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Abstract

This paper investigates how the expansion of social insurance affects households’ ac-
cumulation of debt. Insurance can reduce reliance on debt by lessening the financial im-
pact of adverse events such as illness and job loss. But it can also weaken the motive
to self-insure through savings, and households’ improved financial resilience can increase
access to credit. Using data on 10 million borrowers and a quasi-experimental research de-
sign, we estimate the causal effect of expanded insurance on household debt, exploiting
ZIP-code level heterogeneity in exposure to the staggered expansions of one of the largest
US social insurance programs: Medicaid. We find that a 1 percentage point increase in
a ZIP code’s Medicaid-eligible population increases credit card borrowing by 0.56%. De-
composing this effect in a model of household borrowing, we show that increased credit
supply in response to households’ improved financial resilience fully accounts for this rise
in borrowing and contributed 32% of the net welfare gains of expanding Medicaid.
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1 Introduction

Unsecured debt is an important tool that households rely on to smooth their consumption—

not only across time but also across states of the world. For example, of the 4 in 10 US adults

that report anticipating difficulty in meeting an unexpected $400 expense, credit cards are the

most-cited tool that they expect to rely on.1 And when experiencing an income shortfall, 43%

of US households report turning to borrowing, including credit cards.2 When unsecured debt

functions as a de facto source of insurance, changes to social insurance could significantly

affect households’ desire and ability to access credit.

Whether social insurance crowds in or crowds out household debt is theoretically am-

biguous. The total effect depends on the strength of competing channels. On the one hand,

improved access to social insurance can reduce households’ reliance on debt to cope with

adverse shocks such as job loss and illness, crowding out debt. On the other hand, credit

demand and supply channels may also work in the opposite direction. Social insurance can

increase the demand for debt by weakening the precautionary savings motive. Addition-

ally, when social insurance makes households less likely to default, this reduction in risk can

make creditors more willing to lend. Expanded insurance can improve households’ financial

resilience, which can in turn increase access to credit.

This paper sheds new light on how credit markets shape the impact of social insurance

on household debt and welfare. We first estimate the causal effect on credit card borrowing of

the expansion of Medicaid under the Affordable Care Act (ACA), one of the largest changes to

the US social safety net in recent years. We find that a 1 percentage point increase in the share

of a ZIP code’s population eligible for Medicaid increases revolving credit card balances by

0.56 percentage points. Next, we develop a heterogeneous-agent model in which households

face both income and medical expenditure shocks while having the ability to borrow and

default on unsecured debt. Simulating the expansion of Medicaid in the model, we find

that increased credit supply is fully responsible for the overall increase in household debt.

Moreover, the credit supply response to expanding Medicaid accounts for 32% of the net

1Source: 2019 SHED.
2Source: 2016 SCF.
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welfare gain.3 Our findings demonstrate that expanding social insurance can crowd in the

supply of unsecured debt and that this improvement in credit access can lead to first-order

welfare gains. We conclude that policymakers may significantly underestimate the benefits

of social insurance programs if they overlook potential increases in credit access spurred by

improved financial resilience.

Our focus on health insurance is motivated by the importance of Medical expenses as a

source of financial distress for US households. In a survey of bankruptcy filers, 29% named

medical bills as the reason for their bankruptcy (Himmelstein, Thorne, Warren and Woolhan-

dler, 2009). In a recent survey of US residents, unexpected medical bills ranked first in terms

of what kind of expenses they worry most about being able to afford, ahead of rent or mort-

gages, transportation, and food.4 Health expenditures constitute a large and growing share

of US GDP, reaching 18.3% in 2021.5 Despite the importance of health expenses, they have re-

ceived less attention in the macroeconomics literature compared to other sources of risk such

as job loss and housing.6

We begin by estimating the causal effect of Medicaid eligibility on a variety of credit out-

comes using credit bureau data on 10 million US borrowers over 2010-2021 in a continuous

difference-in-difference (DID) analysis. We exploit granular variation in the size of eligibility

changes induced by states’ staggered expansions of Medicaid under the ACA. This variation

arises from two sources. The first comes from states’ pre-expansion Medicaid policies. Ex-

panding Medicaid under the ACA required states to implement a common set of eligibility

requirements. As a result, ZIP codes with similar distributions of income saw larger increases

in eligibility if their state previously had stricter requirements. The second source of vari-

ation comes from within-ZIP differences in the distribution of income among low-income

households. Eligibility increased more in ZIP codes that had more low-income households

clustered between the pre- and post-expansion income eligibility thresholds.

3Our measure of net welfare reflects improvements stemming from the financial benefits of the Medicaid ex-
pansion (net of the tax costs of expansion). We do not model either mortality or utility as a function of health.
Therefore, our welfare estimates do not reflect gains from improved health or reduced mortality.

4Source: Kaiser Family Foundation Health Tracking Poll (February 2020). Link: https://www.kff.org/health-
costs/poll-finding/data-note-public-worries-about-and-experience-with-surprise-medical-bills/.

5Source: Centers for Medicare and Medicaid Services NHE Fact Sheet.
6Notable exceptions include Livshits, MacGee and Tertilt (2007); Chatterjee, Corbae, Nakajima and Ríos-Rull

(2007); Attanasio, Kitao and Violante (2010); De Nardi, French and Jones (2010).
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Our difference-in-difference estimator compares credit outcomes before and after expand-

ing across ZIP codes with bigger versus smaller changes in eligibility. The within-state vari-

ation in the impact of expansions makes it possible to use state-time fixed effects in our anal-

ysis, which help account for other unobserved state-level policy changes that may have co-

incided with expansions and also affected credit outcomes. Identification requires that the

change in eligibility is not correlated with other shocks coinciding with the expansion.

We find that expanded Medicaid eligibility increases credit card borrowing. A 1 per-

centage point increase in eligibility leads to a 0.13 percentage point increase in the share of

households with at least one credit card and raises revolving credit card balances by 0.56

percentage points. Consistent with a positive credit supply response, we document that in-

creased eligibility also increased credit limits and overall reduced credit card utilization. On

the demand side, we also find that the number of credit card inquiries rose. In line with our

financial resilience hypothesis, we show that expanding Medicaid also reduced severe forms

of default (debt in collections), minor forms of default (delinquency) remained stable despite

the rise in borrowing, and credit scores increased.

We then construct a heterogeneous-agent model in which households have access to

credit card debt. Households face idiosyncratic income shocks as well as idiosyncratic ex-

penditure shocks. They can save using a risk-free asset or borrow via credit card debt, which

they can decide not to repay. Households incur debt both by choosing credit card borrow-

ing and as a result of experiencing expenditure shocks that they are unwilling or unable to

cover on impact. The interest rate paid on credit card debt is endogenous and depends on the

probability households do not pay their owed debt.

The nature of credit card debt in our model is a hybrid of one-period and long-term debt

used in the literature on consumer bankruptcy and sovereign debt.7 When households are

not delinquent, they must roll over their debt that period. That is, credit card debt must

be repaid in full to avoid delinquency. However, households have the option not to repay

their debt and enter a delinquent state. In that state, they cannot take on more debt before

paying their current debt in full.8 Households in a delinquent state get a stochastic haircut

7Notable examples of such models include Chatterjee et al. (2007); Livshits et al. (2007); Arellano (2008) for
short-term debt and Hatchondo and Martinez (2009); Chatterjee and Eyigungor (2012) for long-term debt.

8While households cannot choose to take on more debt in the delinquent state, uninsured expenditure shocks
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on their debt, which can help them exit the delinquency state. Since financial intermediaries

who hold claims on delinquent debt are not repaid immediately, the pricing of debt has a

long-term component to it.

The delinquency option on debt allows us to capture a key aspect of the data. The re-

lationship between having unpaid/revolving credit card balances and income follows an in-

verse U-shape, as displayed in Figure 1. Less than 25% of households with annual income

below $25,000 have any credit card debt. This share rises to 50% for households with an an-

nual income of $100,000 and declines as household income rises. Delinquency, together with

endogenous credit supply, restricts low-income households’ access to credit.

Figure 1: Share of Households with Credit Card Debt
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Notes: This figure plots a binscatter of the share of households with a non-zero amount of unpaid (i.e., revolving)
credit card balances. Data come from the PSID (2011–2019). Annual income is in real 2019 USD.

Capturing the inverse U-shape relationship between income and credit card debt is im-

portant for studying policies that target low-income households, such as Medicaid. This is be-

cause means-tested social insurance policies generally target households whose default risk

limits their credit access. By reducing this risk, social insurance can lead to better credit ac-

cess. We model Medicaid as a policy that covers a fraction of households’ expenditure shocks,

add to households’ total debt.
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where eligibility for Medicaid depends on household income.

Health insurance policies affect the aggregate level of credit card debt through three chan-

nels. First, the direct effect of more generous health insurance is increasing households’ dis-

posable income. Households can achieve the same consumption levels while borrowing less.

In addition, the expanded insurance reduces delinquency rates, leading to an increase in debt

levels. Overall, the direct effect of health insurance on credit card debt is ambiguous.

The second channel is through credit demand. Health insurance affects demand for credit

even if credit terms remain unchanged. Lower medical expenditures reduce households’ pre-

cautionary savings motive and, as a result, increase their borrowing. However, households

are more likely to repay their debt in the future. This results in a higher level of expected re-

payment, which discourages borrowing. These competing forces mean that the effect of the

credit demand channel is also theoretically ambiguous.

The third channel is the credit supply channel. The reduction in delinquency rates leads

to lower interest rate spreads in equilibrium. Lower interest rates induce households to take

on more credit, leading to an increase in the aggregate level of credit card debt.

While we ground our model in the context of health insurance, the economic channels

we study can arise in many other contexts. Our model and approach can be readily adapted

to study the impact of other types of social insurance (unemployment insurance, minimum

wages, disability insurance, and so on). Additionally, a similar model could be used to study

how changes to insurance/risk exposure affect sovereign and corporate credit outcomes.

Quantitatively, which channels dominate in equilibrium may vary with context.

Our model abstracts away from several features of health— notably, "physical" health

that enters the utility function, price-sensitive demand for health services ("moral hazard"),

and correlations between income and health expenditures. As we discuss in detail in Sec-

tion 3, this likely makes our counterfactual analysis conservative regarding the welfare and

borrowing responses.

Our model predicts that expanding Medicaid led to a 5% overall increase in credit card

debt. We find that the direct channel has a small impact on the aggregate level of credit card

debt and that the credit demand channel reduces the aggregate level of credit card debt sub-

stantially. Together, these two channels decrease credit card debt by 7.7%. The overall increase
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in credit card debt is solely due to the credit supply channel, which increases aggregate credit

card debt by 12.4%.

We use our model to study the welfare benefits associated with the expansion of Med-

icaid. We find that the policy is equivalent to a permanent increase in consumption of 47

basis points. Of the welfare gains, 32% is a result of the reduction in interest rate spreads

households face on their debt. This result suggests policymakers should take into account

the effect social insurance has on credit supply. Disregarding the credit supply channel could

substantially underestimate the welfare gains of social insurance programs.

Related Literature: This paper contributes to several strands of literature by bringing a

new macroeconomic perspective to the effects of social insurance. First, our model builds

on the macroeconomic literature on consumer bankruptcy and default (e.g., Chatterjee, Cor-

bae, Nakajima and Ríos-Rull, 2007; Livshits, MacGee and Tertilt, 2007; Mitman, 2016). This

literature focuses on the drivers of default—in particular, the role of bankruptcy policy. We

study a policy that does not directly target bankruptcy or default: public health insurance.

This policy can reduce default and increase both credit access and borrowing.

Second, we add to a large macroeconomic literature on heterogeneous agent models with

uninsurable risk (Bewley, 1986; Aiyagari, 1994; Huggett, 1993). This literature highlights how

precautionary savings play a key role in shaping the macroeconomy. Our work studies how

insurance provision can reduce the precautionary savings motive and traces the macroeco-

nomic implications. We take a partial equilibrium approach—that is, the risk-free rate in the

economy is taken as given. In this sense, our approach is similar to the work of Imrohoroğlu

(1989), Zeldes (1989), Deaton (1991), and Hubbard, Skinner and Zeldes (1995), who also study

how social insurance affects the precautionary savings motive.

We build on these works by taking into account the impact social insurance has on the

endogenous debt pricing schedule. We also build on Krueger and Perri (2011). Their model

features contingent contracts, resulting in no default occurring in equilibrium and credit sup-

ply decreasing when social insurance expands (financial autarky becomes less costly and thus

default more tempting). Our model instead features non-contingent defaultable debt and

leads to a positive credit supply response, which is consistent with our empirical estimates.
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Additionally, our analysis of the impact of social insurance on credit markets complements

concurrent work studying the "opposite" question: the impact of credit access on the design

of optimal UI (Braxton, Herkenhoff and Phillips, 2022).

Third, we build on an empirical microeconomic literature studying the consumer finance

consequences of expanding insurance. We present new evidence on revolving credit card

debt and, using our model, quantify the welfare effects and decompose the underlying chan-

nels. Prior work on Medicaid finds that expansions reduced medical debt, missed debt and

bill payments, reliance on payday loans, and debt in collections (Allen et al., 2017; Hu et al.,

2018; Miller et al., 2018; Gallagher et al., 2019b; Goldsmith-Pinkham et al., 2020). Reduced

debt and delinquency improved FICO scores after expansions, leading to lower interest rates

on credit card offers (Brevoort, Grodzicki and Hackmann, 2017) and increased mortgage ap-

plication approval rates (Célérier and Matray, 2017). Our focus on borrowing complements

Gallagher, Gopalan and Grinstein-Weiss (2019a), which finds that health insurance reduces

savings among households experiencing financial hardship. Less saving does not immedi-

ately imply higher gross or net borrowing.9 Using a synthetic DID, Hu et al. (2018) finds

a statistically insignificant, small, and negative effect of Medicaid expansions on credit card

balances. Our paper is the first, to our knowledge, to study the response of revolving credit

card balances to Medicaid. Our empirical strategy also differs from Hu et al. (2018) in that we

use ZIP rather than state-level variation in Medicaid eligibility, and we include the post-2014

expansions.

Research on unemployment insurance also finds evidence of improved financial resilience

(lower mortgage default) and expanded credit access (lower interest rates and higher applica-

tion approval rates) (Hsu, Matsa and Melzer, 2018; Matsa, Melzer and Zator, 2022). Our paper

also relates to Aaronson, Agarwal and French (2012), which documents strong and positive

spending and collateralized debt increases among minimum wage workers following rises in

the minimum wage. We build on their findings by documenting that revolving credit card

debt also rises after the expansions of another part of the social safety net (Medicaid). We

9In contrast to standard models of consumption and saving, household borrowing presents a "credit card puz-
zle" in that households tend to hold both high-interest credit card debt and low-interest savings simultaneously
Gross and Souleles (2002). This behavior is consistent with a motive to maintain a liquidity buffer in the presence
of incomplete markets (Telyukova, 2013; Druedahl and Jørgensen, 2018).
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show that this rise is accompanied by a decline in default, improvements in credit scores, and

increases in measures of credit supply (e.g., credit card approval rates).

This paper is organized as follows. Section 2 presents background on the Medicaid ex-

pansions and the empirical analysis of the impact of expansions on credit card debt. Next,

Section 3 presents the model. Section 4 analyzes policy counterfactuals on debt (its distribu-

tion and aggregate level) as well as welfare. We decompose the effect of expanding health

insurance on borrowing into its direct impact on debt for households experiencing adverse

shocks and its general equilibrium impacts through credit demand and supply. Section 5

concludes.

2 The Effect of Social Insurance on Household Debt: Evidence from

Medicaid Expansions

At the macro level, cross-country comparisons indicate the generosity of social insurance is

positively related to household debt. Figure 2 plots the ratio of household debt to GDP versus

the share of total health expenses paid by the government, a proxy for social insurance provi-

sion, across countries. Countries with more generous insurance have significantly higher lev-

els of household debt. At the top right corner are the Scandinavian countries, which have both

a high provision of social insurance and high levels of household debt. As viewed through

the lens of our hypothesis, one reason Scandinavian households take on higher levels of debt

is because they are more financially resilient—they are better insured against adverse events.

This section estimates the effect of expanded social insurance on household debt. We

study one of the largest changes to the US social safety net in recent decades: the expansion

of Medicaid under the Affordable Care Act (ACA). Our empirical strategy exploits both the

staggered nature of the Medicaid expansions across states and within-state granular hetero-

geneity in the impact of the expansions. Examining a variety of credit outcomes, we find a

positive relationship between credit card debt and Medicaid eligibility, as well as supporting

evidence consistent with credit supply playing an important role in shaping the equilibrium

response.
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Figure 2: Household Debt and Social Insurance across Countries
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2.1 Institutional Background: Medicaid

Medicaid is a program, administered jointly by state and federal governments, that offers

low-income households free or low-cost health insurance. By the end of 2019, 64.3 million

individuals—nearly 20% of the US population—were receiving health insurance through

Medicaid. In the wake of COVID-19, the number of enrollees has steadily climbed to 85.3

million as of December 2022.10 Medicaid spending is a large fraction of total US health care

expenses, totaling $597.4 billion in 2018 (or comprising 16% of aggregate health expenditures).

To qualify for Medicaid, a household must have income below a specified threshold.11

The ACA expanded Medicaid in participating states by requiring these states to set the

income eligibility threshold to at least 138% of the federal poverty level (FPL) for all adults.

Participating states receive federal funds to support the costs of the Medicaid expansion. Prior

to the ACA, only a handful of states offered Medicaid to adults aged 64 or under without de-

pendents. After expanding, the uninsured population decreased 30% on average among par-

ticipating states. The share of the population enrolled in Medicaid rose 4.37 percentage points

10We obtain enrollment count data from the Kaiser Family Foundation: https://www.kff.org/other/state-
indicator/medicaid-and-chip-monthly-enrollment.

11Several states also use an asset-based means test in addition to the income threshold to determine eligibility.
To expand Medicaid under the ACA, states were required to remove any asset-based means tests.
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in expanding states. This average change in enrollment is within range of the estimated causal

effect of the expansions on enrollments, which is 3-5 percentage points.12 The crowding out

of private and other sources of government insurance appears limited; the fraction receiving

non-Medicaid sources of insurance fell 0.59 percentage points.13 Figure 3 plots insurance type

by income both before and after expanding.

Figure 3: Health Insurance Type by Income (Pre- and Post-Expansion)
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Notes: The graphs plot the fraction of people with either Medicaid (left panel) or other non-Medicaid sources of
insurance (right panel), such as private insurance or Medicare. We report averages both before (blue circles) and
after (red triangles) states expanded Medicaid. We include non-expanding states in the "before" group. Insurance
type is measured at the end of the year, while income is measured over the entire year. Note that some "high-
income" households may qualify for Medicaid if, for example, they lost their job during the year and were eligible
by the end of the year. This, and aggregation across household sizes, time, and states, is likely why the share with
Medicaid is smooth with respect to income (as opposed to being discontinuous at eligibility thresholds). Source:
American Community Survey (ACS), 2010 to 2020.

Participating in the expansion is optional, and the timing of adoption varied significantly

across time (see Figure 4). The first, and most common, year of adoption was 2014. As of

2021, 36 states (and D.C.) have expanded Medicaid eligibility under the ACA.

The ACA was primarily financed by cuts to federal government spending on health care,

taxes on insurers, and taxes on individuals. Congressional Budget Office (CBO) estimates

projected the ACA to reduce budget deficits overall during the period 2013–2022 by $109 bil-

lion (Congrssional Budget Office, 2012). The ACA’s projected costs to the federal government

of expanding Medicaid, the Children’s Health Insurance Program (CHIP), health insurance

exchanges, and other non-coverage provisions totaled $1,455 billion (approximately 0.6% of

2020’s GDP per year). Health care-related government spending cuts were projected to save

12See, for example, Sommers et al. (2014); Frean et al. (2017); Kaestner et al. (2017); Courtemanche et al. (2019).
13These figures are calculated using American Community Survey (ACS) data from 2010 to 2020.
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Figure 4: Medicaid Expansion Dates
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$741 billion over this same time period, accounting for 50.9% of the total cost. The primary

source of these cuts were reductions in payment rates for hospital services rendered to Medi-

care and Medicare Advantage patients and reductions in Disproportionate Share Hospital

(DSH) payments. DSH payments help compensate hospitals for the cost of uncompensated

care (i.e., missing or partial payments owed by patients).

2.2 Data

This section describes the two main datasets used in our reduced-form analysis. The first

is credit bureau data. The second dataset records Medicaid eligibility at the ZIP-code level.

Throughout, we deflate nominal variables to real 2020 dollars.

Experian Data. Our credit bureau data comes from Experian and covers a random sample

of 10 million US residents. This Experian sample is an annual panel spanning the period 2010

to 2021 and contains over 90 million borrower-level observations. A subset of outcomes are

measured at a quarterly frequency over 2010–2020. Our sample is geographically representa-

tive in the sense that individuals are randomly sampled from ZIP codes in proportion to their

ZIP code’s population share. In our empirical analysis, we aggregate the borrower-level data

to the ZIP-code level. We drop ZIP codes with fewer than 150 borrowers reporting data and
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ZIP codes that cannot be matched to our Medicaid eligibility data (these are mainly small ZIP

codes). After these restrictions, we have 12,511 unique ZIP codes over 12 years.

Experian Summary Statistics. Table 1 presents summary statistics for our main credit out-

comes of interest in the ZIP-code level sample. On average, 85% of borrowers in a ZIP have at

least one credit card, and 22% obtained a new credit card in the past year. Average borrower-

level credit card balances are $4,299. We measure revolving (i.e., unpaid) balances as the dif-

ference between average monthly balances and average monthly payments. These monthly

averages are available at a quarterly frequency in the Experian data. In our sample, borrow-

ers carry $3,680 on average in revolving balances each month. Within this sample, 60% of

the borrowers have unpaid balances at least once per quarter; the rate is 71% among credit

cardholders.

Our measure of unpaid balances may be subject to measurement error that depends on

when balances are measured relative to the consumer’s scheduled payment date.14 Average

use of revolving credit card debt in our sample is similar to estimates from regulatory data,

suggesting that measurement error is close to mean zero.15 Importantly, this measurement

error will unlikely bias the regression analysis. Revolving balances will be a response variable

in our regressions, and the timing of a consumer’s billing cycle is likely unrelated to their

state’s Medicaid expansion.

We consider several additional variables that reflect credit access. In our sample, average

credit card utilization is 31%, and average limits are $18,013. Credit limits vary significantly

across ZIP codes; the standard deviation is $8,740. The average ratio of new accounts per

credit card inquiry is 0.52, indicating that typically two inquiries are necessary to obtain one

credit card. Credit card inquiries per year average 0.44 per borrower.

For default, we examine both measures of delinquency and whether borrowers have debt

in collections. On average, 10% and 7% of borrowers have some debt that is 30 and 90 or
14Ideally, we would subtract payments from the statement balance at the end of the billing cycle. Average current

balances will tend to understate statement balances when measured after the end of the billing cycle (and may
overstate it when measured shortly before).

15Using regulatory data, Adams, Bord and Katcher (2022) report that around 68% of active credit card accounts
are used to revolve in a given year and that approximately 75% of credit card balances are revolving at a given
point in time. Alternatively, the share of revolvers is 52% in the 2019 Survey of Household Economics and De-
cisionmaking (SHED) and 45% in the 2019 Survey of Consumer Finances (SCF). However, Zinman (2009) argues
that the SCF significantly under-reports credit card debt.
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Table 1: Summary Statistics for ZIP-Code Level Credit Outcomes

Mean SD 25th % 50th % 75th % N

1[Has CC] (%) 84.73 8.73 79.55 86.28 91.46 117,629
1[New CC] (%) 21.75 4.63 18.66 21.83 24.83 117,629
CC Bal. (All) 4,299.26 1,744.38 3,055.66 3,986.69 5,215.71 372,226
CC Rev. Bal. 3,680 1,448.77 2,656.52 3,436.17 4,445.41 372,226
1[Revolver] (%) 60.46 11.48 52.53 60.77 69.08 372,226
CC Util. (%) 31.27 12.11 21.87 30.03 39.38 117,629
CC Lim. 18,013.08 8,740.22 11,637.48 15,975.89 22,635.94 117,629
New CC to Inq. 0.52 0.12 0.44 0.52 0.61 117,629
CC Inq. (#) 0.44 0.14 0.34 0.43 0.53 117,629
30+ Delinq. (%) 10.05 4 7.14 9.74 12.5 117,629
90+ Delinq. (%) 7.15 3.22 4.81 6.82 9.06 117,629
1[Any Col.] 23.61 11.81 14.5 21.89 30.92 117,629
Col. Bal. 664.6 436.73 351.17 566.75 872.22 117,629
Col. Bal./Income (%) 1.19 1.11 0.43 0.88 1.59 117,629
Vantage Score 683.92 36.95 659.03 684.65 710.26 117,629

Notes: This table reports ZIP-code level summary statistics for the main credit outcomes of interest from the Ex-
perian data. All variables are reported annually (June of each year) except for credit card balances (total and
revolving) and the percentage of people that have revolving balances ("revolvers"). The latter are reported quar-
terly. We calculate revolving (i.e., unpaid) balances by subtracting credit card payments from total credit card
balances. Nominal variables are CPI adjusted to be in terms of 2020 dollars. Throughout, "CC" denotes "credit
card." The "Has CC" variable indicates the fraction of borrowers with at least one credit card, while the "New CC"
variable captures people that obtained at least one new credit card in the past year. Balances, limits, and utiliza-
tion are calculated across all credit cards. Utilization and limit calculations include households with zero credit
cards. The "inquiries" variables reflect total activity in the past year. The delinquency variables reflect whether
borrowers had any debt 30+ or 90+ days past due (excluding collections). The collections variables indicate the
fraction of households with some debt in collections (non-medical and medical debt are tabulated separately).
Our credit score measure is the Vantage Score.

more days past due (respectively). These measures of delinquency exclude debt in collec-

tions, which is even more common. On average, 24% of borrowers have at least some debt in

collections.

Default is persistent. Among households that either become newly delinquent or have

debt enter into collections, 38.9% are in default the following year. Of those, 5% are still in

default four years later. Appendix Figure A.1 and Table A.8 report the default hazard rate for

households in the Experian sample for a 10-year horizon.

Medicaid Eligibility Data. We combine several data sources to estimate Medicaid eligibility

at the ZIP-code level. Adult household members are eligible for Medicaid if their income falls

below a threshold, where the income threshold depends on household size and the number
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of dependents. Directly calculating eligibility requires individual-level data containing ZIP

codes, income, and household composition. Because such data are difficult to access, we

instead estimate the eligible population share. Our estimation approach first estimates the

income distribution for each ZIP-year using data from the IRS Statistics of Income (SOI). Next,

relying on the law of iterated expectations and Bayes’ rule, we use the joint distribution of

income and household size from the 2010 American Community Survey (ACS) to estimate

the share of households with income below their corresponding Medicaid threshold. For

details on our procedure, see Appendix B. We use IRS SOI data from 2009 to 2020 in our

calculations. We obtain annual ZIP-code level data on Medicaid enrollment from the ACS.

Eligibility Summary Statistics. Table 2 reports summary statistics for our eligibility and

income data.

Table 2: Summary Statistics for ZIP-Code Level Eligibility and Income Data

Mean SD 25th % 50th % 75th % N

Elig. (%) 17.66 11.93 6.43 13.7 27.84 117,629
∆Elig. 16.55 9.86 8.54 18.28 23.81 7,828
Avg. HH Inc. 79.86 63.18 51.22 63.1 85.5 117,629

Notes: This table reports ZIP-code level summary statistics for the eligibility measures and income. Eligibility is
calculated as described in the text, with additional details provided in Appendix B. The first row reports average
eligibility across all ZIP codes and years. The second row reports the average change in eligibility in the first year
of expansion (this excludes ZIP codes in states that did not expand). Average household income is the average
adjusted gross income (AGI) reported in the ZIP code. Nominal variables are CPI-adjusted to be in terms of 2020
dollars.

2.3 Empirical Strategy: Continuous Difference-in-Difference

Identifying the causal effect of Medicaid eligibility is challenging. Eligibility depends on

household income, which is likely correlated with omitted variables. Figure 5 shows that

income is generally positively related to credit access and use. Comparing credit outcomes of

eligible and non-eligible people would likely understate the causal effect of Medicaid eligibil-

ity, as such comparisons would conflate the causal effect with the direct effect of income and

other factors correlated with income.

To overcome these identification challenges, we exploit quasi-experimental variation in

the size of Medicaid expansions in a difference-in-difference (DID) analysis. We draw on
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Figure 5: ZIP-Code Level Credit Access and Income Facts
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Notes: This figure plots average income against credit outcomes, with all variables measured as the average within
a ZIP code for a given year. All nominal variables deflated to 2020 dollars.
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two sources of variation. First, we exploit cross-state variation arising from states’ pre-existing

Medicaid eligibility rules. Expanding under the ACA required states to raise the income eligi-

bility limit to a common threshold of 138% of the federal poverty level for all adults aged 64 or

less. States with previously stricter eligibility rules, such as lower income thresholds or rules

precluding adults without dependents from eligibility, tended to experience larger changes

in eligibility when expanding. Second, we exploit within-state variation due to differences in

the distribution of income among low-income households. Specifically, ZIP codes where more

households had income lie between the pre- and post-expansion income eligibility thresholds

experienced a larger increase in eligibility.

Because we have a continuous measure of treatment intensity, we estimate a continuous

DID. The DID compares ZIP codes with larger versus smaller shares of people that became

newly eligible as a result of their state expanding Medicaid under the ACA. This approach

is similar in spirit to that of Goodman-Bacon (2018, 2021b), which uses state-level variation

in exposure to Medicaid expansions to estimate the impact on mortality. An advantage of

using ZIP-code level variation is that we can include state-time fixed effects to account for

the impact of state-level events coinciding with expansions. Motivated by similar concerns,

Dranove et al. (2016) and Garthwaite et al. (2019) also use a continuous ZIP-code level DID to

study the impact on health care utilization. We further refine their approaches by construct-

ing an eligibility measure that takes into account how Medicaid eligibility cutoffs vary with

family size.

We estimate

Yzcst = β (Postst × NewEligzs) + ϕz + ϕct + γXzcst + εzcst. (1)

Above, Yzcst is an average credit outcome in ZIP code z (located in county c of state s) in

year t.16 Postst equals one if state s has expanded Medicaid as of year t. We capture the

intensity of treatment with a continuous variable, NewEligzs, which corresponds to the frac-

tion of ZIP z’s population that became newly eligible for Medicaid over the first year of state

s’s expansion (relative to the year before its expansion). ZIP code fixed effects, ϕz, account

16Most of our outcome variables are measured annually, but a subset are observed at a quarterly frequency. The
quarterly variables are credit card balances (both total and revolving).
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for persistent differences across ZIP codes. We also include county-time fixed effects, ϕct, to

account for the effects of other unobserved time-varying county and state-level shocks. We

include time-varying controls (Xzcst), such as logged ZIP-code level income per household.17

The coefficient of interest is β on the interaction term, which reflects the causal effect of an

expansion that induced a 1 percentage point increase in eligibility. Throughout, we cluster

our standard errors at the state level because the decision to expand Medicaid occurs at the

state level.

When does OLS estimation of the above equation identify the causal effect β? The key

identifying assumption is that household credit outcomes would have evolved in parallel—

across locations with high versus low changes in eligibility—if Medicaid had not expanded.

Phrased differently, we assume that the size of the newly eligible population is uncorrelated

with other factors changing at the time of the expansion. This assumption would fail if other

policies were implemented along with the expansions that also targeted the newly eligible

population.18 Our design also mitigates this concern through the use of granular variation.

The ZIP-level variation in the intensity of Medicaid expansions makes it possible to include

country-time fixed effects. These fixed effects help account for the impact of other state or

county-level policy changes on credit outcomes.

2.4 Empirical Results: The Effects of Medicaid Eligibility on Household Debt

Credit Card Debt. We first examine the response of credit card debt. Table 3 reports DID

estimation results for these outcomes. We first document positive effects of increased eligibil-

ity on the extensive margin of credit card use. A 1 percentage point increase in a ZIP code’s

Medicaid-eligible population leads to a 0.13 percentage point increase in the fraction of bor-

rowers that have a credit card. The fraction of households that received a new credit card
17We verify that our results are robust to including richer controls for the income distribution, such as controlling

for 19 percentiles of the distribution. Appendix Table A.1 reports these results for our main variable of interest:
revolving credit card balances.

18In support of this assumption, we find evidence that credit card borrowing evolved similarly across both
high- and low-income ZIP codes after expanding. This suggests it is unlikely that other policies altering low-
income households’ credit use coincided with the Medicaid expansions. Our first test augments the regression
above to include an interaction between an indicator for whether the ZIP code has above-median income and the
post-expansion indicator. Our second test instead uses an interaction between log(AGI) and the post-expansion
indicator. For credit card debt, we estimate a precise null effect for the income interaction terms in both the
binary and continuous specifications (obtaining coefficients of -0.005 and 0.008, respectively) while still obtaining
similarly large and statistically significant estimates for β.
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in the last year grows by 0.22 percentage points in response to the same shock. Per newly

eligible household, these correspond to a 13 and 22 percentage point increase (respectively).

In terms of total credit card balances, average ZIP-code level balances increase 0.96 per-

centage points in response to a 1 percentage point increase in eligibility. This corresponds to

approximately a $41.10 increase in average balances per capita. Examining revolving balances,

we find that a 1 percentage point increase in eligibility increases credit card borrowing by 0.56

percentage points. The borrowing response constitutes a $20.50 increase in average balances.

Per newly eligible household, this corresponds to a $2,050 increase in credit card borrowing,

which is approximately 28% of total household credit card balances. 19 Additional hetero-

geneity analyses reveal that both the extensive and intensive margin responses are strongest

in low-income ZIP codes.20

Table 3: DID Results for Credit Card Debt

1[Has CC] 1[New CC] log(CC Bal.) log(CC Rev. Bal.)
(1) (2) (3) (4)

NewEligzs× Postst 0.131*** 0.217*** 0.956*** 0.557***
(0.022) (0.015) (0.121) (0.116)

log(AGIzcst) 0.019*** -0.011*** 0.082*** 0.096***
(0.006) (0.004) (0.022) (0.020)

Obs 117,628 117,628 372,222 372,222
R2 0.978 0.864 0.97 0.957

Mean 85% 22% $4,299 $3,680

Notes: This table reports results from estimating the DID in Equation (1). Each specification uses county-time and
ZIP code fixed effects and controls for logged ZIP-code level average adjusted gross income (AGI). Note that data
are annual in columns 1-2 and quarterly in columns 3-4 (due to data availability). Standard errors are clustered by
state. Nominal variables are CPI-adjusted to be in terms of 2020 dollars. The dependent variable is labeled above
the column number, and its mean is reported in the bottom row. Statistical significance: 10%*, 5%**, and 1%***.

While large, the estimated borrowing response is plausible. First, this large response is

consistent with households going from little to no credit card usage to newly having access

to a credit card, and beginning to catch up to more typical levels of credit card balances.

Second, the DID estimates the credit card response for up to 12 years before and after

19The 28% figure comes from dividing $2,050 by $7,210, where the $7,210 is average household-level credit
card balances as of 2019. We calculate this figure using the aggregate credit card balance data from the Federal
Reserve Bank of New York’s Consumer Credit panel and household population count data from the American
Community Survey.

20See Appendix Table A.5.
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expanding. For each household made newly eligible at the time of expansion (our explanatory

variable), more households likely end up eligible in the following years as a result of adverse

events such as job loss. Putting our estimates in terms of newly eligible households likely

overstates the impact in terms of the number of households that access Medicaid at some

point over the next 12 years.

Third, credit demand and supply may also change for borrowers that never become eligi-

ble during the period of study. For example, households at risk of adverse events may expect

that they are more likely to qualify for Medicaid if an adverse event occurs. Even if these par-

ticular households do not experience an adverse event, credit supply may respond positively

to non-eligible households if underwriting models suggest that they present a lower risk of

default after the expansion. In our structural analysis, our model allows these effects to be

present.

Fourth, our large estimates are consistent with other empirical evidence on spending re-

sponses to social insurance. Notably, Aaronson et al. (2012) estimate strong spending re-

sponses to minimum wage hikes. They find that a $1 rise in the minimum wage increases

quarterly income and spending by $250 and $800 (respectively) among households receiving

over 20% of their income from minimum wage labor.

Pre-trend Testing and Dynamic Estimates. We estimate a dynamic version of Equation (1),

where we replace the post-treatment indicator with a set of categorical variables reflecting

years relative to expansion. Figure 6 plots these estimates. Prior to expanding, we see no

evidence of pre-trends. That is, the subsequent change in the share of the population that

becomes newly eligible does not predict differential trends in credit card debt prior to expan-

sion. After expanding, revolving balances gradually increase over time.

Credit Demand and Supply Proxies. Next, to shed further light on the role of supply and

demand, we examine proxies for these two forces in Table 4. Our proxy for credit card de-

mand is the number of credit card inquiries per borrower in the past year.

We estimate that a 1 percentage point increase in a ZIP code’s eligible population in-

creases inquires by 0.0055 per borrower (approximately 1 new inquiry per 180 individuals).
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Figure 6: Dynamic Estimates for Revolving Balances.
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Notes: This figure plots dynamic DID estimates at multiple horizons before and after Medicaid expansions. The
shaded area is a 95% confidence interval for standard errors clustered at the state-level.

Table 4: DID Results for Credit Card Demand and Supply Proxies

Demand Supply
CC Inq. (#) log(CC Lim.) CC Util. (%) New CC to Inq.

(1) (2) (3) (4)

NewEligzs× Postst 0.553*** 0.364*** -0.358*** 0.039
(0.041) (0.119) (0.033) (0.036)

log(AGIzcst) -0.072*** 0.287*** -0.019** 0.036***
(0.010) (0.028) (0.009) (0.004)

Obs 117,628 117,628 117,628 117,628
R2 0.939 0.986 0.980 0.848

Mean 0.44 $18,013 31% 0.52

Notes: This table reports results from estimating the DID in Equation (1). Each specification uses county-year
and ZIP code fixed effects and controls for logged ZIP-code level average adjusted gross income (AGI). Standard
errors are clustered by state. Nominal variables are CPI-adjusted to be in terms of 2020 dollars. The dependent
variable is labeled above the column number, and its mean is reported in the bottom row. Statistical significance:
10%*, 5%**, and 1%***.

This suggests that demand may be contributing to the equilibrium rise in credit card debt.

For our supply proxies, we consider credit limits, the ratio of credit card balances to credit

limits (utilization), and the ratio of new credit cards to credit card inquiries (over the past

year). Overall, we find evidence consistent with a positive credit supply response to expan-

sion. A 1 percentage point increase in a ZIP code’s eligibility leads to a 0.36 percentage point
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increase in credit limits, corresponding to a $65.75 increase. In dollar terms, this is larger than

the implied change in either total or revolving balances. Indeed, utilization decreases 0.35

percentage points per 1 percentage point increase in the eligible population. Thus, despite

the increase in credit card borrowing, credit constraints are overall relaxed in the sense of

credit limits becoming less binding.

Lastly, we estimate a precise null effect (0.039) for the impact of Medicaid eligibility on

the ratio of new credit cards to inquiries. This finding is also consistent with an expansion

of credit supply. To see this, first note that this flat response of the credit card application

success rate happens despite coinciding with a rise in the number of inquiries. Addition-

ally, if marginal applicants are less likely to be successful than the average applicant, the flat

response of the average success rates would indicate increased success rates for marginal ap-

plicants (relative to what they would experienced absent expanding Medicaid).

These proxies have several limitations. First, we note that inquiries are an equilibrium

outcome that may be influenced by marketing practices of credit card lenders and house-

holds’ perceptions of lending standards, making them an imperfect proxy for demand. Sec-

ond, we would ideally also observe the response of credit card interest rates to gauge the plau-

sibility that the rise in credit card debt is supply driven. While interest rates are not available

in our sample, other work using credit card offer data finds evidence of reduced credit card

APRs. Brevoort et al. (2017) estimate that Medicaid expansions led to improvements in credit

card offer terms worth $520 million per year. Ultimately, we rely on our model to quantify

the roles of supply and demand.

Financial Resilience. Finally, we turn to measures of default and find evidence indicating

that increased eligibility improved households’ financial resilience in Table 5. We first exam-

ine the likelihood a household is 30- or 90-day delinquent on debt, finding a small and statis-

tically insignificant effects of Medicaid eligibility. This indicates that household "debt toler-

ance" has increased in the sense that, despite households increasing credit card debt overall,

they do not become more likely to enter delinquency.

Next, we study more severe forms of default and find that Medicaid eligibility reduces

debt in collections. A 1 percentage point increase in eligibility reduces the likelihood of having
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debt in collections by 0.11 percentage points. Similarly, the amount of debt in collections

relative to average income (AGI) also shrinks by 0.04 percentage points in response to a 1

percentage point rise in eligibility. In relative terms, this constitutes a 3.25% reduction in

this ratio. Note also that some households, who would have otherwise have had debt enter

collections, may not entirely avoid default and instead experience milder forms of default

such as delinquency. Overall, households appear to become more financially resilient as a

result of increased Medicaid eligibility.

Table 5: DID Results for Default and Credit Scores

1[Delinquency] Debt in Collections Credit Score
30+ Days 90+ Days 1[Any Col.] Col./Inc. Vantage Score

(1) (2) (3) (4) (5)

NewEligzs× Postst 0.022 -0.004 -0.103*** -0.039*** 0.143
(0.013) (0.011) (0.026) (0.011) (0.115)

log(AGIzcst) -0.014*** -0.010*** -0.060*** -0.008*** 0.192***
(0.003) (0.003) (0.006) (0.002) (0.024)

Obs 117,628 117,628 117,628 117,628 117,628
R2 0.914 0.901 0.982 0.940 .987

Mean 10% 7.2% 24% 1.2% 684

Notes: This table reports results from estimating the DID in Equation (1). Note that the delinquency measure here
is not restricted to delinquency on credit cards. It will also reflect delinquency on mortgages, student loans, and so
on. Each specification uses county-year and ZIP code fixed effects and controls for logged ZIP-code level average
adjusted gross income (AGI). Standard errors are clustered by state. Nominal variables are CPI-adjusted to be in
terms of 2020 dollars. The dependent variable is labeled above the column number, and its mean is reported in
the bottom row. Statistical significance: 10%*, 5%**, and 1%***.

The improved financial resilience of borrowers may also translate into higher credit scores.

We estimate an economically significant (but statistically insignificant) increase in credit scores

in response to expanded Medicaid. Our point estimate implies that a 1 percentage point in-

crease in eligibility leads to a 0.14 increase in consumers’ average Vantage Score. This effect is

close in size to the 0.19 increase that is predicted by a 1% rise in average income. We note also

that we find statistically significant increases in credit scores when we separately estimate our

regressions in ZIP codes with above or below median income (see Appendix Table A.7).

To sum up, we find that expanding Medicaid eligibility increased both the prevalence

of credit cards and revolving credit card balances. We find evidence suggesting both supply
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and demand contributed to the increase in equilibrium credit card usage. Lastly, we find that

households appear more financially resilient in terms of reduced default, which could drive

an increase in credit supply in response to expanded Medicaid eligibility.

Treatment Effect Heterogeneity Robustness. Recent econometric work highlights that when

the timing of treatment is staggered and treatment effects are heterogeneous, standard DID

estimators can identify a weighted average treatment effect (e.g., Goodman-Bacon, 2021a).

These weights can sometimes be negative, biasing estimates in the opposite direction of the

true (unweighted) average treatment effect. Settings like those in this paper, in which there

are many early treated units, are vulnerable in theory to having negative weights (Roth,

Sant’Anna, Bilinski and Poe, 2022). This suggests that the estimates above may tend to un-

derstate the true treatment effects.

To address this concern, we verify that our results are robust to using a "stacked" DID

estimator (as in Cengiz, Dube, Lindner and Zipperer, 2019). The idea of this approach is to

restructure the data and regression in order to estimate the treatment effect using only "good

comparisons." The problematic negative weights that may arise for the standard two-way

fixed effect (TWFE) estimator are due to its use of "bad comparisons". The "bad comparisons"

occur when newly-treated units are compared to previously-treated units.21 The stacked ap-

proach instead relies only on "good comparisons" (or "clean controls") of never-treated units

to treated units.22

We implement the stacked DID as follows. We first split our sample into several groups

based on their expansion year (2014, 2015, 2016, 2019, or 2020). For each group of expanders,

we append rows for the non-expanders. We create a group-identifier for each group and then

"stack" observations for each group into a single data table. We then estimate a modified DID

21The problem with such comparisons is that already-treated units do not generally provide a valid counter-
factual for newly-treated units. For example, if treatment effects grow over time, the change in outcomes for
already-treated units reflected both their potential outcomes (absent treatment) and any subsequent changes in
treatment effects. Therefore, in this scenario, subtracting the change in outcomes for already-treated units from
the change for newly-treated units would tend to understate the true treatment effect.

22For a helpful, more detailed discussion of the "stacked" approach, see Baker, Larcker and Wang (2022).
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regression, specified below:

Yzcstg = β
(
Poststg × NewEligzs

)
+ ϕzg + ϕctg + γXzcst + εzcst.

The regression above modifies our baseline, Equation (1), by allowing the ZIP and county-

time fixed effects (ϕzg and ϕctg, respectively) to vary by group g. Estimating the modified

equation results in effectively estimating the treatment effect for each group separately and

then taking an average of these estimated treatment effects.

Overall, we find that the stacked specifications yield quantitatively similar estimates. Ap-

pendix Tables A.2, A.3, A.4 report estimation results. Generally, the stacked regressions yield

estimates within two to three decimal points of those obtained via TWFE estimation on the

same sub-sample and with similar statistical significance. We create "balanced panels" by

restricting the stacked sub-samples to include the same number of pre- and post-expansion

years. Since only one and two years of post expansion data are available for the 2019 and

2020 expansions (respectively), in this robustness analysis we use only data for 2014, 2015,

and 2016 expanders (constituting 94% of our original sample). Since including later expan-

sions comes at the cost of including fewer years of data, and treatment effect appear to grow

over time (Figure 6), we present three sets of results that vary in whether they include the 2015

and 2016 expanders. To quantify gauge the possible biased induced by "bad comparisons,"

the tables also display TWFE estimates for the same sub-samples.

Notably, our stacked DID estimate for revolving balances is 0.602 for the set of 2014 ex-

panders, which is close to its TWFE counterpart obtained on the same sub-sample (0.598).23

This suggests that bias related to treatment effect heterogeneity is small in our setting. Our es-

timates become smaller (but remain positive and highly statistically significant) when adding

additional expanders and shortening the horizon over which we estimate. This is because the

shorter horizon excludes the later years, where the estimated treatment effects are largest.

23Note that the 0.598 estimate differs from the 0.557 estimate in Table 3 because it is estimated the subset of
never-expanders and 2014 expanders. One reason these estimates are similar is that 85% of our full sample comes
from never-expanders and 2014-expanders.
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3 Model

In this section, we develop an incomplete-markets heterogeneous-agents model with health

expenditure shocks, credit delinquency, and health insurance. Households face idiosyncratic

income shocks as well as idiosyncratic health expenditure shocks. They can save and borrow

using a one-period non-state-contingent asset and can choose not to repay their debt obliga-

tions. After reneging on their debt obligations, their debt enters a delinquent state, and the

household is excluded from financial markets and suffers a utility loss. In every period, delin-

quent debt can stochastically get a haircut (i.e., be reduced by some percentage). Households

can exit the delinquency state by repaying their debt.

Credit to households is supplied by credit card companies. These companies have access

to funds at the risk-free interest rate, which we assume to be exogenous. The assumption

that the risk-free rate is constant, rather than the aggregate net supply of debt, allows us to

study how different policies affect the aggregate stock of household debt in the economy. We

assume that credit card companies are risk neutral and behave competitively. As a result, the

interest rate spread a household pays on its loans is such that lenders’ expected profits equal

zero.

We use the model to study the effects of different insurance policies on the aggregate

stock of debt, wealth inequality, and welfare.

3.1 Household problem

There is a continuum of measure one of households in the economy, denoted by i ∈ (0, 1).

Household’s i income at time t is denoted by yit and evolves according to a compound Poisson

process:

ln yit =

 ρ ln yit−1 + ϵ
y
it w.p. λy,

ln yit−1 w.p. 1 − λy,
(2)

where λy is the probability that an income shock arrives in a period. If such shock does not

arrive, the household’s income does not change. Given an income shock, the household in-

come follows an AR(1) process, where ρ is the degree of persistence and ϵ
y
it is an idiosyncratic
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income shock with mean zero and variance σ2
ϵ,y. 24

In addition to income risk, households are subject to stochastic medical expenditure

shocks, denoted by mit. The stochastic expenditure shocks follow a log-normal distribution

with mean µe and variance σ2
e .

Medical bills are partially covered by health insurance. We allow the type of insurance to

vary exogenously with household income. Health insurance covers a share of the medical bill

due. We denote the share of medical bills a household has to pay out-of-pocket as o(yit). Note

that the out-of-pocket share depends only on the current household income, as we assume

insurance varies only with household income.

Each household has access to non-state-contingent one-period debt, denoted by bit. A

negative value of bit represents household savings. In the beginning of each period, the house-

hold can choose to repay or renege on its debt obligations. The household’s decision to repay

debt depends on its total debt, its level of income, and the size of its current medical bill.

Households face an interest rate schedule for the amount of borrowing they choose, which

we denote by r(b′, y).25 The price of debt is denoted by q(b′, y) = 1
1+r(b′,y) . We denote the

total amount of repayments owed by the household by b̃it = bit + o(yit)mit. Note that b̃ is the

relevant state variable from the perspective of the household.

The household’s present discounted value is denoted by V(b̃, y), where {b̃, y} are its in-

dividual state variables. This value function is given by the max between the present dis-

counted value of repaying debt obligations, denoted by Vr(b̃, y), and the value of reneging

and declaring delinquency, denoted by Vd(b̃, y):

V(b̃, y) = max
{

Vr(b̃, y), Vd(b̃, y)
}

. (3)

Conditional on the decision to repay its debt obligations, the recursive problem of the

24The assumption that income shocks occur with probability λy allows us to match the high kurtosis of income
changes observed in the data. The high kurtosis is quantitatively important for matching delinquency rates in the
data.

25The size of medical bill does not appear in the interest rate schedule as it is independent across periods.
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household with total debt obligations b̃ and income y is given by

Vr(b̃, y) = max
c,b′

u(c) + βEV
(
b′ + o(y′)m′, y′

)
, (4)

s.t. c + b̃ ≤ y + q(b′, y)b′,

where u(·) is the utility of the household from consumption, which is assumed to be strictly

increasing, concave, and continuously differentiable. The household’s discount factor is β.

When a household reneges on its debt obligations, the debt moves into a delinquency

state. A household with debt in a delinquency state cannot save or borrow and suffers a

utility cost ξ. At the end of the period, the household receives a stochastic haircut on its debt

obligations. The haircut, denoted by δ, is assumed to follow a Power distribution with shape

parameter α. That is, the probability that the share of debt forgiven is less than δ is given by

δα.

The value of the household in the delinquent state is given by

Vd(b̃, y) = u(y)− ξ + βEV
(
(1 − δ)b̃ + o′(y′)m′, y′

)
. (5)

The timeline in every period is as follows. First, the household learns its current income

and medical bill. Then, it decides whether or not to repay its outstanding debt obligations. If

it decides to repay its debt obligations, it chooses the level of consumption and borrowing. If

it decides to renege on its debt obligations, it consumes its income, suffers a utility loss, and

at the end of the period draws a stochastic haircut rate.

We denote the delinquency policy function of a household with total debt obligations b̃

by

d(b̃, y) = 1
[
Vr(b̃, y) < Vd(b̃, y)

]
, (6)

where 1 is the indicator function. The function d(b̃, y) equals 1 when the household defaults.

When indifferent, we assume the household repays its debt obligations.
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3.2 Credit supply

Credit to households is supplied by risk-neutral credit card companies. Perfect competition

among these companies ensures an expected zero-profit condition holds in equilibrium. We

assume credit card companies have unlimited access to funds at the risk-free interest rate,

which we denote by r f .

Debt in the economy is a hybrid of short-term and long-term debt. Debt is of short ma-

turity in nature, as households need to repay their debt obligations in the following period.26

However, when debt becomes delinquent, credit card companies do not receive payments

within that period. Instead, they need to wait until the household decides to repay its debt—

either because it received a sufficiently large haircut or because its income level changes so

that it decides to repay.

The zero-profit condition that pins down the price of debt, q(b′, y), is

q(b′, y)(1 + r f ) =
[
1 − E

(
d(b′ + o(y′)m′, y′)

)]
+ E

[
d(b′ + o(y′)m′, y′)(1 − δ′)q

(
(1 − δ′)(b′ + o(y′)m′), y′

)]
. (7)

That is, the credit companies equate the cost of their loan (LHS) with its return (RHS). The re-

turn from the loan is the sum of two parts. If the debt is repaid, the credit company receives its

full face value. If the debt is delinquent, which happens with probability E (d(b′ + o(y′)m′, y′)),

the creditor is left with a claim on a delinquent debt. The worth of such claim is given by

(1 − δ′)q ((1 − δ′)(b′ + o(y′)m′), y′). The fixed point function q(·) that solves equation (7) is

the debt pricing schedule. As the following proposition shows, this function exists and is

unique.27

Proposition 1. Given a default policy function, d(b̃, y), there exists a unique pricing schedule q(b′, y)

that satisfies equation (7).
26Note that households can potentially roll over their debt by borrowing to cover their current debt obligations.
27The proof is in Appendix C.
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3.3 Stationary Equilibrium

We denote the joint distribution of households across total debt obligations and income lev-

els at the beginning of the period, after the expenditure shock realization, by Λ
(
b̃, y

)
. Four

components characterize the law of motion for this joint distribution: (i) the borrowing deci-

sion of households, b′(b̃, y), (ii) the debt pricing schedule, q(b′, y), (iii) the household’s default

decision, d(b̃, y), and (iv) the exogenous processes of income, expenditure shocks, and hair-

cuts. The law of motion for the joint distribution is defined as follows. For all Borel sets

B × Y ⊂ R × R+,

Λ′ (B × Y) =
∫

m′

∫
y′∈Y

∫
B(b̃,y,m′)

dΛ(b̃, y)dF(y′|y)dG(m′) (8)

+
∫

δ

∫
m′

∫
y′∈Y

∫
y,((1−δ)b̃+o(y′)m′)∈B

1
[
d
(
b̃, y

)]
dΛ(b̃, y)dF(y′|y)dG(m′)dH(δ) ,

and

B
(
b̃, y, m′) = {

(b̃, y) s.t. d
(
b̃, y

)
= 0 and b′

(
b̃, y

)
+ o(y′)m′ ∈ B

}
,

where F(·), G(·), and H(·), are the CDF of the different exogenous variables. In the

stationary equilibrium, the distribution Λ(b̃, y) is constant over time. The definition of the

stationary Markov-perfect equilibrium is as follows.

Definition 1 (Equilibrium). A stationary Markov-perfect equilibrium is given by a default policy

function d(b̃, y), a borrowing policy function b′(b̃, y), a debt pricing schedule q(b′, y), and a joint

distribution of households across total debt and income levels, Λ(b̃, y), such that

1. The default and borrowing policy functions solve the household’s problem given the debt pricing

schedule.

2. The debt pricing schedule satisfies the zero-profit condition, (7).

3. The joint distribution of households across debt and income levels is stationary.

3.4 Calibration

We calibrate the risk-free interest rate in the economy to 2% and assume that households have

log utility in consumption, u(c) = ln(c). We can divide our calibration into five sets of struc-
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tural parameters. First, there are two preference parameters—the discount factor β and the

disutility of delinquency ξ. Second, there is the haircut process parameter—the shape pa-

rameter of the Power distribution, α. Third, there are three parameters governing the income

process—the arrival rate of income shocks λy, the persistence of income ρ, and the variance

of income shocks σ2
ϵ,y. Fourth, there are two parameters governing the health expenditure

process—its log mean µe and variance σ2
e . Finally, we need to calibrate the out-of-pocket

share function o(y).

We proceed as follows. We use income data from the Panel Study of Income Dynamics

(PSID) to calibrate the income process. We use the Medical Expenditure Panel Survey (MEPS)

to calibrate the parameters governing health expenditure shocks and the out-of-pocket func-

tion. We then calibrate the preference parameters and haircut shape parameter to match sev-

eral features of credit card debt in the data.

Income Process Parameters. We calibrate the income process parameters to match key mo-

ments of household income dynamics from the PSID. Our sample includes households whose

head is between the ages of 25–55. The sample period is 1999–2019. The three moments we

target are the two-year autocorrelation of log household income (0.837), the standard devia-

tion of two-year log-income changes (0.536), and the kurtosis of two-year log-income changes

(5.586).28 The calibration yields an arrival rate of income shocks λy = 0.348, so that income

shocks arrive on average every 2.8 years. The calibrated persistence of income conditional on

an income shock is ρ = 0.756, and the variance of income shocks is σ2
ϵ,y = 0.378.29

Health Expenditure and Insurance Parameters. We calibrate the mean log expenditure and

its variance to match the distribution of annual medical expenditures of households in the

MEPS data over 2000 to 2017. We find a mean expenditure of 8% of median income and a

variance of 2.62. Figure 7 compares the calibrated distribution to its empirical counterpart.

The calibrated parameters imply that a medical expenditure one standard deviation above

the average equals 40% of median income. Recall that the expenditure shocks, in both the

28The data moments are in line with the income moments in Guvenen et al. (2015), who use Social Security
Administration data on the annual income of males in the US.

29In Appendix C, we show how the moments map to these three parameters.
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data and the model, are not the amounts that households have to pay out-of-pocket.

Figure 7: Distribution of annual medical expenditure
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Notes: Data source: Medical Expenditure Panel Survey (MEPS).

The MEPS dataset also contains information on household income, insurance type, and

out-of-pocket (OOP) expenditures. To construct the out-of-pocket share as a function of in-

come, we proceed in two steps. First, we split insurance types into three categories: Medicaid,

non-Medicaid insurance, and uninsured. Non-Medicaid insurance includes households with

private insurance (including employer sponsored) and Medicare. We compute the average

OOP share for each insurance type. The average OOP share in Medicaid is 6.8%, 27.5% under

non-Medicaid insurance, and 63% for the uninsured.

Second, using a log-linear function, we approximate the share of households with each

insurance type. We compute these approximations both before and after the expansion of

Medicaid. Figure 3 displays the empirical shares alongside our approximation. The stationary

distribution of our benchmark model uses the pre-expansion approximations, while the post-

expansion counterfactual economy uses the post-expansion approximations.

We combine the relationship between insurance type and income along with the OOP

share by insurance type to impute the average OOP share by income. Specifically, the OOP

share in our model is

oop(y) = Pr(Medicaid|y)× 6.8% + Pr(Other|y)× 27.5% + Pr(Uninsured|y)× 62.7%. (9)
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A key advantage of this two-step approach, relative to directly estimating the OOP share

along the income distribution, is that we can conduct counterfactuals in which we change the

share of households under each insurance type.

Preference and Haircut Parameters. There are three remaining parameters: (i) the discount

factor β, (ii) the disutility of delinquency ξ, and (iii) the haircut distribution shape parameter

α. We use an indirect inference procedure to calibrate these parameters.

We target four credit card moments in the pre-expansion period. These moments include

the aggregate level of revolving credit card debt in the data, the share of revolving credit card

debt owed by the bottom 40% of households, the delinquency share across households, and

the hazard rate of delinquency.30

Note that not all debt in our model corresponds to credit card debt in the data. Con-

sider, for example, a low-income households who can only borrow at very high interest rate

spreads, and as a result decides to have no debt. Suppose such households suffers a large

medical shock, which it chooses not to repay. As a result, such household has delinquent

debt. We do not consider this form of debt to be credit-card debt, as no lender extended

any loans to this household. In particular, credit card in the model corresponds to any non-

delinquent debt households owe, as well as delinquent debt that was given to the household

in the previous period by a credit card company.

In addition to the four credit card moments, we also target the main regression coefficient

from our empirical analysis: a 1 percentage point increase in a ZIP code’s Medicaid-eligible

population increases credit card borrowing by 0.56%. To construct a model-implied regres-

sion coefficient, we proceed as follows. Starting from the pre-expansion ergodic distribution,

we divide households into ZIP codes according to their income.31 We then study the transi-

tion dynamics following the expansion of Medicaid. We discuss this counterfactual experi-

ment in detail in Section 4. We construct the estimand in the model in three steps. First, for

each ZIP code, we construct the share of newly Medicaid-eligible households based on the
30The revolving credit card data at the household level are obtained from the PSID, while the delinquency

rate as well as the hazard rate of delinquency are obtained from the Experian dataset. The data counterpart of
delinquency is an individual with 90–180 days of delinquent credit card debt or any debt in collection.

31To do so, we use IRS SOI data to obtain the income distribution in every ZIP code in the US. We then draw
households from the ergodic distribution so that we exactly match the observed income distribution within each
ZIP code and across ZIP codes.
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income distribution in that ZIP code as well as the difference between the estimated pre- and

post-expansion Medicaid insurance across household income.32 Second, for each ZIP code,

we analyze the impact the expansion has on credit card debt for the first five years follow-

ing the expansion. We do so by comparing the log amount of credit card debt in the ZIP

code following the expansion of Medicaid, relative to what would be the log amount of credit

card debt absent the implementation of the expansion.33 Finally, we compute the average

treatment effect across ZIP codes.

The estimation targets as well as the model fit are reported in Table 6. All model param-

eters are reported in Table 7. The model does a reasonable job at matching the data targets,

considering we are using 3 parameters to match 5 targets. The estimated annual discount

factor β is estimated to be 0.86. This relatively low discount factor is needed for households

to borrow despite the non-negligible interest rate spreads.34

Table 6: Estimation Targets and Model Fit

Data Model

Aggregate credit card debt (% of median income) 5.3% 6.8%
Credit card debt share held by bottom two quintiles 19.3% 21.8%
Delinquency share 27.0% 20.6%
Delinquency hazard rate 38.9% 43.5%
Eligibility effect on credit card debt 0.56 0.38

Notes: This table presents the targeted data moments as well as the model-implied moments of the estimated
model. The last row reports the main regression coefficient from Section 2 and the estimand in the model.

The estimated value for the disutility of deliqneucny is ξ = 0.246. This value implies that

households are indifferent between the periodic non-pecuniary cost of delinquency and a 22%

drop in consumption. The sizeable delinquency cost is what allows households to maintain

32Since our model only uses data on the insurance type individuals have, we need to take a stand on the take-up
rate in order to obtain Medicaid eligibility. For the analysis, we use a take-up rate of 50%.

33Note that while the national ergodic distribution of income does not vary over time in the steady state, the
income distribution within each ZIP code does slowly converge toward the national stationary distribution. For
that reason, we do not compare the log amount of debt post-expansion to the same variable before the expansion,
but rather to the log amount of debt along the transition dynamics in each ZIP code absent the expansion of
Medicaid.

34The estimated value of the discount factor is within the range of impatient and patient households found in
Chatterjee et al. (2020) and Aguiar et al. (2020). Chatterjee et al. (2020) construct a quantitative model of credit
scores and estimate the discount factor of impatient households to be 0.81 and that of patient households to be
0.93. Aguiar et al. (2020) use the PSID to study the behavior of hand-to-mouth households and estimate preference
heterogeneity across households. They estimate that the discount factor for impatient households is 0.72, while
that for patient households is between 0.94 − 0.97.
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positive levels of debt in equilibrium without going delinquent. Finally, we estimate the shape

parameter of the haircut distribution to be 1.645. This value implies that, on average, about

60% of delinquent debt will be forgiven within one year. This high haircut rate helps the

model match the low delinquency hazard rate of about 40%. Moreover, it is consistent with

lenders selling their delinquent debt to debt collectors for a low price relative to the face value

of debt.

Table 7: Model Parameters

Parameter description Parameter Value Calibration Source

Risk-free rate r f 2% Standard value

Arrival rate of income shocks λy 0.348 PSID income moments
Persistence of income shocks ρ 0.756 PSID income moments
Volatility of income shocks σϵ,y 0.615 PSID income moments

Expenditure shock mean µe 0.08 MEPS expenditure moments
Expenditure shock volatility σe 1.61 MEPS expenditure moments

Discount factor β 0.857 Indirect inference (Table 6)
Disutility of delinquency ξ 0.246 Indirect inference (Table 6)
Haircut power law shape χ 1.645 Indirect inference (Table 6)

Notes: This table presents the targeted data moments as well as the model-implied moments of the estimated
model. The last row reports the main regression coefficient from Section 2 and the estimand in the model.

3.5 Equilibrium properties

We solve the model globally and compute the stationary distribution across income and debt

levels. Panel A of Figure 8 presents the regions of the state space where households choose

to repay or renege on their debt obligations.35 In general, lower income implies a lower debt

threshold, above which households do not repay their debt. Because the utility function is

concave, low-income households are more tempted not to repay their debt and increase their

contemporaneous consumption. As a result, low-income households cannot maintain a high

level of debt.

The probability of delinquency affects the interest rate spreads households face. Panel B

of Figure 8 presents the interest rate spreads households face in equilibrium. The horizontal

axis is the current income level of the households, and the vertical axis represents the debt

35While the upper limit of debt in Figure 8 is 1, we solve the model with the upper limit of debt being 6. The
share of households with debt level above 1 is very small.
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Figure 8: Equilibrium properties

A. Delinquency region B. Interest rate spreads

Notes: The left panel presents the regions where households choose to repay their debt or go delinquent. The right
panel presents the interest rate spreads households pay as a function of promised repayment. The interest rate
spread is capped for illustration purposes at 30%, so the dark share of red represents interest rate spreads above
that cap.

obligations promised to be repaid in the following period. Because high-income households

are less likely to renege on their debt obligations, they face lower interest rate spreads. In a

similar fashion, low-income households face very high interest rate spreads.

The interest rate schedule faced by low-income households effectively limits their access

to credit. Policies that reduce the delinquency probability of these households expand their

credit access by lowering these interest rate spreads. In the next section we study the effects

of one such policy: the expansion of Medicaid.

Model Abstractions. Our model abstracts away from several aspects of health, which will

generally make our policy counterfactual analysis conservative. First, we do not model house-

holds’ "health." Therefore, our welfare calculations reflect improvements in financial health

rather than physical health. In reality, the welfare benefits from improved physical health are

also likely large, as Medicaid expansions significantly reduced both child and adult mortality

(Goodman-Bacon, 2018, 2021b; Miller et al., 2021).

Second, our model does not feature moral hazard in terms of risky health behaviors or

use of medical services. Prior analyses of the ACA’s Medicaid expansion do not find ef-

fects on risky behaviors (e.g., smoking and lack of exercise, Simon, Soni and Cawley, 2017).
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However, research generally estimates moderate moral hazard responses in terms of overall

health expenditures (Manning et al., 1987; Finkelstein et al., 2012; Garthwaite et al., 2019), al-

though a recent analysis of the Medicaid expansion under the ACA finds no impact on total

(pre-insurance) medical expenditures (Shupe, 2023). Because households do not increase to-

tal medical expenditures in our model, the model likely understates the borrowing response.

While the additional costs of the expansion that would arise from increased expenditure are

not included in our welfare calculation, these costs should be weighed against the welfare

gains from improved physical health.

Third, income and medical expenditure shocks are uncorrelated in our model. In reality,

the health events resulting in large medical expenditures may reduce income and employ-

ment (Dobkin et al., 2018; Stepner, 2019). If expanding Medicaid improves access to care and

reduces the likelihood of major illnesses, then our model would understate the financial bene-

fits from higher income associated with these health improvements. It likely also understates

the borrowing response, as avoiding low-income states of the world improves credit access.

4 The Effect of Medicaid Expansion on Debt and Welfare

In this section, we study how the exapnsion of Medicaid shapes the distribution of debt across

households in the economy and study its welfare implications. We start by studying the

channels through which health insurance policy can affect households’ accumulation of debt.

We then study the effect of Medicaid expansion in our model.

4.1 Theoretical analysis

We model the expansion of health insurance as a change in the out-of-pocket share of medical

expenditure that households of different income levels face, o(y). A more generous health in-

surance policy corresponds to a reduction in the out-of-pocket share that different households

pay for medical shocks.

Health insurance policy affects households’ accumulation of credit card debt in several

ways, both directly and indirectly. There are two direct effects of the policy. First, a more

generous health insurance is increasing households’ disposable income. As a result, house-

hold debt levels decline. Second, the insurance against medical expenditure shocks reduces
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delinquency rates. When a household in delinquency receives a medical expenditure shock,

its additional debt is not counted as credit card debt but rather as medical debt. When a

household is not in delinquency, receiving a medical shock may result in more borrowing to

cover that expenditure. The decline in delinquency rates leads to a substitution from medical

debt to credit card debt. Overall, the direct effects of the policy reduce overall debt levels, but

may result in larger levels of credit card debt.

To study the indirect channels of the policy, consider the household’s optimality condition

with respect to debt accumulation, which is given by

u′(c)
∂ (q(b′, y)b′)

∂b
= βE1Vr≥Vd u′ (c(b′ + o(y′)m′, y′)

)
+ βE1Vr<Vd Vd

1
(
b′ + o(y′)m′, y′

)
(10)

The household equated the benefits from borrowing (LHS) to the utility costs of borrow-

ing (RHS). By increasing debt obligations, b′, the household increases its current funds by
∂(q(b′,y)b′)

∂b . Note that the household internalizes how its borrowing decision affects the interest

rate it pays on debt. There are two potential costs of borrowing. If the household repays its

debt in the following period (Vr ≥ Vd), the marginal cost of debt obligations is simply the

marginal utility of consumption. Alternatively, if the household goes delinquent (Vd > Vr),

the household’s cost of debt obligations is ∂V
∂b̃

.

The first indirect channel through which social insurance affects household debt is a re-

duction in the precautionary savings motive. A reduction in o(y′) reduces the volatility of out-of-

pocket medical expenditure, o(y’)m’. This results in a lower volatility of future consumption.

If the utility function features prudence (u′′′(·) > 0), as it does in our calibration, then such re-

duction in volatility results in a smaller cost of borrowing. The reduction in the marginal cost

of borrowing induces households to take on more debt. That is, through the precautionary

savings channel, social insurance raises household debt levels.

The second indirect channel is the debt aversion channel. Borrowing is more costly in the

states where households repay their debt obligations. Debt is less costly in the delinquency

state as households expect to pay it only in the future, and after a haircut. A more generous

insurance policy raises the probability of repayment, E1Vr≥Vd , as medical expenditures that
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would have pushed households into delinquency are now partially insured. The increase in

the repayment probability deters households from taking on debt, as they are more likely to

repay it. Therefore, through the debt aversion channel, social insurance reduces household

debt levels.

Both the precautionary savings motive and the debt aversion channels do not depend on

lenders changing their behavior. That is, they do not depend on the supply side of loans. We

refer to the combined effect of these two channels as the credit demand channel.

The final indirect channel is the credit supply channel. The reduction in delinquency prob-

ability induces lenders to lower interest rate spreads, q(b′, y). This raises the benefits from

taking on more debt obligations b′. For each unit of consumption promised to be repaid in

the following period, households receive more units of consumption in the current period.

This induces households to increase their debt obligations. So, through the credit supply

channel, social insurance increases household debt levels.

Overall, the effect of social insurance on the aggregate level of household debt is ambigu-

ous. We now turn to study the expansion of Medicaid in our model and quantitatively assess

the strength of the different channels.

4.2 Medicaid expansion

Our benchmark specification assumes that the share of households covered by Medicaid in-

surance is log-linear in household income percentile. Low-income households are more likely

to be covered by Medicaid. In this section, we consider a policy that mimics the expansion of

Medicaid as part of the ACA in the data. Following the results in the left panel of Figure 3,

we change the coefficients of the Medicaid coverage function so that the share of households

insured by Medicaid follows the post-expansion pattern across states. We maintain the share

of households insured by non-Medicaid insurance the same.

The resulting Medicaid insurance approximation implies that an additional 4.5 percent

of households are covered by Medicaid. We solve the model and compute the stationary

distribution, as well as the transition dynamics towards the new stationary distribution. We

assume the out-of-pocket share of the Medicaid policy remains unchanged at a rate of 6.8%.

The expansion of Medicaid reduces the delinquency probability of households, as health
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expenditure shocks that would push households into the delinquency region are not partially

covered by their health insurance. This results in lower interest rate spreads in equilibrium.

The reduction in equilibrium spreads as a result of the policy is plotted in Figure 9. House-

holds who are close to the delinquency region are now facing lower interest rate spreads

relative to the pre-expansion interest rate spreads.

Figure 9: Reduction in interest rate spreads due to policy

Notes: This figure presents the reduction in equilibrium interest rate spreads in percentage points.

The reduction in interest rate spreads affects low-income households who tend to be close

to the default frontier. High-income households, who often do not hold any debt and are not

covered by Medicaid, are less affected by the expansion of Medicaid.

The expansion of Medicaid in our model leads to a long-run increase of 4.7% in credit

card debt. Our model allows us to decompose the credit card impact into the three theoret-

ical channels we laid out in the previous subsection: the direct channel, the credit demand

channel, and the credit supply channel. The decomposition results are summarized in the top

panel of Table 8.

To get the direct impact of Medicaid expansion, we keep the debt pricing schedule as well

as the policy functions of households as they are prior to the expansion. The only change we

consider here is the change to the out-of-pocket share of medical expenditure, o(y). The direct

impact of the policy on debt is a modest increase of 0.24% in the aggregate level of credit card
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Table 8: Decomposing the effect of Medicaid expansion

Not budget neutral
Total impact Direct impact Credit demand Credit supply

Credit card debt +4.70% +0.24% -7.95% +12.4%
Total welfare +0.58% +0.43% +0.004% +0.15%

Budget neutral
Total impact Direct impact Credit demand Credit supply

Credit card debt +5.04% +0.24% -7.78% +12.58%
Total welfare +0.47% +0.32% +0.004% +0.15%

debt.

The credit demand channel is computed by keeping the debt pricing schedule at its levels

prior to the expansion of Medicaid but allowing households to re-optimize given the original

pricing schedule. The credit demand channel reduces the aggregate-level credit by 7.95%.

This implies that the debt aversion channel is much stronger than the precautionary savings

channel.

Finally, the credit supply channel is computed by also updating the debt pricing schedule

so that financial intermediaries make zero profits. The reduction in interest rates, which can be

seen in Figure 9, leads to a large increase in credit card debt. The credit supply channel raises

the aggregate level of credit card debt by 12.4%, leading to an overall increase of aggregate

credit card debt across households.

Our model also allows us to study the welfare impact of the policy. We first consider the

policy when budget is not neutral, so that no tax is levied on households. The model is useful

in studying how important the different channels are in driving welfare, as well as compar-

ing the welfare benefits across different households. Following Chatterjee et al. (2007), we

calculate welfare by computing the percentage drop in consumption in all periods following

the expansion of Medicaid that would make households indifferent between implementing

and not implementing the policy. On average, the policy leads to a welfare benefit of 58 ba-

sis points in consumption-equivalent terms. That is, the average household in the economy

is willing to incur a 0.58% drop in consumption in all periods so that Medicaid expansion

remains in place.

We decompose the effects of the Medicaid expansion to the three channels. The results are

40



presented in the second row of Table 8. The reduction in out-of-pocket medical expenditure

accounts for the majority of welfare benefits. This effect is expected: we assume households

do not pay any cost to implement the policy. The direct channel accounts for 74% of the

welfare gains.

The credit demand channel has only a negligible welfare effect. This is simply the enve-

lope theorem. Households were optimizing their borrowing decision prior to the policy. So

adjusting their borrowing decision following the policy can only lead to second-order welfare

gains.

Unlike the credit demand channel, the credit supply channel leads to sizable welfare ben-

efits: 0.15% out of a total of 0.58%. That is, 26% out of the total welfare gains of the expansion

of Medicaid can be attributed to the reduction in interest rate spreads households pay. This

result suggests policymakers should take into account the impact of social insurance policies

on the supply of credit. Disregarding the effect of social insurance on the supply of credit

understates its welfare benefits.

Finally, we consider an alternative in which the policy is financed through a uniform

tax levied on all households. Medicaid expansion reduces uncompensated medical care. We

choose the uniform tax rate so that the tax revenues are equal to the cost of enacting the policy

net of the reduction in uncompensated medical care.36 The resulting uniform tax is 0.08%. The

bottom panel of Table 8 presents the effect of the budget-neutral Medicaid expansion on debt

and welfare.

The aggregate impact on credit card debt is slightly larger under the budget-neutral pol-

icy. Households’ disposable income is lower as a result of the tax, so their debt level goes up.

The direct welfare benefits from the program fall from 0.58% to 0.47%. Note, however, that

the welfare benefits attributed to the credit supply channel remain approximately the same.

The credit supply channel amplifies the direct welfare benefits of Medicaid expansion by 50%.

Figure 10 presents the net welfare gains from the budget-neutral policy. We see that the

majority of the welfare gains come from low-income non-delinquent households. The less

income a household have, the more medical insurance they receive, and the higher their wel-

36Uncompensated medical care is defined as the sum of unpaid out-of-pocket medical bills net of the market
value of medical debt due to unpaid medical bills.
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Figure 10: Heterogeneous welfare effect of budget-neutral Medicaid expansion

Notes: This figure presents the welfare gains (in consumption equivalence terms) from Medicaid expansion
across the state space. The lighter shades of blue correspond to higher income households. Negative levels of
assets correspond to positive debt levels.

fare gains from the policy. It is worth noting that even high-income households do not suffer

welfare losses despite the increase in their income tax. The top 5% of the income distribution

obtain welfare gains of between 0.01%− 0.1%. These high-income households value more the

insurance they gain from the policy than the income tax they pay to finance it.

5 Conclusion

This paper investigates how social insurance affects household debt. We exploit heterogene-

ity in the impact of the staggered expansions of Medicaid as a source of quasi-experimental

variation in households’ access to health insurance. Using a difference-in-difference design,

we estimate that a 1 percentage point increase in health insurance coverage leads to a 0.56%

increase in credit card debt. Consistent with credit supply increasing in response to expanded

Medicaid, we find that credit limits rises and overall utilization decreases. In support of im-

proved financial resilience driving this rise in credit supply, we show that delinquency re-

mains stable despite the increase in debt and that debt in collections decreases. Credit scores

increase as well.

Our paper builds on prior empirical work by focusing on general equilibrium channels
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and both macroeconomic and distributional outcomes. We develop a heterogeneous-agent

model in which households face permanent and transitory differences in their income, health

expenditure shocks, and incomplete markets. Households incur debt both by choosing how

much to borrow on a credit card and as a result of health expenditure shocks. Using the

model, we explore the impact of expanding health insurance.

While insurance can help households avoid taking on debt when experiencing adverse

events such as job loss and illness, it can also increase borrowing by enhancing households’

financial resilience. Insurance softens the financial impact of adverse events, making it eas-

ier to avoid default or states of the world in which consumption is extremely low. In doing

so, insurance can dampen households’ precautionary savings motive and raise lenders’ ex-

pected returns, increasing both credit demand and supply. Our empirical evidence suggests

that these credit demand and supply channels dominate the direct impact on borrowing in

equilibrium. Our model is also able to match this finding. Our findings suggest that institu-

tions such as social insurance can have an important impact on the quantity and distribution

of household debt as well as welfare.
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Appendix

A Additional Figures and Tables

Table A.1: Revolving Credit Card Balances (Adding Flexible Income Controls)

(1) (2) (3) (4)

NewEligzs× Postst 0.557*** 0.456*** 0.408*** 0.404***
(0.116) (0.101) (0.086) (0.087)

log(AGIzcst) 0.096*** 0.133*** 0.160*** 0.177***
(0.020) (0.016) (0.015) (0.018)

Obs 372,218 372,218 372,218 372,218
R2 0.957 0.957 0.957 0.957

Percentile None Quartiles Deciles 5th, 10th,. . . 95thControls

Notes: This table reports results from regressions that control for additional moments from the ZIP code’s income
distribution for our main outcome of interest: log revolving credit card balances. Column 1 reproduces our
baseline specification Equation (1). Column 2 adds controls for quartiles (i.e., the 25th, 50th, and 75th percentile of
the ZIP code’s income distribution. Column 3 instead uses deciles (10th, 20th, ..., 90th) percentiles. Column 4 uses
19 percentiles ranging from the 5th to 95th percentile. Standard errors are clustered by state. Nominal variables
are CPI-adjusted to be in terms of 2020 dollars. Statistical significance: 10%*, 5%**, and 1%***.
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A.1 Treatment Effect Heterogeneity Robustness

Table A.2: Comparison of Non-Stacked and Stacked DID Estimates (1/3)

Expand = 2014 Expand ≤ 2015 Expand ≤ 2016
(1) (2) (3) (4) (5) (6)

Panel A: Outcome = 1[Has CC]
NewEligzs× Postst 0.131*** 0.132*** 0.108*** 0.108*** 0.073*** 0.073***

(0.026) (0.027) (0.023) (0.024) (0.023) (0.023)

Obs 60,871 100,505 62,525 133,855 57,223 152,386
R2 0.972 0.979 0.973 0.980 0.976 0.982

Panel B: Outcome = 1[New CC]
NewEligzs× Postst 0.221*** 0.221*** 0.201*** 0.200*** 0.181*** 0.179***

(0.019) (0.018) (0.017) (0.017) (0.016) (0.016)

Obs 60,871 100,505 62,525 133,885 57,223 152,386
R2 0.840 0.868 0.847 0.877 0.862 0.886

Panel C: Outcome = log(CC Bal.)
NewEligzs× Postst 1.032*** 1.035*** 0.898*** 0.900*** 0.776*** 0.778***

(0.126) (0.125) (0.115) (0.114) (0.097) (0.097)

Obs 192,430 318,319 207,331 450,667 188,578 525,943
R2 0.969 0.970 0.970 0.970 0.972 0.972

Panel D: Outcome = log(CC Bal. Rev.)
NewEligzs× Postst 0.598*** 0.602*** 0.478*** 0.480*** 0.363*** 0.364***

(0.129) (0.128) (0.113) (0.113) (0.098) (0.099)

Obs 192,428 318,317 207,329 450,665 188,576 525,941
R2 0.955 0.958 0.955 0.958 0.957 0.960

Window -3 to +6 years -3 to +5 years -3 to +4 years
Stacked No Yes No Yes No Yes

Notes: This table reports results from estimating the "stacked" version of the DID in Equation (1). Columns 1 and 2
use the sub-sample of observations whose states expanded in 2014 using data from 3 years before to 6 years after
expansion (the window). Columns 3 and 4 expand the sample to observations whose states expanded in 2015 or
earlier but use a narrower window of 3 years before to 5 years after. Columns 5 and 6 expand the sample to include
observations whose states expanded in 2016 or earlier, but restrict the window to 3 years before to 4 years after
expanding. Each panel these six regressions for different outcome variables. To facilitate comparisons, the odd-
numbered columns display non-stacked regression results for the sub-samples used in the stacked regressions.
Each specification uses county-time and ZIP code fixed effects and controls for logged ZIP-level average adjusted
gross income (AGI), whose coefficient is omitted above for brevity. Standard errors are clustered by state. Nominal
variables are CPI-adjusted to be in terms of 2020 dollars. Statistical significance: 10%*, 5%**, and 1%***.
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Table A.3: Comparison of Non-Stacked and Stacked DID Estimates (2/3)

Expand = 2014 Expand ≤ 2015 Expand ≤ 2016
(1) (2) (3) (4) (5) (6)

Panel A: Outcome =CC Inquiries (#)
NewEligzs× Postst 0.565*** 0.563*** 0.526*** 0.522*** 0.462*** 0.457***

(0.045) (0.045) (0.041) (0.040) (0.039) (0.039)

Obs 60,871 100,505 62,525 133,885 57,223 152,386
R2 0.929 0.937 0.932 0.941 0.937 0.945

Panel B: Outcome = log(CC Limits)
NewEligzs× Postst 0.402*** 0.402*** 0.292*** 0.286** 0.201** 0.193*

(0.123) (0.124) (0.105) (0.107) (0.094) (0.097)

Obs 60,871 100,505 62,525 133,885 57,223 152,386
R2 0.985 0.986 0.986 0.987 0.988 0.988

Panel C: Outcome = CC Utilization (%)
NewEligzs× Postst -0.377*** -0.378*** -0.338*** -0.338*** -0.294*** -0.293***

(0.037) (0.037) (0.031) (0.032) (0.029) (0.029)

Obs 60,871 100,505 62,525 133,885 57,223 152,386
R2 0.975 0.980 0.977 0.982 0.980 0.983

Panel D: Outcome = New CC to Inquiries Ratio
NewEligzs× Postst 0.031 0.031 0.046 0.045 0.059* 0.057*

(0.042) (0.041) (0.038) (0.038) (0.035) (0.034)

Obs 60,871 100,505 62,525 133,885 57,223 152,386
R2 0.840 0.847 0.838 0.845 0.847 0.851

Window -3 to +6 years -3 to +5 years -3 to +4 years
Stacked No Yes No Yes No Yes

Notes: This table reports results from estimating the "stacked" version of the DID in Equation (1). Columns 1 and 2
use the sub-sample of observations whose states expanded in 2014 using data from 3 years before to 6 years after
expansion (the window). Columns 3 and 4 expand the sample to observations whose states expanded in 2015 or
earlier but use a narrower window of 3 years before to 5 years after. Columns 5 and 6 expand the sample to include
observations whose states expanded in 2016 or earlier, but restrict the window to 3 years before to 4 years after
expanding. Each panel these six regressions for different outcome variables. To facilitate comparisons, the odd-
numbered columns display non-stacked regression results for the sub-samples used in the stacked regressions.
Each specification uses county-time and ZIP code fixed effects and controls for logged ZIP-level average adjusted
gross income (AGI), whose coefficient is omitted above for brevity. Standard errors are clustered by state. Nominal
variables are CPI-adjusted to be in terms of 2020 dollars. Statistical significance: 10%*, 5%**, and 1%***.
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Table A.4: Comparison of Non-Stacked and Stacked DID Estimates (3/3)

Expand = 2014 Expand ≤ 2015 Expand ≤ 2016

(1) (2) (3) (4) (5) (6)
Panel A: Outcome = 1[30+ DPD]

NewEligzs× Postst 0.025 0.024 0.036*** 0.034** 0.037*** 0.035***
(0.016) (0.015) (0.013) (0.013) (0.012) (0.012)

Obs 60,871 100,505 62,525 133,885 57,223 152,386
R2 0.907 0.914 0.906 0.915 0.911 0.918

Panel B: Outcome = 1[90+ DPD]
NewEligzs× Postst -0.003 -0.004 0.006 0.005 0.009 0.007

(0.013) (0.013) (0.011) (0.011) (0.010) (0.010)

Obs 60,871 100,505 62,525 133,885 57,223 152,386
R2 0.893 0.901 0.893 0.903 0.899 0.906

Panel C: Outcome = 1[Any Col.]
NewEligzs× Postst -0.122*** -0.126*** -0.108*** -0.112*** -0.113*** -0.118***

(0.026) (0.027) (0.025) (0.025) (0.024) (0.025)

Obs 60,871 100,505 62,525 133,885 57,223 152,386
R2 0.977 0.982 0.977 0.983 0.979 0.984

Panel D: Outcome = Collections/Income (%)
NewEligzs× Postst -0.045*** -0.046*** -0.042*** -0.043*** -0.043*** -0.044***

(0.011) (0.011) (0.010) (0.010) (0.010) (0.010)

Obs 60,871 100,505 62,525 133,885 57,223 152,386
R2 0.929 0.940 0.928 0.941 0.931 0.941

Panel E: Outcome = Vantage Score
NewEligzs× Postst 0.181 0.188 0.11 0.118 0.079 0.089

(0.123) (0.125) (0.108) (0.112) (0.098) (0.103)

Obs 60,871 100,505 62,525 133,885 57,223 152,386
R2 0.986 0.987 0.986 0.988 0.987 0.989

Window -3 to +6 years -3 to +5 years -3 to +4 years
Stacked No Yes No Yes No Yes

Notes: This table reports results from estimating the "stacked" version of the DID in Equation (1). Columns 1 and 2
use the sub-sample of observations whose states expanded in 2014 using data from 3 years before to 6 years after
expansion (the window). Columns 3 and 4 expand the sample to observations whose states expanded in 2015 or
earlier but use a narrower window of 3 years before to 5 years after. Columns 5 and 6 expand the sample to include
observations whose states expanded in 2016 or earlier, but restrict the window to 3 years before to 4 years after
expanding. Each panel these six regressions for different outcome variables. To facilitate comparisons, the odd-
numbered columns display non-stacked regression results for the sub-samples used in the stacked regressions.
Each specification uses county-time and ZIP code fixed effects and controls for logged ZIP-level average adjusted
gross income (AGI), whose coefficient is omitted above for brevity. Standard errors are clustered by state. Nominal
variables are CPI-adjusted to be in terms of 2020 dollars. Statistical significance: 10%*, 5%**, and 1%***.
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A.2 Heterogeneity by ZIP Code Income

Table A.5: Borrowing Outcomes (Low versus High Income)

1[Has CC] 1[New CC] log(CC Bal.) log(CC Rev. Bal.)
(1) (2) (3) (4)

Below-Median Income
NewEligzs× Postst 0.101*** 0.143*** 0.784*** 0.753***

(0.023) (0.023) (0.079) (0.091)

log(AGIzcst) 0.107*** 0.006 0.434*** 0.463***
(0.005) (0.008) (0.037) (0.040)

Obs 61,258 61,258 192,918 192,915
R2 0.975 0.898 0.95 0.939

Mean 79% 20% $3,193 $2,818

Above-Median Income
NewEligzs× Postst 0.135*** 0.116*** 0.561*** 0.083

(0.015) (0.023) (0.076) (0.101)

log(AGIzcst) 0.006** -0.005*** 0.042*** 0.041***
(0.003) (0.002) (0.011) (0.012)

Obs 56,370 56,370 179,304 179,303
R2 0.955 0.822 0.956 0.937

Mean 91% 24% $5,489 $4,607
Notes: This table reports results from estimating the DID in Equation (1) separately within sub-samples (below-
and above-median income ZIP codes). Each specification uses county-time and ZIP codes fixed effects and con-
trols for logged ZIP-code level average adjusted gross income (AGI). Nominal variables are CPI-adjusted to be
in terms of 2020 dollars. The dependent variable is labeled above the column number, and its mean is reported
below the R2. Statistical significance: 10%*, 5%**, and 1%***.
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Table A.6: Demand and Supply Proxies (Low versus High Income)

Demand Supply
CC Inq. (#) log(CC Lim.) CC Util. (%) New CC to Inq.

(1) (2) (3) (4)

Below-Median Income
NewEligzs× Postst 0.414*** 0.579*** -0.198*** 0.131***

(0.045) (0.113) (0.034) (0.043)

log(AGIzcst) -0.104*** 0.875*** -0.130*** 0.062***
(0.019) (0.045) (0.008) (0.012)

Obs 61,258 61,258 61,258 61,258
R2 0.959 0.973 0.977 0.862

Mean 0.448 $12,156 39% 0.475

Above-Median Income
NewEligzs× Postst 0.267*** -0.016 -0.316*** -0.079**

(0.054) (0.163) (0.034) (0.039)

log(AGIzcst) -0.035*** 0.144*** -0.011*** 0.022***
(0.004) (0.009) (0.004) (0.006)

Obs 56,370 56,370 56,370 56,370
R2 0.934 0.978 0.960 0.821

Mean 0.429 $24,378 23% 0.571
Notes: This table reports results from estimating the DID in Equation (1) separately within sub-samples (below-
and above-median income ZIP codes). Each specification uses county-time and ZIP codes fixed effects and con-
trols for logged ZIP-code level average adjusted gross income (AGI). Nominal variables are CPI-adjusted to be
in terms of 2020 dollars. The dependent variable is labeled above the column number, and its mean is reported
below the R2. Statistical significance: 10%*, 5%**, and 1%***.
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Table A.7: Default and Credit Scores (Low versus High Income)

1[Delinquency] Debt in Collections Credit Score
1[30+ DPD] 1[90+ DPD] 1[Any Col.] Col./Inc. Vantage Score

(1) (2) (3) (4) (5)

Below-Median Income
NewEligzs× Postst 0.055** 0.021 -0.099*** -0.022** 0.138*

(0.026) (0.022) (0.032) (0.010) (0.071)

log(AGIzcst) -0.042*** -0.033*** -0.161*** -0.031*** 0.535***
(0.006) (0.005) (0.008) (0.002) (0.030)

Obs 61,258 61,258 61,258 61,258 61,258
R2 0.897 0.884 0.979 0.939 0.982

Mean 12% 8.9% 31% 1.8% 659.65

Above-Median Income
NewEligzs× Postst -0.024** -0.032*** -0.081*** -0.026*** 0.294**

(0.011) (0.009) (0.027) (0.006) (0.124)

log(AGIzcst) -0.007*** -0.005*** -0.032*** -0.003*** 0.105***
(0.002) (0.002) (0.004) (0.001) (0.014)

Obs 56,370 56,370 56,370 56,370 56,370
R2 0.877 0.853 0.968 0.895 0.977

Mean 7.7% 5.2% 16% 0.5% 710.307
Notes: This table reports results from estimating the DID in Equation (1) separately within sub-samples (below-
and above-median income ZIP codes). Each specification uses county-time and ZIP codes fixed effects and con-
trols for logged ZIP-code level average adjusted gross income (AGI). Nominal variables are CPI-adjusted to be
in terms of 2020 dollars. The dependent variable is labeled above the column number, and its mean is reported
below the R2. Statistical significance: 10%*, 5%**, and 1%***.

54



A.3 Delinquency Duration

Figure A.1: Duration of Delinquency
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Notes: This figure plots the fraction of people that are delinquent one to seven years later (after an initial delin-
quency). Here, delinquency means that a person has debt 90 or more days past due or debt in collections. We use a
subsample of people that are continuously observed for at least three years (totaling 2,306,609 unique individuals).

Table A.8: Persistence of Delinquency

Years Percentage of People Still Delinquent
0 100%
1 38.9%
2 18.6%
3 9.46%
4 5.03%
5 2.71%
6 1.52%
7 0.83%
8 0.45%
9 0.23%
10 0.11%

Average Duration: 1.78 years

Notes: This table reports the fraction of people that are delinquent zero to 10 years later (after an initial delin-
quency). Here, delinquency means that a person has debt 90 or more days past due or debt in collections. We use
a subsample of people that are continuously observed for at least three years (totaling 3,473,613 unique individu-
als).
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B Eligibility Estimation

This appendix describes how we generate a measure of Medicaid eligibility at the ZIP × year

level.

Data: We use the following datasets from 2009 to 2016:

1. IRS SOI: ZIP-code level individual income tax statistics

2. KFF: Medicaid eligibility limits

3. ACS: joint distribution of income and household size

4. KFF: Medicaid expansion date data

B.1 Estimand

We want estimates of the fraction of adults eligible for Medicaid in year t and ZIP z. Let E

denote the event a household is eligible for Medicaid. Denote the probability that a household

is eligible in (t, z) by Ptz(E). Ptz(E) = P(E|t, z). The probability that a household of size n is

eligible depends on the probability that its income is below the relevant cutoff cn
tz. We can

write out the probability above into the sum of probabilities for these different cases using

the law of iterated expectations:

Ptz(E) = Ptz(y ≤ c) =
N

∑
n=1

Ptz(y ≤ cn
tz|c = cn

tz)P(c = cn
tz)

where y is income and cn
tz is the eligibility cutoff for a household of size n in {z, t}. We can

rewrite each term using Bayes’ rule to get

Ptz(y ≤ cn
tz|c = cn

tz)P(c = cn
tz) = Ptz(c = cn

tz|y ≤ cn
tz)P(y ≤ cn

tz).

The first term is the probability that a household is of a given size:

Ptz(c = cn
tz|y ≤ cn

tz) = Ptz(Ñ = n|y ≤ cn
tz) = gtz(n|y ≤ cn

tz)
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where gtz is the probability mass function of a household size conditional on income being

below the relevant threshold. The second term P(y ≤ cn
tz) is the probability that the house-

hold’s income is below the threshold. Let Ftz(·) denote the cumulative distribution function

of income in {t, z}. Then

P(y ≤ cn
tz) = Ftz(cn

tz).

Household Size Notation: Households of size two may comprise either a head and a de-

pendent or a head an a non-dependent (e.g., a parent and child versus a childless couple). The

eligibility thresholds can differ across these situations. To capture both, we use 2 to indicate a

household with a head and a dependent and 2∗ to indicate a two-person household with no

dependents. Let n denote household size. We write n ∈ n{1, 2, 2∗, 3, 4, ..., N}, where N is the

largest observed household size.

Note on Cutoffs: Income cutoffs vary over time because of changes in the threshold and

federal poverty line. They also differ across states; specifically, Alaska and Hawaii generally

have higher thresholds in each year.

B.2 Estimation

We estimate Ptz(E) using the following steps:

1. We procure the number of tax returns and annual gross income by income bins for each

ZIP code and year using IRS SOI.

2. Then, we interpolate the CDF F̂tz(·) of income between the known bins. With that, we

estimate F̂tz(cn
tz) where cn

tz is obtained from Medicaid eligibility limits. Note that this

equals the second term of the probability, P(y ≤ cn
tz). We generate this for n ∈ N

household sizes where N is defined above.

3. We keep one observation per ZIP and year.

4. We use the ACS data to calculate P(Ñ = n|y ≤ cn
tz) for each n . We do this using income

and household size information available by ZIP code and year. Note that this equals

the first term of the probability, gtz(n|y ≤ cn
tz).
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5. We can calculate the probability that a household of size n is eligible for Medicaid by

multiplying the first and second terms for each n.

6. Then, Ptz(E) is equal to the sum of the probabilities calculated in the step above.

C Mathematical Appendix

C.1 Proof of Proposition 1 - Uniqueness of Debt Pricing Schedule

The debt pricing schedule is given by

q(b′, y) =
1

1 + r f

[
1 − E

(
d(b′ + o(y′)m′, y′)

)]
+

1
1 + r f

E
[
d(b′ + o(y′)m′, y′)(1 − δ′)q

(
(1 − δ′)(b′ + o(y′)m′), y′

)]
.

Let B(R2) be the set of bounded functions q : R2 → R. Define the operator T : B(R2) →

B(R2) as follows:

T(q)(b′, y) =
1

1 + r f

[
1 − E

(
d(b′ + o(y′)m′, y′)

)]
+

1
1 + r f

E
[
d(b′ + o(y′)m′, y′)(1 − δ′)q

(
(1 − δ′)(b′ + o(y′)m′), y′

)]
. (11)

We will use Blackwell’s sufficient conditions to show that T is a contraction mapping with

modulus 1
1+r f

< 1.

Monotonicity. Suppose q1(b′, y) ≥ q2(b′, y) for all b′ and y. Then,

T(q1)(b′, y) = f (b′, y) +
1

1 + r f
E
[
d(b′ + o(y′)m′, y′)(1 − δ′)q1

(
(1 − δ′)(b′ + o(y′)m′), y′

)]
≥ f (b′, y) +

1
1 + r f

E
[
d(b′ + o(y′)m′, y′)(1 − δ′)q2

(
(1 − δ′)(b′ + o(y′)m′), y′

)]
= T(q2)(b′, y)

where f (b′, y) = 1
1+r f

[1 − E (d(b′ + o(y′)m′, y′))]. The first inequality follows from the fact

that d(b′ + o(y′)m′, y′)(1 − δ′) ≥ 0 for all (b′, y′).
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Discounting. We have that

T(q + a)(b′, y)

= f (b′, y) +
1

1 + r f
E
[
d(b′ + o(y′)m′, y′)(1 − δ′)

[
q
(
(1 − δ′)(b′ + o(y′)m′), y′

)
+ a

]]
= T(q)(b′, y) +

1
1 + r f

E
[
d(b′ + o(y′)m′, y′)(1 − δ′)

]
a

≤ T(q)(b′, y) +
1

1 + r f
a,

where the last inequality follows from d(b′ + o(y′)m′, y′)(1 − δ′) ∈ [0, 1] for all (b′, y′). There-

fore, T is a contraction mapping with modulus 1
1+r f

. Hence, the debt pricing schedule q(b′, y)

exists and is unique, given a delinquency policy function d(b̃′, y).

C.2 Moments of Income Process

Suppose that the income process takes the following form:

ln yt =

 ρ ln yt−1 + ϵt w.p. λ,

ln yt−1 w.p. 1 − λ,
(12)

where ϵt follows a Normal distribution with standard deviation σ. We calibrate the struc-

tural parameters {ρ, σ, λ} to match the persistence of income, as well as the standard devi-

ation and kurtosis of income changes. Since the PSID reports household-level income every

two years, we match the 2-year auto-correlation of income, as well as the standard deviation

and kurtosis of 2-year income changes.

Proposition 2. The income process admits the following moments:

acorr2(ln yt) =
E [ln yt ln yt+2]

var(ln yt)
= (1 − λ + λρ)2,

var (∆ ln yt) = E
[
(ln yt+1 − ln yt)

2] = 2 (1 − (1 − λ + λρ)) var(ln yt),

var (∆2 ln yt) = E
[
(ln yt+2 − ln yt)

2] = 2
(
1 − (1 − λ + λρ)2) var(ln yt),

kurt (∆ ln yt) =
3
4

1
λ

(
(1 − ρ)4 + 2(1 − ρ)2(1 − ρ2) + (1 − ρ2)2

) (1 + ρ)2

(1 − ρ2)2 ,

kurt (∆2 ln yt) =
2(1 − λ)K∆ V2

∆ +λ2(3(ρ2 − 1)4 V2
y +3(1 + ρ4)σ4 + 6ρ2σ4 + 6(ρ2 − 1)2(1 + ρ2 Vy σ2)

V2
∆2

,
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where Vy = var(ln yt), V∆ = var(∆ ln yt), V∆2 = var(∆2 ln yt) and K∆ = kurt(∆ ln yt).

Proof. 1. Proof of 2-year auto-correlation.

E [ln yt ln yt+2] = (1 − λ)2 var(ln yt) + 2λ(1 − λ)ρ var(ln yt) + λ2ρ2 var(ln yt).

Rearranging we have

E [ln yt ln yt+2]

var(ln yt)
= (1 − λ)2 + 2(1 − λ)ρλ + λ2ρ2 = (1 − λ + λρ)2.

2. Proof of 1-year income change variance.

E
[
(ln yt+1 − ln yt)

2] = 2 var(ln yt)− 2E (ln yt+1 ln yt) .

Similarly to how we proved the 2-year auto-correlation, we have that

E (ln yt+1 ln yt) = (1 − λ + λρ) var(ln yt).

So we obtain

E
[
(ln yt+1 − ln yt)

2] = 2 (1 − (1 − λ + λρ)) var(ln yt).

3. Proof of 2-year income change variance.

E
[
(ln yt+2 − ln yt)

2] = 2 var(ln yt)− 2E (ln yt+2 ln yt) .

We have that

E (ln yt+2 ln yt) = (1 − λ)E (ln yt+1 ln yt) + λρE (ln yt+1 ln yt)

= (1 − λ + λρ)E (ln yt+1 ln yt) .
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Combining everything we have

E
[
(ln yt+2 − ln yt)

2] = 2
(
1 − (1 − λ + λρ)2) var(ln yt).

4. Proof of 1-year income change kurtosis. Let’s start from the unconditional variance,

var(ln yt). From equation (12), we have

var(ln yt) = λ
(
ρ2 var(ln yt) + σ2)+ (1 − λ)var(ln yt).

Rearranging we obtain

var(ln yt) =
1

1 − ρ2 σ2.

Now we derive the kurtosis:

E (∆ ln yt)
4 = λE ((ρ − 1) ln yt + σϵ)4

= λ
[
(ρ − 1)4E(ln yt)

4 + 6(1 − ρ)2E(ln yt)
2σ2 + 3σ4

]
= λ

[
(1 − ρ)4 + 2(1 − ρ)2(1 − ρ2) + (1 − ρ2)2

] 1
(1 − ρ2)2 3σ4

where we’ve used

E(ln yt)
2 = var(ln yt) =

1
1 − ρ2 σ2,

and we can obtain E(ln yt)4 as follows

E(ln yt)
4 = (1 − λ)E(ln yt)

4 + λ

[
ρ4E(ln yt)

4 + 6ρ2 1
1 − ρ2 σ4 + 3σ4

]

so that

E(ln yt)
4 =

1
1 − ρ4

(
2ρ2

1 − ρ2 + 1
)

3σ4 =
1

(1 − ρ2)2 3σ4

Finally we get that

Kurt (∆ ln yt) =
E (∆ ln yt)

4

var2(∆ ln yt)
=

3
4λ

[
(1 − ρ)4 + 2(1 − ρ)2(1 − ρ2) + (1 − ρ2)2

] (1 + ρ)2

(1 − ρ2)2
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where we’ve used Var(∆ ln y) = 2λ
(1−ρ)
1−ρ2 σ2 = 2λ 1

1+ρ σ2.

5. Proof of 2-year income change kurtosis.37

E (ln yt+2 − ln yt)
4 = 2(1 − λ)λE ((ρ − 1) ln yt + σϵ)4 + λ2E

(
(ρ2 − 1) ln yt + ρσϵ1 + σϵ2

)4

= 2(1 − λ)E(∆ ln y)4 + λ2E
(
(ρ2 − 1) ln yt + ρσϵ1 + σϵ2

)4

Let’s expand the second term:

E
(
(ρ2 − 1) ln yt + ρσϵ1 + σϵ2

)4
= (ρ2 − 1)43V2

y + (1 + ρ4)3σ4 + 6ρ2σ4 + 6(ρ2 − 1)2(1 + ρ2)Vyσ2,

where we’ve used kurt(ln yt) = 3. Combining this expression with the first term we

obtain

E (ln yt+2 − ln yt)
4

= 2(1 − λ)K∆ V2
∆ +λ2(3(ρ2 − 1)4 V2

y +3(1 + ρ4)σ4 + 6ρ2σ4 + 6(ρ2 − 1)2(1 + ρ2 Vy σ2).

Together with the definition of kurtosis, kurt(∆2 ln yt) = E(ln yt+2−ln yt)
4

(E(ln yt+2−ln yt)
2)

2 , we proved

the desired expression.

37Since this moment involves extensive algebra, we confirmed via simulations that our formula is correct.

62


	Introduction
	The Effect of Social Insurance on Household Debt: Evidence from Medicaid Expansions
	Institutional Background: Medicaid
	Data
	Empirical Strategy: Continuous Difference-in-Difference
	Empirical Results: The Effects of Medicaid Eligibility on Household Debt

	Model
	Household problem
	Credit supply
	Stationary Equilibrium
	Calibration
	Equilibrium properties

	The Effect of Medicaid Expansion on Debt and Welfare
	Theoretical analysis
	Medicaid expansion

	Conclusion
	Additional Figures and Tables
	Treatment Effect Heterogeneity Robustness
	Heterogeneity by ZIP Code Income
	Delinquency Duration

	Eligibility Estimation
	Estimand
	Estimation

	Mathematical Appendix
	Proof of Proposition 1 - Uniqueness of Debt Pricing Schedule
	Moments of Income Process


