#### **Non-Linear Inflation Dynamics** In Menu Cost Economies

Andres Blanco Corina Boar Callum Jones Virgiliu Midrigan

July 2023

### Motivation

- Menu costs often invoked as source of price rigidities
  - firms more likely to respond to large aggregate shocks
  - so Phillips curves non-linear
- We show standard menu cost models predict linear Phillips curves
  - when consistent with the distribution of micro price changes
  - for moderate inflation rates observed in advanced economies
- Need implausibly large menu costs, esp with strategic complementarities
  - counterfactually, no comovement btw inflation and frequency of adjustment
  - $-\,$  and very large losses from misallocation from price dispersion

#### **Our Resolution**

- Extend multi-product menu cost model
  - strategic complementarities at firm, not product, level
  - low elasticity of substitution between products of a firm
- Model implies less within-firm misallocation from price dispersion
  - require smaller menu costs to reproduce distribution of price changes
- Our model predicts non-linear output responses to monetary shocks
  - in contrast to standard models
  - due to strong response in the frequency of adjustment

# **Motivating Fact**

## Inflation and the Frequency of Adjustment

• UK micro-price data underlying the CPI, organized in 71 sectors

- focus on regular price changes: exclude V-shaped sales < 3 months (figure

• Decompose  $\pi_t(s)$  extensive and intensive margin (Klenow-Kryvtsov, 2005)

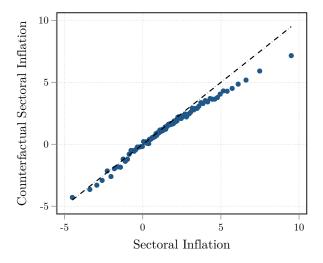
•  $\pi_t(s) = \Delta_t(s) f_t(s)$ 

–  $\Delta_t(s)$  : average price change conditional on adjustment

- $f_t(s)$ : fraction of price changes
- Isolate role of intensive margin by computing  $\pi_t^c(s) = \Delta_t(s)\bar{f}(s)$

-  $\bar{f}(s)$ : average frequency in sector s

#### **Evidence From All Sectors**



Extensive margin of price adjustment important at high rates of inflation

# Single-Product Model

#### Model Overview

• Consumers: log-linear preferences + cash in advance constraint

- so 
$$W_t = P_t c_t = M_t$$

• Continuum of sectors: Cobb-Douglas aggregator

• Sectoral output: 
$$y_t(s) = \left( \int \left( \frac{y_t(f,s)}{u_t(f,s)} \right)^{\frac{\sigma-1}{\sigma}} \mathrm{d}f \right)^{\frac{\sigma}{\sigma-1}}$$

• Firm output:  $y_t(f,s) = e_t(s) u_t(f,s) l_t(f,s)^{\eta}$ 

 $-e_t(s)$  and  $u_t(f,s)$  independent random walks with Gaussian innovations

- Menu costs  $\xi$  drawn from  $U\left[0, \overline{\xi}\right]$ 
  - with probability  $1-\lambda$  free price change

#### Parameterization

- Assigned
  - period 1 month
  - $\sigma=6$  so flexible price markup 1.20,  $\eta=2/3,\,\beta=0.96$
- Choose menu cost and s.d. firm shocks to match UK micro data

|                             | Data               | Model |
|-----------------------------|--------------------|-------|
| frequency $\Delta p$        | 0.12               | 0.12  |
| distribu                    | tion of $\Delta p$ |       |
| mean                        | 0.02               | 0.02  |
| std. dev.                   | 0.19               | 0.20  |
| $\operatorname{kurtosis}$   | 3.61               | 3.65  |
| 10 <sup>th</sup> percentile | -0.23              | -0.23 |
| $25^{th}$ percentile        | -0.08              | -0.10 |
| $50^{th}$ percentile        | 0.03               | 0.02  |
| $75^{th}$ percentile        | 0.12               | 0.14  |
| $90^{th}$ percentile        | 0.25               | 0.27  |

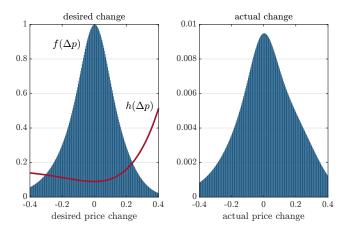
#### Menu Costs and Misallocation

• Calibrated parameters

| s.d. idios. shocks         | $\sigma_u$  | 0.067 |
|----------------------------|-------------|-------|
| prob. free price change    | $1-\lambda$ | 0.091 |
| menu cost rel to avg sales |             | 0.088 |

- Menu costs much larger than existing estimates ( $\approx 1\%$ )
- Productivity losses from price dispersion are 21.63%
  - as large as De Loecker-Eeckhout-Unger, Baqaee-Farhi estimates
  - but they capture all distortions, not just menu costs

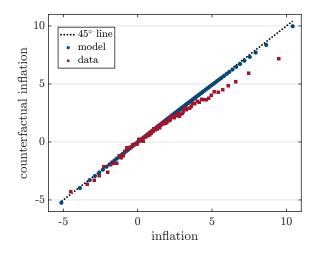
Why Menu Costs So Large?



- Need large probability free  $\Delta p$  to match small  $|\Delta p|$
- Need relatively flat hazard to match large  $|\Delta p|$



#### **Extensive Margin of Adjustment**



Weak extensive margin even at high rates of inflation

table

## Multi-Product Model

#### Overview

- Build on Midrigan (2011) and Alvarez–Lippi (2014) multi-product model
  - firms sell continuum of products
  - product quality shocks  $z_{it}(f, s)$ , in addition to firm-specific  $u_t(f, s)$
  - economies of scope in price adjustment: menu cost  $\overline{\xi}$  to change all prices

- Add two ingredients
  - specific factor (e.g. managerial input) mobile across products within firm
  - low elasticity of substitution between products of a given firm

#### Technology

• Composite good of firm f

$$y_t\left(f,s\right) = \left(\int_0^1 \left(\frac{y_{it}\left(f,s\right)}{z_{it}\left(f,s\right)}\right)^{\frac{\gamma-1}{\gamma}} \mathrm{d}i\right)^{\frac{\gamma}{\gamma-1}}$$

• Individual varieties produced using labor and specific factor  $m_{it}$ 

$$y_{it}(f,s) = e_t(s) u_t(f,s) z_{it}(f,s) m_{it}(f,s)^{1-\eta} l_{it}(f,s)^{\eta}$$

 $-\,$  specific factor mobile across products, fixed at firm level

$$\int m_{it}(f,s) \,\mathrm{d}i = 1 \qquad \text{vs.} \qquad m_{it}(f,s) = 1$$

• Firm production function

$$y_t(f,s) = e_t(s) u_t(f,s) \phi_t(f,s) l_t(f,s)^{\eta}$$

#### Parameterization

• Two economies

– our model:  $\gamma=1,\;\sigma=6,$  mobile specific factor

– standard multi-product model:  $\gamma = \sigma = 6$ , fixed specific factor

|                             | Data        | Our model        | Standard |
|-----------------------------|-------------|------------------|----------|
| frequency $\Delta p$        | 0.12        | 0.12             | 0.12     |
|                             | distributio | on of $\Delta p$ |          |
| mean                        | 0.02        | 0.02             | 0.03     |
| std. dev.                   | 0.19        | 0.20             | 0.20     |
| $\operatorname{kurtosis}$   | 3.61        | 3.57             | 3.51     |
| $10^{th}$ percentile        | -0.23       | -0.23            | -0.23    |
| $25^{th}$ percentile        | -0.08       | -0.11            | -0.09    |
| $50^{th}$ percentile        | 0.03        | 0.02             | 0.04     |
| 75 <sup>th</sup> percentile | 0.12        | 0.14             | 0.16     |
| $90^{th}$ percentile        | 0.25        | 0.26             | 0.26     |

#### Menu Costs and Misallocation

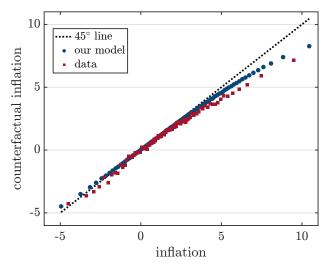
• Calibrated parameters

|                            |            | Our model | Standard |
|----------------------------|------------|-----------|----------|
| s.d. product shocks        | $\sigma_z$ | 0.062     | 0.058    |
| s.d. firm shocks           | $\sigma_u$ | 0.025     | 0.037    |
| menu cost rel to avg sales |            | 0.024     | 0.258    |

- Menu costs in our model closer to the 1% estimates
- Smaller losses from price dispersion: 1.97% (21.24%)



Importance of Extensive Margin



Stronger extensive margin at high inflation, 1/2 of data

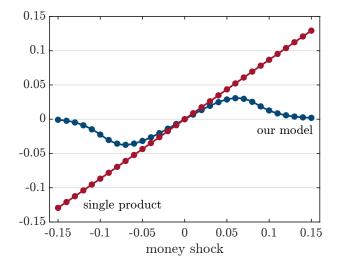
andard (table) robustnes

## **Real Effects of Monetary Shocks**

#### Impulse Responses to One-Time Shocks

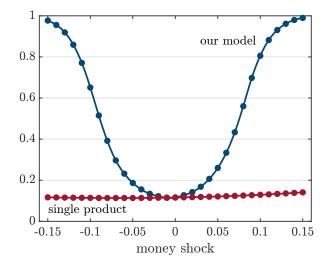
- Response of  $y_t$  to one-time, unanticipated, permanent changes in  $M_t$ 
  - for shocks of different sizes to gauge non-linearity
  - contrast our model to single product model
- Since  $P_t y_t = M_t$ , larger response of  $y_t$  due to slower  $P_t$  response

#### **Output Response on Impact**

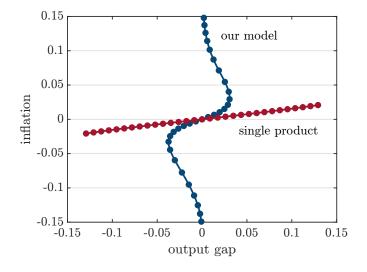


CIR

#### Frequency of Price Changes on Impact



#### Non-Linear Phillips Curve

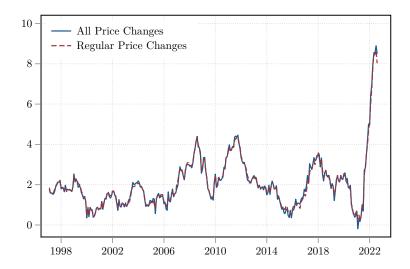


decomposition

#### Conclusions

- Standard menu cost models predict linear inflation dynamics due to
  - implausibly large menu costs and misallocation from price dispersion
  - counterfactually low of comovement btw inflation and freq of adjustment
- Proposed simple extension to remedy these shortcomings
  - $-\,$  less misallocation from price dispersion inside the firm
- Model reproduces micro price statistics with much smaller menu costs
- Predicts non-linear output responses to monetary shocks

#### Inflation in UK



#### Importance of Extensive Margin

Inflation Volatility

| s.d. $\pi_t(s)$   | 2.87 |
|-------------------|------|
| s.d. $\pi_t^c(s)$ | 2.51 |
| ratio             | 0.87 |

Slope of  $\pi_t^c(s)$  to  $\pi_t(s)$ 

| all observations          | 0.80 |  |
|---------------------------|------|--|
| $\pi_t(s) > 75^{th}$ pct. | 0.48 |  |
| $\pi_t(s) > 90^{th}$ pct. | 0.39 |  |

All statistics weighted using sectoral expenditure weights.

#### **Evidence from Other Countries**

- Karadi-Reiff (2019)
  - $-\,$  study response of prices to 5% value added tax increase in Hungary
  - frequency price changes up from 13% to 62%
  - $-\,$  show menu cost model with fat-tailed shocks reproduces evidence
- Mexico: Gagnon (2009)
- Argentina: Alvarez-Beraja-Gonzalez-Rozada-Neumayer (2018)
- US: Nakamura-Steinsson (2018)

#### **Real Marginal Cost Index**

• Define real marginal cost index

$$a_t(s) = \frac{W_t}{P_t(s) y_t(s)} \left(\frac{y_t(s)}{e_t(s)}\right)^{\frac{1}{\eta}}$$

• If price flexible,  $a_t(s) = \eta$ 

#### Standardized Price Changes

- Data organized in 6-digit sectors and items (product categ. within sector)
- Let *i* be product quote, *j* be item,  $\Delta p_{it}(j)$  log price change if adjust
- Standardized price change (Klenow-Kryvtsov 2008)

$$\hat{\Delta}p_{it}(j) = \frac{\Delta p_{it}(j) - \mu_{\Delta}(j)}{\sigma_{\Delta}(j)}\sigma_{\Delta} + \mu_{\Delta}$$

- $\mu_{\Delta}(j), \mu_{\Delta}$ : mean non-zero log price changes
- $-\sigma_{\Delta}(j), \sigma_{\Delta}$ : std. dev. non-zero log price changes

#### Demand

• Demand for individual product

$$y_{it}(f,s) = z_{it}(f,s) \left(\frac{z_{it}(f,s) P_{it}(f,s)}{P_t(f,s)}\right)^{-\gamma} y_t(f,s)$$

• Composite firm price

$$P_t(f,s) \equiv \int P_{it}(f,s) \frac{y_{it}(f,s)}{y_t(f,s)} \mathrm{d}i = \left(\int \left(z_{it}(f,s) P_{it}(f,s)\right)^{1-\gamma} \mathrm{d}i\right)^{\frac{1}{1-\gamma}}$$

• Labor required to produce bundle  $y_{it}(f,s)$ 

$$l_{t}(f,s) = \left(\int \frac{y_{it}\left(f,s\right)}{e_{t}\left(s\right)u_{t}\left(f,s\right)z_{it}\left(f,s\right)} \mathrm{d}i\right)^{\frac{1}{\eta}}$$

#### Markup Dispersion

• Model generates large dispersion in markups, misallocation

| cost-weighted average<br>sales-weighted average | $1.195 \\ 1.592$ |
|-------------------------------------------------|------------------|
| cost-weighted distribution                      | n                |
| $10^{th}$ percentile                            | 0.496            |
| $25^{th}$ percentile                            | 0.691            |
| $50^{th}$ percentile                            | 1.043            |
| $75^{th}$ percentile                            | 1.585            |
| $90^{th}$ percentile                            | 1.940            |
| misallocation losses, $\%$                      | 21.63            |

- As dispersed as De Loecker–Eeckhout–Unger, Baqaee–Farhi estimates
  - but they capture all distortions, not just menu costs



#### Why Menu Costs So Large?

- Continuous time, quadratic approximation,  $\pi = 0, \rho \downarrow 0$
- Cost of price rigidity for firm value

$$C^{V} = -\underbrace{\frac{\sigma(\sigma-1)}{12\eta}}_{=\frac{6\times5}{12\times2/3}} \underbrace{\mathbb{E}[\Delta p^{2}]}_{=0.195^{2}} \underbrace{(\mathbb{K}[\Delta p] + \Psi([\mathbb{K}[\Delta p])))}_{=3.649+1.25} \times 100; \ \Psi(1) = 1, \Psi(6) = 0$$

- Three components
  - strategic complementarities:  $\frac{\sigma(\sigma-1)}{12\eta}$
  - misallocation:  $\mathbb{E}[\Delta p^2]\mathbb{K}[\Delta p]$
  - size of menu cost:  $\mathbb{E}[\Delta p^2]\Psi([\mathbb{K}[\Delta p]$

#### Importance of Extensive Margin

Inflation Volatility

|                   | Data | Model |
|-------------------|------|-------|
| s.d. $\pi_t(s)$   | 2.87 | 2.87  |
| s.d. $\pi_t^c(s)$ | 2.51 | 2.83  |
| ratio             | 0.87 | 0.99  |

Slope of  $\pi_t^c(s)$  on  $\pi_t(s)$ 

|                           | Data | Model |
|---------------------------|------|-------|
| all observations          | 0.80 | 0.99  |
| $\pi_t(s) > 75^{th}$ pct. | 0.48 | 0.94  |
| $\pi_t(s) > 90^{th}$ pct. | 0.39 | 0.92  |

#### Importance of Extensive Margin

#### Inflation Volatility

|                   | Data | Our model |
|-------------------|------|-----------|
| s.d. $\pi_t(s)$   | 2.87 | 2.87      |
| s.d. $\pi_t^c(s)$ | 2.51 | 2.55      |
| ratio             | 0.87 | 0.89      |

Slope of  $\pi_t^c(s)$  on  $\pi_t(s)$ 

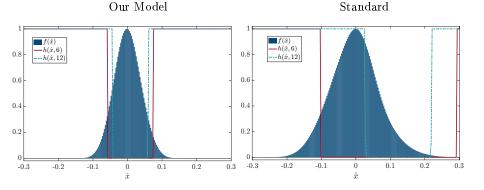
|                           | Data | Model |
|---------------------------|------|-------|
| all observations          | 0.80 | 0.89  |
| $\pi_t(s) > 75^{th}$ pct. | 0.48 | 0.72  |
| $\pi_t(s) > 90^{th}$ pct. | 0.39 | 0.64  |

#### Markup Dispersion

• Our model: much less dispersion in markups, misallocation

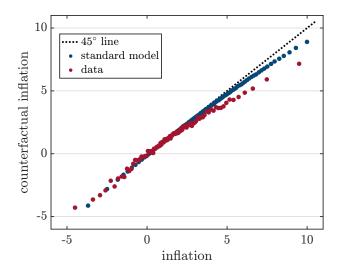
|                            | Our model             | Standard |
|----------------------------|-----------------------|----------|
| cost-weighted average      | 1.194                 | 1.191    |
| sales-weighted average     | 1.210                 | 1.285    |
| cost-weigh                 | $hted \ distribution$ |          |
| $10^{th}$ percentile       | 1.019                 | 0.827    |
| $25^{th}$ percentile       | 1.088                 | 0.918    |
| $50^{th}$ percentile       | 1.195                 | 1.103    |
| $75^{th}$ percentile       | 1.266                 | 1.405    |
| $90^{th}$ percentile       | 1.382                 | 1.793    |
| misallocation losses, $\%$ | 1.97                  | 21.24    |

#### **Distribution of Firm Price Gaps**



Narrower (s, S) bands, less dispersed price gap distribution in our model

#### **Extensive Margin: Standard Model**



#### Importance of Extensive Margin

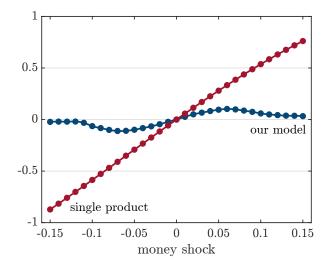
#### Inflation Volatility

|                   | Data | Our model | Standard |
|-------------------|------|-----------|----------|
| s.d. $\pi_t(s)$   | 2.87 | 2.87      | 2.86     |
| s.d. $\pi_t^c(s)$ | 2.51 | 2.55      | 2.70     |
| ratio             | 0.87 | 0.89      | 0.94     |

Elasticity of  $\pi_t^c(s)$  to  $\pi_t(s)$ 

|                           | Data | Our Model | Standard |
|---------------------------|------|-----------|----------|
| all observations          | 0.80 | 0.89      | 0.94     |
| $\pi_t(s) > 75^{th}$ pct. | 0.48 | 0.72      | 0.82     |
| $\pi_t(s) > 90^{th}$ pct. | 0.39 | 0.64      | 0.78     |

### Cumulative Impulse Response



#### Inflation Pass-through to Monetary Shock $\Delta m$

• Absent shock, inflation equal to

$$\pi = \int \omega h\left(\omega\right) \mathrm{d}f\left(\omega\right)$$

–  $\omega$ : desired price change,  $h(\omega)$ : adjustment hazard,  $f(\omega)$ : distribution

• Shock changes inflation to

$$\tilde{\pi} = \int (\omega + \alpha) \tilde{h}(\omega) df(\omega)$$

- $\alpha = \tilde{x}^* x^* + \Delta m$ : response of reset price to shock
- $\tilde{h}(\omega)$ : adjustment hazard after shock
- Caballero-Engel 2007 decomposition

$$\Delta \pi = \underbrace{\alpha \int h\left(\omega\right) \mathrm{d}f\left(\omega\right)}_{\mathrm{Calvo}} + \underbrace{\alpha \int \left(\tilde{h}\left(\omega\right) - h\left(\omega\right)\right) \mathrm{d}f\left(\omega\right)}_{\mathrm{frequency}} + \underbrace{\int \omega \left(\tilde{h}\left(\omega\right) - h\left(\omega\right)\right) \mathrm{d}f\left(\omega\right)}_{\mathrm{selection}}$$

#### Decompose Inflation Pass-through $\Delta \pi / \Delta m$

|                    | Single-product |       | Our model |       |       |       |
|--------------------|----------------|-------|-----------|-------|-------|-------|
|                    | 1%             | 5%    | 10%       | 1%    | 5%    | 10%   |
| total pass-through | 0.129          | 0.135 | 0.146     | 0.323 | 0.421 | 0.861 |
| Calvo              | 0.094          | 0.096 | 0.098     | 0.095 | 0.099 | 0.111 |
| frequency          | 0.001          | 0.004 | 0.011     | 0.009 | 0.123 | 0.660 |
| selection          | 0.035          | 0.036 | 0.037     | 0.219 | 0.198 | 0.090 |

- Our model: larger, more non-linear inflation response
  - stronger selection effect for small shocks
  - $-\,$  stronger frequency response for large shocks

#### **Economy Without Within-Firm Misallocation**

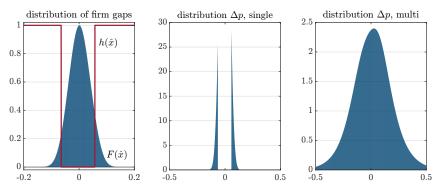
• Set 
$$\gamma = 0$$
 so no firm misallocation,  $\phi_t(f, s) = \exp\left(-d_t(f, s)\gamma \frac{\sigma_z^2}{2}\right) = 1$ 

- Problem of multi-product firm identical to single-product firm ( $\sigma_z = 0$ )
- Provided adjust trend money growth  $g_m$  so same drift in

$$\hat{x}' = \exp\left(\left(1-\gamma\right)\frac{\sigma_z^2}{2} + \sigma_u \varepsilon_{t+1}^u\left(f,s\right) - g_m\right)\hat{x}$$

• Calibrate multi-product economy, compare to equivalent single-product

## **Distribution of Price Changes**



- Unlike single-product, multi-product economy matches distribution  $\Delta p$
- But output responses identical to single-product economy
- $\bullet\,$  Single-product model has strong selection effect (Golosov-Lucas, 2007)

#### Robustness

- Single-product model without strategic complementarities,  $\eta=1$
- Multi-product model with  $\gamma = 0$  and  $\gamma = 3$
- Recalibrate to match same set of micro price statistics

|                               | Single-product | Multi-product |              |
|-------------------------------|----------------|---------------|--------------|
|                               | $\eta = 1$     | $\gamma = 0$  | $\gamma = 3$ |
| menu costs/sales              | 0.021          | 0.014         | 0.047        |
| misallocation, $\%$           | 5.71           | 0.92          | 3.97         |
| slope of $\pi_t^c$ on $\pi_t$ |                |               |              |
| all observations              | 0.99           | 0.88          | 0.89         |
| $\pi_t > 90^{th}$ pct.        | 0.93           | 0.61          | 0.63         |