former is affected

even more severely by remote work than NYC, while the latter is affected less severely.

3.3.1 States and State Transition Probabilities

The state variable z follows a Markov Chain which can take on four values: expansion (E),

recession (R), WFH expansion (WFH-E), WFH recession (WFH-R). Here, WFH stands for

a world where a substantial amount of work is done remotely or in hybrid format. Before

2020, the world was oscillating between the E and R states.8

The model is calibrated at an annual frequency. We decompose the 4× 4 annual state

transition probability matrix as the Kronecker product of two 2× 2 transition probabilities.

The first matrix governs the dynamics between expansions and recessions. The second one

governs the dynamics between no-WFH and WFH states. These two components are as-

8We can think of the two non-WFH states, E and R, as states where there was a small amount of work
done from home. American Time Use Survey data for 2017 put the fraction of remote work at around 5%.
Conceptually and computationally, the model can easily accommodate more remote work states. However,
this would lead to a parameter proliferation that creates difficulties for calibration.
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sumed to be independent:

π(z′|z) = πBC(z′|z)⊗ πWFH(z′|z).

We calibrate expansions and recessions to the observed frequency of NBER recessions in

the 1926–2019 data, and the average length of a recession. Recessions are shorter-lived than

expansions. This pins down the 2× 2 matrix πBC(z′|z).

πBC =


E R

E 0.877 0.123

R 0.581 0.419

.

The WFH transition matrix is a key object in our valuation exercise. We set the probability

of entering in the WFH state from the no-WFH state equal to q = 5%, to capture the idea

that a transition to mass adoption of remote work was unlikely before 2020. The second

parameter is the probability of remaining in the WFH state conditional on having entered

it, which we label p. The latter governs the persistence of remote work, and it is a key

parameter of interest in the paper. We will infer the value of p from the observed change in

class A+ office valuations at the onset of the pandemic, as measured from office REIT data,

and perform robustness with respect to this parameter. As explained in detail below, this

calibration delivers p = 0.9446. These two parameters pin down πWFH(z′|z):

πWFH =


No WFH WFH

No WFH 1− q q

WFH 1− p p

 =


No WFH WFH

No WFH 0.95 0.05

WFH 0.0554 0.9446

.

3.3.2 State Prices

The one-period SDF takes the form M(z′|z). We decompose this SDF into a pre-WFH SDF

and a WFH shifter:

M(z′|z) = MBC(z′|z)⊗ MWFH(z′|z).
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We choose MBC(z′|z) to match the risk-free rate and the equity risk premium in both

expansions and recessions. First, we match the risk-free rate, conditional on being in a given

state:

R f
t (z) =

(
∑
z′

πBC(z′|z)MBC(z′|z)
)−1

.

We average the observed 3-month T-bill rate (in excess of inflation) in expansions and reces-

sions using pre-2020 data. Second, we match the average return on equity conditional on

each pair (z, z′). That is, we want the conditional Euler equations for the aggregate stock

market return Retmkt be satisfied for each state z = E, R:

1 =

(
∑
z′

πBC(z′|z)MBC(z′|z)Retmkt(z′|z)
)

Combined, the equations for the risk-free rate and the equity return provide four equations

in four unknowns, and hence pin down MBC(z′|z):

MBC =


E R

E 0.761 2.639

R 0.262 1.917

.

The model matches the observed long-term average real risk-free rate of 1.5%. It implies

a higher real risk-free rate in recessions than in expansions. The model also matches the

historical average equity return of 9.5%. The equity risk premium is 8.0% unconditionally,

and substantially higher in recessions (13.8%) than in expansions (6.9%).

The SDF component MWFH(z′|z) governs how the risk associated with working from

home is priced. It is chosen to price the returns on a portfolio of stocks that goes long

companies that benefit from remote work and short companies that are hurt by remote work.

We deliberately exclude real estate stocks from the portfolio. Appendix B2 contains the

details of the WFH factor construction. We call this portfolio the WFH equity factor.

We use data from the period December 2014–December 2019 to measure the conditional

expected return on the WFH factor Retw f h(z′ = no WFH|z = No WFH). The WFH factor is
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exposed to stock and bond market risk, as captured by the first two terms below, as well as

to WFH risk, as captured by the last term:

Retw f h(z′ = No WFH|z = No WFH) = βmktλmkt + βbondλbond + λw f h.

We estimate the (conditional) stock and bond betas in the December 2014–December 2019

period. Appendices B4 and B5 show how we pin down the (conditional) market prices of

risk for the WFH equity risk factor, and for the stock and bond risk factors, respectively.

Given our value of λw f h = −7.0%, we find Retw f h(z′ = no WFH|z = No WFH) = −6.42%.

We use the data from December 2019 to December 2020 to measure the conditional ex-

pected return Retw f h(z′ = WFH|z = No WFH). Since we only observe one such transition

in our sample, we are forced to take this simpler approach. This results in Retw f h(z′ =

WFH|z = No WFH) = 30.84%.

Given that we have no data on the transition from the WFH to the no-WFH state and

only two annual observations on the return conditional on remaining in the WFH state, we

opt to assume that the second row of MWFH, conditional on z = No WFH, is equal to the

first row, conditional on z = No WFH.

We normalize the SDF entry MWFH(No WFH|No WFH) = 1. This then leaves us with

one equation in one unknown. We set MWFH(WFH|No WFH) to price the WFH equity risk

factor return correctly for z = No WFH:

1 =

(
∑
z′

πWFH(z′|z)MWFH(z′|z)Retw f h(z′|z)
)

.

Finally, since we want the risk-free rate to be fully determined by MBC(z′|z) and unaf-

fected by MWFH, we scale each row of MWFH,unscaled such that E[MWFH|z] is equal to 1 for

each state z:
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MWFH,unscaled =


No WFH WFH

No WFH 1 1.696

WFH 1 1.696

, MWFH =


No WFH WFH

No WFH 0.966 1.639

WFH 0.627 1.080

.

The model considers the WFH state (second column) to be a worse state of the world—with

a higher market price of risk—as the no-WFH state (first column). Assets such as offices,

that have lower returns in that state of the world, are therefore riskier. Note that even if the

WFH state is otherwise positive for productivity, it may require high investment, resulting

in higher marginal utility of consumption (Papanikolaou, 2011). As a robustness check, we

redo the valuation exercise switching off priced WFH risk by setting MWFH to a matrix of

ones.

In sum, the asset pricing model pins down the risk-free rate and contains two priced

aggregate risk factors: an equity market factor and a remote work factor.

3.3.3 Office Cash Flows for All NYC

Since we are interested in valuing the entire commercial office stock in New York City (the

market), our main calibration is for the entire office stock. Below, we also consider a second

calibration to the A+ segment, as well as separate calibrations for other office markets. The

calibration algorithm is detailed in Appendix D.

We set the lease expiration parameter at χ = 0.14. This delivers a lease duration of 7.32

years, matching the CompStak average office lease term in the New York City data. Table 2

lists the remaining parameters, which vary by state.

Market NER growth ε in expansions and recessions comes from the January 2000 to De-

cember 2019 CompStak data.9 NER is strongly pro-cyclical. Market NER growth in the

remote work state comes from the December 2019 to December 2022 CompStak data. Mar-

9When constructing market NER time series, we control for submarket, tenant industry, leasing type, and
building class FEs and then apply 6-month moving average to the raw series. Since NBER business cycles in
this period (and before) are shorter than commercial real estate leasing cycles, we use the latter to determine
the values for annual NER growth in expansions and recessions. Strict adherence to NBER dates would result
in office NER growth that is too similar across expansions and recessions, and make the large fluctuations in
rent growth observed in the data highly unlikely events from the perspective of the model.
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Table 2: Calibration for All NYC

Variable Symbol E R WFH-E WFH-R
Market NER growth ε 0.0603 -0.1173 0.0245 -0.1289
Supply growth η -0.0141 -0.0147 -0.0254 -0.0260
Lease renewal share sO 0.8545 0.3117 0.4066 0.1483
New leasing share sV 0.1848 0.3391 0.0879 0.1614
Fixed cost/rent ratio c f ix 0.2000 0.2000 0.2000 0.2000
Variable cost/rent ratio cvar 0.2300 0.2300 0.2300 0.2300
Leasing commission new LCN 0.3000 0.3000 0.2400 0.2400
Leasing commission renewals LCR 0.1500 0.1500 0.1200 0.1200

ket NER growth was -12.89% from December 2019 to December 2020 (one WFH-R year), and

2.45% per year from December 2020 to December 2022 (two WFH-E years).

Supply growth η(z) incorporates new construction net of depreciation and reductions in

office space due to conversion to alternative use. The values for supply growth for expan-

sion and recession periods are calculated from CompStak based on the year of construction

of all office buildings. New construction is 1.15% in expansions and 1.10% in recessions.

We subtract a 2.56% depreciation rate, a realistic number for office property, from the new

construction numbers to arrive at the net supply growth η reported in the table.10 Supply

growth is acyclical because of the long construction lags for office properties.

The values for supply growth in WFH-R and WFH-E periods are calculated by down-

scaling E and R supply growth by a fixed amount ∆η. The value for ∆η is set such that the

model has long-run growth in potential gross rent of zero, given all other parameters. This

keeps the model stationary. The calibration has the intuitive feature that supply growth is

substantially lower in the remote work states compared to the no-WFH states. This captures

the response of developers to the reduced demand for office (less new construction) as well

as increased conversion of office to alternative uses such as apartments.

The parameters sO(E), sO(R), sV(E), sV(R) govern office demand across the business cy-

cle in the non-WFH states. We pin down these four parameters to match four moments of

the NYC contractual occupancy rate over the period 1987.Q1–2019.Q4, plotted in panel B

10Our depreciation estimate corresponds closely to the 39 years of allowable depreciation expense for non-
residential commercial real estate assets for tax purposes.
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of Figure 2. Those moments are the mean, the standard deviation, the maximum, and the

minimum. The resulting lease renewal share for existing leases that are up for renewal, sO, is

strongly pro-cyclical. The new leasing share for vacant space, sV , is counter-cyclical, simply

because there is much less vacant space available for lease in expansions. This calibration

ensures that our model matches both the average vacancy rate of NYC office as well as the

amplitude of the leasing cycle, which reflects cyclical tenant demand for office.

The parameters sO and sV in the WFH states are assumed to be proportional to their

no-WFH counterparts:

si
z,w f h = δ · si

z, z = E, R, i = O, V. (6)

We estimate δ to best fit the dynamics of the office occupancy rate over the 12 quarters from

2020.Q1–2022.Q4. Appendix D explains the details. The resulting value is δ = 0.48 , which

indicates a large downward shift in office demand in the WFH state. This shift is consistent

with the evidence on the large decline in new leasing activity, documented in Figure 4.

The fixed costs and variable costs are assumed to be acyclical, making net operating

income (revenue minus cost) more cyclical than revenues. Leasing commissions are also

acyclical, and around 4.3% per year on leases that last an average of 7 years, for a total

commission of 30% on a new lease. Leasing commissions on renewals of existing leases are

set half as large as commissions on new leases. Leasing commissions are assumed to go

down by 20% in the WFH state to reflect additional competition for brokerage business in a

world where office demand is weak.

3.3.4 Office Cash Flows for A+ Properties in NYC

Next, we calibrate the model to A+ buildings of New York City. We use the leases on the

subset of A+ buildings to get parameter estimates for the A+ NYC office sector. The cali-

bration approach parallels that for All NYC, and is detailed in Appendix D. χ is set to be

0.12 to match the slightly higher average lease duration of 8.06 years of A+ leases in NYC.
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Appendix Table E1 lists the remaining parameter estimates for the A+ universe. The cost

parameters are assumed to be the same as for the market as a whole.

3.4 Identifying the Persistence of Work From Home

A key parameter in the calibration is p, which governs the persistence of remote work. We

identify this parameter as follows. We assume that the economy transitioned from the no-

WFH expansion state (the E state) in 2019 to the WFH state and a recession (the WFH-R

state) in 2020. We compute the model-implied return on the NYC A+ office market in this

transition, using the A+ calibration described above:

(
V̂A+(Q̂O

20, R̂O
20, WFHR)

V̂A+(Q̂O
19, R̂O

19, E)

)(
Q20Rm

20

Q19Rm
19

)
+

 N̂OI
A+

(Q̂O
20, R̂O

20, WFHR)

V̂A+(Q̂O
19, R̂O

19, E)

 = (1− 22.75%).

Figure 9 plots this model-implied realized return on A+ office in this transition, the left-

hand side of the equation above, for a range of values of p.11 Since the office return in this

transition varies strongly with p, this moment is well-suited to identify this parameter.

In order to pick the relevant point on this curve, we turn to the REIT data. REITS invest

in class A+ office properties. The three NYC-centric office REITs, (SL Green, Vornado, and

Empire State Realty Trust), experienced a value-weighted return of -36.16% between De-

cember 2019 and December 2020. After unlevering this equity return, the asset return was

-22.75%.12 The model matches this decline for a value of p = 0.94. With this key parameter

identified, we can return to the calibration for the full NYC office market and calculate the

change in its value due to remote work.13

11As the equation shows, this return depends also on the state pair (Q̂O
t , R̂O

t ) for 2019 and 2020, respectively.
We obtain these by feeding in the sequence of annual aggregate shocks (expansions and recessions) from 1926
to 2019 obtained from the NBER recession chronology into the laws of motion of the states under the A+
calibration, which gives the 2019 values. For the 2020 values, we apply the law of motion for the state variables
once more, assuming that the state transitioned from E to WFH-R.

12Unlevering is done based on leverage ratio and cost of debt data from NAREIT.
13We chose to calibrate to the full-year 2020 REIT return since the model is annual. Alternatively, one could

use this calibration strategy to calibrate to the REIT return measured over at different periods. The observed
office REIT returns were more negative when measured over a shorter period from February 2020–April 2020,
and also when measured over the longer period from December 2019– December 2022. This makes our results
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Figure 9: Determining p by Matching Realized Return of A+ Market

4 Office Valuation Results

4.1 Key Model Outcomes

Table 3 presents the model solution for the “All NYC” office calibration. The model delivers

a reasonable unconditional average cap rate of 7.28% for the overall NYC office market. The

cap rate is 9.23% in recessions and 7.05% in expansions.14

In a Gordon Growth Model with constant expected NOI growth rate g and a constant

discount rate r, the cap rate c = r − g. Our Markov Chain model features time-varying

expected growth and time-varying expected office returns, so this relationship does not hold.

It is nevertheless useful to look at the two components of the cap rate. The model implies

an expected return on NYC office of 7.01% and an office risk premium of 5.52%. This is

naturally lower than the equity risk premium of 7.98% since an unlevered office property

conservative. One could also use our procedure to update the implied persistence parameter over time.
14The hedonic-adjusted cap rate for Manhattan Office averaged 5.3% over the period 2001–19 according to

Real Capital Analytics data. The model predicts a 5.47% average cap rate for the same period. Longer, national
data from CBRE put the average office cap rate for NYC at 7-8%, close to our model’s steady-state. Like the
model, the Real Capital Analytics data indicates higher cap rates in recessions (6.0% in 2001, 2008, 2009) than
in expansions (5.2% for 2002–2007 and 2010–2019).
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Table 3: Model Solution for NYC All Calibration

Statistic Uncond E R WFHE WFHR
R f 0.0149 0.0084 0.0467 0.0084 0.0467

Equity E[Ret]− 1 0.0947 0.0773 0.1846 0.0746 0.1815
Equity RP = E[Ret]− 1− R f 0.0798 0.0690 0.1379 0.0662 0.1348

Cap rate 0.0728 0.0705 0.0923 0.0668 0.0920
Office E[Ret]− 1 0.0701 0.0619 0.1522 0.0487 0.1225

Office RP = E[Ret]− 1− R f 0.0552 0.0535 0.1054 0.0404 0.0757
E [gt] -0.0037 -0.0113 0.1383 -0.0473 0.0849

Vacancy rate = 1− Q̂O 0.2121 0.1031 0.1591 0.3216 0.3241
R̂ev 0.7373 0.7906 0.8883 0.6391 0.7556
Ĉost 0.3984 0.4273 0.4152 0.3688 0.3685

N̂OI = R̂ev− Ĉost 0.3389 0.3632 0.4731 0.2702 0.3870

V̂R 8.4092 9.5096 8.5116 7.4721 6.9610
V̂C 3.8292 4.4084 3.4498 3.4900 2.8195

V̂ = V̂R − V̂C 4.5800 5.1012 5.0619 3.9821 4.1414

is less risky that the aggregate stock market (which is a levered investment). The office risk

premium is substantially higher in recessions (10.54%) than in expansions (5.35%).15

Expected NOI growth is close to zero (-0.37% per year) unconditionally. This number

is in real terms and incorporates that the office stock depreciates at 2.56% per year, so that

real NOI growth is 2.20% before depreciation. Expected cash flow growth is higher in reces-

sions than in expansions since recession states imply a high likelihood of transitioning to a

better economic state going forward. The opposite is true of realized NOI growth rates in a

transition from expansions to recessions, which are negative in the model (not reported).

The next part of the table shows that vacancy rates are 21% on average, higher in reces-

sions than expansions by 5.60% points, and much higher conditional on being (and remain-

ing) in the remote work states, around 32.2%.

The last part of the table shows the value of the building, scaled by potential rent, and

broken down into the PDV of revenues minus PDV of costs. The typical NYC office trades

for a multiple of 4.58 times potential gross rent unconditionally according to our calibration.

15The model has interesting implications for the term structure of office risk premia discussed in Appendix
G1.
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The average valuation ratio of office properties in the no-WFH expansion state of 5.10 is

23.17% higher than the value of 4.14 in the WFH-R state. Appendix Figure D1 shows the

valuation ratio for office V̂ conditional on expansion, recession, WFH-expansion and WFH-

recession for NYC.

4.2 The Effect of WFH on Office Values

4.2.1 Entire Office Stock

To assess the effect of remote work on office values, we let the economy undergo the same

transition as the one we considered for A+ office when calibrating the parameter p, namely

from an expansion in the no-WFH state in 2019 to a WFH-R state in 2020. We feed in the

observed history of expansions and recessions from 1926–2019 to arrive at the value for the

endogenous state variables (Q̂O
19, R̂O

19) using the laws of motion for the states (2) and (3)

under the “All NYC” calibration. The model captures the decade-long expansion before

the Covid-19 pandemic. We then apply the law of motion once more to obtain (Q̂O
20, R̂O

20)

assuming the economy transitioned from E to WFH-R between 2019 and 2020.

The realized growth rate of potential gross rent in this transition is -15.14% in the model.

The change in the scaled valuation ratio is -36.43%. Therefore, the overall value of the NYC

office stock in this transition falls by 46.06%:

(
V̂(Q̂O

20, R̂O
20, WFHR)

V̂(Q̂O
19, R̂O

19, E)

)(
Q20Rm

20

Q19Rm
19

)
= (1− 36.43%) · (1− 15.14%) = (1− 46.06%).

Put differently, if the entire office stock of NYC had been marked-to-market, its value would

have fallen by 46.06% in 2020. This same decline is 26.66% for the A+ office sector, illustrat-

ing the relative safety of A+ office.

To understand the longer-run consequences of remote work, we conduct the following

simulation exercise. In the first period of the transition, from 2019 to 2020, the economy

goes from the E to the WFH-R state. In the second year, from 2020 to 2021, the economy
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transitions from WFH-R to WFH-E. In the third year (2022), and it stays in the WFH-E state.

From 2023 onward, we let the economy evolve stochastically according to its laws of motion

governed by π. Since there are many possible paths for the evolution of the state, Figures

10 and 11 show fan charts where darker blue colors indicate more likely future paths. The

solid black line indicates the mean path. The red line plots the average path conditional on

the economy remaining in the WFH state every year until (at least) 2029. The probability of

this event occurring is 67.11% according to the model.

Figure 10: Key Moments Distributions, Normalized to 100 in Dec 2019

Notes: The graph shows the evolution of the valuation ratio V̂ for a transition from expansion in 2019 to WFH-R in 2020, WFH-E in 2021
and 2022. From 2023 onward, the state evolves stochastically. The shaded areas show percentiles of the distribution of simulated paths,
with the darkest color indicating the 40–60 percentile range, and the lightest color the 10–90 percentile range.

The top left panel of Figure 10 shows the occupancy rate dynamics from the model sim-

ulation. The model captures a substantial decline in occupancy from a high value of 96.33%

in 2019 to a value of 80.68% in 2022. In the data, there is a similar decline from 88.9% in

2019.Q4 to 77.8% in 2022.Q4. Since long-term leases continue to roll off and renew at low

rates as long as the economy is in the WFH state, the decline in occupancy is protracted.

38



Should the economy remain in the WFH state until 2029, occupancy would eventually fall

below 70% even after accounting for the supply response.16

Lease revenues, in the top right panel, reflect the protracted decline in occupancy and

the gradual repricing of existing leases at lower market rents. The model predicts a decline

in active lease revenues (QORO) of 17.58% between 2019 and 2022, which is close to the

observed decline in active lease revenues in the CompStak data for New York City of 15.54%

between December 2019 and December 2022. Lease revenues go down 29.23% by 2029 along

the average path. They fall by an additional 10% points for the red line, reflecting the faster

reduction in the overall quantity of office space if the economy remains in the WFH state for

longer.

The bottom left panel shows that NOI falls by less than revenues since costs also decline

in occupancy. The bottom right panel shows that office cap rates were below 5.30% in 2019

in the model, after a decade-long expansion that increased occupancy and rents. Cap rates

then increase in 2020, fall back in 2021 as the economy shifts from recession to expansion,

and then gradually stabilize toward their unconditional mean of 7.28%.

The combination of declining cash flows and rising cap rates results in a substantial

change in the value of office Vt, shown in Panel A of Figure 11. The graph illustrates a

mean path that sees no recovery. Remote work is a near-permanent shock. Ten years after

the transition, office values remain at levels that are 43.87% below the valuation in 2019.

Along some sample paths, the economy returns to the no-WFH state and sees increases in

occupancy rates (Q̂O), rent revenues, and NOI.17 Along other sample paths, the economy

remains in the WFH state (WFH-E or WFH-R) for a long period, and office valuations con-

tinue to fall. For example, conditioning on remaining in the WFH state for at least 10 years

(red line), office valuation are 51.58% lower in 2029 than in 2019.

A second key message from the valuation exercise is that there is substantial uncertainty

16Recall that supply growth in the WFH state is 1.13% points lower per year in the WFH than in the no-WFH
states. This captures reduced construction as well as conversion of office to alternative use.

17There is no full recovery since the first three years in the WFH state permanently reduce the size of the
office stock.
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Figure 11: Office Valuation Distribution,

Panel A: All NYC Panel B: NYC A+ Buildings

Notes: The graph shows the evolution of the office value V for a transition from expansion in 2019 to WFH-R in 2020, WFH-E in 2021 and
2022. Values are normalized to 100 in Dec 2019. From 2023 onward, the state evolves stochastically. The shaded areas show percentiles of
the distribution of simulated paths, with the darkest color indicating the 40–60 percentile range, and the lightest color the 10–90 percentile
range. Panel A shows the distribution of values for all NYC office buildings; Panel B focuses on A+ office value (buildings with a lease in
the top ten percentile of the rent distribution in their submarket in the last ten years).

around the mean path. This uncertainty is driven both by the future state of the econ-

omy: the medium-frequency fluctuations between recession and expansion as well as by

the lower-frequency uncertainty about the future evolution of remote work. Office valua-

tions are subject to WFH risk.

4.2.2 Flight To Quality

The previous results referred to the entire NYC office stock. We do a separate valuation exer-

cise for the A+ segment, which has its own cash-flow parameter calibration to the A+ data as

defined in Section 2. The resulting parameters and the model output for cap rates, valuation

ratios, and vacancy rates are reported in Appendix E. They show lower cap rates and lower

expected returns in the A+ segment, consistent with the lower risk of this segment.

Panel B of Figure 11 revisits the transition graph for office values. It shows substantially

smaller value reductions both in the short- and in the long-run. The mean path has office

values down by 15.26% in 2029 compared to 2019. In the scenario where the economy re-

mains in the WFH state until at least 2029, the decline in A+ office values is 19.72%. The

better performance is due to the stronger rent growth for A+ in the WFH states, and a lower

risk premium for A+ office especially in the WFH state.
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On the flip side, the performance of the A-/B/C-class office segment (the complement to

A+) is strictly worse than the overall market. Its initial value decline is -70.37% compared to

-46.06% for all office.

4.3 Other Office markets and Aggregate Impact

4.3.1 San Francisco and Charlotte

We repeat the valuation exercise for San Francisco (SF) and Charlotte. Appendix F discusses

the calibration and reports the resulting valuation moments. Figure 12 below shows the

main fan chart for the valuation of the stock of SF office (left panel) and Charlotte office

(right panel). The short-run (long-run) declines in office values are 61.55% (71.90%) for SF

and 33.70% (27.16%) for Charlotte. The former are larger than for NYC, due to the more

cyclical nature of the SF office sector and its larger WFH exposure. This is consistent with

SF’s larger exposure to tenants from the technology sector who have more eagerly embraced

remote work. Charlotte’s valuation effects are smaller than NYC due to its milder office

cycles and smaller exposure to the WFH shock. Adjusted for market coverage, the total

office value destruction between the end of 2019 and 2022 is $32.7 billion in SF and $5.1

billion in Charlotte.

Figure 12: Office Valuation Changes for Other Cities

Panel A: San Francisco Panel B: Charlotte

Notes: The graph shows the evolution of the office value V for a transition from expansion in 2019 to WFH-R in 2020, WFH-E in 2021
and 2022. From 2023 onward, the state evolves stochastically. Office values are normalized to 100 in Dec 2019. The shaded areas show
percentiles of the distribution of simulated paths, with the darkest color indicating the 40–60 percentile range, and the lightest color the
10–90 percentile range. Panel A shows results for San Francisco, and Panel B shows results for Charlotte.
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4.3.2 Aggregate Impact

Table 4 compiles statistics on the top-20 U.S. office markets. It reports the quantity of ac-

tive leases (in sf) in December 2019 (column 1), the percent change in active lease revenue

between December 2019 and December 2022 (column 2), and the change in the quantity

(column 3) and in the NER (column 4) of newly-signed leases over the same period. These

statistics show that the decline in leasing activity is widespread. NYC is not an outlier. The

bottom panel compares the top-20 office markets to all 105 office markets and shows similar

changes in columns 2–4.

Table 4: Cross-Sectional Results For Top 20 Markets

(1) (2) (3) (4) (5) (6) (7)
State Market Active SF (mi) Lease Rev Chg New SF Chg NER Chg Value Chg Coverage (%) Value Chg Scaled

NY New York 290.20 -15.54 -43.15 -8.41 -51.20 73.58 -69.58
CA San Francisco 61.52 -18.55 -62.78 -31.99 -20.35 62.14 -32.75
NC Charlotte 23.67 -1.33 -88.44 -8.06 -2.43 47.54 -5.11

DC Washington DC 88.72 -27.09 -78.31 -16.11 -14.19 98.81 -14.36
CA Los Angeles 72.33 -26.36 -93.25 -43.79 -10.64 42.83 -24.84
MA Boston 57.42 -12.03 -34.65 9.75 -7.85 35.33 -22.22
IL Chicago 90.29 -21.66 -91.22 -13.54 -6.25 43.25 -14.45
WA Seattle 41.14 -18.35 -81.50 -21.34 -4.15 36.10 -11.50
GA Atlanta 41.97 -15.45 -85.26 -23.08 -3.23 31.33 -10.31
TX Dallas 46.34 -25.64 -73.18 -4.35 -3.92 26.60 -14.74
CA Orange County 39.26 -26.87 -94.08 3.68 -3.96 47.36 -8.36
CA San Diego 29.41 -21.95 -94.85 -28.50 -3.42 42.11 -8.12
TX Houston 42.12 -39.46 -100.00 nan -4.25 28.63 -14.85
VA Arlington 26.11 -31.46 -66.63 -4.79 -3.75 36.10 -10.39
CA Palo Alto & Sunnyvale 14.94 3.29 -87.23 -32.87 -1.59 36.10 -4.40
CA San Jose 22.07 -17.99 -85.82 -23.45 -2.77 11.39 -24.32
TX Austin 27.97 -14.30 -80.54 -8.60 -2.27 54.54 -4.16
CO Denver 28.81 -21.12 -88.07 -26.26 -2.17 29.78 -7.29
PA Philadelphia 26.45 -18.87 -75.06 -4.68 -1.97 23.24 -8.48
NJ North Jersey 17.51 -14.61 -21.22 -35.09 -1.59 18.29 -8.69

Top 20 (Compstak) 1088.28 -18.67 -71.68 -3.87 -151.94 41.26 -318.93
Other markets (Compstak) 927.86 -18.17 -83.70 -6.13 -67.64 36.10 -187.39
U.S. (Compstak) 2016.14 -18.51 -78.14 1.61 -219.58 38.87 -506.31

Notes: The table reports the quantity of active leases pre-pandemic (in million sf), the change in active leasing revenue (in % of pre-
pandemic leasing revenue), the change in newly signed leases (% of pre-pandemic newly signed sf), the change in the net effective rent per
sf on newly-signed leases (in % of pre-pandemic market NER), and the change in valuation (in 2021 December dollars) for top 20 markets
and for all 105 markets in CompStak combined (last two rows). Pre-pandemic active space in column (1) is calculated in December 2019.
The changes in columns (2)-(4) are measured between December 2019 and December 2022. The value change in column (5) measures the
change in the total value of office in dollars between the end of 2019 and the end of 2022. It combines the change in the value-to-revenue
ratio over the first two years of the pandemic from the model calibration with the size of the market in column (1) and the drop in leasing
revenue in column (2). The value changes for New York, San Francisco, and Charlotte in the top panel are based on full calibrations of the
model to each of these cities separately, while the change in the valuation-to-revenue ratio for the other 17 top-20 markets in the middle
panel is based on the change in the valuation ratio from the New York City calibration. The aggregate numbers in columns (4) for the
top-20 market and national NER changes are adjusted by submarket FEs to remove composition effects. Column (6) is the CompStak
coverage ratio, measured as the ratio of pre-pandemic active leased space in CompStak and active leased space in Cushman & Wakefield
data. Column (7) divides column (5) by the coverage ratio in column (6).

Column (5) calculates the change in office values between December 2019 and December

2022 (in December 2022 dollars). It combines the size of the market in column (1), the change
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in lease revenues reported in column (2), and the change in the value-to-revenue ratio from

the model. For NYC, San Francisco, and Charlotte, we calibrated the model separately,

delivering a valuation ratio change that is market-specific. The three-year value destruction

is $51.2 billion for NYC, $20.4 billion for San Francisco, and $2.4 billion for Charlotte. For

the other 17 large office markets, we use the market-specific size and leasing revenue change

in columns (1) and (2) and combine them with the valuation ratio change for NYC to arrive

at column (5). Summed across the top-20 markets, we obtain a $151.9 billion value loss.

Extending the analysis to the remaining 85 office markets, we find an additional $67.6 billion

in value destruction for a total of $219.6 billion across all 105 markets in the CompStak data.

CompStak does not provide universal coverage. Based on Cushman and Wakefield re-

ports, we are able to obtain a December 2019 coverage ratio estimate for 18 of the top-20

markets, shown in column (6). A coverage ratio of 36.1% for the remaining 87 markets

(=105-18) reconciles the total U.S. office inventory in CompStak to that in Cushman & Wake-

field. To obtain our aggregate value impact statistic in column (7), we divide column (5) by

column (6). We arrive at an aggregate $506.3 billion loss in office values nationwide over the

2019–2022 period. The largest dollar losses are in NYC ($69.6) and SF ($32.7), followed by

Los Angeles and San Jose.

4.4 Sensitivity Analysis

We conduct several robustness checks. First we explore sensitivity to the WFH persistence

parameter p. Figure 13 plots the NYC office value decline in 2020. The vertical dashed line

indicates our benchmark model with p = 0.94, which produces a 46.06% valuation decline

in the transition. This same decline is around 28.04% for a value of p that is half as large as

our benchmark.

Next, we study sensitivity to another important parameter: rent growth in the WFH-R

state. That parameter is hard to pin down since we have only observed one realization of

that state. Figure G2 shows that setting NER growth in the WFH-R state equal to that in
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Figure 13: Change in Valuation with Different p for All NYC

the R state, a natural alternative, has only minimal effect on office values compared to the

benchmark. This result suggests that our results are not driven by poor office realizations in

2020 itself.

WFH affects office values through both cash flows and discount rates. We conduct an ex-

ercise where we shut off the WFH discount rate channel (MWFH equals the identity matrix).

Figure G3 shows that the office value decline is only slightly smaller, so that most of the

valuation impact comes from lower current and future cash flows and business cycle risk.

Finally, Figure G4 performs four sensitivity analyses for San Francisco office values to (i)

rent growth in the WFH-E state, (ii) the reduction in supply growth in the WFH states, (iii)

the persistence of remote work, and (iv) the introduction a floor for office values as a simple

way to model additional optionality arising from adaptive reuse (not already captured by

the net supply parameter η). The persistence parameter and the supply gap have the largest

impact on valuations.

5 Discussion and Conclusion

The real estate sector provides a unique vantage point to study the large social shifts in the

wake of the Covid-19 pandemic. We estimate a 46.1% decline in the value of New York
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City’s office stock at the outset of the pandemic. We estimate that remote work is likely to

persist and result in long-run office valuations that are 43.9% below pre-pandemic levels.

The numbers for NYC are not an outlier; we find similar effects across many of the largest

office markets. Our novel commercial real estate valuation model is suitable for calibration

to office markets in other locations, other commercial real estate sectors, and other real assets.

These valuation changes are large, but since about 80% of the office stock is privately-held

and private transactions have been few and far between (and represent a heavily selected

sample), it has been difficult to directly observe the valuation changes in the market place.

One exception is office REIT stocks, whose (unlevered) valuations the model matches both

in 2020 and in 2022.

Other market indicators that have turned bearish are short interest (as a share of equity

float) in office REIT stocks and the prices of CMBX tranches rated BBB-. Specifically, tranches

in more recent CMBX vintages, which have a larger share of office collateral than earlier

vintages, have experienced larger price declines recently, as shown in Figure 14.

Figure 14: Price of CMBX Insurance and Office Exposure
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Notes: Panel A shows prices for the Markit CMBX index of credit default insurance for BBB- tranches. A price of $60 implies that a pool
without early prepayments or defaults requires an upfront payment of roughly $40 per $100 original notional to initiate a trade purchasing
protection against default. The different lines are for different vintages, denoted S7 through S15. Panel B plots the share of mortgages in
each vintage that is backed by office properties against the price change of the CBMX BBB- tranche between January 2020 and March 2023.

The predicted substantial decrease in office values, particularly for lower-quality offices,
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would impact not only the equity but also the debt under a standard pre-pandemic capital

structure. As depicted in the right panel of Figure 15, ownership of office property equity

is widely spread among various investor types. Debt ownership, shown in the left panel, is

more concentrated with banks holding over 60% of all CRE debt.

Figure 15: CRE Debt and Equity Ownership
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Notes: Debt ownership data is from the Federal Reserve Flow of Funds data and office ownership is from Real Capital Analytics.

A large proportion of banks’ loan books is comprised of commercial real estate debt.

Figure 16 shows that this particularly true for medium-sized banks (Table A3 gives more

detail). CRE credit risk compounds the negative impact of higher interest rates on bank

equity, increasing the risk of financial fragility especially among regional banks (see also

Jiang, Matvos, Piskorski and Seru, 2023, for recent work on this important topic).

Finally, the decline in office values and the surrounding CBD retail properties, whose

lease revenues have been hit at least as hard as office, has important implications for local

public finances. For example, the share of property taxes in NYC’s budget was 48% in 2021,

31% of which comes from office and retail property taxes.18 A 43.9% decline in property

18An additional 3% of tax revenue comes from a tax on real estate tenants, and there are further indirect
effects on sales and income tax from weakness in CBD office and retail. Office property tax collection alone
exceeds the combined budgets of Sanitation, Fire, Transportation, and Parks and Recreation departments in
NYC.
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Figure 16: Commercial Real Estate By Bank Size
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Figure 17: Repercussions of Commercial Real Estate Valuation on Governments
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values would over time result in a 6.5% reduction in overall tax revenues. Given budget

balance requirements, the fiscal hole left by declining office and retail property tax revenues

would need to be plugged by raising tax rates or cutting government spending. Both would

affect the attractiveness of the city as a place of residence and work. These dynamics risk

activating an urban doom loop (Figure 17). With more people being able to separate the

location of work and home, the migration elasticity to local tax rates and amenities may

now be larger than in the past. Future research should explore these implications and study

the role for local and federal policy.

Our results have implications for future work practices. Firms and employees have in-

vested considerably to advance remote work possibilities. This has enabled major changes
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in the locations where individuals work and live. Real estate markets provide important

financial signals which can help assess how companies and markets perceive the net benefit

of remote work.

Trends in office occupancy have prompted discussion on the merits of conversion of

office, either from A-/B/C to A+ office or to alternative use such as multi-family. The former

conversion could make sense in light of the flight to quality and the likely dearth of new

office construction for years to come. The latter conversion makes sense in light of the lack

of (affordable) housing in large cities, but often runs into issues relating to the structural

feasibility, zoning restrictions, and return on investment. Older buildings tend to be more

amenable to apartment conversion. Whether and how these conversions take place will

have an important impact on the future of cities. Given the negative externalities associated

with office vacancy, there may be a role for local governments to subsidize the conversion

and speed up the transition towards a smaller office stock and larger housing stock.
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Pástor, L., Stambaugh, R.F., Taylor, L.A., 2022. Dissecting green returns. Journal of Financial

Economics 146, 403–424.

Ramani, A., Bloom, N., 2021. The Donut effect of COVID-19 on cities. Working Paper 28876.

National Bureau of Economic Research.

Rosenthal, S.S., Strange, W.C., Urrego, J.A., 2021. JUE insight: Are city centers losing their

appeal? commercial real estate, urban spatial structure, and COVID-19. Journal of Urban

Economics 127, 103381.

Van Nieuwerburgh, S., 2023. The remote work revolution: Impact on real estate values and

the urban environment: 2023 areuea presidential address. Real Estate Economics 51, 7–48.

51



Internet Appendix

A Additional Empirical Results

A1 Relationship between NER and Building Age

Table A1 provides detailed regression results of the relationship between building age and

NER. We control for month and submarket fixed effects (column 1), as well as tenant fixed

effects (column 2), and building fixed effects (column 3). The specification in column 3 with

both tenant and building fixed effects identifies the quality gradient from tenants that sign

multiple leases within the same building at different points in time (at different building

ages), enabling a precise estimation of the association between age and rents. Each year

of aging reduces NERs by $0.067 per sf in that specification. A building that is ten years

older has 2% lower rents relative to the average rent of $34 per sf. Our key test is how

this relationship changes over the pandemic, represented as an interaction term in column

4. We observe that interaction of building age and a post-pandemic indicator variable is

negative and significant, indicating that young buildings become even more valuable after

the pandemic. This specification compares rent outcomes for leases signed in March 2020

and later, relative to leases signed between January 2018 and February 2020. Column 5 uses

log NER and log building age, and shows an additional 2.4% point rent elasticity to age. We

observe that this association is largely driven by shifts in major markets (columns 6 and 7),

and is particularly large in New York and San Francisco (column 8).
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Table A1: Building Quality and Rent

(1) (2) (3) (4) (5) (6) (7) (8)

Building Age (Yrs) -0.108∗∗∗ -0.071∗∗∗ -0.145∗∗ -0.083∗∗∗ -0.089∗∗∗ -0.066∗∗∗ -0.076∗∗∗

(0.014) (0.011) (0.063) (0.014) (0.016) (0.015) (0.021)
Building Age × Post -0.063∗∗∗ -0.022∗∗ -0.019 -0.160∗∗∗

Pandemic (0.013) (0.010) (0.012) (0.024)
Log Building Age -0.082∗∗∗

(0.006)
Log Building Age × Post -0.038∗∗∗

Pandemic (0.007)
Age × Post × -0.052∗∗∗ -0.028∗∗

Major Market (0.014) (0.012)

Month FE Yes Yes Yes Yes Yes Yes Yes Yes
Submarket FE Yes Yes Yes Yes Yes Yes Yes Yes
Tenant FE No Yes Yes No No No Yes Yes
Building FE No No Yes No No No No No
Sample Full Full Full 2018–2022 2018–2022 2018–2022 2018–2022 2018–2022

SF+NYC
N 433,491 231,868 217,060 117,429 117,305 117,429 47,365 9,334
standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: This table shows the relationship between firm quality attributes and rent gradients over the pandemic. The left hand side variable
is rents in 2021 dollars, except in column (5) in which the dependent variable is log(rents). The right hand controls always include the
month of lease commencement and submarket fixed effects. Additional controls include a fixed effect for tenant identity (not available for
all leases), as well as a fixed effect for the building. The sample includes all years for columns (1)–(3), and subsets to leases signed from
2018–2021 for columns (4)–(8). Column (8) additionally subsets to San Francisco and New York City. To illustrate the changing premium
on quality, we introduce an interaction with post pandemic from column (4), defined as the time period from March 2020 and afterwards.
Major markets are defined in footnote 5. Standard errors are double clustered at the month of lease commencement and submarket level.

A2 Relationship between office demand and tenant size

To illustrate shifting firm space demands during the pandemic across the firm size distribu-

tion, Figure A1 plots the relationship between the change in leased space between Decem-

ber 2019 and December 2022 by measuring the change in space at the tenant-level (y-axis)

against tenant size, as measured by the log of total sf of active leases before the pandemic

(x-axis). We estimate a strongly positive relationship (blue line), which suggests that the

decline in tenant space demand is dominated by smaller firms. This is consistent with the

idea that small firms are more likely to be financially constrained (Beck, Demirgüç-Kunt

and Maksimovic, 2005), and hence more sensitive to the cost of commercial leases and more

likely to adopt remote work.
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Figure A1: Change in Firm Office Demand and Size

Notes: This graph shows the relationship between firm office demand and size. For each tenant in the CompStak data, we measure their
total square footage leased in December 2019, and in December 2022. A measure of 100% indicates the tenant has retained the same
amount of space; a higher number indicates tenant expansion and a smaller number suggests space reductions. We plot this measure,
with one dot per tenant, against the total space demand for that tenant before the pandemic (the log active square feet in December 2019).
The blue line is the linear best fit relationship indicating that smaller firms were more likely to cut down on space.

A3 Relationship between office demand and remote job postings

As an alternative measure of firms’ remote working plans, we use job posting data from

Ladders. This data allows us to measure the fraction of a firm’s job listings that are for

fully-remote positions.19 We then estimate the relationship between the change in office

demand, measured as the percentage change in active lease space in square feet normalized

by employment growth since January 2020, and the fraction of job postings that are remote.

We merge job postings and tenant data for 135 large tenants.

Table A2 reports the results. The change in office demand is measured over various

periods ranging from the last 3 to the last 24 months (relative to the time of data collection

in February 2022). We find a significant negative relationship at all horizons. Our results

suggest that firms that express a greater remote work preference in job listings have lower

demand for office space. A 10% point increase in the share of remote job postings lowers

office demand by 3.9–4.9% points. This result is consistent with the idea that durable shifts

19The Ladders data contains a flag indicating whether the position is remote or not.
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in remote work are changing the demand for office space.

Table A2: Remote Listings and Office Demand

(1) (2) (3)

∆ Space ∆ Space ∆ Space

Remote Listings (3 months) -0.392∗∗

(-2.41)

Remote Listings (12 months) -0.492∗∗

(-2.46)

Remote Listings (24 months) -0.468∗∗

(-2.01)

Constant -0.0123 -0.0106 -0.0156

(-0.61) (-0.52) (-0.77)

Observations 135 135 135

R2 0.042 0.044 0.030

t statistics in parentheses.

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The dependent variable, ∆ Space, is constructed from CompStak and defined as the square feet (sf) of leases executed post-pandemic

minus the positive part of the difference between sf of leases expired post-pandemic and sf of leases commenced post-pandemic, and

normalized by pre-pandemic active sf. The independent variables measure the ratio of remote job postings for a specific tenant within

a time window since we downloaded the data snapshot from Ladders in February 2022. More specifically, we look at December 2021 to

February 2022, January 2021 to February 2022 and January 2020 to Feb 2022 and check the ratio of tenants’ remote jobs over their total job

postings.

A4 Relationship between Bank Size and CRE Exposure

In this section, we examine the relationship between bank size and banks’ commercial real

estate (CRE) exposure using bank call report data. As part of mandatory quarterly report-

ing, banks’ call reports contain bank size, measured as bank book assets, and their exposure

to commercial real estate for each quarter end for U.S. commercial banks. We measure CRE

loans using the variable “UBPRE629”, commercial real estate & related ventures as a percent-

age of total bank equity, times “UBPR3210”, total bank equity capital. UBPRE629 contains

the sum of construction and land development loans, nonfarm nonresidential mortgages,
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unsecured loans to finance commercial real estate, construction and land development, other

real estate owned, and investments in unconsolidated subsidiaries and associated compa-

nies.

Table A3 reports various categories of bank sizes (column 1), the number of banks in each

grouping (column 2), the fraction of aggregate bank assets the group represents (column 3),

the asset-weighted average (awa) ratio of CRE loan exposure to bank asset value (column

4), and the fraction of aggregate CRE loans held by banks in that group (column 5). We

find that medium and small banks are most exposed to CRE risks, with average exposures

of around 20-25%, while the largest banks with over $250 billion assets have only moderate

CRE exposure (< 5%). Nonetheless, the dollar value of their CRE exposure still accounts for

24.3% of all CRE loans.

Table A3: Commercial Real Estate Exposure by Bank Size

(1) (2) (3) (4) (5)

Bank Size Count Asset Share CRE/Asset Exposure Share

($ bi) (%) (%, awa) (%)

>250 13 55.5 4.5 24.3

100–250 22 15.2 7.9 11.5

50–100 16 4.9 17.7 8.4

25–50 34 5.0 18.7 9.0

10–25 73 5.0 24.4 11.7

2–10 399 7.0 25.5 17.2

0.5–2 1,198 4.8 28.0 13.1

<0.5 3,041 2.6 19.5 4.9
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B Working From Home Factor and Office Expected Returns

B1 Model for Expected Returns

We develop a simple model to help understand how expected returns (risk premia) on office

properties were affected during the pandemic.

We propose the following model for the expected log return on office REITS ro
t :

xt ≡ Et[ro
t+1] = r f

t + βm
t λm + βb

t λb + β
w f h
t λw f h (7)

Office REITS are exposed to three sources of risk: aggregate stock market risk, aggregate

bond market risk, and the systematic risk associated with remote work. In addition, their

expected returns reflect the evolution of short-term nominal bond yields r f
t . To capture the

changes in the underlying risk structure during the pandemic, we allow the exposures of

office REITS to vary over time.

B2 Constructing a WFH Equity Risk Factor

We form a portfolio (Working From Home factor) that goes long stocks which benefit from

remote work and short stocks which suffer from the move to working-from-home. This

entails long positions in the technology and health care sectors, and short positions in the

transportation, entertainment, and hotel sectors. The WFH factor composition can be found

in Table B1. Several variations on the WFH factor construction, such as excluding enter-

tainment stocks or just going long technology stocks and short transportation stocks, give

similar results.

The WFH factor is a monthly rebalanced, long-short market capitalization weighted bas-

ket of stocks. On the last working day r of each month, which we call the rebalance day, each

stock i in the long leg is assigned a weight wi,l,r and each stock j in the short leg is assigned
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a weight wj,s,r

wi,l,r =
Si,r−1

∑k∈cl,r
Sk,r−1

; wj,s,t =
Sj,r−1

∑k∈cs,r Sk,r−1

Where Sk,r−1 is the market capitalization of stock k on day r− 1, the working day immedi-

ately preceding rebalance day r, and cl,r and cs,r are the constituents in long and short legs

respectively for rebalance date r. Further, we impose weight caps of 10% on each stock in

the long leg and 20% on each stock in the short leg. The remaining weights are redistributed

among remaining stocks of that leg in the same proportion above, i.e. proportional to their

market capitalization, such that:

∑
k∈cl,r

wk,l,r = 1; ∑
k∈cs,r

wk,s,r = 1

Once weights are assigned, daily returns of the long and short leg are calculated as follows:

Rl,t = ∑
k∈cl,rt

wk,l,rt

(
Pk,t

Pk,t−1
− 1
)

Rs,t = ∑
k∈cs,rt

wk,s,rt

(
Pk,t

Pk,t−1
− 1
)

Where Rl,t and Rs,t are the returns of the long and short legs of the Index and Pk,t is the price

of stock i on day t. wk,x,rt is the weight of stock k in leg x on date t, if t is a rebalance date and

the weight of stock k in leg x on the rebalance date immediately preceding date t otherwise.

The daily return Rt on the working from Index on date t is then given by:

Rt = Rl,t − Rs,t

The level of the Working from home index on date t, WFHt is then given by:

WFHt = WFHt−1(1 + Rt); WFH0 = 100
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We start the WFH time series at the end of December 2014 since the composition of the

WFH index is relatively stable after that date. Prior to 2015, many of the companies in

the long or short leg were not trading, such as Zoom. Several perturbations on the WFH

index construction deliver similar results. Figure B1 plots the WFH index constructed from

weekly and monthly returns. Below we use the monthly return series. The figure cumulates

the WFH index returns starting from 100 at the start of 2015.

Figure B1: Working From Home Risk Factor
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Before the pandemic, the WFH factor has modestly positive returns. It then spikes up

50% when the pandemic hits and large parts of the economy transition to remote work.

Companies supporting remote work practices (Zoom, Peloton, etc.) flourish, while compa-

nies that require travel of physical proximity sell off (cruise lines, hotels, etc.). The WFH

factor spikes up when the pandemic intensifies. It drops sharply when there is news about

the development of a vaccine, such as in November 2020, or at the start of 2021. Naturally,

the average realized return of the WFH factor during the pandemic is strongly positive.
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Table B1: Composition of WFH Index

Panel A: Long Positions

Ticker Name Leg Sector
ZM Zoom Video Communications Long Communication
VZ Verizon Communications Inc Long Communication
ATVI Activision Blizzard Inc Long Communication
NTDOF Nintendo Ltd Long Communication
EA Electronic Arts Inc Long Communication
CSCO Cisco Systems Inc Long Communication
MTCH Match Group Inc Long Communication
EGHT 8X8 Inc Long Communication
VG Vg Corp Long Communication
PANW Palo Alto Networks Inc Long Communication
VMW Vmware Inc Long Cloud Technologies
INSG Inseeog Inc Long Cloud Technologies
ZS Zscalar Inc Long Cloud Technologies
DBX Dropbox Long Cloud Technologies
NTAP Netapp Inc Long Cloud Technologies
OKTA Okta Corp Long Cybersecurity
FTNT Fortinet Inc Long Cybersecurity
REGN Regeneron Pharmaceuticals Long Healthcare/Biopharma
GILD Gilead Sciences Inc Long Healthcare/Biopharma
SRNE Sorrento Therapeutics Inc Long Healthcare/Biopharma
AMGN Amgen Inc Long Healthcare/Biopharma
NFLX Netflix Inc Long Information Technology
GOOGL Alphabet Inc Long Information Technology
FB Meta Platforms Inc Long Information Technology
AMZN Amazon.Com Inc Long Information Technology
MSFT Microsoft Corp Long Information Technology
CTXS Citrix Systems Inc Long Information Technology
PRGS Progress Software Corp Long Information Technology
TEAM Atlassian Corporation Inc Long Information Technology
NTNX Nutanix Inc Long Information Technology
DOCU Docusign Long Online Document Mgmt
BOX Box Inc Long Online Document Mgmt
UPLD Upland Software Inc Long Online Document Mgmt
PFE Pfizer Inc Long Vaccine Candidates
MRNA Moderna Inc Long Vaccine Candidates
BNTX Biontech Se Long Vaccine Candidates
JNJ Johnson & Johnson Long Vaccine Candidates
AZN Astrazeneca Plc Long Vaccine Candidates
NVAX Novavax Inc Long Vaccine Candidates
PTON Peloton Interactive Inc Long Virtual Healthcare
TDOC Teladoc Health Inc Long Virtual Healthcare

60



Panel B: Short Positions

SIX Six Flags Entertainment Corp Short Entertainment
EB Eventbrite Inc Short Entertainment
LYV Live Nation Entertainment In Short Entertainment
WYNN Wynn Resorts Ltd Short Entertainment
LVS Las Vegas Sands Corp Short Entertainment
CZR Caesars Entertainment Inc Short Entertainment
HLT Hilton Worldwide Holdings In Short Hotels
MAR Marriott International Short Hotels
H Hyatt Hotels Corp Short Hotels
IHG Intercontinental Hotels Short Hotels
DAL Delta Air Lines Inc Short Transportation
UAL United Airlines Holdings Inc Short Transportation
AAL American Airlines Group Inc Short Transportation
LUV Southwest Airlines Co Short Transportation
CCL Carnival Corp Short Transportation
NCLH Norwegian Cruise Line Holdin Short Transportation
UNP Union Pacific Corp Short Transportation

B3 WFH Risk Exposure

To show that WFH risk emerged in full force during the pandemic, we estimate time-varying

betas from 36-month rolling-window regressions for monthly office REIT excess returns:

ro
t+1 − r f

t = α + βm
t (r

m
t+1 − r f

t ) + βb
t (r

b
t+1 − r f

t ) + β
w f h
t rw f h

t+1 + et+1 (8)

Figure B2 shows the estimated betas for office REITS. The patterns in the stock and bond

betas of office REITS in the three-factor model (blue line) are similar to those in the two-

factor model without the WFH factor (orange line) before the pandemic. However, omission

of the WFH factor leads one to overstate the stock market beta during the pandemic (top left

panel). The reverse is true for the bond beta in the top right panel.

The WFH beta in the bottom left panel is close to zero prior to the pandemic in February

2020, an exposure estimated over the 36-month window from March 2018 through February

2020. The βw f h for Office REITS then starts a precipitous decline to around -0.5. It remains

strongly negative until the end of our sample in December 2021, ending at -0.3 in December
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2021. The bottom-right panel shows that the R2 improved during the pandemic due to the

inclusion of the WFH factor.

Figure B2: Risk Exposures of Office REITs During Covid with WFH
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B4 WFH Risk Price

We estimate the market prices of risk on the WFH factor, λw f h, using the cross-section of 22

individual office REITs listed in Table B2.
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Table B2: List of Office REITS

Office REIT Ticker

Alexandria Real Estate Equities, Inc. ARE

Brandywine Realty Trust BDN

Boston Properties, Inc. BXP

CIM Commercial Trust Corp CMCT

Cousins Properties CUZ

Columbia Property Trust Inc. CXP

Easterly Government Properties DEA

Equity Commonwealth EQC

Empire State Realty Trust ESRT

Franklin Street Properties Corp. FSP

Highwoods Properties, Inc. HIW

Hudson Pacific Properties, Inc. HPP

Kilroy Realty Corporation KRC

Corporate Office Properties Trust OFC

Office Properties Income Trust OPI

Piedmont Office Realty Trust, Inc. PDM

Paramount Group, Inc. PGRE

SL Green Realty Corp SLG

Vornado Realty Trust VNO

Douglas Emmett, Inc. DEI

City Office REIT, Inc. CIO

New York City REIT, Inc. NYC

We use a two-stage Fama-MacBeth procedure. In the first stage using the time-series,

we estimate 36-month rolling-window regressions of each REIT’s return on the three factor

returns; i.e., we estimate equation (8) for each REIT separately. In the second cross-sectional

step, we regress the realized return each month on the betas for that month. The market

price of risk estimates are the average of the monthly slope estimates of the second step. We

use only the months prior to the onset of the pandemic (December 2014–December 2019)
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when computing this average. Since the WFH index saw unusually high realizations during

the pandemic, inclusion of the pandemic months would lead one to confuse realized with

expected returns, while in fact the two are negatively correlated. We obtain λ̂w f h = −7.0%

annualized (t-stat is -0.52 but the sample is short to reliably estimate this coefficient).20

The negative market price of risk for WFH risk means that states of the world where

the WFH risk factor was large and positive are bad states of the world. This is intuitive, as

those are periods where the coronavirus pandemic surges. Conversely, negative returns to

WFH, such as Nov 8, 2020 when the vaccine discovery news first broke, are good states of

the world.

B5 Expected Returns

For the risk prices on stocks and bond, we use the sample average of the estimated risk

premia in the post-1994 period: λm = 7.81% and λb = 2.91%. For the WFH risk price we

use λw f h = −7.0%, as estimated above. We combine the three time-varying betas from

Figure B2 with the market price of risk estimates to form the expected return on office REITs

as per equation (7). Figure B3 plots the resulting expected return. While the contribution

from stocks and bond market risk shrinks over the course of the pandemic, by virtue of the

declining stock and bond betas, the contribution from the WFH risk exposure (in purple) is

substantial. WFH risk contributes about 2–3% points to the expected return on office during

the pandemic.

The expected return on office REITs shrinks from 12.86% pre-pandemic (December 2014–

December 2019) to 10.79% during the pandemic (December 2019–December 2021), a decline

of 207 basis points. In December 2021, the expected return is up to 11.7%.

20Repeating the exercise with weekly instead of monthly return data and the 52-week rolling window betas,
we obtain λ̂w f h = −10.2% (t-stat is -0.84).

64



Figure B3: Expected Return of Office REITs During Covid
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C Model Derivation

This section contains the full derivation of the model in Section 3. The goal is to solve the

following equation:

Vt = Et

[
∞

∑
j=1

Mt,t+j
(

Revt+j − Costt+j
)]

= Et

[
∞

∑
j=1

Mt,t+jRevt+j

]
− Et

[
∞

∑
j=1

Mt,t+jCostt+j

]
= VR

t −VC
t .

First, we solve the revenue side, i.e., for VR
t

C1 Revenue.

Reproducing the equation for the law of motion for occupied space, QO
t+1 below:

QO
t+1(Q

O
t , z′) = min{QO

t (1− χ) + QO
t χsO

t+1(z
′) + (Q̄t −QO

t )s
V
t+1(z

′), Q̄t+1}

From the stochastic process of the growth of the total space in the building we get:

Q̄t+1

Q̄
− 1 = ηt+1(z′) ⇒ Q̄t+1 = Q̄t(1 + ηt+1(z′))

and the scaled state variable Q̂O
t , we can be rearranged as

Q̂O
t =

QO
t

Q̄t
⇒ QO

t = Q̂O
t Q̄t.

To convert QO
t+1(Q

O
t , z′) as a function of scaled variables, QO

t+1(Q̂t, z′), we substitute equa-

tions for Q̄t+1 and QO
t ,

Q̂O
t+1 = min{Q̂O

t Q̄t(1− χ) + Q̂O
t Q̄tχsO

t+1(z
′) + (Q̄t − Q̂O

t Q̄t)sV
t+1(z

′), Q̄t(1 + ηt+1(z′))}

Q̂O
t+1 = min{

Q̂O
t (1− χ) + Q̂O

t χsO
t+1(z

′) + (1− Q̂O
t )s

V
t+1(z

′))

1 + ηt+1(z′)
, 1.}
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Next, the rent revenue in the building/market in period t + 1 is,

Revt+1(QO
t , RO

t , z′) = QO
t (1− χ)RO

t +
[

QO
t χsO

t+1(z
′) + (Q̄t −QO

t )s
V
t+1(z

′)
]

Rm
t+1.

RO
t is the average net effective rent per sf on existing leases, and Rm

t+1 is the market net

effective rent per sf on newly executed leases. RO
t is a geometrically-decaying weighted

average of all past market rents,

RO
t = χ

∞

∑
k=0

(1− χ)kRm
t−k.

Similarly, we can write RO
t+1 as,

RO
t+1 = χ

∞

∑
j=0

(1− χ)kRm
t+1−k

RO
t+1 = χRm

t+1 + χ(1− χ)Rm
t + χ(1− χ)2Rm

t−1 + χ(1− χ)3Rm
t−2 + · · ·

RO
t+1 = χRm

t+1 + (1− χ)
[
χRm

t + χ(1− χ)Rm
t−1 + χ(1− χ)2Rm

t−2 + · · ·
]

RO
t+1 = (1− χ)RO

t + χRm
t+1.

The growth rate of the market’s NER per sqft is a stochastic process, which follows the

following law of motion,

Rm
t+1

Rm
t
− 1 = εt+1(z′) ⇒ Rm

t+1 = Rm
t (1 + εt+1(z′)).

We define the state variable R̂O
t as,

R̂O
t =

RO
t

Rm
t

.
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Next, we want to find the law of motion for the scaled state variable R̂O
t+1:

R̂O
t+1 =

RO
t+1

Rm
t+1

R̂O
t+1 =

(1− χ)RO
t + χRm

t+1
Rm

t+1

R̂O
t+1 =

(1− χ)RO
t

Rm
t+1

+ χ

R̂O
t+1 =

(1− χ)R̂O
t Rm

t
Rm

t+1
+ χ

R̂O
t+1 =

(1− χ)R̂O
t

1 + εt+1(z′)
+ χ.

We define scaled revenues as

R̂evt+1(Q̂O
t , R̂O

t , z′) =
Revt+1

Q̄tRm
t

.

Rewriting the equation for Revt+1(QO
t , RO

t , z′) in terms of Rt+1(Q̂O
t , R̂O

t , z′):

Revt+1(Q̂O
t , R̂O

t , z′) = Q̂O
t Q̄t(1− χ)R̂O

t Rm
t +

[
Q̂O

t Q̄tχsO
t+1(z

′) + (Q̄t − Q̂O
t Q̄t)sV

t+1(z
′)
]

Rm
t (1 + εt+1(z′))

Revt+1(Q̂O
t , R̂O

t , z′) = Q̄tRm
t

[
Q̂O

t (1− χ)R̂O
t +

[
Q̂O

t χsO
t+1(z

′) + (1− Q̂O
t )s

V
t+1(z

′)
]
(1 + εt+1(z′))

]
.

Scaled Revenue R̂evt+1 can be written as

R̂evt+1(Q̂O
t , R̂O

t , z′) = Q̂O
t (1− χ)R̂O

t +
[

Q̂O
t χsO

t+1(z
′) + (1− Q̂O

t )s
V
t+1(z

′).
]
(1 + εt+1(z′))

The expected present discounted value (PDV) of revenues is written as

VR
t = Et

[ ∞

∑
j=1

Mt,t+jRevt+j

]
.
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The scaled version of revenues can be written as:

V̂R
t =

VR
t

QtRm
t

,

which solves the following Bellman equation:

V̂R
t (Q̂O

t , R̂O
t , z) = ∑

z′
π(z′|z)M(z′|z)

[
R̂evt+1(Q̂O

t , R̂O
t , z′) + (1 + η(z′))(1 + ε(z′))V̂R

t+1(Q̂
O
t+1, R̂O

t+1, z′)
]
.

Finally, we get VR
t by

VR
t = V̂R

t (Q̂O
t , R̂O

t , z)QtR
m
t .

C2 Costs

The building costs are written as:

Costt+1 = C f ix
t+1(z

′)Q+QO
t Cvar

t+1(z
′)+

[
QO

t χsO
t+1(z

′)LCR
t+1(z

′) + (Qt −QO
t )s

V
t+1(z

′)LCN
t+1(z

′)
]

Rm
t+1.

Substituting for Rm
t+1 and QO

t , we get,

Costt+1 = C f ix
t+1(z

′)Q + Q̂O
t Q̄Cvar

t+1(z
′)+[

Q̂O
t Q̄χsO

t+1(z
′)LCR

t+1(z
′) + (Q̄− Q̂O

t Q̄)sV
t+1(z

′)LCN
t+1(z

′)
]

Rm
t (1 + εt+1(z′)).

We define scaled costs as:

Ĉost =
Costt+1

Q̄tRm
t

.

Therefore, we have:

Ĉostt+1(Q̂O
t , z′) = c f ix

t+1(z
′) + Q̂O

t cvar
t+1(z

′)+[
Q̂O

t χsO
t+1(z

′)LCR
t+1(z

′) + (1− Q̂O
t )s

V
t+1(z

′)LCN
t+1(z

′)
]
(1 + ε(z′)),
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where

c f ix
t+1(z

′) =
C f ix

t+1(z
′)

Rm
t

cvar
t+1(z

′) =
Cvar

t+1(z
′)

Rm
t

.

The expected PDV of costs is written as:

VC
t = Et

[ ∞

∑
j=1

Mt,t+jCostt+j

]
.

The scaled version is:

V̂C
t =

VC
t

QtRm
t

,

which solves the Bellman equation

V̂C
t (Q̂O

t , z) = ∑
z′

π(z′|z)M(z′|z)
{

Ĉostt+1(Q̂O
t , z′) + (1 + η(z′)(1 + ε(z′))V̂C

t+1(Q̂
O
t+1, z′)

}
.

Finally, we get VC
t by

VC
t = V̂C

t (Q̂O
t , z)QtR

m
t .

C3 Closed-form solutions

First, we define matrix notations for parameters:

14x1 =

[
1, 1, 1, 1

]′

E4x4 =

[
ε4x1, ε4x1, ε4x1, ε4x1

]′

H4x4 =

[
η4x1, η4x1, η4x1, η4x1

]′

SO
4x4 =

[
sO

4x1, sO
4x1, sO

4x1, sO
4x1

]′
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SV
4x4 =

[
sV

4x1, sV
4x1, sV

4x1, sV
4x1.

]′

C3.1 Cost Valuation

We express Ĉostt+1(Q̂O
t , z′) as a linear function of Q̂O

t :

Ĉostt+1(Q̂O
t , z′) = a(z′) + b(z′) · Q̂O

t

where

a(z′) = c f ix
t+1(z

′) + (1 + ε(z′)) · sV
t+1(z

′)LCN
t+1(z

′),

b(z′) = cvar
t+1(z

′) +
(
1 + ε(z′)

)
·
[
χsO

t+1(z
′)LCR

t+1(z
′)− sV

t+1(z
′)LCN

t+1(z
′)
]

.

Next, we take the derivative (w.r.t. Q̂O
t ) of cost valuation Bellman equation:

∂V̂C
t

∂Q̂O
t
(Q̂O

t , z) = ∑
z′

π(z′|z)M(z′|z)
{

b(z′) + (1 + η(z′))(1 + ε(z′))
∂V̂C

t+1

∂Q̂O
t
(Q̂O

t+1, z′)

}

= ∑
z′

π(z′|z)M(z′|z)
{

b(z′) + (1 + ε(z′))(1− χ + χsO
t+1(z

′)− sV
t+1(z

′))
∂V̂C

t+1

∂Q̂O
t+1

(Q̂O
t+1, z′)

}
.

Notice that the instantaneous reward term, b(z′), is independent to Q̂O
t . Thus, ∂V̂C

t
∂Q̂O

t
(Q̂O

t , z) is

only a function of z by checking the valuation in a infinite sum form:

∂V̂C
t

∂Q̂O
t
(Q̂O

t , z) =
∞

∑
τ=1

Et [M(zt+τ|z) · b(zt+τ)] .

As a result, by taking integral of Q̂O
t , we can conclude that V̂C is a linear function w.r.t. Q̂O

t :

V̂C
4x1 = aC

4x1(z) + bC
4x1(z) · Q̂O

t
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where21

bC
4x1(z4x1) =

(
I − π4x4 ◦M4x4 ◦ (1 + E4x4) ◦

(
1− χ + χSO

4x4 − SV
4x4

))−1

4x4
·

(π4x4 ◦M4x4)4x4 ·
(

cvar
4x1 + (1 + ε4x1) ◦

(
χsO

4x1 ◦ LCR
4x1 − sV

4x1 ◦ LCN
4x1

))
4x1

.

Then, we look back the original valuation function of cost, and equation becomes a linear

equation for the only unknown, aC, and we solve it using the inverse method:

aC
4x1(z4x1) = (I − π4x4 ◦M4x4 ◦ (1 + E4x4) ◦ (1 + H4x4))

−1
4x4 ·

(π4x4 ◦M4x4)4x4 ·
(

c f ix
4x1 + (1 + ε4x1) ◦

(
sV

4x1 ◦ LCN
4x1 + bC

4x1 ◦ sV
4x1

))
4x1

.

C3.2 Revenue Valuation

The revenue valuation problem is very similar to the cost valuation problem, but now the

valuation function depends on both Q̂O
t and R̂O

t . So we first look at the Bellman equation for
∂2V̂R

t
∂Q̂O

t ∂R̂O
t

and find it is independent to Q̂O
t or R̂O

t :

∂2V̂R
t

∂Q̂O
t ∂R̂O

t
= dR(z) (9)

where
dR

4x1(z4x1) =
(

I − π4x4 ◦M4x4 ◦ (1− χ) ◦
(

1− χ + χSO
4x4 − SV

4x4

))−1

4x4
·

(π4x4 ◦M4x4)4x4 · (1− χ · 14x1)4x1 .

Next, we integrate equation (9) by Q̂O
t :

∂V̂R
t

∂R̂O
t
= cR(R̂O

t , z) + dR(z) · Q̂O
t .

21We use ◦ to represent element-wise multiplication for metrics, and · for matrix dot product.
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Notice that the instantaneous reward term for the Bellman equation for ∂V̂R
t

∂R̂O
t

is independent

to R̂O
t :

∂R̂evt+1

∂R̂O
t

= (1− χ) · Q̂O
t . (10)

Thus, we can conclude:

cR(R̂O
t , z) = cR(z),

and we can solve cR(z) in this linear system:

cR
4x1(z4x1) = (I − π4x4 ◦M4x4 ◦ (1 + H4x4) ◦ (1− χ))−1

4x4 ·

(π4x4 ◦M4x4)4x4 ·
(
(1− χ) ◦ sV

4x1 ◦ dR
4x1

)
4x1

.

Following the same logic, by taking integral w.r.t. R̂O
t in equation (9) and check the indepen-

dence of instantaneous reward:

∂V̂R
t

∂Q̂O
t
= bR(z) + dR(z) · R̂O

t (11)

where

bR
4x1(z4x1) =

(
I − π4x4 ◦M4x4 ◦ (1 + E4x4) ◦

(
1− χ + χSO

4x4 − SV
4x4

))−1

4x4
·

(π4x4 ◦M4x4)4x4 ·
(
(1 + ε4x1) ◦

(
(χsO

4x1 − sV
4x1) ◦ (1 + χdR

4x1) + (1− χ)χdR
4x1

))
4x1

.

Then, we integrate equation (10) w.r.t. R̂O
t and equation (11) w.r.t. Q̂O

t , we get:

V̂R
t = aR(R̂O

t , z) + c(z) · R̂O
t + d(z) · Q̂O

t · R̂O
t

= aQ(Q̂O
t , z) + b(z) · Q̂O

t + d(z) · Q̂O
t · R̂O

t .

By comparing terms, we can conclude that

V̂R
t = aR(z) + bR(z) · Q̂O

t + cR(z) · R̂O
t + dR(z) · Q̂O

t · R̂O
t
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and solve the intercept term in the linear system:

aR
4x1(z4x1) = (I − π4x4 ◦M4x4 ◦ (1 + E4x4) ◦ (1 + H4x4))

−1
4x4 ·

(π4x4 ◦M4x4)4x4 ·
(
(1 + ε4x1) ◦

(
sV

4x1 ◦ (1 + bR
4x1 + χdR

4x1) + χ(1 + η4x1) ◦ cR
4x1

))
4x1

.

C4 Strip Decomposition

The price of a property is the expected PDV of its future cash-flows. By value additivity, this

is also the sum of prices of each cash-flow strip:

Vt = V(1)
t + V(2)

t + · · · =
∞

∑
j=1

V(j)
t =

∞

∑
j=1

VR,(j)
t −

∞

∑
j=1

VC,(j)
t .

The last equality expresses the price of each NOI strip as the difference between the corre-

sponding revenue strip and cost strip, again using value additivity.

The revenue strips can be priced recursively:

VR,(j)
t = Et

[
Mt,t+jV

R,(j−1)
t+1

]

starting from

VR,(1)
t = Et [Mt,t+1Revt+1] .

Scaling by potential gross revenue

V̂R,(j)
t =

VR,(j)
t

QtRm
t
= Et

[
Mt,t+jV̂

R,(j−1)
t+1 (1 + εt+1)(1 + ηt+1)

]

starting from

V̂R,(1)
t = Et

[
Mt,t+1R̂evt+1

]
since

Qt+1Rm
t+1

QtRm
t

= (1 + εt+1)(1 + ηt+1).
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There is a closed-form expression for each V̂R,(j)
t that can be established using the same

procedure we used above to obtain the closed-form solution for the entire claim’s scaled

valuation ratio V̂R
t .

V̂R,(j)
t = aR,(j)(z) + bR,(j)(z) · Q̂O

t + cR,(j)(z) · R̂O
t + dR,(j)(z) · Q̂O

t · R̂O
t ,

for suitably-defined coefficients aR,(j)(z), bR,(j)(z), cR,(j)(z), and dR,(j)(z).

The logic is similar for the scaled price of the cost strips.

V̂C,(j)
t = aC,(j)(z) + bC,(j)(z) · Q̂O

t ,

for suitably-defined coefficients aC,(j)(z) and bC,(j)(z).

D Calibration Algorithm

The following describes the steps in the calibration algorithm for the universe of NYC office

buildings (All NYC) and the subset of A+ buildings (NYC A+). We set the depreciation to

2.56% in both calibrations, a realistic annual depreciation rate for commercial office, con-

sistent to the tax depreciation of commercial properties of 39 years. The calibration for All

NYC takes the persistence parameter of the WFH state, p, as given. This parameter is pinned

down from the A+ calibration. Conversely, the calibration for NYC A+ takes the parameter

∆η as given. This parameter is pinned down from the All NYC calibration. Hence, the two

calibrations are interdependent: they solve a fixed-point problem.

D1 All NYC, given p

1. Keep only office buildings and exclude subleases in the CompStak data set of leases

for NYC.

2. Calculate the average lease term for all leases in NYC. Set χ equal to the reciprocal.
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3. Estimate ε from data:

(a) To estimate ε(E) and ε(R), first calculate NER series for each month controlling

for submarket, tenant industry, leasing type, and building class FEs, and take the

6-month moving average. Use data from January 2000 (start of CompStak) until

December 2019.

(b) If more than 6 months of the 1-year window falls in recession, then the year is

considered to be a recession; otherwise it is considered to be an expansion. Use

the leasing cycle definition instead of the business cycle.

(c) Compute the annual growth rate of the six-month moving average, and take the

average separately for expansions and recessions.

(d) Estimate ε(WFHR) as the realized NER growth between December 2019 and De-

cember 2020, and ε(WFHE) as the annualized realized rent growth between De-

cember 2020 and December 2022.

(e) Since the values for ε(E) and ε(R) are determined based on the leasing cycle rather

than the business cycle, adjust all four ε(z) parameters by a constant so that the

mean of simulated rent growth from 2000 to 2019 matches the sample mean.

4. Estimate η(E) and η(R) from data:

(a) Compute the growth rate in floor space in year t as the newly constructed office

square feet in year t relative to the total square feet of office space built before year

t. This uses the full history of construction years in our CompStak dataset.

(b) Year t is a recession when more than six months of that year is in recession.

(c) We take the average the construction growth rate across expansions and reces-

sions.

(d) Finally, we subtract the rate of depreciation to arrive at η(E) and η(R)
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5. Set η(WFHE) = η(E) + ∆η and η(WFHR) = η(R) + ∆η. Find the ∆η such that the

long-run growth rate of potential rent in the All NYC is zero:

∑
z

π(z)(1 + ε(z))(1 + η(z)) = 1,

where π(z) is the 4× 1 ergodic distribution of the 4× 4 Markov Chain π(z′|z).

6. Estimate the four parameters
{

sO(E), sO(R), sV(E), sV(R)
}

to match the following four

moments in quarterly Manhattan office occupancy rate data for from 1987.Q1 to 2020.Q1:

(a) empirical mean

(b) empirical standard deviation

(c) empirical min - 0.5%

(d) empirical max + 0.5%

7. Assume that the four parameters
{

sO(WFHE), sO(WFHR), sV(WFHE), sV(WFHR)
}

are shifted by a common factor δ relative to their no-WFH counterparts: s{V,O}(WFH) =

δ · s{V,O}(no −WFH). Estimate the parameter δ to best fit the dynamics of the office

occupancy rate in the nine quarters from 2020.Q2–2022.Q2. These dynamics are given

by the model:

Q̂O
t+1(Q̂

O
t , z′) =

sV
t+1(z

′)

1 + ηt+1(z′)
+ Q̂O

t ·
1− χ + χsO

t+1(z
′)− sV

t+1(z
′)

1 + ηt+1(z′)

Simulate the law of motion for occupancy from 1930 until 2019, under the observed

sequence of expansions and recessions, to arrive at the initial condition for Q̂O in

2020.Q1. Next, we simulate the occupancy process forward for the next 12 quarters

assuming that the first four quarters are WFH-R observations and the last eight are

WFH-E. We find the δ that minimizes the distance between the model and the data.
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D2 NYC A+, given ∆η

The calibration for the A+ office cash flows is based on the subset of leases in A+ buildings.

It follows the same steps as outlined above for All NYC, with the following modifications:

4.(a) When calculating η for A+ buildings, we collect all the buildings that have ever entered

into the A+ universe, given our time-varying definition of A+ buildings, and re-do

the calculation for NYC All. Since A+ is only a subset of NYC market, we start the

calculation of eta for each year from 1970 to 2019 to avoid extreme value caused by

lack in coverage.

5. The NYC A+ calibration takes ∆η from the All NYC calibration.

6. We use data from NAREIT on office sector occupancy from 2000.Q1 to 2020.Q1 to cali-

brate
{

sO(E), sO(R), sV(E), sV(R)
}

. We target a minimum occupancy rate equal to the

empirical minimum—6.5%—because the A+ occupancy data is missing the 1990s, the

worst historical period for office occupancy.

8. Given all other parameters, find p to match the observed realized return on NYC-

centric office REITS between December 31, 2019 and December 31, 2020, after adjusting

for leverage. See the discussion in Section 3.4.

Figure D1 shows the valuation ratio for office V̂ conditional on expansion, recession,

WFH-expansion and WFH-recession for the All NYC calibration. The x-axis plots the grid

for Q̂O and the y-axis shows the grid for R̂O. Office valuation ratios are increasing in both

occupancy Q̂O and rent premium R̂O.
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Figure D1: V̂ for All NYC Market by States
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E Results for NYC A+ Market

Table E1 shows the calibration of the cash-flow parameters for the A+ market segment, fol-

lowing the algorithm outlined in appendix D. Naturally, the state transition and SDF matri-

ces are the same for all properties.

Table E1: Calibration for NYC A+

Variable Symbol E R WFH-E WFH-R
Market NER growth ε 0.0655 -0.1448 0.0367 -0.0900
Supply growth η -0.0148 -0.0077 -0.0261 -0.0190
Lease renewal share sO 0.8509 0.5708 0.6692 0.4489
New leasing share sV 0.1195 0.1929 0.0940 0.1517

Table E2 shows the model solution for the A+ calibration. The model delivers a lower

cap rate for A+ NYC office, due to the lower riskiness of A+ cash flows. Class A+ has lower

vacancy levels than the market as a whole, on average as well as in the WFH states.

Appendix Figure E1 shows the valuation ratio V̂ in each state as a function of occupancy

and rent state variables.
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Table E2: Model Solution for NYC A+ Calibration

Statistic Uncond E R WFHE WFHR
Cap rate 0.0632 0.0584 0.0831 0.0607 0.0780

Office E[Ret]− 1 0.0670 0.0581 0.1482 0.0456 0.1246
Office RP = E[Ret]− 1− R f 0.0521 0.0497 0.1014 0.0372 0.0779

E [gt] 0.0028 -0.0153 0.1424 -0.0238 0.0688

Vacancy rate = 1− Q̂O 0.1175 0.0844 0.1248 0.1412 0.1699
R̂ev 0.7914 0.7848 0.9366 0.7553 0.8364
Ĉost 0.4180 0.4282 0.4182 0.4098 0.4031

N̂OI = R̂ev− Ĉost 0.3734 0.3566 0.5184 0.3455 0.4334

V̂R 10.3777 10.7885 9.7849 10.2875 9.3129
V̂C 4.5387 4.7747 3.6606 4.6380 3.8081

V̂ = V̂R − V̂C 5.8390 6.0139 6.1242 5.6496 5.5048
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Figure E1: V̂ for NYC A+ Market by States

Rhat

0.60.8 1.0 1.2 1.4 1.6 1.8 2.0

Qhat

0.4
0.5

0.6
0.7

0.8
0.9

1.0

4
5
6
7
8
9
10
11

State = E

Rhat

0.60.8 1.0 1.2 1.4 1.6 1.8 2.0

Qhat

0.4
0.5

0.6
0.7

0.8
0.9

1.0

4
5
6
7
8
9
10

State = R

Rhat

0.60.8 1.0 1.2 1.4 1.6 1.8 2.0

Qhat

0.4
0.5

0.6
0.7

0.8
0.9

1.0

4
5
6
7
8
9
10
11

State = WFH-E

Rhat

0.60.8 1.0 1.2 1.4 1.6 1.8 2.0

Qhat

0.4
0.5

0.6
0.7

0.8
0.9

1.0

3
4
5
6
7
8
9
10

State = WFH-R

82



F Calibration to Other Markets

We repeat the calibration procedure discussed in the main text and in Appendix D for San

Francisco and Charlotte. We use CompStak data to measure market rent growth, ε, be-

fore and during the pandemic. We also use CompStak data to measure pre-pandemic office

construction rates (η is the construction minus the depreciation rate). Like in the NYC cali-

bration, net supply growth rates during the pandemic (WFHR and WFHE) are set equal to

their pre-pandemic counterparts (R and E) minus an adjustment factor (the same as NYC

one). Due to the incomplete building coverage in CompStak, estimation of η for San Fran-

cisco and Charlotte starts in 1980. We use contractual occupancy rate data from Cushman

and Wakefield to calibrate sO and sV before and during the pandemic. We leave the office

depreciation rate and the operational cost parameters the same as in the NYC calibration.

Naturally, we assume that the dynamics of the aggregate state variable π(z′, z) are common

across markets, as well as the market prices of risk M(z′, z).

Table F1 shows the calibrated parameters for San Francisco and F2 shows those for Char-

lotte. Table F3 and F4 show the main moments for San Francisco and Charlotte, respectively.

The SF office market is riskier than the NYC market, featuring a rent cycle of greater am-

plitude which translates into a higher risk premium and cap rate. The opposite is true for

Charlotte. Figure F1 plots fan charts for occupancy rates, revenues, NOI and cap rates for

San Francisco and Charlotte.

Table F1: Calibration for San Francisco

Variable Symbol E R WFH-E WFH-R
Market NER growth ε 0.1143 -0.1610 -0.0596 -0.1537
Supply growth η -0.0183 -0.0106 -0.0296 -0.0218
Lease renewal share sO 0.8540 0.6738 0.4244 0.3348
New leasing share sV 0.2372 0.1948 0.1179 0.0968
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Table F2: Calibration for Charlotte

Variable Symbol E R WFH-E WFH-R
Market NER growth ε 0.0870 -0.1334 0.0101 -0.0702
Supply growth η 0.0017 0.0208 -0.0096 0.0095
Lease renewal share sO 0.9048 0.8747 0.6398 0.6185
New leasing share sV 0.2900 0.1156 0.2050 0.0817

Table F3: Model Solution for San Francisco Calibration

Statistic Uncond E R WFHE WFHR
Cap rate 0.1076 0.0831 0.1235 0.1232 0.1446

Office E[Ret]− 1 0.0934 0.0921 0.2151 0.0575 0.1345
Office RP = E[Ret]− 1− R f 0.0785 0.0837 0.1684 0.0491 0.0878

E [gt] -0.0231 -0.0029 0.1584 -0.0820 -0.0513

Vacancy rate = 1− Q̂O 0.2490 0.1085 0.1662 0.3879 0.4205
R̂ev 0.7727 0.7894 0.9219 0.7223 0.7584
Ĉost 0.3976 0.4370 0.4221 0.3583 0.3498

N̂OI = R̂ev− Ĉost 0.3751 0.3524 0.4998 0.3640 0.4087

V̂R 6.7643 8.3196 6.9993 5.3865 4.8673
V̂C 3.1917 4.1211 3.0039 2.4464 2.0529

V̂ = V̂R − V̂C 3.5727 4.1985 3.9954 2.9402 2.8144

Table F4: Model Solution for Charlotte Calibration

Statistic Uncond E R WFHE WFHR
Cap rate 0.0569 0.0500 0.0742 0.0583 0.0679

Office E[Ret]− 1 0.0850 0.0786 0.2032 0.0521 0.1427
Office RP = E[Ret]− 1− R f 0.0701 0.0702 0.1565 0.0437 0.0960

E [gt] 0.0233 0.0217 0.1460 -0.0060 0.0337

Vacancy rate = 1− Q̂O 0.1614 0.0914 0.1444 0.2183 0.2774
R̂ev 0.7932 0.8053 0.9126 0.7593 0.7573
Ĉost 0.4196 0.4403 0.4270 0.4019 0.3871

N̂OI = R̂ev− Ĉost 0.3735 0.3650 0.4856 0.3574 0.3701

V̂R 12.7811 14.1073 11.7336 12.0423 10.4920
V̂C 6.1817 6.8369 5.2303 5.9188 5.0485

V̂ = V̂R − V̂C 6.5994 7.2703 6.5032 6.1235 5.4435
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Figure F1: Fan Charts for San Francisco and Charlotte

(a) San Francisco: Occupancy (b) Charlotte: Occupancy

(c) San Francisco: Revenue (d) Charlotte: Revenue

(e) San Francisco: NOI (f) Charlotte: NOI

(g) San Francisco: Cap Rate (h) Charlotte: Cap Rate
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G Additional Model Results

G1 Term Structure of Valuations

We can decompose the (change in) office value into the contribution from each of the future

cash flows. Appendix C4 explains the procedure. Figure G1 plots the share of the total value

of office that comes from each of the first 20 years of cash flows. The lines are downward

sloping as cash flows in the near term are more valuable than cash flows farther in the future

due to discounting. Each line refers to a different current state for the economy. Interestingly,

in expansions (such as 2019) the contribution of the nearest-term cash flows is much smaller

than in the WFH-R state (such as 2020). For the share of short-term in total cash flows to rise

(in present-value) between 2019 and 2020, the value of the cash flows in the farther future

must falls by more than in the near future. This occurs because rents (and NOI) in the short-

term are largely locked in given the long-term nature of leases. Investors would be willing

to pay a premium for buildings that have a lot of long-term pre-pandemic leases in place.

This pattern is unusual, compared to the equity markets, where van Binsbergen, Brandt

and Koijen (2012) find that the share of short-maturity equity cash flows falls in the mild

recession of 2001, indicating an expected rebound in the near term, and stays flat in the deep

recession of 2008, indicating a near-permanent shock to cash flows. Our results therefore

suggest that the locked-in nature of commercial leases results in a different term structure

of cash flow shocks in commercial real estate compared to other asset classes. In turn, this

suggests that the shock to commercial office as a result of remote work may play out over

an extended horizon.

G2 Sensitivity to WFH-R Rent Growth

Figure G2 shows the office valuation for NYC under an alternative assumption on NER

growth in the WFH-R state, namely that it equals the NER growth in a regular recession

state R. The impact on the model prediction is minimal.
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Figure G1: Decomposing Office Values by Horizon
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G3 Shutting Down WFH Risk Channel

Figure G3 shows the valuation impact in a model where there is no priced WFH risk. We

compute this model by setting the component of the SDF that encodes WFH risk equal to

the identity matrix: MWFH = 1. The impact on the value decline of NYC office is -42.4% in

2020 and -39.4% in 2029, relative to pre-pandemic levels. The corresponding numbers in the

benchmark model are -46.1% and -43.9%.

G4 Robustness Tests for San Francisco

Figure G4 performs four sensitivity analyses for San Francisco changing (i) rent growth in

the WFH-E state, a state in which the model spends a lot of time conditional on making the

transition to a WFH state (panel a), (ii), the gap between net supply growth in the WFH

relative to the no-WFH states (panel b), (iii), the persistence of remote work p, and (iv),

introducing a floor for office values set at 30% of pre-pandemic valuations, as a simple way

to model additional optionality from adaptive reuse not already captured by the net supply

parameter η.22

22This specification is intended to capture the redeployability option, as in Kim and Kung (2017) and Benm-
elech, Garmaise and Moskowitz (2005), as office buildings may ultimately be converted to other uses. We use
30% as a rough benchmark for the option value to covert to other uses. A fuller consideration of this option—
which will be affected by interest rates, costs of conversion, and demand for other uses among other factors—is
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Figure G2: Setting ε(WFH − R) = ε(R)

outside of the scope of our analysis, which is focused on valuing cash flows resulting from buildings operated
as commercial office buildings.
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Figure G3: Shutting Down the Risk Channel

Figure G4: Robustness Tests for San Francisco

(a) Different ε(WFH − E) (b) Different η(no−WFH)− η(WFH)

(c) Different Persistence of WFH (d) Valuation ≥ 30% of Pre-pandemic Valuation
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