TECHnological Factor Productivity

Diego Comin with Xavier Cirera, and Marcio Cruz

July 12, 2023

Motivation

- Open up an establishment, and zoom into each business function
- Observe what technologies are used to conduct the main tasks involved in the function and out of these which is most widely used.
- This information is relevant to study many fundamental questions
 - 1. How far are establishments from the frontier?
 - 2. Are there significant differences in technology across the business functions of an establishment?
 - 3. Why?
 - 4. Aggregate the BF-level technologies into a establishment index of technology: **TECHFP**
 - 5. What dimensions of technological landscape are more relevant for TECHFP?
 - 6. How much of the cross-establishment **dispersion in productivity** can be accounted for by the variation in TECHFP?

Firm Adoption of Technology (FAT)

- New dataset (FAT) that covers representative sample of establishments in 10 countries: Korea, Poland, Brazil, India, Vietnam, Bangladesh, Senegal, Kenya, Ghana, Burkina Faso.
- The Grid:
 - A two-dimensional structure that lists business functions and technologies.
 - Covers 7 general business functions (relevant for all) and 58 sector-specific functions (11 big sectors + Other manufacturing).
 - For each of them: 4-7 technologies (total 303 technologies)
 - Can be ranked from least to most sophisticated
 - Relevant for establishments in all sectors and countries

The GRID

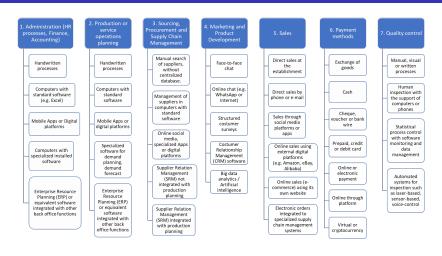


Figure 1: General Business Functions and Their Technologies

Grid for food processing skip slide

Survey

- Sampling frame: Representative sample stratified at the sector, establishment size and region.
- Cover 12,636 establishments.
- Ex-post quality checks skip slide
- Technology questions:
 - Do you use technology X in the BF?
 - Of the technologies that you use in the BF, which one is the most widely used?

Technology sophistication measure

- Technologies in a BF can be ranked based on their sophistication.
 - Capacity to conduct more tasks, of greater complexity with greater accuracy.
- Let $r_{f,j}$ be the sophistication of a given technology, $r_{f,j} \in {1,2,...,R_f}$
- Relative rank $\hat{r}_{f,j} = \frac{r_{f,j}-1}{R_f-1}$
- $MOST_{f,j} = 1 + 4 * \hat{r}_{f,j}^{MOST}$
- $MAX_{f,j} = 1 + 4 * \hat{r}_{f,j}^{MAX}$

Describing Technology Sophistication

	Mean	SD	p10	p50	p90	Skewness	Kurtosis
$MOST_{fj}$	1.77	1.02	1.00	1.67	3.67	1.47	4.56
MAX_{fj}	2.39	1.28	1.00	2.00	4.33	0.59	2.17
$MOST_j$	1.79	0.61	1.10	1.71	2.64	0.92	3.67
MAX_j	2.41	0.82	1.43	2.28	3.58	0.61	2.86

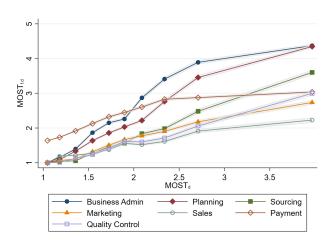
Technology sophistication and establishment characteristics ** skip slide

Technology differences across business functions

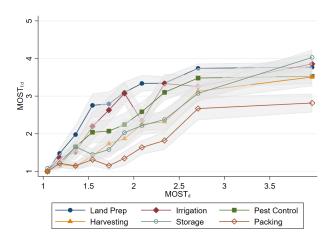
$$S_{f,j,c} = \alpha_j + \beta_{f,c} + u_{f,j,c}$$

	(1)	(2)
	MAX	MOST
$Var(S_{fjc})$	1.64	1.05
$Var(lpha_{\mathit{fc}})$	0.42	0.31
$Var(lpha_j)$	0.48	0.22
$Var(u_{f,j,c})$	0.66	0.47
Contribution WVAR	40%	45%

Distribution of WVAR across establishments ** skip slide Correlates of WVAR across establishments > skip slide



Why is WVAR so high?


$$S_{f,j} = \alpha_f + \varepsilon_f * S_j + v_{f,j}$$

The technology curve

$$S_{f,j} = \alpha_f + \varepsilon_f * S_j + v_{f,j}$$

Technology Curve, SSBF Agriculture

Stability across countries ** skip slide

A micro-foundation of the technology curve

• Establishments choose a vector of technology sophistication $s_{f,j}$ across functions, to maximize $\Pi_j(a_j) - \sum_{f=1}^{N_f} C_j C_{f,X} e^{s_{f,j}}$ subject to

$$e^{a_j} = \left[\sum_{f=1}^{N_f} \underbrace{\left(\Omega_f^{\frac{1}{\sigma}} e^{\frac{(\mathbf{e_f} - (1-\sigma))a_j}{\sigma}}\right)}_{\widetilde{\omega}_f(a_j)} e^{\frac{\sigma-1}{\sigma} S_{f,j}}\right]^{\frac{\sigma}{\sigma-1}}.$$

- a_i is TECHnological Factor Productivity.
- Non-homothetic CES aggregator. If $\varepsilon_f = (1 \sigma)$, becomes homothetic.
- ε_f technology-elasticity of function f
- Controls how does the importance of the function $\widetilde{\omega}_f$ change with a_j .
- \bullet σ elasticity of substitution across technologies in different BFs

Optimal technology sophistication

$$s_{f,j} = \kappa_j + \kappa_f + \varepsilon_f * a_j - \sigma ln(C_{f,X})$$
 skip slide

$$WVar_{j} = a_{j}^{2} Var(\varepsilon_{f}) + \sigma^{2} Var(In(C_{f,X})) - 2a_{j}\sigma Cov(\varepsilon_{f}, In(C_{f,X}))$$

- If $Var(\varepsilon_f) > 0$, $WVar_j$ increases with a_j (heterogeneity of the Mg. value of sophistication across BFs)
- If $Var(In(C_{f,X})) > 0$, heterogeneity in Mg. cost

Estimation Strategy

Optimal adoption:

$$s_{f,j} = \kappa_j + \kappa_f + \varepsilon_f * a_j + \beta_f * X_j + v_{f,j}$$

This is a mixed model.

- Follow Aguiar and Bils (2015) 2-step approach to estimate slope of Engel curves and household expenditure in the CEX.
 - 1. Proxy a_i by $a_i = \alpha * \overline{a}_i + u_i$, where u_i is classical error.
 - 2. Obtain estimate of ε_f from regression replacing a_j by \overline{a}_j
 - 3. Estimate using $\widehat{\varepsilon}_f$ as regressor. This provides estimates of $\widehat{\kappa}_j$, \widehat{a}_j , and their VCV.
- $\widehat{\varepsilon}_f$ and \widehat{a}_j are unbiased estimates of ε_f and a_j up to a constant scaling factor.
- Details >> skip slide

Analysis of estimates

$$\begin{array}{cccc} & \mathsf{Mean} & \mathsf{SD} & \mathsf{P90/P10} \\ \widehat{\varepsilon}_f & \mathsf{0.82} & \mathsf{0.4} & \mathsf{4.32} \end{array}$$

- Is Var(ĉ_f) due to non-homotheticities or to differences in technology across BFs? → skip slide
- $Var(\widehat{\varepsilon}_f * \widehat{a}_i)/WVAR = 43\%$
- How much do we lose by using standard technology measures vs. $\widehat{a_j}$?

 ** skip slide*
- What fraction of cross-establishemnt dispersion in productivity can be accounted for \widehat{a}_i ? skip slide

Conclusions

- Study technology inside the establishment
- New data
 - Comprehensive direct measures of technologies used
 - Unit of observation is BF/establishment
- New questions and findings
 - Large differences in technology sophistication across the business functions of a establishment
 - The technology curve
- New models
- Estimate of technology curves and TECHFP
- Estimates justify the use of comprehensive measurement of technology at the BF level
- TechFP is strongly correlated with establishment productivity and accounts for 15% of cross-establishment variation

Appendix

Business functions and technologies

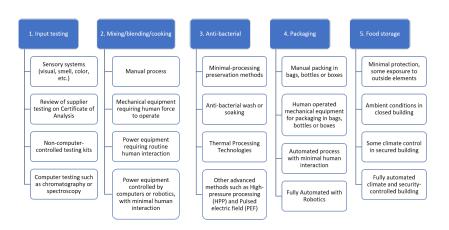


Figure 2: Sector Specific Business Functions and Technologies in Food Processing

Technology sophistication and establishment characteristics

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1)	(2)
$\begin{array}{c ccccc} & & & & & & & & & & & \\ & Large & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	VARIABLES	$MOST_j$	MAX_j
$\begin{array}{c ccccc} Large & 0.51*** & 0.80*** \\ & (0.02) & (0.02) \\ Age 6 to 10 & 0.02 & -0.02 \\ & (0.01) & (0.02) \\ Age 11 to 15 & 0.05*** & 0.01 \\ & (0.01) & (0.02) \\ Age 16+ & 0.04*** & 0.01 \\ & (0.01) & (0.02) \\ Multi-establishment & (0.01) & (0.02) \\ Multi-establishment & 0.14*** & 0.37*** \\ & (0.01) & (0.02) \\ Foreign owned & 0.18*** & 0.36*** \\ & (0.02) & (0.03) \\ Exporter & 0.20*** & 0.33*** \\ & (0.01) & (0.02) \\ \hline Observations & 12,408 & 12,408 \\ \hline \end{array}$	Medium	0.21***	0.35***
Age 6 to 10		(0.01)	(0.01)
Age 6 to 10 0.02 -0.02 (0.01) (0.02) Age 11 to 15 0.05*** 0.01 (0.01) (0.02) Age 16+ 0.04*** 0.01 (0.01) (0.02) Multi-establishment 0.14*** 0.37*** (0.01) (0.02) Foreign owned 0.18*** 0.36*** (0.02) (0.03) Exporter 0.20*** 0.33*** (0.01) (0.02) Observations 12,408 12,408	Large	0.51***	0.80***
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.02)	(0.02)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Age 6 to 10	0.02	-0.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.01)	(0.02)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Age 11 to 15	0.05***	0.01
		(0.01)	(0.02)
Multi-establishment 0.14*** 0.37*** (0.01) (0.02) Foreign owned 0.18*** 0.36*** (0.02) (0.03) Exporter 0.20*** 0.33*** (0.01) (0.02) Observations 12,408 12,408	Age $16+$	0.04***	0.01
Foreign owned		(0.01)	(0.02)
Foreign owned 0.18^{***} 0.36^{***} (0.02) (0.03) Exporter 0.20^{***} 0.33^{***} (0.01) (0.02) Observations $12,408$ $12,408$	Multi-establishment	0	0.37***
Exporter $\begin{pmatrix} (0.02) & (0.03) \\ 0.20^{***} & 0.33^{***} \\ (0.01) & (0.02) \end{pmatrix}$ Observations $12,408$ $12,408$		(0.01)	(0.02)
Exporter 0.20^{***} 0.33^{***} (0.01) (0.02) Observations $12,408$ $12,408$	Foreign owned	0.18***	0.36***
(0.01) (0.02) Observations 12,408 12,408		(0.02)	(0.03)
Observations 12,408 12,408	Exporter	0.20***	0.33***
, ,		(0.01)	(0.02)
D 1 0.45 0.41	Observations	12,408	12,408
R-squared 0.45 0.41	R-squared	0.45	0.41

Ex-post checks on bias and measurement error

1. Non-response bias

- High average (unit) response rate of 49%
- Reweight
- No significant difference between establishments in response sample and in groups that proxy for non-response

2. Enumerator bias

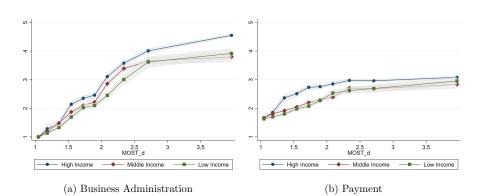
• Study significance of enumerators dummies on firm sophistication

3. Respondent bias

- Parallel pilot in Kenya, where we re-question firms on the technologies used in a random set of business functions.
- 73% of answers are the same in both interviews.
- Compare reported values of firm characteristics and some technology data with other surveys and observe strong correlations with administrative data.

Distribution of Within-establishment Variance

Variable	Mean	SD	p10	p90
Wvar(MAX)	0.74	0.55	0.22	1.51
Wvar(MOST)	0.54	0.55	0.04	1.30



Correlates of WVAR across establishments

	(1)	(2)
VARIABLES	WVar(MAX)	WVar(MOST)
Sj	1.31***	1.24***
	(0.03)	(0.03)
S_i^2	-0.18***	-0.15***
,	(0.01)	(0.01)
Medium	0.01	-0.02***
	(0.01)	(0.01)
Large	0.10***	0.01
	(0.02)	(0.02)
Age 6 to 10	-0.03**	0.01
	(0.01)	(0.01)
Age 11 to 15	-0.05***	-0.01
	(0.01)	(0.01)
Age 16+	-0.04***	0.02**
	(0.01)	(0.01)
Multi-establishments	-0.02**	-0.03***
	(0.01)	(0.01)
Foreign owned	-0.02	-0.04**
	(0.02)	(0.02)
Exporters	-0.03**	-0.02*
	(0.01)	(0.01)
Number of BF	0.00	0.01***
	(0.00)	(0.00)
Country	1-digit FE	Yes
Yes		
Observations	12,169	12,172
R^2	0.33	0.49

→ back

Technology Curves across countries

Technology Curves across countries

$$\sum_{f} \sum_{c} \sum_{d} \omega_{f,c,d} (S_{f,c,d} - S_{d})^{2} = \sum_{f} \sum_{c} \sum_{d} \omega_{f,c,d} (S_{f,c,d} - S_{f,d})^{2} + \sum_{f} \sum_{d} \omega_{f,d} (S_{f,d} - S_{d})^{2}$$
Cross-country
Cross-function

 The cross-function component of the variance in the technology curve accounts for 89% of the variance.

back
 back
 back
 back

Expression ai

 a_i is given by:

$$\sum_{f=1}^{N_f} \Omega_f e^{\varepsilon_f a_j} \left(\frac{C_{f,X} C_j \overline{\varepsilon}_j}{\Pi'_j(a_j) \sigma} \right)^{1-\sigma} \left(\frac{1-\sigma}{\sigma} \right)^{\sigma} = 1.$$

→ back

Estimation details

•
$$s_{f,j} = \frac{1}{2} (MAX_{f,j} + MOST_{f,j})$$

• $\overline{a}_j = s_j + \varrho * \sqrt{WVar_j}$, which is a first order approximation to a_j around the average level of sophistication in each business function.

→ back

Variation in slope of tech curves

- Is Var(\hat{\varepsilon}_f) due to non-homotheticities or to differences in technology across BFs?
 - Study heterogeneity in slope of technology curves across sectors, for functions that are relevant in multiple sectors (i.e., have same technologies in grid): Fabrication, GBFs
 - $Max(\hat{\varepsilon}_f^{GBF}) Min(\hat{\varepsilon}_f^{GBF}) = 0.89$
 - Avg $MAX_s(\widehat{\varepsilon}_{f,s}^{GBF}) Min_s(\widehat{\varepsilon}_{f,s}^{GBF})$ across functions =0.78.
 - 2. Model with function-specific technical change (γ_f)
 - Heterogeneity in slope can be due to heterogeneity in γ_f .
 - Functions with higher γ_f have flatter technology curves
 - As Var(κ
 j) tends to 0, variance in slopes is entirely driven by non-homotheticties.

TechFP and technology measures

		âj				
VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)
Computer _i	0.94***					
s; ^{BA}		0.51***				
s ^{BA} s ^{PAY} s _j			0.3***			
s _j				.98***		
$\sqrt{WVar_j}$.17***		
MAX_j					0.42***	
$MOST_i$					0.65***	
GBF					0.03	.99***
s ^{GBF} s ssBF si						.03***
s_j^{ood}						.03***
Observations	10,812	10,833	10,986	11,114	11,114	10,958
R ²	0.29	0.69	0.07	0.74	0.74	0.81

TechFP and establishment characteristics

VARIABLES	\widehat{a}_{j}
L	0 005***
h_j	0.005***
Management	0.17***
Multi-establishment	0.29***
Multinational	0.21***
Exporter	0.25***
6 to 10 years	-0.01
11 to 15 years	0.01
16+ years	0.01*
Observations	10,320
R-squared	0.485
Country, sector FE	YES

Technology and productivity

	Value added per worker						
VARIABLES	(1)	(2)	(3)	(4)			
k _i	0.304***	0.287***	0.286***	0.283***			
h_j	0.005***	0.003**	0.003**	0.003**			
$\hat{\widehat{a}_{j}}$		0.306***		0.26***			
$\hat{a_i} * AGRI$			0.79***				
$\hat{a_i} * MAN$			0.36***				
â _i ∗ SER			0.27***				
Computer				0.011			
Management				0.087***			
Observations	6,8389	6,839	6,839	6,812			
R ²	0.48	0.5	0.5	0.5			