Trends in the Health of the US Population

David Cutler1,2, Kaushik Ghosh2, Susan Stewart2, Trivellore Raghunathan3, and Andrew Wang2

1Harvard; 2NBER; 3University of Michigan
Trends in population health have not been uniform

• Convergence of health trends for infants / children between higher and lower SES groups
 • [Currie and Schwandt, 2016]

• Deaths of despair in middle age, esp. non-Hispanic Whites
 • [Case and Deaton, 2020]

• Health improvements for the elderly
 • Uniformity not entirely known
Our goal

- Examine trends in population health (and medical spending) over time, for different demographic groups.
 - Time period: 2000-2019 (so far)
 - 24 demographic groups: gender (M/F); race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, other); education (≤High School, Some college, College degree)
 - Due to small samples, we don’t examine all of these groups.
Outline

• Conceptual underpinnings
• Data
• Results
• Implications
Conceptual underpinnings

• Two concepts: **Quality-adjusted life expectancy (QALE)** and lifetime medical spending.

\[
QALE_{g,t}(0) = \sum_{k=0}^{\infty} S(\gamma_{t,g,k}) \cdot q_{t,g,k}
\]

\[
S(\gamma_{t,g,k}) = \left(1 - \prod_{l=0}^{k} \left(1 - \gamma_{t,g,l}\right)\right)
\]
Conceptual underpinnings

• Two concepts: Quality-adjusted life expectancy (QALE) and lifetime medical spending.

\[m_{g,t}(0) = \sum_{k=0}^{\infty} S(\gamma_{t,g,k}) \cdot m_{t,g,k} \]

(3)

• No discounting in QALE or lifetime medical spending
• Note this is effectively a period life table concept.
Three empirical needs

\(\gamma_{t,g,k} \)
Mortality rate for group g at age k in year t

\(q_{t,g,k} \)
Quality of life for group g at age k in year t

\(m_{t,g,k} \)
Medical spending for group g at age k in year t

t=year; g=group; k=age
Data on mortality

• We use life tables when available.
 • Including some unpublished data.
 • For now, use 2000 and 2019.
 • Maximum age = 100
Data on mortality

• In forming life tables by education
 • Use micro data on deaths by (death-certificate) education combined with an adjustment from micro studies of self-reported education to death certificate reports (Hatfield et al., 2023).
 • Start education reporting at age 25
 • Assume no education differences in mortality after age 75 within race (samples too small)
 • (Generally) No education delineation for Blacks and Hispanics.
Adjustment for mis-reporting education

<table>
<thead>
<tr>
<th>Extent of Death Certificate Mis-Reporting</th>
<th>Percent Reported in Death Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>As self-reported</td>
<td><=High School</td>
</tr>
<tr>
<td><=High school</td>
<td>93%</td>
</tr>
<tr>
<td>Some college</td>
<td>37%</td>
</tr>
<tr>
<td>College grad</td>
<td>8%</td>
</tr>
</tbody>
</table>

Note: Based on unpublished tabulations from NLMS; see Hatfield et al. (2023).
Data on quality of life

• MEPS data (full population) + MCBS data (ages 65+)
• Use our earlier methodology (Cutler et al., 2022)
 • Find all measures of symptoms and impairments (S/I)
 • Estimate regression of 100 point health rating in 2002 MEPS on S/I to back out disutility of each S/I
 • Hold these disutilities constant over time.
• Smooth QoL across ages using a spline model, with knots at ages 25, 45, and 65.
Table of Disutilities

<table>
<thead>
<tr>
<th>Symptom/Impairment</th>
<th>Decrement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-care (ADL) limitation</td>
<td>-0.04</td>
</tr>
<tr>
<td>Primary activity: limited</td>
<td>-0.04</td>
</tr>
<tr>
<td>Primary activity: can’t do</td>
<td>-0.07</td>
</tr>
<tr>
<td>Social activity limitation</td>
<td>-0.03</td>
</tr>
<tr>
<td>Routine needs (IADL) limitation</td>
<td>-0.01</td>
</tr>
<tr>
<td>Pain: moderate</td>
<td>-0.06</td>
</tr>
<tr>
<td>Pain: severe</td>
<td>-0.17</td>
</tr>
<tr>
<td>Low energy: moderate</td>
<td>-0.07</td>
</tr>
<tr>
<td>Low energy: severe</td>
<td>-0.15</td>
</tr>
<tr>
<td>Depressive symptoms: moderate</td>
<td>-0.03</td>
</tr>
<tr>
<td>Depressive symptoms: severe</td>
<td>-0.09</td>
</tr>
<tr>
<td>Anxious</td>
<td>-0.03</td>
</tr>
<tr>
<td>Walking: moderate difficulty</td>
<td>-0.03</td>
</tr>
<tr>
<td>Walking: severe difficulty</td>
<td>-0.04</td>
</tr>
<tr>
<td>Manual dexterity difficulty</td>
<td>-0.02</td>
</tr>
<tr>
<td>Lifting difficulty</td>
<td>-0.01</td>
</tr>
<tr>
<td>Vision impairment</td>
<td>-0.02</td>
</tr>
<tr>
<td>Hearing impairment</td>
<td>-0.01</td>
</tr>
<tr>
<td>Cognitive impairment</td>
<td>-0.03</td>
</tr>
</tbody>
</table>

From regression predicting 100-point self-rated health in 2002 Medical Expenditure Panel Survey (regression also includes interactions)

Subtract decrements for reported limitations from intercept (0.92, value with none of the limitations)

- **Weight**
 - Moderate pain: -0.06
 - Social activity limitation: -0.03
 - Moderate low energy: -0.07

Health-related quality of life score: 0.76

Separate models for children
Predicted Quality of Life (2019)

Lowest value ~.04

Mean = 0.81

Max Value ~ .97
Data on medical spending

• MEPS data (full population) + MCBS data (ages 65+)
• Use our earlier methodology (Cutler et al., 2022)
 • Adjust for non-represented populations (institutionalized in MEPS)
 • Make totals add to national estimates
• Smooth medical spending across ages using a spline model, with knots at ages 1, 25, 45, and 65.
Medical spending by age, 2000 and 2019

Spending per capita ($2010)

- Spend_A2000
- Spend_A2019
Results – population as a whole

Mortality has fallen

Quality of life has increased
Some more helpful metrics – Overall population

Change in Mortality and Quality of Life, 2000-2019

- Mortality change
- Quality of life change

% Change in Mortality

Age

Change in Quality of Life
Mortality Rates by Race/Ethnicity (log scale)

Mortality at older ages fell for all groups, but more for non-Hispanic Blacks and Hispanics.
Quality of Life by Race/Ethnicity

Quality of life improved for all groups, but most for Hispanics.
Mortality Rates by Education (log scale)

Education life tables start at age 25.
Mortality **increased** for the least educated group, fell for groups with more years of education.
Quality of Life by Education

Quality of life increased for all education groups, more so for college grads.
QALE for different groups, 2000 and 2019

Overall Male Female NH White NH Black Hispanic <=HighSchool Some College College

- Male: 2000: 2.6, 2019: 2.6
- Female: 2000: 2.6, 2019: 2.6
- NH White: 2000: 1.8, 2019: 3.1
- NH Black: 2000: 3.1, 2019: 4.2
- Hispanic: 2000: 4.2, 2019: -0.7
- <=HighSchool: 2000: 1.2, 2019: 3.8
- Some College: 2000: 1.2, 2019: 3.8
- College: 2000: 1.2, 2019: 3.8

Legend: 2000 = blue, 2019 = orange
QALE for different groups, 2000 and 2019

Essentially no difference by gender.
QALE for different groups, 2000 and 2019

Much larger increases for Blacks and Hispanics.
QALE for different groups, 2000 and 2019

Much larger increases for people with more education
Convergence and Divergence

• Consider change in mortality and quality of life at each age.

• How much does each age contribute to White and Black QALE?
• Do same for ≤High School and College grad
Impact on QALE(0) due to changes in mortality and QOL at each single age

Largest differential contributions at birth (infant mortality) and in adult working years

Total change in QALE
- NH Black = 3.1
- NH White = 1.8
- Hispanic = 4.1
Impact on QALE(0) due to changes in mortality and QOL at each single age

![Graph showing changes in QALE and LE for Non-Hispanic White and Black individuals.]

Total change in QALE
- NH Black = 3.1
- NH White = 1.8

Total change in LE
- NH Black = 3.2
- NH White = 1.4

Vast bulk of closing in racial gap is due to differential change in life expectancy.
Impact on QALE(0) due to changes in mortality and QOL at each single age

Total change in QALE
- NH White = 1.8
- Hispanic = 4.2

Total change in LE
- NH White = 1.4
- Hispanic = 2.6

Though for middle-aged Hispanics, QOL contributes more.
Impact on QALE(0) due to changes in mortality and QOL at each single age

Differential contributions everywhere

Total change in QALE
- \(\leq \text{HS} = -0.7 \)
- \(\text{Some college} = 1.2 \)
- \(\text{College Grad} = 3.8 \)
Impact on QALE(0) due to changes in mortality and QOL at each single age

Differential contributions everywhere

Total change in QALE
- <=HS = -0.7
- Some college = 1.2
- College Grad = 3.8

Total change in LE
- <=HS = -2.1
- Some college = 1.5
- College Grad = 4.4

Vast bulk of widening in education gap is due to differential change in life expectancy.
QoL improved a lot for survivors <=High School.
Contribution of different ages to QALE change at birth

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Ages 0-24</th>
<th>Ages 25-44</th>
<th>Ages 45-64</th>
<th>Ages 65+</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH White</td>
<td>1.8</td>
<td>0.3</td>
<td>0.0</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>NH Black</td>
<td>3.1</td>
<td>0.4</td>
<td>0.5</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Hispanic</td>
<td>4.1</td>
<td>0.4</td>
<td>0.8</td>
<td>1.2</td>
<td>1.7</td>
</tr>
<tr>
<td><=High School</td>
<td>-0.7</td>
<td>--</td>
<td>-0.2</td>
<td>-0.2</td>
<td>-0.4</td>
</tr>
<tr>
<td>Some college</td>
<td>1.2</td>
<td>--</td>
<td>-0.2</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>College grad</td>
<td>3.8</td>
<td>--</td>
<td>0.4</td>
<td>1.0</td>
<td>2.3</td>
</tr>
</tbody>
</table>

By race/ethnicity:
- Large contributions for all groups at ages 65+;
- Large differential from ages 25-64

By education:
- Big differential at all ages, including 65+
QALE at different ages by race/ethnicity

QALE at age 0

- NH White: 1.8
- NH Black: 3.1
- Hispanic: 4.2

QALE at Age 25

- NH White: 1.5
- NH Black: 2.8
- Hispanic: 3.8

QALE at Age 45

- NH White: 1.6
- NH Black: 2.4
- Hispanic: 3.1

QALE at Age 65

- NH White: 1.5
- NH Black: 1.6
- Hispanic: 2.0
QALE at different ages by education

Age 25
- <=HS: 38.4 (2000) to 37.7 (2019)
- Some College: 45.0 (2000) to 37.7 (2019)
- College+: 46.2 (2000) to 50.5 (2019)

Age 45
- College+: 30.0 (2000) to 33.4 (2019)

Age 65
- Some College: 14.7 (2000) to 16.0 (2019)
- College+: 15.2 (2000) to 17.9 (2019)
Implications

• Educational outcomes radically affect health outcomes. Race is less related to health outcomes than in the past.
 • Need to consider race and education jointly.

• Both length and quality of life are important.
 • Quality of life relative more important in non-elderly population.

• Changes at birth and ‘middle age’ are very important for narrowing of B-W mortality differences.
• By education, changes are at every age.