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I. Introduction

The average return that any hedge fund i delivers to investors is the sum of two components.

The alpha component ac∗i (or alpha) is based on private information—it captures the return that

the fund earns by exploiting its unique investment abilities. The beta component bc∗i is based on

public information—it captures the return that the fund earns by following mechanical trading

strategies. The economic importance of these two components is potentially large. A commonly

held view is that hedge fund managers deliver positive alphas because they are more sophisticated,

less constrained, and more incentivized than mutual fund managers. In addition, the literature

consistently emphasizes that hedge funds increase their returns by using strategies that are weakly

correlated with the equity market (e.g., Getmansky, Lee, and Lo, 2015).

Decomposing returns is key for evaluating the performance and risk profile of hedge funds. It is

therefore important for researchers, investors, and policymakers alike. This decomposition is likely

to exhibit substantial variation across funds as they rely on many investment strategies and private

information signals (e.g., Pedersen, 2015, ch. 3). As a result, averaging across funds provides

limited information about the entire fund population. For example, it does not reveal how many

funds deliver positive alphas—an important quantity for testing the predictions of equilibrium

models of active asset management. Capturing fund heterogeneity is also crucial for hedge fund

investors because they can only invest in a handful of funds (Bollen, Joenväärä, and Kauppila,

2021). These arguments call for the estimation of the entire distributions of the alpha and beta

components characterized by the densities ϕ∗
ac and ϕ∗

bc.

The estimation of these distributions is hampered by misspecification. Capturing all the strate-

gies followed by hedge funds is notoriously difficult, which implies that any chosen model k is

surely misspecified—that is, it omits relevant factors that drive the beta components of individual

funds. In this case, we cannot infer the true components ac∗i and bc∗i . Instead, we can only observe

the estimated components âcki and b̂c
k

i , which serve as inputs to compute the distributions ϕ̂k
ac and

ϕ̂k
bc. These distributions are imperfect and noisy versions of ϕ∗

ac and ϕ∗
bc. They are imperfect be-

cause the alphas absorb the average returns of the factors omitted by the model. Put differently,

high alphas are simply hidden betas. The distributions are also noisy because of the sampling vari-

ation of the omitted factors. This misspecification-driven variation, which affects all funds, does

not vanish even when the fund population grows large.
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To address these issues, we develop a novel approach for decomposing hedge fund returns.

This approach delivers a nonparametric estimation of the distributions ϕk
ac and ϕk

bc for any chosen

model. Importantly, it explicitly accounts for the dual impact of misspecification. First, it provides

a framework for comparing models and identifying the ones with a greater ability to capture hedge

fund strategies. Using models less prone to misspecification produces a sharper identification of

the true alpha and beta components ac∗i and bc∗i . Second, it comes with a full-fledged asymptotic

theory that incorporates the estimation noise due to misspecification. We can therefore conduct

formal tests to (i) compare competing models, (ii) evaluate individual fund performance, and (iii)

assess the economic importance of any factor in driving fund returns.

Our approach contributes to previous studies which measure the distribution of fund alphas

under correct specification (e.g., Barras, Gagliardini, and Scaillet, 2022; Harvey and Liu, 2018).

In contrast, we account for the impact of misspecification, which is essential for examining hedge

fund returns. Our approach also provides the first formal comparison of misspecified models in a

large population of funds. It therefore departs from previous tests based on a small number of assets

(e.g., Kan and Robotti, 2009; Kan, Robotti, and Shanken, 2013). Such tests cannot be applied here

because they require the inversion of the entire return covariance matrix—an operation that cannot

be performed because the number of funds is larger than the number of return observations.

To demonstrate the benefits of our approach, we apply it to a set of nine diverse models. In addi-

tion to the CAPM, we include four standard models commonly used in previous work: the models

of Carhart (1997), Fama and French (2015), Fung and Hsieh (2004), and Asness, Moskowitz, and

Pedersen (2013). We examine the two machine learning models of Kozak, Nagel, and Santosh

(2020), which are trained on 50 characteristic-based equity portfolios. Finally, we consider two

models formed with alternative factors that plausibly capture hedge fund strategies: marketwide

illiquidity, betting-against-beta (BAB), variance (short position), carry, and time-series (TS) mo-

mentum.1 The first model by Joenväärä et al. (2021) (JKKT) is a Carhart model with illiquidity,

BAB, and TS momentum. Based on the work by Carhart et al. (2014) and Pedersen (2015), we

form another model (CP), which includes all five alternative factors (with market and size).

We conduct our analysis between 1994 and 2020 using monthly data on 5,231 hedge funds.

1As discussed in Section IV.B, the illiquidity, BAB, carry, and TS momentum factors are constructed by Pástor and
Stambaugh (2003), Frazzini and Pedersen (2014), Koijen et al. (2018), and Moskowitz, Ooi, and Pedersen (2012).
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To construct this sample, we follow Joenväärä et al. (2021) and carefully aggregate four different

databases to mitigate the various biases that affect hedge fund reporting (backfill, selectivity, and

survivorship). For each model k, the estimation of the alpha and beta distributions ϕk
ac and ϕk

bc

requires as inputs the estimated components âcki and b̂c
k

i for each fund. To this end, we run a

regression of the excess return (net of fees) of each fund on the excess returns of the factors

included in model k. We then compute the two components as âcki = α̂k
i and b̂c

k

i = µ̂i − âcki ,

where α̂k
i and µ̂i are the estimated alpha and the average return of the fund.

Our formal comparisons uncover sharp differences in misspecification between models. We

take as reference the simple CAPM—the least equipped model for explaining hedge fund returns.

We find that the standard and machine learning models are strikingly similar to the CAPM. The

tests reveal that these models are as misspecified as the CAPM as they leave the entire shape of

the alpha distribution unchanged. In contrast, the JKKT and CP models are less prone to misspec-

ification. Both produce a sizable shift of the alpha distribution towards zero as they capture the

returns of alternative hedge fund strategies. This result is a robust feature of the data—it holds

when adding trading costs and different filters to mitigate data biases.

The model comparisons have a strong impact on the decomposition of hedge fund returns.

Consistent with previous studies, the standard models produce large alpha components—the alpha

is equal to 2.7% per year on average and is positive for more than 70% of the funds.2 At the same

time, the average beta component due to the non-market factors (i.e., all the factors except the

market) barely reaches 0.2% per year. The takeaway from this analysis is that hedge funds deliver

superior performance while being immune to alternative sources of risk.

The JKKT and CP models reverse this conclusion. Under the CP model, the average alpha

drops to 0.4% per year, while the beta component due to the non-market factors rises up to 2.9%

per year. This pendulum shift from alpha to beta is observed across all investment categories. The

average alpha is equal to 0.6% and 0.9% per year for equity and arbitrage funds (versus 2.4% and

2.8% under the CAPM) and even becomes negative at -0.4% for macro funds (versus 3.7% under

the CAPM). These models also uncover notable time trends between 1994 and 2020. Whereas

2A non-exhaustive list of papers that document positive average alphas under the standard models includes
Avramov, Barras, and Kosowski (2013), Buraschi, Kosowski, and Trojani (2014), Capocci and Hübner (2004), Chen,
Cliff, and Zhao (2017), Diez de los Rios and Garcia (2010), Duarte, Longstaff, and Yu (2006), Getmansky, Lee, and
Lo (2015), Kosowski, Naik, and Teo (2007), and Patton and Ramadorai (2013).
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hedge funds remain unique in their exposure to alternative strategies, they converge towards mutual

funds along two dimensions. First, their alphas become increasingly similar (the alpha gap reaches

its lowest value of 1.6% in 2020). Second, they load increasingly on the equity market after the

2008 crisis. Hedge funds are not market neutral—around 80% of them have positive betas.

The five alternative factors included in the JKKT and CP models are economically important. A

majority of funds load on each of them, which supports the view that hedge funds follow mechani-

cal strategies to boost returns (e.g., Carhart et al., 2014). We find that TS momentum, variance, and

carry are the most relevant factors—their respective beta components are equal to 1.1%, 0.8%, and

0.4% per year. These results are in line with ample anecdotal evidence that hedge funds take short

option positions, buy cheap assets with high carry, and follow trends in asset prices (e.g., Lhabitant,

2007). The analysis of investment styles is also consistent with economic intuition. For instance,

carry matters for all categories as it is widely used by hedge fund managers (Pedersen, 2015).

Trend-following funds load heavily on TS momentum, while arbitrage funds load on variance risk

as they commonly follow option strategies (Duarte, Longstaff, and Yu, 2006).

Our analysis also reveals a large heterogeneity in the return components across funds. Mea-

sured over the nine models, the volatility in alphas ranges between 6.8% and 9.2% per year. Simi-

larly, the beta components vary substantially even within investment styles, which contradicts the

common practice of benchmarking funds uniformly using style indices. The two components are

also negatively correlated as low alphas come with high betas. In other words, the worst funds load

heavily on alternative strategies to boost their returns (possibly to hide their lack of skills).

This large dispersion has implications for the two popular models of active management pro-

posed by Berk and Green (2004) and Gârleanu and Pedersen (2018). The first model predicts that

all funds deliver zero alphas (after a learning adjustment period). Whereas this prediction holds

relatively well for mutual funds (Barras, Gagliardini, and Scaillet, 2022), it is at odds with the dis-

persion observed here. In contrast, the model of Gârleanu and Pedersen (2018) naturally produces

different fund alphas as investors need to be compensated for the costs of searching funds. This

explanation fits well with the complex and leveraged nature of hedge fund investments. The hedge

fund selection process is complex, which leads to high search costs (Lhabitant, 2007). These costs

then force hedge funds to take on leverage (Stein, 2009).

An important question is how investors value hedge fund investments. Whereas sophisticated
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investors only value the alpha component, unsophisticated ones also value the beta component due

to the factors they cannot replicate. Our model comparisons shed light on this issue by measuring

the valuation of hypothetical investors with varying degrees of sophistication. Whereas the CAPM

alpha determines the valuation of an investor who can only invest in the market, the CP alpha

gives the valuation of an investor able to replicate multiple strategies. We find that the average

valuation gap is large (2.6% per year) as the CAPM investor highly values the fund exposures to

the alternative factors. Examining fund flows, we find that real-world hedge fund investors are

closer to the CP investor in terms of sophistication. Decomposing returns across funds with low

and high flows, we find that flows primarily respond to the alpha component obtained with the CP

model, but not to the beta component (as would a CAPM investor do).

The remainder of the paper is as follows. Section II presents the framework for decompos-

ing hedge fund returns. Section III describes the methodology. Section IV presents the hedge

fund dataset and the model selection. Section V contains the empirical analysis, and Section VI

concludes. The appendix provides additional information on the methodology, the Monte Carlo

simulations, the hedge fund dataset, and the empirical results.

II. Decomposing Hedge Fund Returns Under Misspecification

II.A. Fund Return Decomposition

II.A.1. The Alpha and Beta Components

We consider a population of n funds over T periods, where we denote each fund by the subscript

i (i = 1, . . . , n) and each period by the subscript t (t = 1, . . . , T ). We denote by ri,t the excess

net-of-fee return of the fund and by ft the excess return vector of the mechanical trading strategies

that hedge funds follow. Our objective is to decompose the average fund return into its alpha and

beta components:

E[ri,t] = α∗
i + b∗′i E[ft] = ac∗i + bc∗i . (1)

The alpha component ac∗i is equal to the alpha α∗
i . The beta component bc∗i is equal to the average

return of a benchmark portfolio with the same exposures to the trading strategies as the fund:

bc∗i = b∗′i E[ft] = b∗′i λ, where b∗i is the vector of fund betas and λ is the vector of factor premia.

The alpha component ac∗i measures the average return that the fund delivers to investors by

exploiting its private information. This component is therefore a measure of performance, not
5



skill. Whereas the two notions are commonly used interchangeably, they differ in important ways

(Barras, Gagliardini, and Scaillet, 2022; Berk and van Binsbergen, 2015). Skill determines whether

funds are able to extract value from capital markets. Performance determines whether investors

hold sufficient bargaining power to receive part of this value. Positive performance implies positive

skill, but not vice-versa.

The beta component bc∗i captures the average return of the mechanical strategies followed by

the fund. Because it is based on public information, bc∗i can be replicated using tradable assets.

The formulation of the vector ft is general. It can include the payoffs of traditional assets and

their nonlinear transformations obtained with option trading strategies (Glosten and Jaganathan,

1994).3 The assumption of constant betas b∗i is generally not restrictive because ft can include

managed portfolios based on publicly available information such as past prices or business cycle

indicators (see Cochrane, 2005, ch. 8).4 The factor premia λ can be the outcome of systematic risk

compensation, limits to arbitrage, or imperfect risk sharing driven by segmentation or behavioral

biases (see Pedersen, 2015, ch. 3). We remain agnostic on this issue—the beta component simply

controls for strategies that investors can replicate themselves.

II.A.2. Several Remarks About the Specification

The return decomposition in Equation (1) calls for several comments. First, it does not require

that we model the determinants of ac∗i and bc∗i across funds. For instance, performance can vary if

some funds have stronger managerial incentives (Agarwal, Daniel, and Naik, 2009), or if investors

hold more bargaining power (Glode and Green, 2011; Pástor and Stambaugh, 2012). In this case,

we can simply interpret ac∗i and bc∗i as fund-specific functions of the fund characteristics.5

Second, we do not model the short-term variations in alpha (around its average α∗
i ) due to

changing economic conditions, industry competition, or aggregate mispricing (e.g., Avramov, Bar-

ras, and Kosowski, 2013; Pástor, Stambaugh, and Taylor, 2015, 2017). As discussed below, mea-

3A key requirement is that all elements in ft are tradable factors (i.e., excess returns with zero prices). Otherwise,
the factor premia are not equal to the average factor returns (λ ̸= E[ft]), implying that the difference E[ri,t]−b∗′i E[ft]
cannot be interpreted as the fund alpha α∗

i (see Ferson, 2013).
4To illustrate, consider a fund whose market beta b∗im,t = b∗im,0 + b∗im,1zt−1 varies with a public signal zt−1

that predicts the market return rm,t. As in Equation (1), we can write the benchmark return as b∗′i ft, where b∗i =

(b∗im,0, b
∗
im,1)

′, and ft = (rm,t, zt−1rm,t)
′ includes the managed portfolio zt−1rm,t (also known as scaled factor).

5Understanding the determinants of ac∗i and bc∗i is important for forming hedge fund portfolios with high alpha
or high exposures to specific strategies. If we impose a common panel structure across funds, we can examine which
characteristics explain the cross-sectional variation in ac∗i and bc∗i (see DeMiguel et al., 2021; Kaniel et al., 2021; Wu
et al., 2021, for recent advances based on machine learning techniques).
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suring α∗
i for hedge funds is a challenging task. Modelling its conditional variation via a proper

choice of predictors and functional forms makes the estimation even more difficult (see, for in-

stance, Bakalli, Guerrier, and Scaillet, 2021, in the context of individual stocks).

Third, the value that investors attach to ac∗i and bc∗i depends on their sophistication. Sophisti-

cated investors can directly replicate all the mechanical strategies ft and thus only value the alpha

component. In contrast, less sophisticated investors also value the beta component as it captures

exposures to factors they cannot replicate (e.g., Agarwal, Green, and Ren, 2018). We discuss the

differences in valuation between these two types of investors in Section V.E.

II.A.3. The Importance of Measuring Heterogeneity Across Funds

A proper return decomposition requires that we capture hedge fund heterogeneity. Hedge funds

follow a large range of alternative strategies and rely on multiple information signals to create value

(Lhabitant, 2007; Pedersen, 2015). It is therefore likely that the alpha and beta components vary

across funds. This heterogeneity cannot be captured with a simple average—instead, it requires

that we estimate the entire cross-sectional distributions characterized by their densities ϕ∗
ac and ϕ∗

bc.

Measuring fund heterogeneity is important for several reasons. The alpha distribution ϕ∗
ac

determines how many funds deliver positive alphas—a key quantity to test the equilibrium predic-

tions of asset management models. It is also useful for hedge fund investors, who only select a

handful of funds because of multiple frictions (Bollen, Joenväärä, and Kauppila, 2021). The alpha

distribution allows these investors to determine the range of performance outcomes when selecting

funds. In other words, ϕ∗
ac has a natural Bayesian interpretation as it provides prior information

about individual fund alphas (e.g., Jones and Shanken, 2005; Pástor and Stambaugh, 2002).

The distribution ϕ∗
bc measures the extent to which hedge funds follow mechanical strategies. It

sheds light on their risk profile and preference for specific tradable factors. While this information

obviously matters for researchers and investors, it is also relevant for regulators. As discussed by

Brown, Lynch, and Petajisto (2010, ch. 12), hedge funds can contribute to systemic risk when they

liquidate positions, reduce liquidity provision, or impose losses on counterparties. Contrary to a

simple average, ϕ∗
bc can identify clusters of funds with strong exposures to similar factors.
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II.B. The Dual Impact of Misspecification

II.B.1. The Misspecification of Hedge Fund Models

A key assumption for estimating the distributions ϕ∗
ac and ϕ∗

bc is that we use the correct model.

However, the requirement that ft is known is difficult to meet given the large number of hedge

fund strategies. Hedge funds invest in a large cross-section of countries and asset classes. They

can take nonlinear option positions that are difficult to capture with a limited set of option factors

(Karehnke and de Roon, 2020). They can dynamically change their factor exposures in response to

changing economic conditions (Avramov, Barras, and Kosowski, 2013; Bollen and Whaley, 2009).

Hedge funds can also change leverage to increase performance fees or reduce liquidation costs

(Buraschi, Kosowski, and Sritrakul, 2014; Lan, Wang, and Yang, 2013). These changes require

proper modelling of the fund betas (using managed portfolios), which is particularly challenging

when the trading frequency is higher than the reporting frequency (Patton and Ramadorai, 2013).

The conclusion of this analysis is that we are likely to use a misspecified model—that is, a

model that omits some relevant factors contained in ft.
6 As we explain below, misspecification

has a dual impact on the return decomposition. It produces an estimation of the alpha and beta

distributions ϕ∗
ac and ϕ∗

bc that is both imperfect and noisy.

II.B.2. Imperfect Estimation

The first impact of misspecification is to produce an imperfect separation between alpha and beta.

To see this point, suppose that we decompose returns using a misspecified model k that only

includes the factors fk
I,t, but omits the factors fk

O,t (with ft = (fk′
I,t, f

k′
O,t)

′). From Equation (1), we

have E[ri,t] = ac∗i + bc∗i,I + bc∗i,O, where bc∗i,I = b∗′i,Iλ
k
I and bc∗i,O = b∗′i,Oλ

k
O are the beta components

due to the included and omitted factors under the true model (i.e., b∗i,I and b∗i,O are the true fund

exposures to fk
I,t and fk

O,t). The key question is how the omitted beta component bc∗i,O affects the

return decomposition obtained with the misspecified model, which we write as E[ri,t] = acki +bcki .

Regressing the omitted factors on the included factors, we have fk
O,t = αk

O + Ψk
O,If

k
I,t + uk

O,t

and λk
O = αk

O + Ψk
O,Iλ

k
I , where αk

O is the vector of factor alphas, Ψk
O,I is the matrix of slope

coefficients, and uk
O,t is the vector of errors. We can split the omitted beta component into two

6One could use holdings-based portfolio measures to avoid specifying the factors included in the benchmark port-
folio (e.g., Ferson, 2013; Grinblatt and Titman, 1993; Lo, 2008). However, these measures are still subject to mis-
specification when the fund exhibits time-varying betas (Ferson and Khang, 2002). Another issue is that hedge funds
generally do not disclose their portfolio weights.
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parts: bc∗i,O = b∗′i,Oα
k
O+b∗′i,OΨ

k
O,Iλ

k
I , where the split depends on the correlation between the included

and omitted factors (captured by Ψk
O,I). The first part, which arises from the component of fk

O,t

that is orthogonal to fk
I,t, is absorbed by acki . The second part, which arises from the component of

fk
O,t that is spanned by fk

I,t, is absorbed by bcki . As a result, we have:

acki = ac∗i + b∗′i,Oα
k
O = αk

i , (2)

bcki = bc∗i − b∗′i,Oα
k
O = bk′i,Iλ

k
I , (3)

where αk
i and bki,I = b∗i,I+Ψk′

O,Ib
∗
i,O are the coefficients from the regression of the fund return ri,t on

the factors fk
I,t included in model k (and a constant). Similar to standard results on omitted variable

bias, Equations (2)–(3) reveal that acki and bcki are informative about the true components ac∗i and

bc∗i . However, this information is polluted—if the fund loads on omitted factors that deliver positive

alphas, b∗′i,Oα
k
O is positive and the model-implied alpha component is inflated (i.e., acki > ac∗i and

bcki < bc∗i ). Put differently, misspecification allows us to infer the pseudo-true distributions ϕk
ac and

ϕk
bc, but not the true ones ϕ∗

ac and ϕ∗
bc (Gourieroux, Monfort, and Trognon, 1984; White, 1982).

II.B.3. Noisy Estimation

The second impact of misspecification pertains to the estimation of the distributions ϕk
ac and ϕk

bc.

When the model is misspecified, these densities are estimated with substantial noise. The simplest

way to illustrate this point is to focus on the estimation of the average alpha given by Mk
1,ac =∫ +∞

−∞ xϕk
ac(x)dx, where ϕk

ac(x) is the density evaluated at x. For each fund, we run the linear

regression associated with model k,

ri,t = αk
i + bk′i,If

k
I,t + εki,t , (4)

and compute the alpha component as âcki = α̂k
i . We then average across funds to compute the

cross-sectional mean M̂k
1,ac =

1
n

∑
i âc

k
i .

Contrary to the correctly specified case, the error terms εki,t in Equation (4) are strongly cross-

correlated because they all depend on the common omitted factors fk
O,t. Formally, we have εki,t =

ε∗i,t + b∗k′O,iu
k
O,t, where uk

O,t is the error vector of fk
O,t. Even if the hedge fund population size n

is large, the information is limited because the values of âcki (i = 1, ..., n) are all impacted by
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the random realizations of the omitted component uk
O,t. It implies that M̂k

1,ac is estimated with

substantial noise, as discussed in detail in Section III.

II.C. A New Approach for Decomposing Returns Under Misspecification

II.C.1. Overview of the Approach

We develop a novel approach for decomposing hedge fund returns. We consider a set of candidate

models indexed by k, which are all allowed to be misspecified. We then show how to estimate

and compare the distributions of the alpha and beta components ϕk
ac and ϕk

bc among models. A key

feature of this approach is to explicitly account for the dual impact of misspecification.

First, we jointly examine multiple models to address the imperfect separation between alpha

and beta. Given the diversity in hedge fund strategies, several models could reasonably be used for

decomposing returns. Some of these models are likely less misspecified and more able to capture

the true distributions ϕ∗
ac and ϕ∗

bc. To identify them, we derive formal comparison tests of the alpha

distributions. We use the simplest model—the CAPM—as a natural benchmark. The CAPM is

not equipped to capture hedge fund strategies because of their weak correlation with the market

(Carhart et al., 2014). To formalize this intuition, we refer to the CAPM as model 0 and denote by

f 0
I,t the market factor and by f 0

O,t the non-market strategies followed by hedge funds. If Ψ0
O,I = 0

(no correlation), the CAPM alpha entirely absorbs the beta component due to these strategies:

ac0i = ac∗i + b∗′i,Oα
0
O = ac∗i + b∗′i,Oλ

0
O = ac∗i + bc∗i,O . (5)

Building on this insight, we obtain an intuitive measure of misspecification of any proposed model.

If model k produces the same alpha distribution as the CAPM (ϕk
ac and ϕ0

ac are the same), it behaves

like the CAPM and is therefore unable to capture the alternative hedge fund strategies.

Second, our approach comes with a full-fledged inferential theory to incorporate the estimation

noise caused by misspecification. We derive the asymptotic properties of the estimated distribu-

tions among models in a proper setting that accounts for the large population of hedge funds

observed in the data (i.e., we let n to grow large). Using these results, we obtain valid tests for

comparing the differences between models (including the CAPM). We can also conduct statisti-

cal inference on each model separately to evaluate individual fund performance, or measure the

economic importance of specific factors in driving hedge fund returns.
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II.C.2. Contributions to the Existing Literature

Our approach contributes to two strands of the literature. First, several studies show how to es-

timate the alpha distribution under the assumption of correct specification (e.g., Chen, Cliff, and

Zhao, 2017; Harvey and Liu, 2018). In contrast, we account for model misspecification—an im-

portant feature given the difficulty in modelling hedge fund returns. Our approach also brings

several benefits. First, it provides a framework for estimating both the alpha and beta distributions

ϕk
ac and ϕk

bc. Second, it is flexible because it imposes no restrictions on the shape of the distribu-

tions (contrary to standard parametric approaches). Third, it is simple and fast—it does not rely

on sophisticated and computer-intensive Gibbs sampling and expectation maximization methods.

Last but not least, it relies on asymptotic theory to conduct statistical inference.

Second, previous studies (e.g., Kan and Robotti, 2009; Kan, Robotti, and Shanken, 2013) de-

rive comparison tests for misspecified models under the assumption of a fixed number of assets n

(single asymptotics with n fixed and T → ∞). These tests require the inversion of the entire co-

variance matrix of returns—an operation that cannot be performed here because we have thousands

of hedge funds, but only hundreds of observations. To address this issue, we derive comparison

tests in which the number of assets n is allowed to grow large (double asymptotics with n and T

→ ∞). Another important difference is that previous comparison tests focus on a single aggregate

measure of asset alphas (such as the Hansen-Jagannathan distance). In contrast, we focus on the

entire (disaggregated) distribution of alphas to capture fund heterogeneity.

II.C.3. A Simple Illustrative Example

Before describing the methodology in more detail, we briefly illustrate the usefulness of our ap-

proach using a simple example. We assume that the correct hedge fund model includes the market

and three uncorrelated alternative factors: E[ri,t] = α∗
i +b∗i,mλm+b∗i,1λ1+b∗i,2λ2+b∗i,3λ3, where λm

is the equity premium, and λj denotes the premium of each alternative factor j (j = 1, 2, 3), which

we set equal to λm. For each fund, the alpha component α∗
i is drawn from a normal N(µ∗

α, σ
∗2
α ),

b∗i,m from a normal N(µ∗
b , σ

∗2
b ), and b∗i,j from a normal N(µ∗

bj
, σ∗2

b ), where µ∗
bj

is positive to cap-

ture the view that hedge funds load on alternative strategies (each draw is mutually independent).

We further assume that the first factor is a more important driver of hedge fund returns by setting

µ∗
b1
= µ∗

b and µ∗
b2
= µ∗

b3
= µ∗

b/3.

11



Suppose that we use a candidate hedge fund (HF) model (model 1), which includes the market

and two alternative factors (f1 and f2). For comparison purposes, we also consider the CAPM

(model 0), which only includes the market. We assume that we observe the fund alpha and beta

components without errors, leaving aside estimation issues for now. Given the above assumptions,

the densities ϕk
ac and ϕk

bc under each model k are both normal. Under the CAPM, we have

ac0i ∼ N(µ∗
α + (µ∗

b1
+ µ∗

b2
+ µ∗

b3
)λ, σ∗2

α + 3σ∗2
b λ2) , (6)

bc0i ∼ N(µ∗
bλ, σ

∗2
b λ2) , (7)

while the HF model produces the following densities:

ac1i ∼ N(µ∗
α + µ∗

b3
λ, σ∗2

α + σ∗2
b λ2) , (8)

bc1i ∼ N((µ∗
b + µ∗

b1
+ µ∗

b2
)λ, 3σ∗2

b λ2) . (9)

To begin, we plot in Panel A of Figure 1 the two alpha densities using the following parameter

values: µ∗
α = 0%, σ∗

α = 1.4%, λ = 7.5%, µ∗
b = 0.3, and σ∗

b = 0.4.7 The comparison of ϕ0
ac

and ϕ1
ac reveals that the magnitude of the alpha components decreases substantially under the HF

model (ϕ1
ac moves to the left towards zero). This difference arises because the HF model is less

misspecified than the CAPM—by capturing two out of the three alternative strategies, it produces

a sharper identification of the true components ac∗i and bc∗i . The implications for performance

evaluation are economically important. Under the CAPM, the average alpha reaches 3.8% per

year, and more than 75% of the funds deliver positive alphas. In contrast, the average alpha drops

to 0.8% per year under the HF model and moves closer to the true average µ∗
α equal to zero.

In addition to reducing the magnitude of the alphas, the HF model also produces a lower dis-

persion as it absorbs the variation due to factors 1 and 2 (i.e., the term 2σ∗2
b λ2). However, this result

depends on the specific assumptions in our simple example—in particular, we assume that funds

choose similar factor exposures regardless of their true alphas (i.e., we set corr[α∗
i , b

∗
i,j] = 0). If

we relax this assumption, a lower average does not necessarily come with a lower dispersion. In

7We express µ∗
α, σ∗

α, and λ in percent per year. For simplicity, we set µ∗
α equal to zero and calibrate σ∗

α using the
the value reported by Barras, Gagliardini, and Scaillet (2022, Table VI). We further set λ equal to the average market
return and µb, σb equal to the cross-sectional mean and volatility of the market betas in our sample of hedge funds.
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the empirical analysis, we simply let the data speak—our approach is nonparametric and thus does

not require any assumptions on the joint distributions of α∗
i and b∗i,j .

Next, we repeat the analysis for the two beta densities ϕ0
bc and ϕ1

bc. Consistent with intuition,

Panel B is the mirror image of Panel A as the magnitude of the beta components rises under the

HF model (ϕ1
bc moves to the right away from zero). We can go one step further and determine

the economic importance of the additional factors included in the HF model. For each factor j

(j = 1, 2), we measure its contribution to the beta component as bc1i,j = b1i,jλj .
8 We can then infer

the entire density ϕ1
bcj

and examine if it is located away from zero. In our example, ϕ1
bcj

is normally

distributed: bc1i,j ∼ N(µ∗
bj
λ, σ∗2

b λ2). This analysis identifies factor 1 as the most relevant factor in

the cross-section of hedge funds. Its contribution equals 2.3% per year on average and is positive

for 77% of the funds. In contrast, these values are only equal to 0.8% and 60% for factor 2.

Please insert Figure 1 here

III. Methodology

III.A. Estimation Procedure

We now describe the methodology for decomposing hedge fund returns using K models indexed

by k (k = 0, . . . , K − 1). Each model k is allowed to be misspecified as it includes the factors

fk
I,t but omits the factors fk

O,t. We are interested in (i) the density ϕk
ac of the alpha component, (ii)

the density ϕk
bc of the beta component, and (iii) the density ϕk

bc,j of the beta component due to each

factor j included in model k. We summarize the shape of each of these densities with the following

key characteristics: (i) the cross-sectional mean and standard deviation, denoted by Mk
1 and Mk

2 ,

(ii) the proportion of funds with a return component below a given value a, denoted by P k(a), and

(iii) the quantile at a given percentile level u, denoted by Qk(u) = (P k)−1(u).

To estimate the distribution characteristics of each density, we need to estimate the fund com-

ponents acki = αk
i , bcki = bk′i,Iλ

k
I , and bcki,j = bki,I,jλ

k
I,j . For each fund, we compute these values

by running the time-series regression in Equation (4). We interpret this regression as a random

coefficient model (e.g., Hsiao, 2003) in which αk
i and bki,I are not fixed parameters, but random

8By definition, we can decompose the (total) beta component as bc1i = bc1i,m +
∑

j bc
1
i,j , where bc1i,m = b1i,mλm

is the beta component due to the market, and
∑

j bc
1
i,j is the beta component due to the additional factors 1 and 2.
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realizations from a continuum of funds in order to invoke cross-sectional limits.9 We also assume

that at least one omitted factor is strong in the sense that it has a pervasive impact on the cross-

section of fund returns.10 This mild assumption, which delivers a well-defined convergence rate

for the distribution characteristics, is satisfied by all the models we examine (see Section V.A.1).

The least square estimate γ̂k
i = (α̂k

i , b̂
k′
i,I)

′ is given by

γ̂k
i = (Q̂k

x,i)
−1 1

Ti

∑
t

Ii,tx
k
t ri,t , (10)

where Ii,t is an indicator variable equal to one if ri,t is observable, Ti =
∑

t Ii,t, x
k
t = (1, fk′

I,t)
′, and

Q̂k
x,i =

1
Ti

∑
t Ii,tx

k
t x

k′
t . We then compute the alpha and beta components for each fund as

âcki = α̂k
i , (11)

b̂c
k

i = µ̂i − α̂k
i , (12)

b̂c
k

i,j = b̂ki,I,jλ̂
k
I,j , (13)

where b̂c
k

i is the empirical counterpart of bcki = E[rit]− acki , µ̂i =
1
Ti

∑
t Ii,tri,t is the average fund

return, and λ̂k
I,j =

1
Ti

∑
t Ii,tf

k
I,j,t is the empirical average of fk

I,j,t.

Next, we account for the unbalanced nature of the hedge fund sample. Following Barras,

Gagliardini, and Scaillet (2022) and Gagliardini, Ossola, and Scaillet (2016), we introduce a formal

selection rule 1χ
i equal to one if the following conditions are met: 1χ

i = 1
{

CNi ≤ χ1,T , τi,T ≤ χ2,T

}
,

where CNi =

√
eigmax

(
Q̂k

x,i

)
/eigmin

(
Q̂k

x,i

)
is the condition number of Q̂k

x,i, τi,T = T/Ti, and

χ1,T , χ2,T denote the two threshold values. The first condition CNi ≤ χ1,T excludes funds for

which the time-series regression is subject to multicollinearity problems (e.g., Belsley, Kuh, and

Welsch, 2004). The second condition τi,T ≤ χ2,T excludes funds for which the sample size is too

small. Both thresholds χ1,T and χ2,T increase with the sample size T—with more return obser-

vations, we estimate the fund coefficients with greater accuracy, which allows for a less stringent

selection rule. Applying this selection rule, we work with a population size equal to nχ =
∑n

i=1 1
χ
i .

9Barras, Gagliardini, and Scaillet (2022) and Gagliardini, Ossola, and Scaillet (2016) use the same sampling
scheme to measure mutual fund performance and test the arbitrage pricing theory in a large cross-section of assets.

10More formally, an omitted factor is strong if the largest eigenvalue of the residual covariance matrix of hedge fund
returns does not vanish as the population size n grows large. In contrast, a factor is weak if its loading vanishes at a
rate 1/

√
T (Gagliardini, Ossola, and Scaillet, 2019). Our formulation allows for weak factors in both fk

I,t and fk
O,t.
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The final step is to compute the distribution characteristics using the vector of estimated com-

ponents for the set of nχ selected funds. We compute the mean, standard deviation, propor-

tion, and quantile of the distribution of the alpha components as M̂k
1 = 1

nχ

∑
i 1

χ
i âc

k
i , M̂k

2 =(
1
nχ

∑
i 1

χ
i (âc

k
i )

2 − ( 1
nχ

∑
i 1

χ
i âc

k
i )

2
)1/2

, P̂ k(a) = 1
nχ

∑
i 1

χ
i 1{âc

k
i ≤ a}, and Q̂k(u) = (P̂ k)−1(u).

To obtain the characteristics of the distributions of the beta components, we use the same formulas

after replacing âcki with b̂c
k

i or b̂c
k

i,j .

III.B. Properties of the Distribution Characteristics

We begin our theoretical analysis by examining the properties of the distribution characteristics

M̂k
1 , M̂k

2 , P̂ k(a), and Q̂k(u). The following proposition derives the asymptotic distribution of the

estimated characteristics of the alpha distribution ϕk
ac as the numbers of funds n and observations T

grow large. To capture the large cross-sectional dimension of the hedge fund population observed

in the data, we require that n is larger than T .

Proposition 1. As n, T → ∞, such that T/n → 0, we obtain the following properties for the
estimated characteristics of ϕk

ac under the misspecified model k:

√
T
(
M̂k

s −Mk
s

)
→d N(0, V [Mk

s ]) , (14)
√
T
(
P̂ k(a)− P k(a)

)
→d N(0, V [P k(a)]) , (15)

√
T
(
Q̂k(u)−Qk(u)

)
→d N(0, V [Qk(u)]) , (16)

where s ∈ {1, 2} and →d denotes convergence in distribution. The variance terms are given by

V [Mk
s ] =

(
ηk′Ms

⊗ E ′
1(Q

k
x)

−1
)
Ωk

ux

(
ηkMs

⊗ (Qk
x)

−1E1

)
, (17)

V [P k(a)] =
(
ηk′P (a) ⊗ E ′

1(Q
k
x)

−1
)
Ωk

ux

(
ηkP (a) ⊗ (Qk

x)
−1E1

)
, (18)

V [Qk(u)] = V [P k(Qk(u))]/ϕk
ac(Q

k(u))2 , (19)

where ηkMs
= E

[(
∂M

k
s

∂E[g
k
i ]

)′
∂g

k
i

∂ac
k
i

b∗i,O

]
, E[gki ] is the vector of uncentered moments with gki =

(acki , (ac
k
i )

2)′, ⊗ denotes the Kronecker product, Qk
x = E[xk

t x
k′
t ], Ω

k
ux = lim

T→∞
V

[
1√
T

∑
t

uk
O,t ⊗ xk

t

]
,

ηkP (a) = E[b∗i,O|acki = a]ϕk
ac(a), b

∗
i,O and uk

O,t denote the vectors of betas and residuals associated
with the omitted factors fk

O,t, and ϕk
ac(a) is the probability density evaluated at a.

Proof. See the appendix.

To save space, we refer the reader to the appendix for the theoretical analysis of the distributions

ϕk
bc and ϕk

bc,j , whose estimated characteristics have the same properties as in Proposition 1. These
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results allow for formal tests on the shape of the alpha and beta distributions. Denoting the generic

estimated characteristic by Ĉk ∈ {M̂k
s , P̂

k(a), Q̂k(u)}, we can test the null hypothesis:

H0 : C
k = υ, (20)

where υ is a given scalar. For instance, we can test whether the proportion of positive-alpha funds

equals 50% (υ = 0.5), or whether the average beta component due to any factor j is null (υ = 0).11

Proposition 1 reveals two important insights about inference under misspecification. First, the

estimated characteristics converge towards their respective parameter values. Asymptotically, we

are able to estimate the alpha distribution ϕk
ac under model k without bias, even though we use as

inputs noisy versions of the fund components (i.e., we use âcki instead of acki ). Under misspec-

ification, Proposition 1 therefore provides a theoretical justification for the common practice of

reporting cross-sectional summary statistics (e.g., boxplots) based on estimated coefficients with-

out any bias adjustment.12 Second, the variance of the estimators is large because the convergence

rate is equal to 1/
√
T (and not 1/

√
n)—a result that formalizes our previous point that misspecifi-

cation amplifies estimation noise. This result is a priori surprising because the characteristics are

all computed as cross-sectional averages, that is, we sum across n funds, not across T periods.

None of these properties hold when the model is correctly specified—a setting examined in

detail by Barras, Gagliardini, and Scaillet (2022). In this case, the estimated distribution charac-

teristics must be adjusted for the error-in-variable (EIV) bias that arises because we use as inputs

noisy versions of the fund coefficients. In addition, the characteristics are estimated with greater

precision because the convergence rate is equal to 1/
√
n (instead of 1/

√
T ).

The strong impact of misspecification on inference stems from the properties of the fund error

terms. The estimation error on the alpha component âcki involves the term ε̄ki = ε̄∗i + b∗′i,OūO, where

ε̄ki , ε̄∗i , and ūO denote the time-series averages of εki,t, ε
∗
i,t, and uO,t. The average ε̄∗i obtained with

the correct model is weakly correlated across funds, which implies that its impact on the estimated

characteristics vanishes with the population size n. It is not the case for the error term ūO due

11As in Barras, Gagliardini, and Scaillet (2022), we can also design a kernel estimator ϕ̂k(a) for each density
evaluated at a. Similar to Proposition 1, misspecification implies that

√
T
(
ϕ̂k(a)− ϕk(a)

)
→d N(0, V [ϕk(a)]).

12For instance, Almeida, Ardison, and Garcia (2020), Capocci and Hübner (2004), and Kosowski, Naik, and Teo
(2007) follow this practice when reporting the characteristics of the distribution of hedge fund alphas.
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to the omitted factors because it affects all funds simultaneously. This term is noisy because it

converges to zero at the rate equal to 1/
√
T . As a result, the noise contained in ūO (i) slows down

the convergence rate of the estimated characteristics from 1/
√
n to 1/

√
T , and (ii) is bigger in

magnitude than the EIV bias, which makes any bias adjustment unnecessary.13

III.C. Comparison Tests Between Models

We now turn to the comparison tests. We only focus on the alpha component because the com-

parison of the beta components provide similar insights (as shown in our illustrative example in

Figure 1). We compare the alpha distributions ϕk
ac and ϕl

ac between two misspecified models k and

l (k, l = 0, ..., K − 1). Our comparison framework is highly flexible because we can apply it to

both nested and non-nested models (models are nested if one is included in the other). When we

set l = 0, the comparison is made with respect to the CAPM.

We compute the differences in distribution characteristics between the two models as ∆M̂1 =

M̂k
1−M̂ l

1, ∆M̂2 = M̂k
2−M̂ l

2, ∆P̂ (a) = P̂ k(a)−P̂ l(a), and ∆Q̂(u) = Q̂k(u)−Q̂l(u). Proposition 2

derives the asymptotic distribution of each estimated difference as the numbers of funds n and

observations T grow large.

Proposition 2. As n, T → ∞ such that T/n → 0, we obtain the following properties for the
differences in the estimated characteristics of ϕk

ac and ϕl
ac under the misspecified models k and l:

√
T
(
∆M̂s −∆M s

)
→d N (0, V [∆M s]) , (21)

√
T
(
∆P̂ (a)−∆P (a)

)
→d N (0, V [∆P (a)]) , (22)

√
T
(
∆Q̂(u)−∆Q(u)

)
→d N (0, V [∆Q(u)]) , (23)

where s ∈ {1, 2}. The variance of the characteristic differences are equal to

V [∆M s] = V [Mk
s ] + V [M l

s]− 2Cov[Mk
s ,M

l
s] , (24)

V [∆P (a)] = V [P k(a)] + V [P l(a)]− 2Cov[P k(a), P l(a)] , (25)

V [∆Q(u)] = V [Qk(u)] + V [Ql(u)]− 2Cov[Qk(u), Ql(u)] , (26)

where V [Mk
s ], V [M l

s], V [P k(a)], V [P l(a)], V [Qk(u)], and V [Ql(u)] are obtained from Proposi-

13Our Monte Carlo simulations calibrated on our sample of funds confirm these results (see the appendix). When
the model is misspecified, the mean squared error (MSE) of each characteristic estimator (i) is primarily driven by the
variance (and not by the finite-sample bias), and (ii) decreases with T , but not with n.
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tion 1. The covariance terms are given by

Cov[Mk
s ,M

l
s] =

(
(ηk′Ms

⊗ E ′
1(Q

k
x)

−1
)
Ωkl

ux

(
ηlMs

⊗ (Ql
x)

−1E1

)
, (27)

Cov[P k(a), P l(a)] =
(
ηk′P (a) ⊗ E ′

1(Q
k
x)

−1
)
Ωkl

ux

(
ηlP (a) ⊗ (Ql

x)
−1E1

)
, (28)

Cov[Qk(u), Ql(u)] =
Cov[P k(Qk(u)), P l(Ql(u))]

ϕk
ac(Q

k(u))ϕl
ac(Q

l(u))
, (29)

where Ωkl
ux = lim

T→∞
Cov

[
1√
T

∑
t u

k
O,t ⊗ xk

t ,
1√
T

∑
t u

l
O,t ⊗ xl

t

]
.

Proof. See the appendix.

The results in Proposition 2 provide simple comparison tests for each pair of models k and l.

We denote the generic estimated characteristic difference by ∆Ĉ ∈ {∆M̂s,∆P̂ (a),∆Q̂(u)}. We

can then test the null hypothesis that each characteristic difference equals zero:

H0 : ∆C = 0. (30)

Misspecification arises naturally in pairwise comparisons because competing models cannot be

all correct. Therefore, the impact of misspecification discussed in Proposition 1 carries over to

model comparisons. Proposition 2 shows that the comparison tests inherit the high estimation

noise caused by misspecification as each characteristic difference converges at a slow rate equal to

1/
√
T .14 In other words, the bar for detecting significant differences between models is consider-

ably higher when the tests are properly adjusted for misspecification.

III.D. Estimation of the Asymptotic Variance Terms

Applying our methodology requires consistent estimators of the variance terms in Propositions 1

and 2. For each distribution characteristic, the variance V depends on the error term uO,t and betas

b∗i,O associated with the omitted factors. For instance, the estimated average M̂k
1 is more volatile

when the variance of the factor residuals V [uO,t] and the magnitude of the average betas E[bk∗i,O]

increase. Because uO,t and b∗i,O are not observable, estimating V is not trivial.

To address this issue, we derive a consistent variance estimator based on the observed fund

residuals of each model ε̂ki,t = ri,t−xk′
t γ̂

k
i . The estimators of the asymptotic variances of

√
T (Ĉk−

14If one of the models is correct, the sampling variability is entirely driven by the misspecified model (i.e., we
can treat the estimated characteristic under the correct model as known). Therefore, the convergence rate of the
characteristic difference remains equal to 1/

√
T .
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Ck) and
√
T (∆Ĉ −∆C) are given by

V̂ [Ĉk] =
1

n2
χT

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tâi,t(Ĉ

k)âj,t(Ĉ
k) , (31)

V̂ [∆Ĉ] =
1

n2
χT

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tâ

∆
i,t(∆Ĉ)â∆j,t(∆Ĉ) , (32)

where the terms âi,t(Ĉ
k) and â∆i,t(∆Ĉ) are functions of Ĉk and ∆Ĉ (see the appendix). The fol-

lowing proposition shows that V̂ [Ĉk] and V̂ [∆Ĉ] are consistent variance estimators as the numbers

of funds n and observations T grow large.

Proposition 3. As n, T → ∞ such that T/n → 0, we have

V̂ [Ĉk] →p V [Ĉk] , (33)

V̂ [∆Ĉ] →p V [∆Ĉ] , (34)

where →p denotes convergence in probability.

Proof. See the appendix.

IV. Data and Model Construction

IV.A. Hedge Fund Dataset

We collect the monthly net-of-fee returns of hedge funds between January 1994 and December

2020. We combine four databases—Barclayhedge, HFR, Morningstar, and TASS. This aggrega-

tion mitigates the selection bias that arises from the voluntary nature of information disclosure

by hedge funds. In particular, it largely improves the coverage of underperforming funds, which

typically report to only one database (see Joenväärä et al., 2021). We remove the first 12 months of

data for each fund to control for backfill bias. The appendix provides more detail on the construc-

tion of the dataset, which largely follows Joenväärä et al. (2021). For comparison purposes, we

also collect the monthly net-of-fee returns of open-end, actively managed U.S. equity funds over

the same period. Here, we follow Barras, Gagliardini, and Scaillet (2022), who provide detailed

information on the construction of the mutual fund database.

Table I reports summary statistics for the equal-weighted portfolio of all hedge funds in our

sample, as well as three categories: (i) equity funds (long-short and market neutral), which rely

on discretionary or quantitative analysis to detect mispriced stocks, (ii) macro funds (global macro
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and CTA/managed futures), which take directional bets across asset classes using broad economic

and financial indicators, and (iii) arbitrage funds (relative value and event driven), which exploit

various sources of mispricing primarily in the debt market. Overall, the results are similar to those

reported by Getmansky, Lee, and Lo (2015) between 1996 and 2014.

To obtain reliable estimates of acki , bcki , and bcki,j in the unbalanced panel of hedge funds, we

apply the selection rule of Section III.A. Taking the same thresholds as Barras, Gagliardini, and

Scaillet (2022), we set the minimum condition number of Q̂k
x,i equal to 15 and the minimum num-

ber of return observations equal to 60.15 This selection leaves us with a total number of 5,231 funds

(nχ = 5,231). To address the concern that the evaluation of models depends on the construction

of the hedge fund database, we consider alternative filters in the appendix.16 Consistent with intu-

ition, we find that these changes have the same impact across models. As a result, they leave the

model comparison analysis largely unchanged.

Please insert Table I here

IV.B. Hedge Fund Models

We apply our methodology to a diverse set of nine models examined in previous work. All the

models include tradable factors in order to estimate the alpha and beta components using a fund-

by-fund regression approach (as per Equation (4)). To make the comparisons more relevant, we

focus on models that aim at explaining the return of any given fund. We therefore do not include

models designed for capturing specific investment styles (e.g., Agarwal and Naik, 2004; Duarte,

Longstaff, and Yu, 2006; Mitchell and Pulvino, 2001), and fund-specific models whose factors

vary with each individual fund (e.g., Bollen and Whaley, 2009; O’Doherty, Savin, and Tiwari,

2016; Shu and Tiwari, 2022).

The first model is the CAPM, which is used as a reference for some of our comparison tests. We

then consider a set of four standard models. The chosen set is by no means exhaustive, but provides

a good representation of the models commonly used for performance evaluation (e.g., Cremers,

Petajisto, and Zitzewitz, 2013; Getmansky, Lee, and Lo, 2015). We select the Carhart (1997) model

15Empirically, the condition number has no impact on fund selection after imposing a minimum number of obser-
vations. Therefore, the comparison of models is based on the same sample of funds.

16We change the fund selection rule by imposing 36 or 84 minimum return observations. We also apply the more
stringent backfill bias correction of Joenväärä et al. (2021), eliminating all the observations before the fund listing
date. Finally, we use the five filters proposed by Straumann (2009) to remove errors in reported fund returns.

20



and the Five-Factor model of Fama and French (2015), which includes the market, size, value,

momentum, profitability, and investment factors. We examine the well-known model of Fung and

Hsieh (2004), which includes two equity factors (market and size), two bond factors (term and

default), and three option straddles (bond, commodity, and currency). Finally, we consider the

model of Asness, Moskowitz, and Pedersen (2013), which adds to the CAPM two global value and

momentum factors across international asset classes.

Next, we consider the models proposed by Kozak, Nagel, and Santosh (2020) based on machine

learning techniques. These authors apply lasso and ridge penalizations to form models with the

highest out-of-sample ability to explain the average excess returns of 50 characteristic-based equity

portfolios.17 We use the two models presented in their Table 4, which impose sparsity by selecting

five factors only. The first one is formed with the equity portfolios themselves, while the second

one includes their principal components. We also add the market return to each set of factors to

maintain consistency across models.

Finally, we consider two models that include five alternative factors: illiquidity, betting against

beta (BAB), variance (short position), carry, and time-series (TS) momentum. These factors, based

on economic intuition, plausibly capture several strategies followed by hedge funds.18 We consider

the model of Joenväärä et al. (2021, JKKT), which extends the Carhart (1997) model by including

the illiquidity, BAB, and TS momentum factors. Building on the work of Carhart et al. (2014) and

Pedersen (2015), we examine another model (CP) which replaces the five non-equity factors of

Fung and Hsieh (2004) (bond factors and straddles) with the five alternative factors.19 Measuring

the costs of trading these factors is difficult because they require timely price information on a

wide range of assets beyond the equity market. Given this uncertainty, we conduct our baseline

analysis using the original factor returns and then discuss the impact of trading costs.

17We thank Serhiy Kozak for providing us with the data and code. In principle, we could expand the set of candidate
factors using machine learning techniques. However, these techniques require a considerably large number of return
observations (Gu, Kelly, and Xiu, 2020), which is not the case for hedge fund datasets.

18The illiquidity factor of Pástor and Stambaugh (2003) captures marketwide changes in market liquidity. The
BAB strategy of Frazzini and Pedersen (2014) exploits the price distortions caused by leverage-constrained investors
on low- and high-beta stocks. The variance factor tracks the realized variance of the S&P 500. The global carry
and TS momentum factors of Koijen et al. (2018) and Moskowitz, Ooi, and Pedersen (2012) invest in assets with
high carry and positive 12-month returns across international asset classes. TS momentum departs from traditional
cross-sectional momentum, which only invests in assets with past returns higher than the cross-sectional average.

19In addition to the five alternative factors, Carhart et al. (2014) and Pedersen (2015) also consider factors based
on real assets, quality, credit, and catastrophe bonds. We do not include these factors either because they are closely
related to other factors (e.g., quality is similar to profitability) or difficult to construct (e.g., catastrophe bonds).
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Table II reports summary statistics for the excess returns of the factors.20 We find that all but

one factor (bond term) deliver positive premia. It implies that hedge funds increase their average

returns when their factor betas are positive. Unreported results also show that the factors capture

distinct strategies—only 11 pairwise correlations out of 135 are above 0.5 (in absolute value).

Table III provides a complete list of the nine models with the factors they include (see the appendix

for additional details on the data sources of the factors).

Please insert Tables II and III here

V. Empirical Results

V.A. Analysis of Model Misspecification

V.A.1. Misspecification Diagnostic

To begin the empirical analysis, we examine the misspecification of the nine proposed models. An

intuitive misspecification statistic is the adjusted R2 of the time-series regression of Equation (4).

If the R2 is high, the omitted factors must have implausibly high premia to blur the separation

between alpha and beta (see Cochrane, 2005, ch. 9). Therefore, a high R2 signals that misspecifi-

cation is not a major concern for the hedge fund return decomposition.

Table IV shows that the average R2 is relatively low across all models—the values range be-

tween 20.4% and 31.0%, leaving plenty of room for omitted factors. This result is consistent with

the analysis of Bollen (2013) on the Fung-Hsieh model and its extensions. In theory, it is possible

for a correctly specified model to deliver a low R2. If hedge funds take concentrated positions to

exploit their private information, the idiosyncratic risk is high and the R2 is low. In this case, a low

R2 should be interpreted as a measure of skill, not misspecification (Titman and Tiu, 2011).

To address this issue, we also compute the misspecification diagnostic criterion of Gagliardini,

Ossola, and Scaillet (2019, GOS). As n and T converge to infinity, this criterion is positive with

probability one if (i) the model is misspecified, and (ii) at least one of the omitted factors is strong

(see the appendix). We find that the GOS criterion is always positive in the population and across

20We define the variance and straddle factors as short positions to obtain positive premia. As shown, among others,
by Bakshi and Kapadia (2003), short variance swaps and short (delta-hedged) option positions deliver positive premia
because they perform poorly in bad times when realized market variance is high.
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investment categories. This result confirms that all the models are misspecified and validates our

estimation assumption that each model omits at least one strong factor.

While misspecified, the nine models are likely to produce different return decompositions.

Table IV provides preliminary evidence of such variations. For each model k, we report the relative

importance of each component of the average fund return: (i) the alpha component âcki , (ii) the beta

component due to the market computed as b̂c
k

i,m = b̂ki,mλ̂m, and (iii) the beta component due to the

non-market factors (all included factors except the market) computed as b̂c
k

i,Inm
= b̂k′i,Inm

λ̂k
Inm

. The

results show that the alpha-beta decomposition is sensitive to the choice of model. For instance,

the relative importance of the alpha component is equal to 47.1% on average under the Carhart

model, but drops to 18.0% under the JKKT model. Interpreting these differences requires a proper

setting to conduct formal comparison tests—a point we examine in detail below.

These results depart from those obtained with the universe of US mutual funds. Consistent

with intuition, Table IV shows that the average R2 is substantially higher (above 80%). In addition,

there is little variation in the alpha-beta decomposition across models. They all lead to the same

conclusion that average returns are driven by a single component—the equity market. In short, our

analysis confirms that misspecification matters for hedge funds, but not for mutual funds.

Please insert Table IV here

V.A.2. Comparisons With the CAPM

Next, we measure the degree of misspecification of each model by comparing it with the simplest

benchmark—the CAPM. If the two alpha distributions are the same, the proposed model is no

better than the CAPM at capturing hedge fund strategies. Applying the methodology in Section III,

we summarize the distribution differences using the mean and standard deviation, the proportions

of negative- and positive-alpha funds, and the quantiles at 10% and 90%. To compute the standard

deviation of the estimated differences, we replace T with Tχ = 1
nχ

∑n
i=1 1

χ
i Ti, where T and Tχ are

equal to 324 and 125 observations. As a result, we account for the increased estimation imprecision

due to the unbalanced nature of the hedge fund panel.

The comparison tests reported in Table V reveal several new insights. We observe a striking

similarity between the CAPM and the four standard models (Carhart, Five-Factor, Fung-Hsieh,

and Asness-Moskowitz-Pedersen). Only one of the 24 characteristic differences is statistically
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significant. These results are not an artifact of data aggregation—as shown in the appendix, we

observe the same patterns across all three investment categories. Similar to the CAPM, the standard

models are therefore ill-equipped to capture the strategies followed by hedge funds.

Our formal comparison resonates with previous studies that examine multiple models. For in-

stance, Getmansky, Lee, and Lo (2015) and Joenväärä et al. (2021) report differences in average

alphas between the Fung-Hsieh model and the CAPM. We show that accounting for misspecifica-

tion is key when interpreting these differences. Suppose that we naively use the convergence rate

of 1/√nχ, instead of the appropriate rate of 1/
√

Tχ under misspecification. In this case, we find

that 75% of the 24 characteristic differences are significant at the 5% level. Applying the correct

procedure, we conclude that the standard models and the CAPM are not statistically different.

The machine learning models are also similar to the CAPM as they leave the magnitude of the

fund alphas largely unchanged. Whereas these models do a great job at explaining the average re-

turns of characteristic-based portfolios (Kozak, Nagel, and Santosh, 2020), they are not trained on

strategies beyond the equity space. Their limited success in the hedge fund population highlights

the importance of accounting for other asset classes, such as bonds, currencies, or commodities.

In contrast, the JKKT and CP models are less prone to misspecification than the CAPM. The

comparisons tests imply strong rejections of the null hypothesis that the alpha distributions are

identical. In line with our illustrative example in Figure 1, both models capture the returns of

hedge fund strategies and thus produce a strong shift of the alpha distribution towards zero. The

average alpha drops by 1.9% and 2.6% per year under the JKKT and CP models. As discussed

below, we can therefore use these models to sharpen the decomposition of hedge fund returns.

Please insert Table V here

V.B. Decomposing Hedge Fund Returns

V.B.1. Magnitude of the Alpha and Beta Components

We now turn to the decomposition of the average returns of hedge funds. For each model k, we

apply the methodology in Section III to compute the main characteristics of (i) the distribution

of the alpha component ϕ̂k
ac, and (ii) the distribution of the beta component ϕ̂k

bc. We report these

results for the entire hedge fund population in Table VI.
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Both the CAPM and the standard models produce large alpha components. Panel A shows

that the average alpha clusters around 2.8% per year, and the proportion of positive-alpha funds is

always above 70%. These results are in line with the previous literature which, by and large, finds

that hedge funds deliver superior performance (e.g., Diez de los Rios and Garcia, 2010; Duarte,

Longstaff, and Yu, 2006; Kosowski, Naik, and Teo, 2007). Another takeaway from these models

is that hedge funds are only exposed to the market factor. Panel B shows that the beta components

remain largely unchanged as we include bond, value, or straddle factors. In short, hedge funds

deliver high alphas to investors while being immune to alternative sources of risk.

The JKKT and CP models reverse these conclusions as the beta component dominates the

return decomposition. For instance, the CP model delivers an average alpha of 0.4% per year and

a proportion of positive-alpha funds close to 50%. At the same time, the average beta component

rises to 5.2% per year (versus 2.6% under the CAPM). To visualize the differences between models,

we plot in Figure 2 the densities of the two components for (i) the Fung-Hsieh model, (ii) the

JKKT model, and (iii) the CP model. These differences stem from the ability of the five alternative

factors to capture hedge fund strategies. This ability is consistent with ample anecdotal evidence

that hedge funds hold illiquid assets, take levered positions, trade equity options, buy cheap assets

with high carry, and follow trends in asset prices (e.g. Lhabitant, 2007; Pedersen, 2015).

Please insert Table VI and Figure 2 here

Table VII reports similar patterns for each investment style.21 In the equity and arbitrage cat-

egories, the average alphas equal 2.4% and 2.8% per year under the CAPM but drop to 0.6% and

0.9% under the CP model. The difference is even more striking for macro funds. The average

CAPM alpha equals 3.7% per year. Under the CP model, the average alpha drops to -0.4% per

year as the majority of funds underperform (51.8%). In the appendix, we also examine the returns

of multi-strategy funds and funds of funds, which could be more difficult to capture given their

diverse strategies. In both categories, the JKKT and CP models still deliver a sharp reduction in

the alpha component.

The similarity between the JKKT and CP models is not surprising, given that they have five

factors in common (market, size, illiquidity, BAB, TS momentum). Yet, the overall evidence gives

21For brevity, we only report the distribution characteristics for the the JKKT model, the CP model, and the CAPM
(the results for the standard models and the two machine learning models are similar to the CAPM).
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an edge to the CP model. It consistently delivers lower average alphas and lower proportions of

positive-alpha funds. In addition, the appendix shows that the CP model produces a statistically

significant reduction in average alphas relative to the CAPM in all three categories (versus only

one for the JKKT model). These differences arise because the CP model includes variance and

carry. Both factors, which rest on solid economic intuition, are particularly useful for capturing

alternative hedge fund strategies—a point we examine in more detail in Section V.D.

Please insert Table VII here

V.B.2. Return Decomposition Over Time

As noted by Getmansky, Lee, and Lo (2015), the universe of hedge funds has expanded substan-

tially since 1994. As a result of this expansion, the average return decomposition may be subject

to notable time trends. To examine this issue, we use the CP model to track the evolution of (i) the

average alpha component M̂k
1,ac = 1

nχ

∑nχ

i âcki , (ii) the average beta component due to the mar-

ket M̂k
1,bc,m = 1

nχ

∑nχ

i b̂c
k

i,m, and (iii) the average beta component due to the non-market factors

M̂k
1,bc,Inm

= 1
nχ

∑nχ

i b̂c
k

i,Inm
(size, illiquidity, BAB, variance, carry, TS momentum). We start the

analysis in 2004 and estimate each cross-sectional average using the entire return history for each

fund up to that point in time. As we move forward in time, we expand the set of return observations

and add new hedge funds once they satisfy the fund selection rule. The final estimates correspond

to the averages shown in Table VI. For comparison purposes, we conduct the same analysis for

mutual funds using the traditional Carhart model.

Figure 3 identifies two sources of convergence between hedge funds and mutual funds. First,

performance becomes increasingly similar—at the end of 2020, the gap in average alphas drops to

1.6%. One intuitive explanation is the presence of scalability constraints. As a result of the growth

of the hedge fund industry, it becomes increasingly difficult to maintain the same performance

level. Bollen, Joenväärä, and Kauppila (2021) find support for this explanation but also suggest that

central bank interventions might have reduced the profitability of hedge fund strategies. Second,

hedge funds rely increasingly on the equity market to generate returns. At the end of 2020, M̂k
1,bc,m

reaches its highest level at 2.3% per year. Whereas it remains smaller than for mutual funds (7.8%),

it follows the same trend in the aftermath of the 2008 crisis.

We also find that one key difference remains—hedge funds consistently use non-market factors
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to boost their returns. These factors contribute to at least 52% of the average hedge fund return

during the sample period. We find no evidence that hedge funds reduce their exposure to these

factors over time. Instead, the moderate decrease in M̂k
1,bc,Inm

from 4.4% to 2.9% is caused by the

reduction in the factor premia over time.

Please insert Figure 3 here

V.B.3. Impact of Factor Trading Costs

Our baseline specification does not include factor trading costs. As a result, the JKKT and CP

models do not include the diversification services offered by funds in replicating the factors (Berk

and van Binsbergen, 2015). Whereas trading costs are generally modest for standard factors such

as size or value, they could be much higher for the alternative factors. For instance, Novy-Marx

and Velikov (2022) estimate that the costs of trading the BAB strategy reach 60 bps per month.

To address this issue, we build on previous studies and approximate the costs of trading the

alternative factors. Consistent with intuition, we show in the appendix that accounting for trading

costs increases the alpha components under the JKKT and CP models. However, this increase is

modest (0.5% per year on average), which implies that the differences relative to the CAPM remain

significant both economically and statistically.

V.C. Heterogeneity Across Funds

V.C.1. Cross-Sectional Variation in the Alpha and Beta Components

A striking observation in Table VI is the large heterogeneity across funds. To illustrate, the differ-

ence between the two quantiles of the alpha distribution ranges between 13.8% and 16.8% per year

across models. This heterogeneity is not captured by investment styles. As shown in Table VII, the

dispersion in performance and risk profile remains large within each fund group. In other words,

forming style groups is not sufficient to absorb the differences between funds. This result is at

odds with the common practice of benchmarking funds with style indices as it imposes that the

beta component is constant within each style group.

Another commonality among models is the negative correlation between the alpha and beta

components (it ranges between -35% and -70%). This negative relation is particularly strong under

the CP model, as shown by the left tail of the alpha distribution. In the bottom decile, funds deliver
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alphas below -8.2% per year (versus -4.0% for the CAPM). These funds rely heavily on the five

alternative factors to boost their returns (possibly to hide their lack of skills)—on average, their

beta component is three times larger than in the population (16.7% versus 5.2% per year as shown

in the appendix). By controlling for these factor exposures, the CP model uncovers the strong

underperformance achieved by the worst funds.

This strong negative correlation explains why the CP model produces a higher dispersion in

alphas than the CAPM. A priori, the CAPM should generate a higher cross-sectional variance

because its alpha absorbs the dispersion due to the omitted factors (the term 2σ∗2
b λ2 in our example

in Figure 1). Whereas this effect is at play, it is more than offset by the reduction in variance due

to the negative correlation between the alpha and beta components.

V.C.2. Implications for Models of Active Management

The observed heterogeneity has implications for the models of Berk and Green (2004) and Gâr-

leanu and Pedersen (2018)—two popular models of active management. In the model of Berk

and Green (2004), skilled funds have bargaining power because they are in short supply. As in-

vestors compete for performance, the alphas of all funds are null, and the heterogeneity disappears

(after an adjustment period due to learning). This prediction holds quite well for mutual funds—

Barras, Gagliardini, and Scaillet (2022) find that the standard deviation of the alpha distribution

only equals 1.4% per year. However, it is at odds with the volatility observed for hedge funds.

In contrast, the dispersion in alphas is consistent with the model of Gârleanu and Pedersen

(2018). In this model, skilled funds deliver positive alphas because they need to compensate in-

vestors for their search costs. At the same time, unskilled funds deliver negative alphas as they

charge fees to unsophisticated investors. While other economic mechanisms could produce fund

heterogeneity, search costs are consistent with two well-known features of the hedge fund industry.

First, the process for evaluating hedge funds is more complex than for mutual funds (e.g., Lhabi-

tant, 2007). Second, hedge funds commonly use leverage. When search costs are high, taking

leverage is actually the only strategy that allows hedge funds to compensate investors—a point

made by Stein (2009) in the context of systemic risk.
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V.D. A Closer Look at Alternative Hedge Fund Strategies

V.D.1. The Determinants of Beta Component

Our previous analysis shows the importance of the five alternative factors for measuring the beta

component. Motivated by these results, we measure the importance of each factor in shaping the

risk profile of the funds. We compute the fund beta component due to each factor j included in the

CP model (market, size, illiquidity, BAB, variance, carry, TS momentum). Using these estimated

quantities, we then apply our methodology to infer the main characteristics of the cross-sectional

beta distribution ϕk
bc,j .

Table VIII shows that the market is the most prevalent source of risk as 78% of the funds have

positive market betas. On average, the contribution due to the market is equal to 2.3% per year,

which represents 44% of the total beta component (equal to 5.2% per year). This finding is largely

inconsistent with the common belief that hedge funds are market neutral. There is also a notable

variation in market exposures between the two quantiles equal to 7.6% per year. As discussed by

Bali, Brown, and Caglayan (2012), this variation translates into different levels of systematic risk

and average returns across individual funds.

Examining the alternative factors, we find that a majority of funds load positively on each of

them. This result provides support to the view that hedge funds follow exotic strategies to boost

their returns (e.g., Carhart et al., 2014). Interestingly, individual funds do not load on all the

alternative factors simultaneously. As shown in Panel B, the pairwise correlations between the

beta contributions of the factors only range between -18% and 14%.

TS momentum, variance, and carry are the most important alternative factors. Their average

contributions, which are all statistically significant, are equal to 1.1%, 0.8%, and 0.4% per year.

In the top decile of funds with the highest exposures, these contributions reach 4.5%, 4.5%, and

2.7% per year. The beta contributions due to these factors is partly due to their Sharpe ratios—an

observation made by Dew-Becker et al. (2017), Koijen et al. (2018), and Moskowitz, Ooi, and

Pedersen (2012). Therefore, the CP model captures average fund returns without a large increase

in the time-series R2 (as shown in Table IV).

Please insert Table VIII here
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V.D.2. Alternative Strategies Across Investment Styles

In Table IX, we repeat the analysis for each investment category (equity, macro, arbitrage). Carry

strategies consist in investing in cheap assets with high carry—that is, assets with a high differ-

ence between spot and forward prices. As discussed by Pedersen (2015, ch.9,11,14), hedge funds

routinely implement carry in their equity, currency, commodity, yield curve, and credit trades.

Consistent with this view, we find that global carry matters for all three categories.

TS momentum plays a key role among macro funds, which rely on past returns to determine

their asset allocation and exploit trends in asset prices caused by behavioural biases, frictions,

or slow-moving capital. The appendix further shows that this positive exposure is primarily due

to CTA funds, consistent with Pedersen (2015, ch.12), who finds that the alphas of CTA indices

turn negative after controlling for TS momentum. In contrast, this factor should be irrelevant for

arbitrage funds, which is confirmed by the average beta component of -0.3% per year.

Equity and arbitrage funds commonly take on variance risk—on average, the beta component is

equal to 1.1% per year and rises above 4.5% in the top decile of funds with the highest variance ex-

posure. There are several possible explanations for these results. First, the variance factor captures

the risk associated with their option positions. For instance, mortgage, fixed income volatility, and

merger arbitrage activities involve taking short option positions (Duarte, Longstaff, and Yu, 2006;

Mitchell and Pulvino, 2001). Second, realized variance captures unexpected increases in the cor-

relation between stocks (Driessen, Maenhout, and Vilkov, 2009). As such, it signals crisis times

when equity and arbitrage funds suffer from less effective hedging strategies and tighter funding

constraints (Buraschi, Kosowski, and Trojani, 2014).

Finally, arbitrage funds have the highest exposure to BAB as they extensively use leverage to

exploit the price distortions observed in capital markets (Ang, Gorovyy, and van Inwegen, 2011).

It is plausible that some of these distortions originate from the leverage constraints faced by tradi-

tional investors (mutual and pension funds). As a result, we expect a positive correlation with the

return of the BAB strategy (Frazzini and Pedersen, 2014).

Please insert Table IX here
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V.E. The Sophistication of Hedge Fund Investors

V.E.1. Sophistication and Hedge Fund Valuation

Another benefit of comparing models is to measure how hypothetical investors with different so-

phistication levels value hedge fund investments. If a sophisticated investor can replicate all the

alternative factors, his valuation is given by the alpha under the CP model. We can formalize this

intuition using the stochastic discount factor (SDF) framework. Writing the investor SDF mk
t as

a linear function of CP factors, we have αk
i = (1 + rf )E[mk

t ri,t], where rf is the risk-free rate.

A positive αk
i signals that the investor can increase his overall utility by investing in the fund

(e.g., Chen and Knez, 1996; Ferson, 2013).22 Next, consider a less sophisticated investor who

can only invest in the equity market. His hedge fund valuation is then given by the CAPM alpha:

α0
i = (1 + rf )E[m0

t ri,t], where m0
t is a linear function of the market.

Table VI shows that the average valuation is close to zero for the CP investor (0.4% per year),

but substantially higher for the CAPM investor (2.9%). This valuation gap is consistent with

intuition. Like the CP investor, the CAPM investor values the alpha component ac∗i . In addition,

he values the beta component bc∗i,O due to the alternative factors because he cannot replicate it.

This point is well summarized by Cochrane (2011): “I tried telling a hedge fund manager, ‘You

don’t have alpha. Your returns can be replicated with a value-growth, momentum, currency and

term carry, and short-vol strategy.’ He said, ‘Exotic beta is my alpha. I understand those systematic

factors and know how to trade them. My clients don’t.”’

Regardless of their sophistication, hedge fund investors face substantial valuation uncertainty

given the large heterogeneity across funds (shown in Table VI). This result provides a strong ra-

tionale for conducting due diligence to avoid the worst funds. In the appendix, we find that several

fund characteristics can be used as initial filters in the fund selection process. The best funds under

the CP model focus more on equity strategies and have stronger managerial incentives as proxied

by high watermark provisions. They also have more managerial flexibility (longer lockup and no-

tice periods), which allows them to invest in illiquid assets and exploit arbitrage opportunities that

take time to be profitable. Overall, these results are in line with those documented by Agarwal,

Daniel, and Naik (2009), Aragon (2007), and Joenväärä et al. (2021).

22See also Almeida, Ardison, and Garcia (2020) and Karehnke and de Roon (2020) for a recent application of the
SDF framework in which investors have nonlinear preferences (i.e., mt is a nonlinear function of the factors).
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V.E.2. Measuring Sophistication Using Flows

As a final exercise, we study the sophistication of real-world hedge fund investors. Our analysis

builds on the premise that investors learn about funds by observing past returns. As they update

their valuation over time, they reallocate capital accordingly. If this mechanism is at play, fund

flows contain information about investor preference for alpha and beta. With misspecified models,

the learning process is likely to be noisier than for mutual funds. To address this issue, we compare

the entire distributions of the alpha and beta components between low- and high-flow funds.23

We proceed in three steps. First, we follow Barras, Scaillet, and Wermers (2010) and partition

our data into non-overlapping subperiods of five years, beginning with 1996 to 2000 and ending

with 2016 to 2020. For each subperiod, we include all funds that pass the fund selection rule and

compute their average monthly flows and return decomposition obtained with the CP model (âcki ,

b̂c
k

i,m, b̂c
k

i,Inm
). Second, we sort funds into flow quintiles (from low to high) and pool these five-

year records together across all time periods. Third, we apply our methodology to compute the

distributions of the alpha and beta components for each (pooled) flow quintile.

Panel A of Table X reveals that flows are primarily directed into funds with positive contem-

poraneous alphas. In the high-flow group, the alpha is equal to 3.3% per year on average and

positive for 70.4% of the funds. In the low-flow group, these numbers drop substantially (-0.6%

and 45.2%). In spite of these differences, the evidence is consistent with our premise that learning

about fund alphas is quite noisy—we observe a large distribution overlap between the two groups

(measured by the interval between the top and bottom quantiles).

Next, we focus on the beta components to assess the sophistication of real-world investors. If

these investors are unsophisticated, they chase not only alphas, but also past or market-adjusted

returns. In other words, they also direct capital into funds that load aggressively on market and/or

non-market factors (i.e., funds with high b̂c
k

i,m and b̂c
k

i,Inm
). Panels B and C do not support this

interpretation. For the two sets of factors, the average beta components are actually larger in the

low-flow group than in the high-flow group. In terms of sophistication, real-world investors are

therefore closer to the CP investor (than the CAPM investor).

Please insert Table X here

23An alternative approach, which does not capture fund heterogeneity, imposes a panel structure in which fund
flows are regressed on fund return components (Barber, Huang, and Odean, 2016). Ben-David et al. (2022) argue that
this approach produces spurious results because it overestimates the importance of alpha in driving flows.
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VI. Conclusion

Decomposing hedge fund returns is challenging because factor models are likely misspecified—

that is, they omit relevant factors for capturing hedge fund strategies. Model misspecification

makes the estimation of the alpha and beta components both imperfect and noisy. To mitigate

these challenges, we develop a new approach to estimate and compare the distributions of the alpha

and beta components across models. Our approach improves the imperfect separation between

alpha and beta by identifying models less prone to misspecification. It also explicitly accounts for

estimation noise based on a full-fledged asymptotic theory in a large cross-section of funds.

Our comparison analysis yields several insights. We find that the standard models produce the

same return decomposition as the CAPM, which implies that these models are ill-equipped for

separating alpha and beta. In contrast, several economically motivated factors such as TS momen-

tum, variance, and carry do a good job at capturing hedge fund returns. Including these factors

increases the relative importance of the beta components and uncovers a gradual convergence in

performance between hedge funds and mutual funds. Regardless of the chosen model, we also

observe a large dispersion in the alpha and beta components across funds. This large heterogeneity

is consistent with an equilibrium model in which a fraction of the fund population delivers positive

alphas to compensate investors for search costs.

Our methodology is flexible and can be applied in other situations where models are misspeci-

fied. For instance, it can be used to further improve the decomposition of hedge fund returns across

specific investment categories. It could also be applied to international mutual funds for which the

set of trading strategies is substantially larger than for traditional US equity funds.
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TABLE I. Summary Statistics for the Equal-Weighted Portfolio of Hedge Funds
This table provides summary statistics for the equal-weighted portfolio of all existing funds at the start of
each month for the entire population and the three investment categories (equity, macro, and arbitrage). We
report the mean (annualized), standard deviation (annualized), skewness, kurtosis, and quantiles at 10% and
90% of the portfolio excess return. The statistics are computed using monthly data between January 1994
and December 2020.

Moments Quantiles

Mean Std Dev. Skewness Kurtosis 10% 90%

All Funds 5.45 5.49 -0.31 4.51 -1.58 2.34

Equity 6.73 8.70 -0.47 5.32 -2.56 3.30
Long-Short 7.24 9.68 -0.44 5.31 -2.90 3.68
Market Neutral 3.07 2.72 -0.58 5.75 -0.66 1.13

Macro 5.05 5.79 0.24 3.30 -1.66 2.50
Global Macro 4.40 6.12 0.40 3.57 -1.68 2.59
CTA/Managed Futures 4.09 6.73 0.47 3.74 -1.79 2.92

Arbitrage 5.40 4.96 -2.16 14.57 -0.97 1.83
Relative Value 4.90 4.47 -2.46 18.03 -0.78 1.60
Event Driven 6.08 6.11 -1.74 11.79 -1.30 2.35
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TABLE II. Summary Statistics for the Hedge Fund Factors
This table provides summary statistics for the factors used in the construction of the nine hedge fund models.
The market factor is the excess return of the US equity market. The size, value, momentum, investment,
and profitability factors are computed using US equity data. The global value and momentum factors are
constructed across multiple international asset classes. The term and default factors are computed using
US bond data. The bond, commodity, and currency straddles are computed using option data on bonds,
commodities, and currencies. The illiquidity and betting-against-beta (BAB) factors are computed using US
equity data. The variance factor is computed using index option data on the S&P500. The carry and time-
series (TS) momentum factors are constructed across multiple international asset classes. We define the
straddle and variance factors as short positions to obtain positive premia. We report the mean (annualized),
standard deviation (annualized), skewness, kurtosis, and quantiles at 10% and 90% of the excess returns of
the factors. The statistics are computed using monthly data between January 1994 and December 2020.

Panel A: Market and Standard Factors
Moments Quantiles

Mean Std Dev. Skewness Kurtosis 10% 90%

Market 8.81 15.48 -0.64 4.26 -5.15 6.02
Size 1.61 10.83 0.38 7.54 -3.49 3.69
Value 0.20 10.88 0.05 5.84 -3.30 3.47
Momentum 4.67 17.15 -1.42 12.88 -5.07 5.50
Investment 2.11 7.04 0.67 5.09 -2.14 2.70
Profitability 3.77 9.38 -0.47 13.49 -2.03 2.90
Global Value 1.30 6.19 -0.64 12.25 -1.72 1.76
Global Momentum 3.26 7.55 -0.30 5.46 -2.25 2.69
Term -0.18 0.89 -0.03 4.22 -0.35 0.29
Default 0.01 0.77 1.90 17.66 -0.20 0.19
Straddle on Bonds 16.00 57.86 -1.85 8.99 -19.68 17.73
Straddle on Commodities 2.99 50.38 -1.32 6.07 -19.71 15.74
Straddle on Currencies 11.27 69.02 -1.56 6.64 -23.36 20.15

Panel B: Alternative Factors
Moments Quantiles

Mean Std Dev. Skewness Kurtosis 10% 90%

Iliquidity 6.52 12.97 -0.27 4.49 -3.60 4.99
BAB 8.58 13.77 -0.36 6.10 -3.58 5.21
Variance 38.10 23.80 -4.57 29.76 -1.03 7.61
Carry 6.85 4.96 0.01 3.98 -1.10 2.34
TS Momentum 11.11 12.56 0.16 3.16 -3.54 5.71
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TABLE III. The Set of Hedge Fund Models
This table summarizes the set of nine hedge fund models chosen for the empirical analysis. This set includes
the CAPM as well as three distinct groups. The first group includes the models formed with standard factors,
namely the Carhart, Five-Factor, Fung-Hsieh, and Asness-Moskowitz-Pedersen (AMP) models. The second
group includes the two machine learning models of Kozak, Nagel, and Shantosh (KNS) formed with either
five characteristic-based equity portfolios, or five principal components of these portfolios. The final group
includes two models formed with alternative factors. The first one is the model of Joenväärä et al. (2021)
(JKKT). The second one combines the alternative factors proposed by Carhart (1997) and Pedersen (2018)
(CP).

Model List of Included Factors

CAPM Market

Standard Models
Carhart Market, Size, Value, Momentum
Five-Factor Market, Size, Value, Investment, Profitability
Fung-Hsieh Market, Size, Term, Default, Straddles (Bonds, Commodities, Currencies)
AMP Market, Global Value and Momentum

Machine-Learning Models
KNS1 Market, Five Characteristic-Based Equity Factors
KNS2 Market, Five Principal Component Equity Factors

Alternative Models
JKKT Market, Size, Value, Momentum, Illiquidity, BAB, TS Momentum
CP Market, Size, Illiquidity, BAB, Variance, Carry, TS Momentum
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TABLE IV. Misspecification Diagnostic for the Hedge Fund Models
This table provides misspecification statistics for the CAPM, the four standard models (Carhart, Five-Factor,
Fung-Hsieh, AMP), the two machine learning models (KNS1, KNS2), and the two alternative models (JKKT
and CP). For each model, we measure the relative importance of the three components of the average fund
return: (i) the alpha component (Alpha), (ii) the beta component due to the market (Beta Mkt), and the
beta component due to the non-market factors (Beta Non-Mkt), i.e., the other factors included in the model.
These proportions, which are averaged across all funds, sum up to 100%. We also compute the average
adjusted R2 of the time-series regression of the fund return on the factors. We conduct this analysis for
the entire hedge fund population (first four columns) and for the entire mutual fund population (last four
columns).

Hedge Funds Mutual Funds

Relative Importance (%) Relative Importance (%)

Alpha Beta Mkt Beta Non-Mkt R2 Alpha Beta Mkt Beta Non-Mkt R2

CAPM 52.75 47.25 0.00 20.43 -15.23 115.23 0.00 81.34

Carhart 47.14 46.60 6.26 25.28 -17.16 110.57 6.58 88.98
Five-Factor 49.04 46.65 4.31 24.85 -16.38 110.27 6.11 88.99
Fung-Hsieh 54.10 40.56 5.34 30.24 -14.96 107.78 7.18 85.88
AMP 47.08 47.37 5.55 24.36 -15.37 115.01 0.36 84.55

KNS1 52.52 48.24 -0.76 24.47 -17.41 114.58 2.84 83.40
KNS2 64.01 51.03 -15.04 26.39 -6.27 115.99 -9.73 87.09

JKKT 17.97 44.28 37.75 31.01 -20.01 110.20 9.81 89.65
CP 6.64 41.19 52.17 30.26 -24.33 109.06 15.27 87.15

40



TABLE V. Model Comparisons Relative to the CAPM
The table measures the degree of misspecification of the standard models (Carhart, Five-Factor, Fung-Hsieh,
AMP), the two machine learning models (KNS1, KNS2), and the two alternative models (JKKT and CP).
For each model, we examine whether the distribution of the alpha components departs from the one obtained
with the CAPM. Lack of differences signals that the model is no better than the CAPM at capturing hedge
fund strategies. We report the differences in the annualized mean and standard deviation, the proportions of
funds with negative and positive alphas, and the annualized quantiles at 10% and 90%. Figures in parenthe-
ses denote the standard deviation of the estimated differences. ∗∗∗, ∗∗, ∗ indicate that the null hypothesis of
equal characteristics is rejected at the 1%, 5%, and 10% levels.

Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart -0.31 (0.40) -0.19 (0.31) 2.27 (2.50) -2.27 (2.50) -0.02 (0.40) -0.60∗ (0.34)
Five-Factor -0.21 (0.46) 0.02 (0.34) 2.41 (3.01) -2.41 (3.01) -0.01 (0.50) -0.18 (0.40)
Fung-Hsieh 0.08 (0.60) -0.20 (0.35) 0.52 (3.88) -0.52 (3.88) 0.28 (0.56) -0.15 (0.47)
AMP -0.31 (0.42) 0.06 (0.37) 2.50 (2.44) -2.50 (2.44) -0.17 (0.37) -0.34 (0.45)

KNS1 -0.01 (0.39) 0.43 (0.29) 1.59 (1.78) -1.59 (1.78) -0.26 (0.29) 0.19 (0.38)
KNS2 0.63 (0.49) 0.20 (0.31) -2.47 (2.65) 2.47 (2.65) 0.58 (0.41) 0.65 (0.47)

JKKT -1.93∗∗∗ (0.67) 0.41 (0.50) 14.76∗∗∗ (4.01) -14.76∗∗∗ (4.01) -2.32∗∗∗ (0.66) -1.98∗∗∗ (0.68)
CP -2.56∗∗∗ (0.76) 2.13∗∗∗ (0.50) 19.82∗∗∗ (4.27) -19.82∗∗∗ (4.27) -4.22∗∗∗ (0.73) -1.42∗ (0.76)
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TABLE VI. Decomposition of Average Fund Returns – Entire Population
This table shows the decomposition of average fund returns under the CAPM, the four standard models
(Carhart, Five-Factor, Fung-Hsieh, AMP), the two machine learning models (KNS1, KNS2), and the two
alternative models (JKKT and CP). Panel A reports the characteristics of the cross-sectional distribution
of the alpha components under each model. We report the annualized mean and standard deviation, the
proportions of funds with negative and positive alphas, and the annualized quantiles at 10% and 90%.
Figures in parentheses denote the standard deviation of the estimated characteristics. Panel B reports the
characteristics of the cross-sectional distribution of beta components under each model.

Panel A: Distribution of the Alpha Components
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

CAPM 2.93 (0.94) 7.01 (0.48) 27.15 (5.49) 72.85 (5.49) -3.95 (0.67) 10.06 (0.67)

Carhart 2.62 (0.84) 6.82 (0.31) 29.42 (5.08) 70.58 (5.08) -3.97 (0.57) 9.46 (0.55)
Five-Factor 2.72 (0.89) 7.03 (0.31) 29.55 (5.23) 70.45 (5.23) -3.96 (0.63) 9.87 (0.54)
Fung-Hsieh 3.01 (0.74) 6.81 (0.29) 27.66 (3.60) 72.34 (3.60) -3.67 (0.47) 9.90 (0.51)
AMP 2.62 (0.92) 7.08 (0.28) 29.65 (5.62) 70.35 (5.62) -4.12 (0.59) 9.71 (0.54)

KNS1 2.92 (0.87) 7.44 (0.42) 28.73 (5.13) 71.27 (5.13) -4.21 (0.63) 10.24 (0.60)
KNS2 3.56 (0.86) 7.21 (0.37) 24.68 (4.33) 75.32 (4.33) -3.37 (0.55) 10.70 (0.62)

JKKT 1.00 (0.73) 7.42 (0.31) 41.90 (4.80) 58.10 (4.80) -6.27 (0.60) 8.07 (0.38)
CP 0.37 (0.86) 9.15 (0.40) 46.97 (5.31) 53.03 (5.31) -8.17 (0.77) 8.64 (0.44)

Panel B: Distribution of the Beta Components
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

CAPM 2.62 (0.83) 4.37 (0.67) 22.54 (9.57) 77.46 (9.57) -0.71 (0.61) 8.01 (0.73)

Carhart 2.94 (0.81) 4.30 (0.52) 17.99 (5.68) 82.01 (5.68) -0.65 (0.42) 8.20 (0.72)
Five-Factor 2.83 (0.84) 4.48 (0.51) 20.61 (5.62) 79.39 (5.62) -1.06 (0.41) 8.32 (0.75)
Fung-Hsieh 2.55 (0.78) 4.39 (0.52) 22.58 (5.98) 77.42 (5.98) -1.23 (0.44) 7.96 (0.67)
AMP 2.94 (0.84) 4.66 (0.49) 18.98 (5.41) 81.02 (5.41) -0.96 (0.43) 8.56 (0.73)

KNS1 2.64 (0.80) 5.14 (0.57) 23.04 (5.71) 76.96 (5.71) -1.37 (0.56) 8.38 (0.86)
KNS2 2.00 (0.82) 4.47 (0.49) 27.53 (7.96) 72.47 (7.96) -1.61 (0.59) 7.28 (0.69)

JKKT 4.56 (0.83) 5.90 (0.42) 13.90 (2.20) 86.10 (2.20) -0.50 (0.28) 11.12 (0.74)
CP 5.19 (0.93) 7.64 (0.49) 15.91 (2.17) 84.09 (2.17) -1.17 (0.35) 12.78 (1.11)
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TABLE VII. Decomposition of Average Fund Returns – Investment Categories
This table shows the decomposition of average fund returns under the CAPM and the two alternative models
(JKKT and CP) across investment styles. Panel A reports the characteristics of the cross-sectional distri-
bution of the alpha and beta components for equity funds. We report the annualized mean and standard
deviation, the proportions of funds with negative and positive alphas, and the annualized quantiles at 10%
and 90%. Figures in parentheses denote the standard deviation of the estimated characteristics. Panels B
and C repeat the analysis for macro and arbitrage funds.

Panel A: Equity Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Distribution of the Alpha Components
CAPM 2.40 (1.06) 7.09 (0.48) 30.23 (6.31) 69.77 (6.31) -4.52 (0.83) 9.54 (0.96)
JKKT 1.12 (0.81) 6.98 (0.31) 42.98 (5.48) 57.02 (5.48) -5.73 (0.75) 7.77 (0.66)
CP 0.58 (0.96) 9.08 (0.49) 47.38 (5.46) 52.62 (5.46) -7.84 (1.02) 8.53 (0.79)

Distribution of the Beta Components
CAPM 4.18 (1.16) 5.19 (0.70) 12.94 (8.25) 87.06 (8.25) -0.14 (0.74) 10.66 (1.39)
JKKT 5.46 (1.18) 5.75 (0.54) 10.59 (2.37) 89.41 (2.37) -0.10 (0.43) 12.19 (1.41)
CP 6.00 (1.31) 7.58 (0.61) 13.69 (2.77) 86.31 (2.77) -0.75 (0.56) 13.71 (1.77)

Panel B: Macro Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Distribution of the Alpha Components
CAPM 3.71 (1.72) 8.04 (0.78) 25.73 (6.47) 74.27 (6.47) -4.26 (0.89) 12.41 (2.14)
JKKT -0.14 (1.42) 9.14 (0.65) 51.52 (7.66) 48.48 (7.66) -9.25 (1.43) 8.70 (0.75)
CP -0.39 (1.65) 11.04 (0.70) 51.83 (7.02) 48.17 (7.02) -10.91 (1.58) 10.26 (1.00)

Distribution of the Beta Components
CAPM 1.01 (1.08) 3.70 (0.68) 43.44 (21.78) 56.56 (21.78) -1.76 (1.29) 5.44 (0.66)
JKKT 4.87 (1.11) 7.49 (0.74) 20.32 (3.33) 79.68 (3.33) -1.57 (0.44) 12.86 (1.30)
CP 5.11 (1.33) 9.62 (0.79) 23.74 (3.89) 76.26 (3.89) -2.60 (0.63) 14.18 (1.35)

Panel C: Arbitrage Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Distribution of the Alpha Components
CAPM 2.81 (1.24) 5.61 (0.44) 24.74 (9.71) 75.26 (9.71) -2.79 (1.31) 8.67 (0.63)
JKKT 1.97 (0.89) 5.70 (0.29) 31.03 (8.00) 68.97 (8.00) -3.66 (0.92) 7.60 (0.50)
CP 0.87 (1.06) 6.81 (0.44) 41.64 (9.30) 58.36 (9.30) -5.48 (1.20) 7.62 (0.49)

Distribution of the Beta Components
CAPM 2.31 (0.98) 3.02 (0.66) 13.63 (8.51) 86.37 (8.51) -0.08 (0.45) 5.88 (1.22)
JKKT 3.14 (0.81) 3.57 (0.42) 11.60 (3.04) 88.40 (3.04) -0.09 (0.32) 7.28 (1.03)
CP 4.25 (0.98) 4.90 (0.56) 10.86 (2.29) 89.14 (2.29) -0.10 (0.33) 9.42 (1.37)
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TABLE VIII. Decomposition of the Beta Components – Entire Population
This table shows the decomposition of the beta components obtained with the CP model. Panel A reports the
characteristics of the cross-sectional distribution of the beta components associated with each factor (market,
size, illiquidity, BAB, variance, carry, TS momentum). For each fund, the beta component associated with
a given factor is defined as the product between the fund beta and the factor premium. We report the
annualized mean and standard deviation, the proportions of funds with negative and positive contributions,
and the annualized quantiles at 10% and 90%. Figures in parentheses denote the standard deviation of the
estimated characteristics. Panel B reports the cross-sectional correlation between the beta components for
each pair of factors.

Panel A: Distribution of the Beta Components for Each Factor
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 2.29 (1.27) 3.84 (1.19) 21.62 (6.13) 78.38 (6.13) -0.55 (0.15) 6.99 (2.05)
Size 0.23 (0.26) 1.01 (0.32) 38.23 (4.26) 61.77 (4.26) -0.31 (0.03) 1.02 (0.53)
Illiquidity 0.05 (0.07) 1.26 (0.29) 44.94 (3.25) 55.06 (3.25) -0.75 (0.24) 0.85 (0.38)
Betting Against Beta 0.35 (0.25) 2.22 (0.69) 35.14 (3.80) 64.86 (3.80) -1.30 (0.44) 2.23 (0.90)
Variance 0.78 (0.25) 5.17 (0.70) 36.74 (1.89) 63.26 (1.89) -3.08 (0.54) 4.53 (0.87)
Carry 0.43 (0.17) 2.56 (0.46) 39.21 (2.38) 60.79 (2.38) -1.89 (0.37) 2.73 (0.51)
Time-Series Momentum 1.06 (0.32) 4.03 (0.78) 42.86 (1.51) 57.14 (1.51) -1.35 (0.34) 4.49 (0.72)

Panel B: Correlations Between the Beta Components
Size Illiquidity BAB Variance Carry TS Mom

Market -0.08 -0.01 -0.01 -0.03 -0.02 -0.18
Size -0.07 -0.00 -0.06 0.06 0.05
Illiquidity -0.09 0.14 -0.02 0.08
Betting Against Beta -0.07 0.03 -0.05
Variance 0.04 -0.09
Carry -0.13
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TABLE IX. Decomposition of the Beta Components – Investment Categories
This table shows the decomposition of the beta components obtained with the CP model across investment
styles. Panel A reports the characteristics of the cross-sectional distribution of the beta components of equity
funds associated with each factor (market, size, illiquidity, BAB, variance, carry, TS momentum). For each
fund, the beta component associated with a given factor is defined as the product between the fund beta and
the factor premium. We report the annualized mean and standard deviation, the proportions of funds with
negative and positive contributions, and the annualized quantiles at 10% and 90%. Figures in parentheses
denote the standard deviation of the estimated characteristics. Panel B and C repeat the analysis for macro
and arbitrage funds.

Panel A: Equity Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 3.67 (2.07) 4.53 (1.22) 14.54 (8.16) 85.46 (8.16) -0.19 (0.61) 9.33 (3.18)
Size 0.42 (0.57) 1.32 (0.42) 32.68 (11.70) 67.32 (11.70) -0.35 (0.11) 1.65 (1.04)
Illiquidity 0.14 (0.10) 1.49 (0.35) 44.13 (2.66) 55.87 (2.66) -0.85 (0.25) 1.27 (0.48)
Betting Against Beta 0.25 (0.21) 2.66 (0.80) 38.48 (3.90) 61.52 (3.90) -1.71 (0.55) 2.55 (1.05)
Variance 0.67 (0.25) 5.06 (0.70) 38.58 (2.19) 61.42 (2.19) -3.12 (0.54) 4.46 (0.85)
Carry 0.34 (0.17) 2.80 (0.46) 44.78 (2.67) 55.22 (2.67) -2.11 (0.41) 2.73 (0.52)
Time-Series Momentum 0.51 (0.17) 2.83 (0.55) 42.08 (2.04) 57.92 (2.04) -1.56 (0.46) 3.05 (0.74)

Panel B: Macro Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 1.18 (0.62) 3.47 (1.10) 35.11 (4.40) 64.89 (4.40) -1.40 (0.35) 4.87 (1.62)
Size 0.07 (0.09) 0.83 (0.20) 50.59 (9.02) 49.41 (9.02) -0.43 (0.28) 0.64 (0.20)
Illiquidity -0.08 (0.10) 1.26 (0.31) 54.07 (3.37) 45.93 (3.37) -0.90 (0.37) 0.75 (0.28)
Betting Against Beta 0.21 (0.19) 1.99 (0.65) 40.83 (4.63) 59.17 (4.63) -1.30 (0.47) 1.84 (0.76)
Variance 0.22 (0.35) 6.56 (0.87) 49.41 (3.11) 50.59 (3.11) -4.73 (0.92) 4.55 (0.76)
Carry 0.41 (0.26) 2.79 (0.57) 41.89 (3.33) 58.11 (3.33) -2.43 (0.58) 3.23 (0.64)
Time-Series Momentum 3.10 (1.11) 5.83 (1.23) 24.43 (3.26) 75.57 (3.26) -0.73 (0.12) 10.22 (2.20)

Panel C: Arbitrage Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 1.68 (0.90) 2.52 (0.75) 16.96 (6.38) 83.04 (6.38) -0.19 (0.21) 4.40 (1.44)
Size 0.16 (0.20) 0.60 (0.17) 32.82 (8.47) 67.18 (8.47) -0.11 (0.04) 0.56 (0.45)
Illiquidity 0.07 (0.12) 0.87 (0.18) 36.89 (7.20) 63.11 (7.20) -0.40 (0.06) 0.60 (0.32)
Betting Against Beta 0.61 (0.39) 1.76 (0.58) 25.35 (4.61) 74.65 (4.61) -0.68 (0.14) 2.15 (0.95)
Variance 1.47 (0.42) 3.34 (0.55) 21.90 (2.39) 78.10 (2.39) -0.78 (0.08) 4.59 (0.97)
Carry 0.56 (0.20) 1.91 (0.34) 29.67 (3.66) 70.33 (3.66) -0.86 (0.17) 2.37 (0.52)
Time-Series Momentum -0.30 (0.19) 1.53 (0.37) 62.12 (4.12) 37.88 (4.12) -1.64 (0.57) 0.82 (0.17)
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TABLE X. Fund Flows and Average Return Components
This table examines the relation between fund flows and the three components of the average fund return
under the CP model: (i) the alpha component, (ii) the beta component due to the market, and (iii) the beta
component due to the non-market factors (size, illiquidity, BAB, variance, carry, TS momentum). For each
of the non-overlapping five-year periods between 1996 and 2020, we measure the three components for all
funds. We then rank them according to their average monthly net flows and group them into quintiles (low,
2, 3, 4, high). Panel A reports the characteristics of the cross-sectional distribution of the alpha components
(pooled over all five-year periods) for the five flow-based groups. We report the annualized mean and
standard deviation, the proportions of funds with negative and positive alphas, and the annualized quantiles
at 10% and 90%. Figures in parentheses denote the standard deviation of the estimated characteristics.
Panels B and C repeat the analysis for the beta components due to the market and the beta components due
to the non-market factors.

Panel A: Distribution of the Alpha Components
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Low -0.57 (1.54) 10.71 (0.79) 54.84 (5.88) 45.16 (5.88) -10.53 (1.33) 9.55 (0.74)
2 0.39 (1.33) 9.03 (0.72) 47.82 (5.66) 52.18 (5.66) -9.01 (0.98) 9.15 (0.83)
3 1.52 (1.32) 8.42 (0.76) 41.49 (6.10) 58.51 (6.10) -7.18 (0.90) 10.33 (0.65)
4 2.92 (1.44) 8.85 (0.82) 34.57 (6.90) 65.43 (6.90) -5.97 (1.18) 13.00 (0.56)
High 3.25 (1.24) 9.87 (0.61) 29.61 (5.31) 70.39 (5.31) -4.92 (0.98) 13.18 (0.74)

Panel B: Distribution of the Beta Components (Market Factor)
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Low 2.32 (1.98) 4.19 (1.75) 18.19 (19.41) 81.81 (19.41) -0.53 (0.84) 8.37 (3.00)
2 3.15 (2.45) 5.09 (1.75) 14.25 (18.87) 85.75 (18.87) -0.17 (1.19) 10.34 (4.27)
3 2.91 (2.26) 4.94 (1.84) 15.85 (18.60) 84.15 (18.60) -0.17 (1.13) 9.48 (4.06)
4 2.40 (1.84) 4.42 (1.74) 19.96 (15.33) 80.04 (15.33) -0.33 (0.71) 8.29 (3.30)
High 1.95 (1.45) 3.90 (1.61) 23.07 (13.06) 76.93 (13.06) -0.46 (0.45) 7.31 (2.63)

Panel C: Distribution of the Beta Components (Non-Market Factors)
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Low 2.38 (0.90) 8.18 (3.58) 32.13 (8.54) 67.87 (8.54) -4.43 (1.93) 10.44 (3.66)
2 2.13 (0.83) 7.36 (3.03) 35.93 (12.43) 64.07 (12.43) -4.26 (1.59) 9.60 (3.57)
3 2.14 (0.81) 6.94 (3.28) 32.07 (11.95) 67.93 (11.95) -4.23 (2.02) 9.34 (3.59)
4 2.30 (0.78) 7.16 (3.19) 34.30 (8.29) 65.70 (8.29) -3.88 (1.79) 9.63 (3.59)
High 2.37 (0.81) 7.82 (3.09) 33.70 (6.23) 66.30 (6.23) -3.81 (1.70) 8.65 (3.46)
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Figure 1. Distributions of the Alpha and Beta Components – A Simple Example
Panel A compares the average return decomposition obtained with a candidate hedge fund (HF) model and
the CAPM. In this simple example, the average fund returns are explained by four factors (the market and
three alternative factors 1, 2, and 3 with similar premia), and hedge funds load more aggressively on factor
1 than on factors 2 and 3. Whereas the CAPM omits factors 1, 2, and 3, the HF model only omits factor
3. Panel A plots the cross-sectional distributions of the alpha components (annualized) under both models.
Panel B repeats the analysis for the beta components.
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Figure 2. Distributions of the Alpha and Beta Components
This figure provides a visual comparison of the Fung-Hsieh model and the two alternative models (JKKT
and CP). Panel A plots the cross-sectional distributions of the alpha components (annualized) under the
three models. Panel B repeats the analysis for the beta components.
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Figure 3. Time-Variation in the Average Return Components
This figure plots the evolution of the average return components between 2004 and 2020, which are (i) the
alpha component (Alpha), (ii) the beta component due to the market (Beta Mkt), and the beta component
due to the non-market factors (Beta Non-Mkt). At the end of each year, we measure the three components
for each fund using its entire return history up to that point and take cross-sectional averages across all
existing funds. The initial estimates cover the period 1994 to 2004, while the last ones cover the period
1994 to 2020. Panel A shows the results for the hedge fund industry using the CP model for the return
decomposition. Panel B repeats the analysis for the mutual fund industry using the traditional Carhart
(1997) model.
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This appendix is divided into four sections. Section I contains the proofs of the propositions dis-

cussed in the paper (including the regularity assumptions), provides the list of the terms for com-

puting the asymptotic variance of the different estimators, and shows how to extend the method-

ology from the distribution of the alpha components to the distribution of the beta components.

Section II presents the Monte-Carlo analysis for examining the properties of the estimators. Sec-

tion III describes the construction of the hedge fund dataset and the different factors. Section IV

reports additional empirical results on (i) the misspecification diagnostic criterion, (ii) the analysis

of model comparisons across data filters and investment categories, (iii) the impact of factor trading

costs, (iv) the return decomposition for multi-strategy funds and funds of funds, (v) the economic

importance of the alternative factors within investment categories, and (vii) the characteristics of

the worst and best funds under the CP model.

I. Methodology

I.A. Regularity Assumptions

To begin, we list the required assumptions underlying the results of Propositions 1 to 3. In partic-

ular, we need assumption A.7 to obtain non-zero asymptotic variances for the different estimators

and guarantee that the limiting Gaussian distributions are all well-defined. We use a generic uni-

variate function g = g(αi) to simplify the presentation and avoid vectorial notations, and apply

the compact notation g(1) and g(2) for its first- and second-order derivatives. We also omit the

superscript k to lighten the notation when clarity permits.

Assumption A.1. The individual effects γ∗
i =

(
α∗
i , b

∗′
i,I , b

∗′
i,O

)′, with i = 1, ..., n, are i.i.d. with
continuous distribution, E[∥b∗i,O∥2] < ∞, and are independent of the factors and the errors.

Assumption A.2. The observability indicator processes (Ii,t), with i = 1, ..., n, are i.i.d., such
that (Ii,t) is strictly stationary with mean τ−1

i for any given i, and independent of the individual
effects, the factors, and the error processes.

Assumption A.3. The factor process ft = (f ′
I,t, f

′
O,t)

′ is strictly stationary, such that E[∥fI,t∥8] <

∞ and satisfies the central limit theorem (CLT):
1√
T

∑
t

(uO,t ⊗ xt) →d N(0,Ωux), as T → ∞,

where Ωux = lim
T→∞

V

[
1√
T

∑
t

uO,t ⊗ xt

]
.

Assumption A.4. The error process (ε∗i,t) is such that
1

nT

∑
i,j

∑
t,s

E
[
E[ε∗i,tε

∗
j,s|fT , γ∗

i , γ
∗
j ]

2
]1/2 ≤

C, for a constant C and all n, T where ft = {ft, ft−1, . . .}.
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Assumption A.5. The trimming sequences χ1,T and χ2,T are such that χ1,T = O((log T )κ1) and
χ2,T = O((log T )κ2), for κ1, κ2 > 0.

Assumption A.6. The function g is twice differentiable, and such that E[|g(αi)|2] < ∞, E[|g(1)(αi)|8] <
∞, and E[|g(2)(αi)|4] < ∞.

Assumption A.7. For any pair of models k and l (k, l = 0, ..., K − 1), we have: (1) ηkMs
̸= 0 and

ηlMs
̸= 0, (2) ηkP (a) ̸= 0 and ηlP (a) ̸= 0, (3) ηkMs

(uk
O,t⊗xk

t )−ηlMs
(ul

O,t⊗xl
t) is not the zero process,

and (4) ηkP (a)(u
k
O,t ⊗ xk

t )− ηlP (a)(u
l
O,t ⊗ xl

t) is not the zero process.

I.B. Proofs of Propositions 1 and 2

We now prove Proposition 1 on the estimated characteristics of the alpha distribution under a given

model k. To simplify notation, we drop the superscript k for the proof. We have

α̂i = E ′
1Q̂

−1
x,i

1

Ti

∑
t

Ii,txtri,t = αi + E ′
1Q̂

−1
x,i

1

Ti

∑
t

Ii,txtεi,t

= αi +
τi,T√
T
E ′

1Q̂
−1
x,i

(
1√
T

∑
t

Ii,txtε
∗
i,t

)
+

τi,T√
T
E ′

1Q̂
−1
x,i

(
1√
T

∑
t

Ii,txtu
′
t

)
b∗i,O

=: αi +
1√
T
ηi,T . (A1)

By a second-order Taylor expansion,

g(α̂i) = g(αi) +
1√
T
g(1)(αi)ηi,T +

1

2T
g(2)(ᾱi)η

2
i,T , (A2)

where ᾱi is between α̂i and αi for all i. Thus, we get

√
T

(
1

n

∑
i

g(α̂i)1
χ
i − E [g(αi)]

)
(A3)

=
√
T

(
1

n

∑
i

g(αi)− E [g(αi)]

)
−
√
T
1

n

∑
i

g(αi) (1− 1χ
i ) (A4)

+
1

n

∑
i

1χ
i g

(1)(αi)τi,TE
′
1Q̂

−1
x,i

(
1√
T

∑
t

Ii,txtε
∗
i,t

)
(A5)

+
1

n

∑
i

1χ
i g

(1)(αi)τi,TE
′
1Q̂

−1
x,i

(
1√
T

∑
t

Ii,txtu
′
O,t

)
b∗i,O (A6)

+
1

2
√
Tn

∑
i

1χ
i g

(2)(ᾱi)η
2
i,T =: I1 + I2 + I3 + I4 + I5. (A7)

We control the five terms separately, the leading term being the fourth one and the others being

asymptotically negligible, i.e., of probability order op(1).
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i) Proof that I1 = op(1). By Assumptions A.1 and A.6, and the standard CLT, we have I1 =

Op(
√

T/n). By using T/n = o(1), it follows I1 = op(1).

ii) Proof that I2 = op(1). We have E[|I2|] ≤
√
TE[|g(αi)|(1−1χ

i )] ≤
√
TE[|g(αi)|2]1/2P [1χ

i =

0]1/2, by the Cauchy-Schwarz inequality. By Lemma 7 in Gagliardini, Ossola, and Scaillet (2016),

P [1χ
i = 0] = O(T−b̄), for any b̄ > 0. From Assumption A.6, E[|I2|] = o(1).

iii) Proof that I3 = op(1). We have

E[I23 |fT , γ∗
i , Ii,T , i = 1, ..., n] (A8)

=
1

n2T

∑
i,j

∑
t,s

1χ
i 1

χ
j g

(1)(αi)g
(1)(αj)τi,T τj,TE

′
1Q̂

−1
x,iIi,txtE

′
1Q̂

−1
x,jIi,sxsE[ε∗i,tε

∗
j,s|fT , γ∗

i , γ
∗
j ]. (A9)

By using 1χ
i τi,T ≤ χ2,T and 1χ

i ∥Q̂
−1
x,i∥ ≤ Cχ1,T for a generic constant C (see Gagliardini, Ossola,

and Scaillet (2016), proof of Lemma 3), we get

E[I23 |fT , γ∗
i , Ii,T , i = 1, ..., n] ≤

Cχ2
1,Tχ

2
2,T

n2T

∑
i,j

∑
t,s

|g(1)(αi)| |g(1)(αj)| ∥xt∥∥xs∥ |E[ε∗i,tε
∗
j,s|fT , γ∗

i , γ
∗
j ]|.

(A10)

By the Cauchy-Schwarz inequality, we get

E[I23 ] ≤ Cχ2
1,Tχ

2
2,TE[|g(1)(αi)|8]1/4E[∥xt∥8]1/4

1

n2T

∑
i,j

∑
t,s

E
[
|E[ε∗i,tε

∗
j,s|fT , γ∗

i , γ
∗
j ]|2
]1/2

.

(A11)

From Assumptions A.3-A.6, we get E[I23 ] = o(1).

iv) Proof that I4 →d N
(
0, Vg

)
. We have

I4 =
1

n

∑
i

g(1)(αi)τiE
′
1Q

−1
x

(
1√
T

∑
t

Ii,txtu
′
O,t

)
b∗i,O + op(1) (A12)

= E ′
1Q

−1
x

1√
T

∑
t

xtu
′
O,t

(
1

n

∑
i

Ii,tτig
(1)(αi)b

∗
i,O

)
+ op(1), (A13)

where τi = E[Ii,t|γ∗
i ]

−1 by Assumption A.2. By Assumptions A.1 and A.2, the cross-sectional

average
1

n

∑
i

Ii,tτig
(1)(αi)b

∗
i,O converges in probability to the expectation E[Ii,tτig

(1)(αi)b
∗
i,O].

Moreover, we have the chain of equalities: E[Ii,tτig
(1)(αi)b

∗
i,O] = E[E[Ii,t|γ∗

i ]τig
(1)(αi)b

∗
i,O] =

3



E[g(1)(αi)b
∗
i,O]. This expectation is finite by Assumptions A.1 and A.6. Thus, we get

I4 = E ′
1Q

−1
x

1√
T

∑
t

xtu
′
O,tE[g(1)(αi)b

∗
i,O] + op(1). (A14)

Now, we use xtu
′
O,tE[g(1)(αi)b

∗
i,O] =

(
E[g(1)(αi)b

∗
i,O]

′ ⊗ Id+1

)
(uO,t ⊗ xt), where d denotes the

number of factors included in the model. Thus, we get

(
E[g(1)(αi)b

∗
i,O]

′ ⊗ E ′
1Q

−1
x

) 1√
T

∑
t

uO,t ⊗ xt →d N(0, Vg), (A15)

by Assumption A.3, and the result follows.

v) Proof that I5 = op(1). We have

1

n

∑
i

1χ
i g

(2)(ᾱi)η
2
i,T = E[g(2)(αi)η

2
i,T ] + op(1), (A16)

from Assumptions A.1-A.6, and the result follows.

For the proportion and quantile estimators, we proceed in a similar manner even if the indicator

g(α) = 1{α ≤ a} is not differentiable. To understand intuitively the asymptotic variance of the

proportion estimator, we can consider that the derivative of the indicator function is minus the Dirac

function g(1)(α) = −δ(α− a) in the sense of distribution theory. Thus, we have E[g(1)(αi)b
∗
i,O] =

−
∫

δ(α − a)m(α)dα = −m(a), where m(a) = E[b∗i,O|αi = a]ϕac(a). By plugging this expres-

sion in Equation (A15), we obtain the asymptotic distribution of the proportion estimator. The

asymptotic distribution of the quantile estimator is derived from that of the cdf estimator by means

of the Bahadur (1966) representation Q̂(u)−Q(u) = − 1

ϕac(Q(u))

(
P̂ (Q(u))− u

)
+ op(1).

Next, we turn to the proof of Proposition 2, which examines the difference in characteristics

between models. Whereas our empirical analysis focuses on the comparison between various mod-

els and the CAPM, the results in Proposition 2 are general and apply to any pair of models k and

l (which can be nested or non-nested). We can view Proposition 2 as a corollary of Proposition 1.

For each characteristic (moments, proportion, quantile), we simply need to work with g(α̂k
i )−g(α̂l

i)

substituted for g(α̂i), and apply the delta method to obtain the results.
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I.C. Proof of Proposition 3

In this section, we provide the theoretical arguments to show that the asymptotic variance esti-

mators are consistent. We focus on the estimation of the asymptotic variance of Proposition 1,

namely

Vg =
(
E[g(1)(αi)b

∗
i,O]

′ ⊗ E ′
1Q

−1
x

)
Ωux

(
E[g(1)(αi)b

∗
i,O]⊗Q−1

x E1

)
, (A17)

using the notations of appendix I.A. Because the arguments are similar for the consistency of the

estimators of the asymptotic variances in Proposition 2, we omit their lengthy developments.

The asymptotic variance Vg depends on the omitted factors and their loadings. We can still

estimate it without knowing them through the pseudo-residuals defined as ε̂i,t = ri,t − γ̂′
ixt, where

γ̂i = (Q̂x,i)
−1 1

Ti

∑
t Ii,txtri,t is the vector of coefficients of the time-series regression in Equa-

tion (4) of the paper. We build

V̂g =
1

n2T

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tâi,tâj,t , (A18)

where âi,t = E ′
1Q̂

−1
x g(1)(α̂i)ε̂i,txt, i = 1, ..., n.1 To simplify the presentation, we assume a scalar

omitted factor, and we treat vector xt as a scalar in some terms.2 The pseudo-residuals are

ε̂i,t = ri,t − γ̂′
ixt = ε∗i,t + b∗i,OuO,t − (γ̂i − γi)

′xt . (A19)

Then, we have V̂g = E ′
1Q̂

−1
x I6Q̂

−1
x E1, where

I6 :=
1

n2T

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tg

(1)(α̂i)ε̂i,tg
(1)(α̂j)ε̂j,txtx

′
t . (A20)

By using Equation (A19) of the pseudo-residuals, we can decompose I6 into six terms, the leading

1In the empirical analysis of the paper, we replace n with nχ to obtain conservative estimators of the variance.
This replacement has no effect on the asymptotic properties of the variance estimator derived in this section.

2For expository purpose, we only develop the case where both the error terms and the factors are independent
across time. When the error terms and/or the factors are correlated across time, we need to modify the estimator by
including weighted cross-terms at different dates (Newey and West, 1987).
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term being the second one and the other five ones being asymptotically negligible

I6 =
1

n2T

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tg

(1)(α̂i)ε
∗
i,tg

(1)(α̂j)ε
∗
j,txtx

′
t (A21)

+
1

T

∑
t

(
1

n

∑
i

1χ
i τi,T Ii,tg

(1)(α̂i)b
∗
i,O

)2

u2
O,txtx

′
t (A22)

+
1

T

∑
t

(
1

n

∑
i

1χ
i τi,T Ii,tg

(1)(α̂i)(γ̂i − γi)

)2

x4
t (A23)

+
2

n2T

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tg

(1)(α̂i)ε
∗
i,tg

(1)(α̂j)b
∗
j,OuO,txtx

′
t (A24)

− 2

n2T

∑
i

∑
j

∑
t

1χ
i τi,T Ii,t1

χ
j τj,T Ij,tg

(1)(α̂i)ε
∗
i,tg

(1)(α̂j)(γ̂j − γj)x
3
t (A25)

− 2

T

∑
t

(
1

n

∑
i

1χ
i τi,T Ii,tg

(1)(α̂i)b
∗
i,O

)(
1

n

∑
i

1χ
i τi,T Ii,tg

(1)(α̂i)(γ̂i − γi)

)
uO,tx

3
t (A26)

=: I61 + I62 + I63 + I64 + I65 + I66 . (A27)

We control the six terms separately.

i) Proof that I61 = op(1). We have

I61 =
1

n2

∑
i

∑
j

τiτjg
(1)(αi)g

(1)(αj)
1

T

∑
t

Ii,tIj,tε
∗
i,tε

∗
j,tx

2
t + op(1) (A28)

=
1

n2

∑
i

∑
j

g(1)(αi)g
(1)(αj)

1

T

∑
t

E[ε∗i,tε
∗
j,tx

2
t |γ∗

i , γ
∗
j ] + op(1) =: I611 + op(1) . (A29)

From the Cauchy-Schwarz inequality and the law of iterated expectations, we have

E[ε∗i,tε
∗
j,tx

2
t |γ∗

i , γ
∗
j ] = E[E[ε∗i,tε

∗
j,t|fT , γ∗

i , γ
∗
j ]x

2
t |γ∗

i , γ
∗
j ] ≤ E[E[ε∗i,tε

∗
j,t|fT , γ∗

i , γ
∗
j ]

2|γ∗
i , γ

∗
j ]

1/2E[∥xt∥4]1/2.

Thus, we get:

|I611| ≤ E[∥xt∥4]1/2
1

n2T

∑
i

∑
j

∑
t

|g(1)(αi)||g(1)(αj)|E[E[ε∗i,tε
∗
j,t|fT , γ∗

i , γ
∗
j ]

2|γ∗
i , γ

∗
j ]

1/2.

(A30)

By applying again the Cauchy-Schwarz inequality, we get

E[|I611|] ≤ E[∥xt∥4]1/2E[|g(1)(αi)|4]1/2
1

n2T

∑
i

∑
j

∑
t

E[E[ε∗i,tε
∗
j,t|fT , γ∗

i , γ
∗
j ]

2]1/2. (A31)
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From Assumptions A.3, A.4, and A.6, we get E[|I611|] = o(1) and thus I611 = op(1).

ii) Proof that I62 = E[g(1)(αi)b
∗
i,O]

2E[u2
O,txtx

′
t] + op(1). We have

I62 =
1

T

∑
t

(
1

n

∑
i

τiIi,tg
(1)(αi)b

∗
i,O

)2

u2
O,txtx

′
t + op(1) (A32)

=
1

T

∑
t

E[τiIi,tg
(1)(αi)b

∗
i,O]

2u2
O,txtx

′
t + op(1), (A33)

from Assumptions A.1 and A.2. Now, we have E[τiIi,tg
(1)(αi)b

∗
i,O] = E[g(1)(αi)b

∗
i,O], and this

expectation is finite by Assumptions A.1 and A.6. Further,
1

T

∑
t

u2
O,txtx

′
t = E[u2

O,txtx
′
t] + op(1),

and the conclusion follows.

iii) Proof that I63 = op(1). We have

I63 =
1

T

∑
t

(
1

n

∑
i

τiIi,tg
(1)(αi)(γ̂i − γi)

)2

x4
t + op(1) (A34)

=
1

T

∑
t

(
1

n

∑
i

τiIi,tg
(1)(αi)Q

−1
x,i

1

T

∑
s

Ii,sxsεi,s

)2

x4
t + op(1), (A35)

since supi 1
χ
i ∥Q̂

−1
x,i−Q−1

x,i∥ = Op(T
−c) for some c > 0 under Assumption A.5 (see Gagliardini, Os-

sola, and Scaillet, 2016, proof of Lemma 3 (iii), Equation (38)). Now, from Assumptions A.1 and

A.2, we have 1
n

∑
i τiIi,tg

(1)(αi)Q
−1
x,i

1
T

∑
s Ii,sxsεi,s = E[τiIi,tg

(1)(αi)Q
−1
x,i

1
T

∑
s Ii,sxsεi,s] + op(1).

By applying the law of iterated expectations, the conclusion comes from

E
[
τiIi,tg

(1)(αi)Q
−1
x,i

1
T

∑
s Ii,sxsεi,s

]
= 0, since E[εi,s|xT , Ii,T , γ

∗
i ] = 0.

iv) Proof that I64 = op(1). We have

I64 =
2

n2

∑
i

∑
j

τiτjg
(1)(αi)g

(1)(αj)b
∗
j,O

1

T

∑
t

Ii,tIj,tε
∗
i,tuO,txtx

′
t + op(1) (A36)

=
2

n2

∑
i

∑
j

g(1)(αi)g
(1)(αj)b

∗
j,O

1

T

∑
t

E[ε∗i,tuO,txtx
′
t|γ∗

i , γ
∗
j ] + op(1). (A37)

The result follows from the law of iterated expectations, and Assumption A.1 implying E[ε∗i,t|ft, γ∗
i , γ

∗
j ] =

E[ε∗i,t|ft] = 0.
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v) Proof that I65 = op(1). We have

I65 = − 2

n2

∑
i

∑
j

τiτjg
(1)(αi)g

(1)(αj)(γ̂j − γj)
1

T

∑
t

Ii,tIj,tε
∗
i,tx

3
t + op(1) (A38)

= − 2

n2

∑
i

∑
j

g(1)(αi)g
(1)(αj)(γ̂j − γj)

1

T

∑
t

E[ε∗i,tx
3
t |γ∗

i , γ
∗
j ] + op(1). (A39)

The result follows from the law of iterated expectations, and Assumption A.1 implying E[ε∗i,t|ft, γ∗
i , γ

∗
j ] =

E[ε∗i,t|ft] = 0.

vi) Proof that I66 = op(1). We have

I66 = − 2

T

∑
t

(
1

n

∑
i

τiIi,tg
(1)(αi)b

∗
i,O

)(
1

n

∑
i

τiIi,tg
(1)(αi)(γ̂i − γi)

)
uO,tx

3
t + op(1) (A40)

= − 2

T

∑
t

E[g(1)(αi)b
∗
i,O]E

[
τiIi,tg

(1)(αi)Q
−1
x,i

1

T

∑
s

Ii,sxsεi,s

]
uO,tx

3
t + op(1). (A41)

The conclusion comes from E
[
τiIi,tg

(1)(αi)Q
−1
x,i

1
T

∑
s Ii,sxsεi,s

]
= 0, by applying the law of

iterated expectations and E[εi,s|xT , Ii,T , γ
∗
i ] = 0.

Finally, by using Q̂−1
x = Q−1

x + op(1) and E ′
1Q

−1
x E[g(1)(αi)b

∗
i,O]

2E[u2
O,txtx

′
t]Q

−1
x E1 = Vg, we

deduce that V̂g = Vg + op(1).

I.D. List of Terms for the Asymptotic Variance Estimators

To obtain the variance estimator for each characteristic in Proposition 1, we simply need to plug the

correct âi,t in Equation (A18). To mitigate the impact of outliers, we also winsorize the observed

values âi,t at 99%.

For the mean M1, we have

âi,t = E ′
1Q̂

−1
x,i ε̂i,txt. (A42)

For the standard deviation, we need to apply the delta method. Let us denote the derivative of

the standard deviation M2, w.r.t. E[αj
i ] by ∇jM2. We get ∇2M2 = (2M2)

−1, ∇1M2 = −M1/M2.

For the second moment E[α2
i ], we have âi,t = 2α̂iE

′
1Q̂

−1
x ε̂i,txt. We can build an estimate of the

variance of the standard deviation from a weighted sum of the contributions corresponding to the

8



moments of orders 2 and 1:

âi,t =
(
∇̂2M2 × 2α̂i + ∇̂1M2

)
E ′

1Q̂
−1
x,i ε̂i,txt, (A43)

where ∇̂2M2 is a plug-in estimate of the derivative of M2 w.r.t. E[α2
i ].

For the proportion P (a) at point a, we can approximate the Dirac function by a smooth bump,

namely a kernel function K, and take a vanishing bandwidth h. Hence, we can use

âi,t = −h−1K((α̂i − a)/h)E ′
1Q̂

−1
x,i ε̂i,txt, (A44)

where K is a kernel function such that K ≥ 0,
∫

K(u)du = 1,
∫

uK(u)du = 0, and
∫

u2K(u)du <

∞. In practice, we use a Gaussian kernel corresponding to the Gaussian density, and take the Sil-

verman rule of thumb for the bandwidth selection, namely h = 1.06M̂2n
−1/5
χ .

For the quantile Q(u) of level u, we can rely on the Bahadur (1966) representation, and use

âi,t = −h−1K((α̂i − Q̂(u))/h)ϕ̂ac(Q̂(u))−1E ′
1Q̂

−1
x,i ε̂i,txt. (A45)

Extending the above analysis to the characteristic differences in Proposition 2 is straightfor-

ward. For each estimated difference, we simply plug the appropriate âi,t redefined as âi,t =

âki,t − âli,t, where we obtain âki,t and âli,t for models k and l from the previous expressions in Equa-

tions (A42)-(A45).

I.E. Application of the Methodology to the Beta Component

Whereas our description of the methodology focuses on the distribution of the alpha component,

we can apply the same arguments to the distribution of the beta component. For each fund, we

simply need to replace the estimated alpha component âcki with the estimated beta component

b̂c
k

i = µ̂i − âcki , where µ̂i = 1
Ti

∑
t Ii,tri,t. Using this information, we can then compute the

different characteristics of the cross-sectional distribution (mean, standard deviation, proportion,

and quantile). We omit the detailed technical derivation of the asymptotic properties for the beta

component since it parallels closely the lines and arguments used in the previous subsections for

the alpha component. We can also adapt the regularity assumptions (Section I.A) to the case of the

9



beta component in a straightforward manner. The same remarks apply to the estimate b̂c
k

i,j of the

contribution associated with each factor j included in model k analysed the next section.

To compute the asymptotic variance terms for each distribution characteristic, we proceed as

follows. Since the residuals ε̂ki,t are centered (their time series average is zero), we get the identity

0 = 1
Ti

∑
t Ii,tri,t− âcki − b̂c

k

i , and thus b̂c
k

i =
1
Ti

∑
t Ii,tri,t− âcki . Hence, we can use this expression

to get b̂c
k

i − bcki = ( 1
Ti

∑
t Ii,tri,t−E[rit])− (âcki −acki ). We then compute the term âi,t to estimate

the asymptotic variance of each estimated characteristic (as per Equation (A18)).

We then use the following estimated quantities âi,t to build an estimate of the asymptotic vari-

ance based on the the average return and the pseudo-residuals ε̂ki,t inferred from the least-squares

regression:

âi,t = g(1)(b̂c
k

i )ri,t − E ′
1(Q̂

k
x)

−1g(1)(b̂c
k

i )ε̂
k
i,tx

k
t . (A46)

I.F. Application of the Methodology to the Factor Contribution

We can further apply our methodology to the cross-sectional distribution of the contribution as-

sociated with each factor j included in model k. For each fund, we simply need to replace the

estimated alpha component âcki with the estimated factor contribution b̂c
k

i,j = b̂ki,I,jλ̂
k
I,j , where λ̂I,j

is the empirical average of fk
I,t,j . Using this information, we can then compute the different char-

acteristics of the cross-sectional distribution (mean, standard deviation, proportion, and quantile).

To compute the asymptotic variance terms, we apply the delta method to obtain (b̂ki,I,j −

bki,I,j)λ
k
I,j + bki,I,j(λ̂

k
I,j − λk

I,j). We then compute the term âi,t to estimate the asymptotic vari-

ance of each estimated characteristic (as per Equation (A18)). This term depends on the residual

ε̂ki,t obtained from the regression of the fund return on the factors included in model k. Formally,

we have

âi,t = λ̂k
I,jE

′
j+1(Q̂

k
x)

−1g(1)(b̂c
k

i,j)ε̂
k
i,tx

k
t + b̂ki,I,jg

(1)(b̂c
k

i,j)f
k
I,t,j , (A47)

where Ej+1 is a vector with one in the j + 1 entry and zeros elsewhere.

II. Monte Carlo Analysis

II.A. Setup

We now conduct a Monte-Carlo analysis to evaluate the finite-sample properties of the estimated

characteristics of the alpha distribution when the model is misspecified. We consider a hypothetical
10



population of n funds with T return observations (n=1,000, 2,500, 5,000, 7,500, and 10,000; T=50,

100, 250, 500, and 1,000). Building on our example in Section II.C.3 of the paper, we model the

fund excess return as

ri,t = α∗
i + b∗i,mrm,t + b∗i,1f1,t + b∗i,2f2,t + b∗i,3f3,t + ε∗i,t , (A48)

where rm,t is the market excess return, f1,t, f2,t, and f3,t denote the excess returns of three un-

correlated factors that track alternative strategies, and ε∗i,t is the fund residual. For each fund, the

true alpha α∗
i is drawn from a normal N(µ∗

α, σ
∗2
α ), b∗i,m from a normal N(µ∗

b , σ
∗2
b ), and b∗i,j from

a normal N(µ∗
bj
, σ∗2

b ), where µ∗
bj

is positive to capture the exposure of hedge funds to alternative

strategies. We further assume that the first factor is a more important driver of hedge fund returns

by setting µ∗
b1
= µ∗

b and µ∗
b2
= µ∗

b3
= µ∗

b/3.

To construct the return time-series for each iteration, we need to draw values for the factors

and the fund residuals. We draw the market return rm,t from a normal N(λm, σ
2
m), and the returns

of the each alternative factor fj,t (j = 1, 2, 3) from a normal N(λj, σ
2
j ), where we set λj = λm and

σ2
j = σ2

m for simplicity. Finally, we draw ε∗i,t from a normal N(0, σ∗2
ε ).

We use our monthly dataset to calibrate the parameters of the model. We set λm and σ2
m equal

to the empirical average and variance of the equity market. We set µ∗
b and σ∗

b equal to the cross-

sectional average and volatility of the fund market betas. Finally, we calibrate µ∗
α, σ∗

α, and σ∗2
ε using

the values reported for mutual funds by Barras, Gagliardini, and Scaillet (2022).3 This calibration

yields the following values on a monthly basis: λ = 0.63%, σm = 4.36%, µ∗
b = 0.3, σ∗

b = 0.4,

σ∗
ε = 1.67%, µ∗

α = 0%, and σ∗
α = 0.13%.

In our simulations, we evaluate hedge fund performance using the CAPM. Given the above

assumptions, the CAPM is misspecified because it does not include the three alternative factors

(we have fI,t = rm,t and fO,t = (f1,t, f2,t, f3,t)
′). We conduct a total of S = 1,000 simulation

iterations. For each iteration s (s = 1, ..., S), we follow the following steps. First, we draw values

for α∗
i (s), b

∗
i,m(s), b

∗
i,1(s), b

∗
i,2(s), and b∗i,3(s) for each fund i (i = 1, ..., n). Second, we draw values

3The rationale for calibrating the values under the correct model using mutual fund data is that the issue of mis-
specification is far less severe than for hedge funds. We find that choosing alternative values does not change the
finite-sample properties of the estimators.
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for the factors

ft(s) = (rm,t(s), f1,t(s), f2,t(s), f3,t(s))
′ , (A49)

for t = 1, ..., T and the fund residuals ε∗i,t(s) for i = 1, ..., n and t = 1, ..., T . Third, we construct

the return time-series of each fund as

ri,t(s) = α∗
i (s) + b∗i,m(s)rm,t(s) + b∗i,1(s)f1,t(s) + b∗i,2(s)f2,t(s) + b∗i,3(s)f3,t(s) + ε∗i,t(s) . (A50)

Fourth, we estimate the CAPM alphas for each fund by regressing its return on the market:

α̂i(s) = E ′
1(Q̂x,i(s))

−1 1

T

∑
t

xt(s)ri,t(s) , (A51)

where E1 is a vector with one in the first position, xt(s) = (1, rm,t(s))
′, and Q̂x,i(s) =

1
T

∑
t xt(s)xt(s)

′.

Finally, we apply our approach to compute the distribution characteristics of the CAPM alpha dis-

tribution using as inputs the estimated alphas across funds α̂i(s) (i = 1, ..., n). We compute (i) the

cross-sectional mean and standard deviation, M̂1(s) and M̂2(s), (ii) the proportion of funds with

negative alphas P̂ (0)(s), and (iii) the quantiles at 10% and 90%, Q̂(0.1)(s) and Q̂(0.9)(s).4

For each estimated characteristic Ĉ ∈ {M̂1, M̂2, P̂ (0), Q̂(0.1), Q̂(0.9)}, we compute the mean

squared error (MSE) as

MSE(Ĉ) = bs2(Ĉ) + σ2(Ĉ) , (A52)

where bs(Ĉ) and σ2(Ĉ) denote the bias and variance of the estimator Ĉ. These terms are given by

bs(Ĉ) =
1

S

∑
s

Ĉ(s)− C , (A53)

σ2(Ĉ) =
1

S

∑
s

(
Ĉ(s)− 1

S

∑
s

Ĉ(s)

)2

, (A54)

where the population value C for each characteristic can be easily computed because the CAPM

alpha distribution is normally distributed.

4We do not examine the estimated proportion of positive alpha funds whose properties are identical to P̂ (0)(s).
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II.B. Main Results

In Table AI, we report the MSE, bias, and standard deviation of the five estimated characteristics

for the different combinations of T and n. We express the MSE in squared percent per month

(multiplied by 100). We express the bias and standard deviation in percent per year for the mean,

standard deviation, and quantiles, and in percent for the proportion of negative-alpha funds.

The simulation results are in line with the theoretical analysis in Proposition 2. First, the

convergence rate of each estimator depends on T and not on n. As shown in the rightmost columns,

the standard deviation decreases when the sample period increases. In contrast, increasing the

population size does not produce more precise estimators because the omitted factors f1,t, f2,t, and

f3,t have an impact on the estimated alphas of all funds simultaneously.

Second, the bias of each estimator vanishes relatively quickly as we increase the sample sizes n

and T . As a result, it is smaller in magnitude than the standard deviation. To illustrate, we consider

the proportion estimator under the scenario where n = 5,000 and T = 100, which provides a

conservative analysis of our actual sample after trimming (i.e., we have nχ =
∑n

i=1 1
χ
i = 5,231

and Tχ = 1
nχ

∑n
i=1 1

χ
i Ti = 125). Whereas the bias of the estimated proportion equals 2.9%, its

standard deviation is around two times larger (5.7%).

Consistent with these results, we find that the MSE of the estimators (i) decreases with the

number of observations T , and (ii) is primarily driven by the standard deviation, and not the bias.

This analysis departs significantly from the well-specified case examined by Barras, Gagliardini,

and Scaillet (2022). In their Monte-Carlo simulations reported in the appendix, we see that the

standard deviation of the estimators decreases with the number of funds n. In addition, the bias

dominates the standard deviation and thus requires an error-in-variable bias adjustment procedure.

Please insert Table AI here

III. Data Description

III.A. Construction of the Hedge Funds Dataset

We use monthly net-of-fee returns of individual funds (including dead funds) across four data

providers (Barclayhedge, HFR, Morningstar, and TASS). The initial sample shown in Panel A of

Table AII contains 65,142 funds that classify themselves across four investment categories: eq-

uity (long-short and market neutral), macro (global macro and CTA/managed futures), arbitrage
13



(relative value and event-driven), and other (multi-strategy and funds of funds). To map the spe-

cific investment styles used by each database into one of the four categories above, we apply the

mapping proposed by Joenväärä et al. (2021).5 We convert the fund returns into USD using the

exchange rates at the end of the month retrieved from Bloomberg and remove monthly returns

lower than -90% and above 300%.

We apply a set of filters to the initial population. For each database, we include the fund if it: (i)

has more than 12 observations (in order to compute return correlations), (ii) reports continuously

to the database, (iii) exhibits less than three consecutive zero returns, (iv) has a non-zero return

volatility, and (v) reports in USD, EUR, GBP, or JPY. As shown in Panel B, these filters reduce the

total size of the population to 40,169 funds.

Next, we remove the duplicates for each database. We use the fund manager ID to cluster

funds based on a string matching approach based on the Jaro-Winkler distance (see Joenväärä,

Kosowski, and Tolonen, 2016). Within each of these clusters, we identify funds with pairwise

return correlations above 0.99, and keep one fund using the following priority rule: (i) maximum

number of observations, (ii) largest average size, (iii) USD as reporting currency, and (iv) onshore.6

Panel C shows that removing the duplicates reduces the total number of funds to 30,734.

Finally, we remove the duplicates across all four databases. To this end, we compute the

pairwise correlations across all funds in the aggregated dataset to identify groups of funds with

correlations above 0.99. For each group, we then keep one fund using the following priority rule:

(i) maximum number of observations, (ii) largest average size, (iii) USD as reporting currency, and

(iv) onshore. As shown in Panel D, the final sample size includes a total of 21,293 funds.

Please insert Tables AII here

III.B. Data Sources for the Factors

In this section, we provide additional information on the factors included in the standard models.

We download the market, size, value, momentum, investment, and profitability factors from Ken

French’s website. For the bond factors, we use the FRED database. The term factor is defined as

5We also use an earlier version of their paper (Joenväärä, Kosowski, and Tolonen, 2016) to obtain the mapping for
long-short and market neutral funds.

6TASS does not provide information about the fund manager ID. To remove the duplicates in this database, we
therefore conduct a correlation analysis on the entire population to detect funds with correlations above 0.99.
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the monthly change in the 10-year treasury constant maturity yield, and the default factor is defined

as the monthly change in the Moody’s Baa yield less the 10-year Treasury constant maturity yield.

These two series capture changes in yields and thus provide an approximation of the return of

the term and default strategies (using the duration formula). Data on the bond, currency, and

commodity straddles are obtained from David Hsieh’s website.

Turning to the description of the alternative factors, we obtain the time series of the traded

liquidity factor from Lubos Pastor’s website. We obtain the return of the BAB strategy from the

website of AQR. For the variance factor, we do not directly observe quotes of traded variance

swaps on the S&P 500. Therefore, we use the FRED database to compute the difference between

the monthly sum of the daily squared S&P 500 returns and the squared VIX (at the start of the

month), divided by the squared VIX.7 In the presence of jumps, our computation provides an

approximation of the return of variance swaps (Martin, 2017). This approximation is quite accurate

given that our summary statistics are in line with those reported by Dew-Becker et al. (2017) using

actual swap quotes.8 We download the return of the time-series momentum strategy from the

website of AQR. For carry, we download the return time-series of the carry factors for equity,

bonds (level and slope), currency, and commodity from Ralph Koijen’s website. We then compute

the average return of these five strategies (scaled by their volatility) to obtain the carry factor.

IV. Additional Results

IV.A. Misspecification Diagnostic Criterion

We now provide additional information on the misspecification diagnostic criterion proposed by

Gagliardini, Ossola, and Scaillet (2019). This criterion, which is computed for each model k is

defined as

GOS = µk
1(V̂ )− g(nχ, T ) . (A55)

The first term µk
1 is the largest eigenvalue of the matrix V̂ = 1

nχT

∑
i 1

χ
i ε̄

k
i ε̄

k
′

i , where ε̄ki is of

size T and gathers the values ε̄ki,t/
√

1
T

∑
t (ε̄

k
i,t)

2 with ε̄i,t = Ii,tε̂
k
i,t. The second term g(nχ, T ) is

the penalization equal to nχ+T

nχT
ln(

nχT

nχ+T
). As n and T converge to infinity, GOS is positive with

7To compute the annualized statistics in Table II, we further divide the variance return by 10 to obtain similar
magnitude as the other factors.

8They find that the average monthly excess return of the one-month swap is equal to -25.7% over the period
1995-2013 (see their Table II). We find a monthly average of -31.7% over the period 1994-2020.
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probability one if the model is misspecified and omits a strong factor. We find that all the models

are misspecified because the GOS is always positive, both in the entire population and in each

investment category (equity, macro, and arbitrage).

IV.B. Model Comparisons

IV.B.1. Impact of Data Filters

In this section, we examine how different data filers impact the comparisons of models. We begin

our analysis by changing the minimum number of observations. Our initial sample is free of

survivorship bias because it includes both living and dead funds. However, our fund selection rule

requires that each fund has a minimum number of return observations Tmin to estimate its alpha.

Our results could therefore be subject to survivorship bias if negative-alpha funds disappear early

(i.e., the reported alphas could be too high). At the same time, choosing a small Tmin increases the

severity of the reverse survivorship bias (Linnainmaa, 2013), which arises because some positive-

alpha funds may perform unexpectedly poorly and disappear early (i.e., the reported alphas could

be too low). To examine these issues, we repeat our CAPM-based comparison using two alternative

thresholds for Tmin equal to 36 and 84.

Next, we use different filters to construct the hedge fund database. We apply the backfill

bias correction proposed by Joenväärä et al. (2021), which eliminates all the return observations

before the fund listing date. Whereas this alternative procedure provides a more stringent control

of the backfill bias, it potentially discards important information about the fund performance by

eliminating a large number of observations—in some cases, more than five years of data (see

Aggarwal and Jorion, 2010; Fung and Hsieh, 2009, for a discussion). We also apply the five filters

proposed by Straumann (2009) and applied by Almeida, Ardison, and Garcia (2020) to remove

errors in reported hedge fund returns. These filters are based on the number of returns equal to

zero, the proportion of unique values, the repetition of identical values, the occurrence of identical

sequences of returns, and the presence of rounding errors. Applying the filters of Straumann (2009)

leads to a reduction in the number of selected funds in the three main categories (equity, macro,

arbitrage) from 15,567 to 13,877.

For each of these changes, we formally compare the alpha distribution of each proposed model

with that of the CAPM. The results in Table AIII show that the CAPM-based comparisons remain

16



robust to all these changes. Whereas the standard and machine learning models are similar to

the CAPM, the JKKT and CP models produce sharp differences. These results are consistent

with intuition—changing the data filters affects all models uniformly. It therefore leaves their

differences unchanged.

Please insert Table AIII here

IV.B.2. Analysis of Investment Categories

We next perform the CAPM-based comparison for each investment category separately (equity,

macro, arbitrage). Consistent with our main results, Table AIV reveals almost no statistically

significant differences in characteristics between the standard and machine learning models and

the CAPM. Whereas both the JKKT and CP models shift the alpha distribution towards zero, the

magnitude of this shift is different. The CP model produces a statistically significant reduction in

average alphas for all three categories. In contrast, the reduction obtained with the JKKT model is

not statistically significant at conventional levels for equity and arbitrage funds.

Please insert Table AIV here

IV.C. Impact of Factor Trading Costs

In our baseline comparisons, we do not include the costs of trading the five alternative factors. To

address this issue, we approximate these costs using estimates from previous studies. The costs

of trading illiquidity, carry, and TS momentum are modest because these strategies are rebalanced

annually or implemented in futures markets. For illiquidity, we use a value of 4.5 bps equal to

the average cost estimate for size and value (Novy-Marx and Velikov, 2016). For carry and TS

momentum, we choose a value of 9.7 bps, which is equal to the average estimated costs of rolling

futures positions (Bollerslev et al., 2018). In contrast, the costs of trading the BAB and variance

factors are significantly higher. For BAB, we take the estimate of Novy-Marx and Velikov (2022)

equal to 60 bps. For variance, we use a value of 75 bps, which corresponds to the costs of trading

variance swaps (Dew-Becker et al., 2017).

Consistent with intuition, we find in Table AV that accounting for trading costs increases the

alpha components. However, this increase is generally modest—the average alphas under the

JKKT and CP models are equal to 1.3% and 1.0% per year (versus 1.0% and 0.4% without trading
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costs). As a result, these two models still produce alpha distributions that depart significantly from

the CAPM.

Please insert Table AV here

IV.D. Return Decomposition for Multi-Strategy Funds and Funds of Funds

We estimate the distributions of the alpha and beta components for two additional categories—

multi-strategy funds and funds of funds. Consistent with our baseline results, Table AVI reveals

that the JKKT and CP model produces a sizable reduction in the alpha component and a sizable

increase in the beta component. In both categories, the decrease in fund alphas is particularly

strong under the CP model. For multi-strategy funds, the average alpha is 0.1% and only 50.7%

of the funds deliver positive alphas. Among funds of funds, the performance is even lower (-2.5%

for the average alpha and 23.1% for the proportion of positive-alpha funds). Whereas it is well

known that the alpha of these funds is hampered by their additional fees (e.g., Agarwal, Mullally,

and Naik, 2015), we find that the underperformance is worse than previously documented.

Please insert Table AVI here

IV.E. Alternative Strategies Within Investment Categories

We deepen the analysis of the economic importance of the alternative factors by splitting each

investment category into two subcategories. For the equity category, we have long-short and market

neutral funds. For the macro category, we have macro and CTA/managed futures funds. For the

arbitrage category, we have relative value and event-driven funds. For each subcategory, we apply

our approach to estimate the distribution of contributions associated with each factor.

Consistent with our baseline results, Table AVII provides substantial evidence that hedge funds

follow alternative strategies to boost their returns (e.g., Carhart et al., 2014). Across the six cate-

gories and the five alternative factors, the proportion of funds with positive betas is above 50% in

all but seven cases. We also confirm that carry is an important driver of hedge fund returns—it is

among the three most relevant alternative factors for each subcategory.

The variation in factor loadings across subcategories is largely in line with economic intuition.

CTA funds, which are known to exploit market trends, load extensively on TS momentum—its

average contribution to the beta component reaches 3.7% per year. The BAB factor is particularly
18



important among market neutral funds as it allows them to take advantage of leverage flexibility,

while maintaining a neutral exposure to the market and various industries (see Pedersen, 2015, ch.

9). Long-short equity funds are exposed to the variance factor, possibly because it reduces the

effectiveness of their hedging strategies (Buraschi, Kosowski, and Trojani, 2014). This is also the

case for relative value funds, which commonly use option-based strategies (Duarte, Longstaff, and

Yu, 2006), and for event-driven funds, which take short put positions when they engage in merger

arbitrage (Mitchell and Pulvino, 2001).

Please insert Table AVII here

IV.F. Characteristics of the Worst and Best Funds

In this section, we examine the characteristics of the best and worst funds under the CP model.

To this end, we compute the alpha component of all funds in the population and sort them into

quantiles (5%, 10%, 25%, 75%, 90%, 95%). We then measure the average characteristics of

each group along several dimensions including (i) the investment style composition, (ii) the beta

component due to each factor included in the CP model, (iii) measures of management incentives,

and (iv) measures of managerial discretion.

We find in Table AVIII that the worst funds load heavily on the factors. For instance, the

average beta components of variance and TS momentum are equal to 8.8% and 4.7% per year in

the bottom quantile (versus 0.67% and -5.25% for the top quantile). The best funds follow equity

strategies more extensively and macro strategies less extensively than the worst funds. Finally, we

find that the vast majority of the best funds use high watermark provisions and impose lockup and

notice periods more frequently than the worst funds.

Please insert Table AVIII here
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TABLE AI. Finite-Sample Properties of the Estimated Characteristics of the Alpha Distribution
This table reports the Mean Squared Error (MSE), bias, and standard deviation of the different characteristic
estimators under the CAPM for different combinations for the numbers of funds n and return observations
T . In the simulations, the average fund returns are explained by four factors (the market and three alternative
factors 1, 2, and 3). The CAPM is misspecified because it omits factors 1, 2, and 3. We examine a total of
five characteristics, which are the mean, standard deviation, proportions of funds with negative alphas, and
quantiles at 10% and 90%. The bias and standard deviation are expressed in percent per year for the mean,
standard deviation, and quantiles, and in percent for the proportion of negative-alpha funds.

n\T 50 100 250 500 1000 n\T 50 100 250 500 1000 n\T 50 100 250 500 1000
1000 3.93 2.12 0.95 0.43 0.25 1000 0.13 -0.01 0.02 -0.02 0.02 1000 2.38 1.75 1.17 0.79 0.60
2500 4.11 2.19 0.87 0.45 0.22 2500 -0.01 -0.02 -0.04 0.02 0.04 2500 2.43 1.78 1.12 0.80 0.56
5000 4.24 2.03 0.94 0.45 0.24 5000 -0.01 -0.02 0.03 0.04 0.04 5000 2.47 1.71 1.16 0.80 0.59
7500 4.73 2.12 0.94 0.45 0.23 7500 0.02 0.06 0.02 0.02 0.04 7500 2.61 1.75 1.16 0.81 0.58

10000 4.39 2.31 0.81 0.42 0.23 10000 -0.13 -0.05 -0.04 0.03 0.01 10000 2.51 1.82 1.08 0.77 0.57

n\T 50 100 250 500 1000 n\T 50 100 250 500 1000 n\T 50 100 250 500 1000
1000 5.26 2.03 0.77 0.34 0.18 1000 2.00 1.00 0.45 0.19 0.11 1000 1.89 1.39 0.95 0.67 0.50
2500 4.97 2.08 0.67 0.34 0.18 2500 1.90 0.97 0.38 0.23 0.14 2500 1.88 1.44 0.91 0.66 0.48
5000 5.19 2.08 0.79 0.34 0.17 5000 1.96 1.01 0.45 0.22 0.12 5000 1.90 1.41 0.97 0.66 0.49
7500 5.42 2.17 0.77 0.34 0.18 7500 1.96 1.08 0.44 0.20 0.14 7500 1.99 1.40 0.96 0.67 0.48

10000 4.95 2.11 0.64 0.33 0.17 10000 1.83 0.98 0.39 0.22 0.12 10000 1.94 1.44 0.87 0.66 0.48

n\T 50 100 250 500 1000 n\T 50 100 250 500 1000 n\T 50 100 250 500 1000
1000 0.79 0.45 0.18 0.09 0.05 1000 4.38 2.90 1.31 0.70 0.23 1000 7.75 6.04 4.04 2.85 2.26
2500 0.92 0.46 0.17 0.08 0.04 2500 4.93 2.94 1.40 0.63 0.24 2500 8.22 6.07 3.86 2.69 1.93
5000 0.89 0.42 0.17 0.07 0.04 5000 5.01 2.95 1.28 0.53 0.22 5000 8.03 5.76 3.90 2.63 1.93
7500 1.00 0.45 0.17 0.07 0.04 7500 5.07 2.80 1.32 0.58 0.25 7500 8.60 6.07 3.91 2.65 1.91

10000 0.99 0.50 0.16 0.06 0.04 10000 5.35 3.14 1.42 0.58 0.34 10000 8.36 6.32 3.75 2.47 1.86

n\T 50 100 250 500 1000 n\T 50 100 250 500 1000 n\T 50 100 250 500 1000
1000 6.43 2.26 0.61 0.30 0.20 1000 -2.42 -1.28 -0.53 -0.25 -0.11 1000 1.85 1.27 0.77 0.60 0.52
2500 6.50 2.14 0.59 0.22 0.13 2500 -2.45 -1.26 -0.53 -0.26 -0.15 2500 1.84 1.22 0.75 0.50 0.40
5000 6.82 2.13 0.56 0.20 0.10 5000 -2.53 -1.31 -0.55 -0.25 -0.11 5000 1.86 1.16 0.71 0.47 0.36
7500 6.67 2.22 0.54 0.19 0.10 7500 -2.49 -1.33 -0.54 -0.24 -0.14 7500 1.85 1.20 0.70 0.46 0.36

10000 6.70 2.17 0.51 0.18 0.09 10000 -2.47 -1.31 -0.54 -0.25 -0.14 10000 1.88 1.19 0.67 0.45 0.33

n\T 50 100 250 500 1000 n\T 50 100 250 500 1000 n\T 50 100 250 500 1000
1000 18.60 8.70 3.89 1.76 0.98 1000 2.67 1.25 0.57 0.21 0.15 1000 4.43 3.31 2.30 1.58 1.18
2500 18.12 9.18 3.38 1.81 0.93 2500 2.44 1.21 0.44 0.31 0.20 2500 4.49 3.43 2.16 1.59 1.14
5000 18.72 8.77 3.94 1.83 0.96 5000 2.50 1.26 0.61 0.32 0.19 5000 4.55 3.32 2.30 1.59 1.16
7500 20.60 9.10 3.87 1.84 0.96 7500 2.53 1.43 0.58 0.28 0.21 7500 4.82 3.33 2.29 1.60 1.16

10000 18.32 9.35 3.20 1.75 0.94 10000 2.22 1.21 0.46 0.31 0.16 10000 4.63 3.46 2.10 1.56 1.15

Mean (True Value 3.75%)

MSE (x100) Bias (Annualized) Standard Deviation (Annualized)

90th Percentile (True Value -13.16%)
MSE (x100) Bias (Annualized) Standard Deviation (Annualized)

Probability < 0 (True Value 30.5%)
MSE (x100) Bias (Annualized) Standard Deviation (Annualized)

10th Percentile (True Value -5.67%)

MSE (x100) Bias (Annualized) Standard Deviation (Annualized)

Volatility (True Value 7.35%)
MSE (x100) Bias (Annualized) Standard Deviation (Annualized)
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TABLE AII. Construction of the Hedge Fund Dataset
This table summarizes the different steps for forming the consolidated hedge fund dataset. Panel A shows
the total number of funds in each database. Panel B provides the same information after imposing the
filters on each database. Panel C provides the same information after removing the duplicates within each
database. Panel D provides the same information after removing the duplicates across all databases.
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TABLE AIII. Model Comparisons Relative to the CAPM – Impact of Data Filters
The table measures the degree of misspecification of the standard models (Carhart, Five-Factor, Fung-Hsieh,
AMP), the two machine learning models (KNS1, KNS2), and the two alternative models (JKKT and CP)
using different data filters. Panel A examines whether the distribution of the alpha components of each
model departs from the one obtained with the CAPM after imposing a minimum number of 36 observations.
Lack of differences signals that the model is no better than the CAPM at capturing hedge fund strategies.
We report the differences in the annualized mean and standard deviation, the proportions of funds with
negative and positive alphas, and the annualized quantiles at 10% and 90%. Figures in parentheses denote
the standard deviation of the estimated differences. ∗∗∗, ∗∗, ∗ indicate that the null hypothesis of equal
characteristics is rejected at the 1%, 5%, and 10% levels. Panels B to D repeat the analysis after imposing
(i) a minimum of 84 observations,(ii) a more stringent backfill bias procedure, and (iii) filters to eliminate
reporting errors.

Panel A: Minimum Number of 36 Observations
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart -0.35 (0.44) -0.33 (0.31) 2.00 (2.46) -2.00 (2.46) 0.00 (0.41) -0.46 (0.32)
Five-Factor -0.17 (0.50) 0.04 (0.33) 1.95 (2.89) -1.95 (2.89) -0.15 (0.50) -0.21 (0.39)
Fung-Hsieh 0.18 (0.63) -0.12 (0.35) -0.38 (3.78) 0.38 (3.78) 0.38 (0.57) 0.06 (0.47)
AMP -0.26 (0.45) -0.01 (0.35) 1.95 (2.41) -1.95 (2.41) -0.24 (0.38) -0.22 (0.43)

KNS1 0.06 (0.42) 0.69∗∗ (0.29) 0.89 (1.84) -0.89 (1.84) -0.41 (0.29) 0.56 (0.37)
KNS2 0.55 (0.53) 0.51∗ (0.30) -1.67 (2.68) 1.67 (2.68) 0.32 (0.42) 0.98∗∗ (0.46)

JKKT -1.77∗∗ (0.69) 0.26 (0.49) 12.51∗∗∗ (3.87) -12.51∗∗∗ (3.87) -2.25∗∗∗ (0.67) -1.75∗∗∗ (0.67)
CP -2.42∗∗∗ (0.78) 2.47∗∗∗ (0.49) 16.86∗∗∗ (4.06) -16.86∗∗∗ (4.06) -4.34∗∗∗ (0.74) -0.89 (0.73)

Panel B: Minimum Number of 84 Observations
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart -0.32 (0.36) -0.17 (0.28) 1.81 (2.43) -1.81 (2.43) -0.15 (0.39) -0.72∗∗ (0.35)
Five-Factor -0.28 (0.42) 0.10 (0.31) 2.37 (2.94) -2.37 (2.94) -0.15 (0.51) -0.34 (0.42)
Fung-Hsieh 0.08 (0.55) -0.10 (0.34) 0.22 (3.70) -0.22 (3.70) 0.11 (0.59) -0.19 (0.49)
AMP -0.40 (0.41) 0.03 (0.33) 2.62 (2.41) -2.62 (2.41) -0.28 (0.38) -0.44 (0.52)

KNS1 -0.17 (0.34) 0.18 (0.26) 2.09 (1.70) -2.09 (1.70) -0.39 (0.30) 0.02 (0.39)
KNS2 0.61 (0.47) 0.07 (0.29) -2.90 (2.54) 2.90 (2.54) 0.48 (0.40) 0.54 (0.51)

JKKT -2.08∗∗∗ (0.64) 0.39 (0.48) 15.91∗∗∗ (4.00) -15.91∗∗∗ (4.00) -2.72∗∗∗ (0.67) -2.24∗∗∗ (0.70)
CP -2.64∗∗∗ (0.73) 1.89∗∗∗ (0.46) 22.03∗∗∗ (4.38) -22.03∗∗∗ (4.38) -4.20∗∗∗ (0.74) -1.71∗∗ (0.81)

Panel C: Stringent Backfill Bias Procedure
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart -0.29 (0.42) -0.16 (0.35) 2.18 (2.70) -2.18 (2.70) 0.13 (0.48) -0.76∗∗ (0.34)
Five-Factor -0.14 (0.48) -0.02 (0.38) 2.01 (3.25) -2.01 (3.25) 0.09 (0.58) -0.26 (0.37)
Fung-Hsieh 0.10 (0.62) -0.26 (0.40) -0.56 (4.14) 0.56 (4.14) 0.45 (0.65) -0.32 (0.50)
AMP -0.26 (0.44) 0.07 (0.41) 2.07 (2.53) -2.07 (2.53) -0.03 (0.45) -0.46 (0.47)

KNS1 0.03 (0.39) 0.41 (0.32) 1.21 (1.84) -1.21 (1.84) -0.21 (0.34) 0.21 (0.36)
KNS2 0.61 (0.51) 0.26 (0.34) -2.87 (2.64) 2.87 (2.64) 0.74 (0.49) 0.56 (0.49)

JKKT -1.91∗∗∗ (0.69) 0.37 (0.54) 14.05∗∗∗ (4.19) -14.05∗∗∗ (4.19) -2.17∗∗∗ (0.72) -2.13∗∗∗ (0.71)
CP -2.54∗∗∗ (0.75) 2.27∗∗∗ (0.51) 19.21∗∗∗ (4.26) -19.21∗∗∗ (4.26) -3.99∗∗∗ (0.77) -1.52∗∗ (0.75)

Panel D: Filters for Removing Reporting Errors
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart -0.30 (0.39) -0.21 (0.31) 2.30 (2.50) -2.30 (2.50) -0.13 (0.40) -0.58∗ (0.33)
Five-Factor -0.23 (0.46) -0.03 (0.34) 2.54 (2.97) -2.54 (2.97) -0.17 (0.52) -0.32 (0.39)
Fung-Hsieh 0.06 (0.60) -0.16 (0.35) 0.59 (3.85) -0.59 (3.85) 0.20 (0.58) -0.15 (0.50)
AMP -0.30 (0.42) 0.06 (0.38) 2.45 (2.52) -2.45 (2.52) -0.30 (0.36) -0.25 (0.48)

KNS1 -0.04 (0.39) 0.38 (0.29) 1.36 (1.86) -1.36 (1.86) -0.37 (0.30) 0.18 (0.38)
KNS2 0.60 (0.50) 0.14 (0.33) -2.38 (2.69) 2.38 (2.69) 0.47 (0.44) 0.61 (0.48)

JKKT -1.94∗∗∗ (0.68) 0.29 (0.51) 14.77∗∗∗ (4.06) -14.77∗∗∗ (4.06) -2.46∗∗∗ (0.68) -2.03∗∗∗ (0.72)
CP -2.56∗∗∗ (0.76) 1.84∗∗∗ (0.49) 20.39∗∗∗ (4.41) -20.39∗∗∗ (4.41) -4.36∗∗∗ (0.73) -1.39∗ (0.78)
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TABLE AIV. Model Comparisons Relative to the CAPM – Investment Categories
The table measures the degree of misspecification of the standard models (Carhart, Five-Factor, Fung-Hsieh,
AMP), the two machine learning models (KNS1, KNS2), and the two alternative models (JKKT and CP)
across investment styles. Panel A examines whether the distribution of the alpha components of each model
departs from the one obtained with the CAPM among equity funds. Lack of differences signals that the
model is no better than the CAPM at capturing hedge fund strategies. We report the differences in the
annualized mean and standard deviation, the proportions of funds with negative and positive alphas, and the
annualized quantiles at 10% and 90%. Figures in parentheses denote the standard deviation of the estimated
differences. ∗∗∗, ∗∗, ∗ indicate that the null hypothesis of equal characteristics is rejected at the 1%, 5%, and
10% levels. Panels B and C repeat the analysis for macro and arbitrage funds.

Panel A: Equity Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart -0.25 (0.62) -0.39 (0.36) 3.10 (3.12) -3.10 (3.12) 0.21 (0.50) -1.04∗ (0.61)
Five-Factor 0.09 (0.68) 0.07 (0.37) 2.45 (3.80) -2.45 (3.80) 0.27 (0.61) -0.22 (0.76)
Fung-Hsieh 0.08 (0.74) -0.30 (0.33) 0.75 (4.20) -0.75 (4.20) 0.56 (0.65) -0.16 (0.69)
AMP -0.09 (0.48) 0.34 (0.41) 4.35∗ (2.43) -4.35∗ (2.43) -0.18 (0.43) -0.37 (0.58)

KNS1 -0.16 (0.46) 0.27 (0.31) 2.60 (2.39) -2.60 (2.39) -0.52 (0.39) -0.15 (0.46)
KNS2 0.95 (0.64) 0.35 (0.38) -2.50 (3.44) 2.50 (3.44) 0.83 (0.51) 1.01 (0.62)

JKKT -1.28 (0.79) -0.11 (0.43) 12.74∗∗∗ (4.81) -12.74∗∗∗ (4.81) -1.22∗ (0.70) -1.77∗∗ (0.81)
CP -1.83∗ (0.94) 1.99∗∗∗ (0.56) 17.14∗∗∗ (5.15) -17.14∗∗∗ (5.15) -3.32∗∗∗ (0.85) -1.01 (1.11)

Panel B: Macro Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart -0.80 (0.55) -0.01 (0.39) 6.59∗∗∗ (2.44) -6.59∗∗∗ (2.44) -0.51 (0.44) -0.91 (0.69)
Five-Factor -0.93 (0.59) 0.13 (0.43) 7.83∗∗ (3.53) -7.83∗∗ (3.53) -0.64 (0.56) -1.09 (0.79)
Fung-Hsieh -0.32 (1.04) -0.02 (0.52) 4.60 (3.81) -4.60 (3.81) -0.16 (0.61) -0.20 (1.49)
AMP -1.04 (0.82) 0.04 (0.60) 5.22 (4.54) -5.22 (4.54) -0.67 (0.48) -1.15 (1.19)

KNS1 0.26 (0.77) 0.86∗ (0.45) 2.49 (2.88) -2.49 (2.88) -0.07 (0.39) 0.69 (0.94)
KNS2 0.02 (0.78) 0.21 (0.42) 1.93 (3.19) -1.93 (3.19) 0.25 (0.48) 0.23 (1.07)

JKKT -3.85∗∗∗ (1.25) 1.10 (1.06) 25.79∗∗∗ (6.24) -25.79∗∗∗ (6.24) -4.98∗∗∗ (1.22) -3.71∗∗ (1.87)
CP -4.10∗∗∗ (1.37) 3.00∗∗∗ (1.08) 26.10∗∗∗ (6.04) -26.10∗∗∗ (6.04) -6.64∗∗∗ (1.44) -2.15 (1.83)

Panel C: Arbitrage Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Carhart 0.10 (0.57) -0.12 (0.31) -3.02 (5.07) 3.02 (5.07) 0.37 (0.71) -0.27 (0.27)
Five-Factor 0.15 (0.68) -0.13 (0.34) -3.02 (5.91) 3.02 (5.91) 0.44 (0.83) -0.29 (0.39)
Fung-Hsieh 0.46 (1.01) -0.28 (0.36) -3.82 (8.21) 3.82 (8.21) 0.72 (1.13) 0.06 (0.53)
AMP 0.12 (0.47) -0.29 (0.29) -2.47 (4.11) 2.47 (4.11) 0.55 (0.70) -0.19 (0.26)

KNS1 -0.11 (0.47) -0.01 (0.22) -0.56 (3.61) 0.56 (3.61) -0.11 (0.55) -0.15 (0.26)
KNS2 0.82 (0.52) 0.05 (0.24) -6.79 (4.24) 6.79 (4.24) 0.82 (0.59) 0.58∗ (0.32)

JKKT -0.83 (0.79) 0.09 (0.29) 6.29 (5.67) -6.29 (5.67) -0.88 (0.86) -1.07∗∗ (0.48)
CP -1.94∗∗ (0.86) 1.20∗∗∗ (0.31) 16.90∗∗∗ (6.05) -16.90∗∗∗ (6.05) -2.70∗∗∗ (0.92) -1.05∗ (0.58)
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TABLE AV. Impact of Factor Trading Costs
This table measures the impact of the costs of trading the alternative factors (illiquidity, BAB, variance, carry,
TS momentum). Panel A examines whether the distribution of the alpha components of each alternative
model (JKKT and CP) departs from the one obtained with the CAPM. Lack of differences signals that the
model is no better than the CAPM at capturing alternative hedge fund strategies. We report the differences
in the annualized mean and standard deviation, the proportions of funds with negative and positive alphas,
and the annualized quantiles at 10% and 90%. Figures in parentheses denote the standard deviation of the
estimated differences. ∗∗∗, ∗∗, ∗ indicate that the null hypothesis of equal characteristics is rejected at the
1%, 5%, and 10% levels. Panels B and C report the characteristics of the cross-sectional distribution of
the alpha and beta components among models. We report the annualized mean and standard deviation,
the proportions of funds with negative and positive alphas, and the annualized quantiles at 10% and 90%.
Figures in parentheses denote the standard deviation of the estimated characteristics.

Panel A: Comparison With the CAPM
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

JKKT -1.59∗∗ (0.70) 0.23 (0.53) 11.11∗∗ (4.44) -11.11∗∗ (4.44) -1.84∗∗∗ (0.70) -1.86∗∗∗ (0.67)
CP -1.96∗∗ (0.77) 1.79∗∗∗ (0.52) 14.57∗∗∗ (4.58) -14.57∗∗∗ (4.58) -3.26∗∗∗ (0.77) -1.13 (0.75)

Panel B: Distribution of the Alpha Components
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

CAPM 2.93 (0.94) 7.01 (0.48) 27.15 (5.49) 72.85 (5.49) -3.95 (0.67) 10.06 (0.67)
JKKT 1.34 (0.72) 7.24 (0.29) 38.25 (4.58) 61.75 (4.58) -5.79 (0.58) 8.19 (0.40)
CP 0.97 (0.87) 8.80 (0.33) 41.71 (5.26) 58.29 (5.26) -7.21 (0.74) 8.93 (0.51)

Panel C: Distribution of the Beta Components
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

CAPM 2.62 (0.83) 4.37 (0.67) 22.54 (9.57) 77.46 (9.57) -0.71 (0.61) 8.01 (0.73)
JKKT 4.22 (0.83) 5.71 (0.41) 14.83 (2.88) 85.17 (2.88) -0.58 (0.31) 10.78 (0.69)
CP 4.59 (0.94) 7.20 (0.47) 16.44 (2.71) 83.56 (2.71) -1.18 (0.36) 11.91 (1.00)
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TABLE AVI. Decomposition of Average Fund Returns – Multi-Strategy and Fund of Funds
Panel A shows the decomposition of average fund returns under the CAPM and the two alternative models
(JKKT and CP) across investment multi-strategy funds. We report the characteristics of the cross-sectional
distribution of the alpha and beta components for equity funds. We report the annualized mean and standard
deviation, the proportions of funds with negative and positive alphas, and the annualized quantiles at 10%
and 90%. Figures in parentheses denote the standard deviation of the estimated characteristics. Panel B
repeats the analysis for funds of funds.

Panel A: Multi-Strategy
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Distribution of the Alpha Components
CAPM 2.48 (1.09) 6.68 (0.54) 32.23 (7.02) 67.77 (7.02) -4.29 (1.40) 9.15 (1.00)
JKKT 0.49 (0.83) 7.41 (0.53) 46.45 (4.67) 53.55 (4.67) -6.83 (1.23) 8.01 (0.80)
CP -0.11 (0.87) 7.79 (0.60) 49.29 (4.83) 50.71 (4.83) -8.06 (1.22) 7.66 (0.80)

Distribution of the Beta Components
CAPM 1.90 ( 0.81) 3.44 ( 0.44) 19.43 (13.61) 80.57 (13.61) -0.37 (0.76) 4.74 (1.14)
JKKT 3.89 (0.74) 4.65 (0.40) 10.43 (4.04) 89.57 (4.04) 0.00 (0.51) 8.13 (0.97)
CP 4.49 (0.80) 4.68 (0.52) 8.53 (3.46) 91.47 (3.46) 0.19 (0.55) 9.65 (1.09)

Panel B: Fund of Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Distribution of the Alpha Components
CAPM 1.22 (1.39) 4.16 (0.26) 31.82 (16.99) 68.18 (16.99) -2.76 (1.23) 4.93 (1.11)
JKKT -1.28 (1.03) 4.42 (0.17) 66.08 (12.46) 33.92 (12.46) -5.39 (0.95) 2.74 (0.76)
CP -2.46 (1.08) 5.41 (0.28) 76.88 (7.96) 23.12 (7.96) -7.18 (1.18) 2.29 (0.70)

Distribution of the Beta Components
CAPM 1.75 (0.99) 2.56 (0.34) 14.15 (22.75) 85.85 (22.75) -0.14 (1.01) 4.37 (0.80)
JKKT 4.25 (0.94) 3.40 (0.18) 3.24 (1.28) 96.76 (1.28) 1.35 (0.67) 7.67 (0.84)
CP 5.42 (1.04) 4.49 (0.26) 3.52 (1.04) 96.48 (1.04) 1.66 (0.68) 9.49 (1.14)
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TABLE AVII. Decomposition of the Beta Components – Investment Subcategories
This table shows the decomposition of the beta components obtained with the CP model. Panel A reports
the characteristics of the cross-sectional distribution of the beta components associated with each factor
(market, size, illiquidity, BAB, variance, carry, TS momentum) among long-short equity funds. For each
fund, the beta component associated with a given factor is defined as the product between the fund beta and
the factor premium. We report the annualized mean and standard deviation, the proportions of funds with
negative and positive contributions, and the annualized quantiles at 10% and 90%. Figures in parentheses
denote the standard deviation of the estimated characteristics. Panel B to F repeat the analysis for market
neutral, global macro, CTA/managed futures, relative value, and event-driven funds.

Panel A: Long-Short
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 4.10 (2.30) 4.62 (1.14) 11.51 (8.94) 88.49 (8.94) -0.10 (0.87) 9.64 (3.33)
Size 0.47 (0.63) 1.39 (0.43) 30.94 (12.81) 69.06 (12.81) -0.35 (0.14) 1.77 (1.15)
Illiquidity 0.15 (0.11) 1.56 (0.37) 43.93 (2.68) 56.07 (2.68) -0.90 (0.26) 1.37 (0.51)
Betting Against Beta 0.22 (0.19) 2.79 (0.83) 39.32 (3.83) 60.68 (3.83) -1.92 (0.62) 2.63 (1.07)
Variance 0.77 (0.28) 5.25 (0.73) 36.92 (2.36) 63.08 (2.36) -3.14 (0.52) 4.64 (0.89)
Carry 0.34 (0.18) 2.94 (0.49) 45.24 (2.87) 54.76 (2.87) -2.23 (0.44) 2.84 (0.54)
Time-Series Momentum 0.51 (0.17) 2.99 (0.58) 44.10 (2.11) 55.90 (2.11) -1.66 (0.47) 3.19 (0.77)

Panel B: Market Neutral Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 0.63 (0.34) 2.06 (0.55) 36.18 (4.04) 63.82 (4.04) -0.73 (0.06) 2.21 (0.81)
Size 0.05 (0.11) 0.49 (0.21) 45.12 (6.31) 54.88 (6.31) -0.35 (0.13) 0.53 (0.24)
Illiquidity 0.06 (0.05) 0.74 (0.27) 45.53 (3.44) 54.47 (3.44) -0.67 (0.29) 0.73 (0.33)
Betting Against Beta 0.48 (0.31) 1.42 (0.53) 32.52 (5.10) 67.48 (5.10) -0.53 (0.06) 1.96 (0.80)
Variance -0.08 (0.18) 3.32 (0.49) 50.41 (2.31) 49.59 (2.31) -3.04 (0.57) 2.16 (0.33)
Carry 0.35 (0.14) 1.52 (0.31) 41.46 (2.33) 58.54 (2.33) -1.36 (0.28) 1.96 (0.47)
Time-Series Momentum 0.58 (0.21) 1.24 (0.35) 27.64 (3.30) 72.36 (3.30) -0.61 (0.13) 2.13 (0.58)

Panel C: Macro Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 1.97 (0.99) 3.87 (1.24) 27.58 (5.24) 72.42 (5.24) -0.97 (0.13) 6.79 (2.31)
Size 0.08 (0.04) 0.72 (0.22) 49.85 (5.26) 50.15 (5.26) -0.44 (0.22) 0.54 (0.20)
Illiquidity -0.01 (0.07) 0.85 (0.28) 50.29 (3.22) 49.71 (3.22) -0.71 (0.34) 0.71 (0.29)
Betting Against Beta 0.29 (0.21) 1.89 (0.63) 38.20 (4.36) 61.80 (4.36) -1.19 (0.40) 1.91 (0.78)
Variance 0.56 (0.27) 5.68 (0.73) 44.10 (2.60) 55.90 (2.60) -3.83 (0.70) 4.14 (0.69)
Carry 0.38 (0.23) 2.54 (0.54) 39.23 (2.89) 60.77 (2.89) -2.24 (0.51) 3.20 (0.67)
Time-Series Momentum 2.29 (0.82) 4.50 (1.08) 26.55 (2.87) 73.45 (2.87) -0.67 (0.08) 7.85 (1.91)

Panel D: CTA/Managed Futures Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 0.60 (0.37) 3.03 (0.92) 40.60 (3.95) 59.40 (3.95) -1.77 (0.54) 3.22 (1.30)
Size 0.07 (0.14) 0.91 (0.19) 51.13 (11.18) 48.87 (11.18) -0.42 (0.26) 0.73 (0.18)
Illiquidity -0.13 (0.12) 1.49 (0.36) 56.82 (3.54) 43.18 (3.54) -1.06 (0.37) 0.79 (0.27)
Betting Against Beta 0.14 (0.18) 2.06 (0.66) 42.75 (4.81) 57.25 (4.81) -1.35 (0.45) 1.81 (0.73)
Variance -0.02 (0.45) 7.13 (0.98) 53.28 (3.46) 46.72 (3.46) -5.30 (1.00) 4.72 (0.71)
Carry 0.42 (0.30) 2.95 (0.60) 43.82 (4.08) 56.18 (4.08) -2.51 (0.65) 3.26 (0.66)
Time-Series Momentum 3.70 (1.32) 6.56 (1.34) 22.88 (3.73) 77.12 (3.73) -0.79 (0.21) 11.31 (2.84)

Panel E: Relative Value Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 1.49 (0.76) 2.41 (0.72) 19.94 (5.58) 80.06 (5.58) -0.28 (0.15) 3.97 (1.34)
Size 0.10 (0.11) 0.49 (0.15) 36.93 (4.35) 63.07 (4.35) -0.12 (0.01) 0.42 (0.29)
Illiquidity 0.07 (0.12) 0.76 (0.18) 34.72 (7.32) 65.28 (7.32) -0.33 (0.06) 0.59 (0.35)
Betting Against Beta 0.58 (0.39) 1.69 (0.64) 27.61 (4.65) 72.39 (4.65) -0.71 (0.15) 2.19 (1.01)
Variance 1.32 (0.40) 3.13 (0.58) 23.45 (2.30) 76.55 (2.30) -0.93 (0.10) 4.35 (1.00)
Carry 0.73 (0.25) 1.76 (0.33) 22.81 (3.99) 77.19 (3.99) -0.48 (0.06) 2.53 (0.58)
Time-Series Momentum -0.27 (0.20) 1.48 (0.37) 61.59 (4.68) 38.41 (4.68) -1.52 (0.60) 0.82 (0.15)

Panel F: Event Driven Funds
Moments (Ann.) Proportions (%) Quantiles (Ann.)

Mean Std Dev. Negative Positive 10% 90%

Market 2.05 (1.17) 2.68 (0.77) 10.97 (8.55) 89.03 (8.55) -0.02 (0.45) 5.02 (1.86)
Size 0.28 (0.39) 0.76 (0.18) 24.54 (17.15) 75.46 (17.15) -0.09 (0.14) 0.77 (0.59)
Illiquidity 0.07 (0.12) 1.06 (0.19) 41.26 (6.95) 58.74 (6.95) -0.48 (0.04) 0.64 (0.25)
Betting Against Beta 0.67 (0.40) 1.88 (0.49) 20.82 (5.90) 79.18 (5.90) -0.56 (0.09) 2.03 (0.80)
Variance 1.78 (0.48) 3.71 (0.50) 18.77 (3.32) 81.23 (3.32) -0.51 (0.17) 4.87 (0.97)
Carry 0.20 (0.17) 2.14 (0.34) 43.49 (4.29) 56.51 (4.29) -1.75 (0.33) 1.80 (0.38)
Time-Series Momentum -0.34 (0.19) 1.64 (0.36) 63.20 (3.71) 36.80 (3.71) -1.87 (0.57) 0.92 (0.18)
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TABLE AVIII. Characteristics of the Worst and Best Funds Under the CP Model
This table examines the properties of the worst and best performing funds identified by the alpha under the
CP model (5%, 10%, 25%, 75%, 90%, and 95%). Panel A reports the average investment style composition
(equity, macro, and arbitrage) for each quantile. Panel B reports the average beta component due to each
factor included in the CP model (market, size, illiquidity, BAB, variance, carry, TS momentum). Panel C
reports the averages of three measures of managerial incentives (management and performance fees, pro-
portion of funds with high-mark provisions). Panel D reports the averages of two measures of managerial
discretion (lockup and notice periods).

Panel A: Investment Style
Quantile of the Alpha Distribution

5th 10th 25th 75th 90th 95th

Arbitrage (%) 16.86 18.36 22.88 29.84 22.37 19.16
Equity (%) 33.33 35.76 38.94 38.41 38.24 42.91
Macro (%) 49.81 45.89 38.18 31.75 39.39 37.93

Panel B: Beta Component Due to each Factor
Quantile of the Alpha Distribution

5th 10th 25th 75th 90th 95th

Market 3.27 3.47 3.33 1.62 1.81 2.22
Size 0.32 0.31 0.28 0.22 0.20 0.25
Illiquidity 0.39 0.38 0.22 -0.17 -0.26 -0.41
Betting Against Beta 1.11 0.90 0.67 -0.09 -0.46 -0.78
Variance 8.78 5.59 3.35 -1.56 -3.41 -5.25
Carry 2.38 1.92 1.34 -0.33 -0.55 -0.81
Time-Series Momentum 4.73 3.61 2.27 0.62 0.70 0.67

Panel C: Measures of Management Incentives
Quantile of the Alpha Distribution

5th 10th 25th 75th 90th 95th

Management Fees (% per year) 1.58 1.52 1.42 1.51 1.54 1.56
Performance Fees (% per year) 18.68 17.44 15.68 19.29 19.87 19.86
High Water Mark (%) 58.24 60.69 62.82 78.46 76.82 76.25

Panel D: Measures of Managerial Discretion
Quantile of the Alpha Distribution

5th 10th 25th 75th 90th 95th

Lockup (months) 2.47 2.62 2.65 4.17 4.41 4.61
Notice (months) 0.83 0.83 0.83 1.27 1.14 1.12
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