Non-Price Competition and Risk Selection Through Hospital Networks

Natalia Serna
University of Wisconsin - Madison

Introduction

- Risk selection is a main concern in insurance markets.
- Health insurers may attempt to enroll healthy (profitable) instead of sick (unprofitable) patients (e.g., through prices, ads, networks).
- Risk selection reduces access to insurance and health care.
- Risk selection may also lead a market to unravel altogether.

Research questions

- Study whether and how health insurers engage in risk selection through the design of their hospital networks.
- What policies reduce the distortion in networks due to selection?

Research questions

- Study whether and how health insurers engage in risk selection through the design of their hospital networks.
- Basis for quantifying risk selection incentives is a demand model.
- Supply model to measure how insurers' network choices respond.
- What policies reduce the distortion in networks due to selection?

Research questions

- Study whether and how health insurers engage in risk selection through the design of their hospital networks.
- Basis for quantifying risk selection incentives is a demand model.
- Supply model to measure how insurers' network choices respond.
- What policies reduce the distortion in networks due to selection?
- Better risk adjustment (gov. payments to insurers).
- Modify how insurers compete on premiums.

Contribution

- Document insurers' incentives to use narrow networks to risk-select.
- Contributes to literature on risk selection mechanisms (Geruso et al., 2019; Aizawa and Kim, 2018).
- Selection on multidimensional service-level hospital networks.
- Builds on Shepard (2022) who studies selection on one hospital.
- Endogeneize hospital network breadth in a tractable way.
- Related papers in this literature are Prager and Tilipman (2020); Ghili (2022); Ho and Lee (2019); Liebman (2018).

Institutional background

- Empirical setting is Colombia:
- Contributory system (CR) (49\% of population).
- One national insurance plan provided by private insurers.
- Premiums and cost-sharing are regulated.
- Gov. risk adjustment formula is coarse.

Institutional background

- Empirical setting is Colombia:
- Contributory system (CR) (49\% of population).
- One national insurance plan provided by private insurers.
- Premiums and cost-sharing are regulated.
- Gov. risk adjustment formula is coarse.
- Insurers compete only on hospital networks.

Institutional background

- Empirical setting is Colombia:
- Contributory system (CR) (49\% of population).
- One national insurance plan provided by private insurers.
- Premiums and cost-sharing are regulated.
- Gov. risk adjustment formula is coarse.
- Insurers compete only on hospital networks.
- Insurers can choose hospital networks separately for different services.

Institutional background

- Empirical setting is Colombia:
- Contributory system (CR) (49\% of population).
- One national insurance plan provided by private insurers.
- Premiums and cost-sharing are regulated.
- Gov. risk adjustment formula is coarse.
- Insurers compete only on hospital networks.
- Insurers can choose hospital networks separately for different services.

Institutional background

- Empirical setting is Colombia:
- Contributory system (CR) (49\% of population).
- One national insurance plan provided by private insurers.
- Premiums and cost-sharing are regulated.
- Gov. risk adjustment formula is coarse. Expand
- Insurers compete only on hospital networks.
- Insurers can choose hospital networks separately for different services.

Contents

(1) Data overview
(2) Descriptive evidence
(3) Model
(4) Counterfactuals
(5) Conclusions

Data overview: sample of enrollees

- All covered by the CR in 2010-2011 (25 MM) and medical claims (650 MM).
- Continuous enrollment spells (9 MM) and claims (270 MM).
- $1 / 3$ are new enrollees in 2011. Expand

Data overview: sample of enrollees

- All covered by the CR in 2010-2011 (25 MM) and medical claims (650 MM).
- Continuous enrollment spells (9 MM) and claims (270 MM).
- $1 / 3$ are new enrollees in 2011. Expand
- Keep 14 largest insurers. Account for 97% of enrollees.
- Market is a Colombian state (similar to MSA). 32 markets.

Figure: Insurers per market

Data overview: services and networks

- Collapse 7,000 services codes into 58 categories ("services"). E.g:
- Procedures in cardiac vessels.
- Procedures in intestines.
- Procedures in bones and joints.
- Procedures in skull and brain.
- Hospitalization.
- Consultations.
- Recover service-specific hospital networks from observed claims.

Network breadth as a means of risk selection

- Narrow networks is one of the main reasons for dissatisfaction with an insurer in Colombia (based on surveys by the Ministry of Health).
- Object of interest is insurer j's service-level hospital network breadth in market m and service $k, \mathbf{H}_{\mathbf{j k m}}$.

Network breadth as a means of risk selection

- Narrow networks is one of the main reasons for dissatisfaction with an insurer in Colombia (based on surveys by the Ministry of Health).
- Object of interest is insurer j's service-level hospital network breadth in market m and service $k, \mathbf{H}_{\mathbf{j k m}}$.
- $H_{j k m} \in[0,1]$ is the fraction of hospitals in market m that provide service k that are covered by insurer j.
- Simplicity of $H_{j k m}$ allows for tractability. Limitation is treating hospital quality as constant.

Contents

(1) Data overview
(2) Descriptive evidence
(3) Model
(4) Counterfactuals
(5) Conclusions

Contents

(1) Data overview
(2) Descriptive evidence
(3) Model
(4) Counterfactuals
(5) Conclusions

Insurer demand

Insurer demand

- Static (myopic) discrete choices of new enrollees.

Insurer demand

- Static (myopic) discrete choices of new enrollees.
- The utility of a new consumer i of type θ for insurer j in market m is:

$$
\begin{array}{c}
u_{i j m}=\beta_{i} \sum_{k} \underbrace{q_{\theta k m}}_{\begin{array}{c}
\text { claim } \\
\text { prob. }
\end{array}} \underbrace{\text { breadth }}_{\text {network }}
\end{array} H_{j k m}-\alpha_{i} \underbrace{c_{\theta j m}\left(H_{j m}\right)}_{\begin{array}{c}
\text { OOP } \\
\text { costs }
\end{array}}+\phi_{j m}+\varepsilon_{i j m}, \begin{array}{ll}
\alpha_{i} & \beta_{i}
\end{array})=\left(\begin{array}{ll}
x_{i} & y_{i}
\end{array}\right)^{\prime}\left(\begin{array}{ll}
\beta & \alpha
\end{array}\right) ~ \$
$$

- $\theta=$ sex, age group, diagnosis (cancer, cardio, diabetes, renal, pulmonary, arthritis, asthma/smoking, other, healthy).
- $x_{i}=$ sex, age, diagnosis, location. $y_{i}=$ income group.
- k is a service.
- $q_{\theta k m}$ prediction of a fractional logistic regression, off-line.

Insurer demand

- Static (myopic) discrete choices of new enrollees.
- The utility of a new consumer i of type θ for insurer j in market m is:

$$
\begin{gathered}
u_{i j m}=\beta_{i} \sum_{k} \underbrace{q_{\theta k m}}_{\begin{array}{c}
\text { claim } \\
\text { prob. }
\end{array}} \underbrace{H_{j k m}}_{\begin{array}{c}
\text { network } \\
\text { breadth }
\end{array}}-\alpha_{i} \underbrace{c_{\theta j m}\left(H_{j m}\right)}_{\begin{array}{c}
\text { OOP } \\
\text { costs }
\end{array}}+\phi_{j m}+\varepsilon_{i j m} \\
c_{\theta j m}=\text { Coins }_{\theta j m}+\text { Copay }_{\theta m}+\operatorname{Tax}_{\theta}
\end{gathered}
$$

Insurer demand

- Static (myopic) discrete choices of new enrollees.
- The utility of a new consumer i of type θ for insurer j in market m is:

$$
\begin{gathered}
u_{i j m}=\beta_{i} \sum_{k} \underbrace{q_{\theta k m}}_{\begin{array}{c}
\text { claim } \\
\text { prob. }
\end{array}} \underbrace{H_{j k m}}_{\begin{array}{c}
\text { network } \\
\text { breadth }
\end{array}}-\alpha_{i} \underbrace{c_{\theta j m}\left(H_{j m}\right)}_{\begin{array}{c}
\text { OOP } \\
\text { costs }
\end{array}}+\phi_{j m}+\varepsilon_{i j m} \\
c_{\theta j m}=\text { Coins }_{\theta j m}+\text { Copay }_{\theta m}+\operatorname{Tax}_{\theta}
\end{gathered}
$$

- Consumers face a cost-coverage trade-off.
- The magnitude of this trade-off will vary with health status.
- Allows for healthy individuals to be screened by narrow networks.
- OOP costs are endogenous to $H_{j k m}$.

Demand identification

- Preference for network breadth: uses exogenous variation in market demographics.
- Little concern over insurers targeting demographics with their networks.
- Marginal disutility of OOP costs: endogenous variation in OOP costs across insurers (potentially due to hospital quality) is captured by $\phi_{j m}$.

Willingness-to-pay varies across services and health status

- Significant disutility from OOP costs. Avg. elasticity $=-0.88$.
- Strong preferences for broader networks in services they need.
- Insurers can avoid these patients by providing narrow networks.

	Dialysis
Cancer	7.2
Cardiovascular	4.5
Diabetes	6.8
Renal	129.8
Pulmonary	47.6
Arthritis	24.4
Asthma/Smoking	35.0
Other	22.2
Healthy	1.0

Note: Willingness-to-pay for an additional percentage point of network breadth relative to healthy individuals. Willingness-to-pay is calculated as $\frac{1}{-\alpha_{i}} \frac{\partial s_{i j m}}{\partial H_{j k m}}$.

Insurer average costs per enrollee

Insurer average costs per enrollee

$$
\begin{aligned}
\log \left(A C_{\theta j m}\left(H_{j m}\right)\right) & =\tau_{0} \overbrace{\left(\sum_{k} q_{\theta k m} A_{k}\right)}^{\begin{array}{c}
\text { expected service } \\
\text { price }
\end{array}}+\tau_{1} \overbrace{\left(\sum_{k} q_{\theta k m} H_{j k m}\right)}^{\begin{array}{c}
\text { weighted service } \\
\text { network breadth }
\end{array}} \\
& +\frac{1}{2 K_{m}} \tau_{2} \underbrace{}_{\sum_{k} \sum_{l \neq k} q_{\theta k m} q_{\theta l m} H_{j k m} H_{j l m}}+\lambda_{\theta}+\eta_{m}+\delta_{j}
\end{aligned}
$$

Insurer average costs per enrollee

$$
\begin{aligned}
\log \left(A C_{\theta j m}\left(H_{j m}\right)\right) & =\tau_{0} \overbrace{\left(\sum_{k} q_{\theta k m} A_{k}\right)}^{\begin{array}{c}
\text { expected service } \\
\text { price }
\end{array}}+\tau_{1} \overbrace{\left(\sum_{k} q_{\theta k m} H_{j k m}\right)}^{\begin{array}{c}
\text { weighted service } \\
\text { network breadth }
\end{array}} \\
& +\frac{1}{2 K_{m}} \tau_{2} \underbrace{}_{\sum_{k} \sum_{l \neq k} q_{\theta k m} q_{\theta l m} H_{j k m} H_{j l m}}+\lambda_{\theta}+\eta_{m}+\delta_{j}
\end{aligned}
$$

- Approximation to a price bargaining equilibrium.
- A_{k} is the government's reference price.

Insurer average costs per enrollee

$$
\begin{aligned}
\log \left(A C_{\theta j m}\left(H_{j m}\right)\right) & =\tau_{0} \overbrace{\left(\sum_{k} q_{\theta k m} A_{k}\right)}^{\begin{array}{c}
\text { expected service } \\
\text { price }
\end{array}}+\tau_{1} \overbrace{\left(\sum_{k} q_{\theta k m} H_{j k m}\right)}^{\begin{array}{c}
\text { weighted service } \\
\text { network breadth }
\end{array}} \\
& +\frac{1}{2 K_{m}} \tau_{2} \underbrace{}_{\sum_{k} \sum_{l \neq k} q_{\theta k m} q_{\theta l m} H_{j k m} H_{j l m}}+\lambda_{\theta}+\eta_{m}+\delta_{j}
\end{aligned}
$$

- Approximation to a price bargaining equilibrium.
- A_{k} is the government's reference price.
- Insurers observe $q_{\theta k m}$.

Insurer average costs per enrollee

$$
\begin{aligned}
\log \left(A C_{\theta j m}\left(H_{j m}\right)\right) & =\tau_{0} \overbrace{\left(\sum_{k} q_{\theta k m} A_{k}\right)}^{\begin{array}{c}
\text { expected service } \\
\text { price }
\end{array}}+\tau_{1} \overbrace{\left(\sum_{k} q_{\theta k m} H_{j k m}\right)}^{\begin{array}{c}
\text { weighted service } \\
\text { network breadth }
\end{array}} \\
& +\frac{1}{2 K_{m}} \tau_{2} \underbrace{}_{\sum_{k} \sum_{l \neq k} q_{\theta k m} q_{\theta l m} H_{j k m} H_{j l m}}+\lambda_{\theta}+\eta_{m}+\delta_{j}
\end{aligned}
$$

- Approximation to a price bargaining equilibrium.
- A_{k} is the government's reference price.
- Insurers observe $q_{\theta k m}$.
- Scope economies: insurers that offer broad networks in one service, tend to offer broad networks in other services.

Average cost regression

- Identification relies on variation in market demographics across markets, within insurer.

Table: Average costs per enrollee

Variable	Coefficient	Std. Error
Network breadth	1.81	(0.21)
Scope economies	-134.3	(24.9)
Reference price	20.5	(6.43)
N	40,989	
R^{2}	0.39	

Note: OLS regression of logarithm of average costs per insurer, market, and consumer type on network breadth, economies of scope, and service reference price. Includes insurer, market, and consumer type fixed effects. Robust standard errors in parenthesis.

Figure: Predicted average cost

Insurer competition

Competition and equilibrium

Let $\pi_{i j m}\left(H_{m}, \theta\right)$ be insurer j 's annual per-enrollee profit. Depends on own and rival network breadth, $H_{m}=\left\{H_{j m}\right\}_{j=1}^{\# \mathcal{J}_{m}}$, where $H_{j m}=\left\{H_{j k m}\right\}_{k=1}^{\# K_{m}}$

$$
\pi_{i j m}\left(H_{m}, \theta\right)=(\underbrace{R_{\theta m}}_{\substack{\text { govmt } \\
\text { transfer } \\
+ \text { copays }}}-\overbrace{\left(1-r_{i}\right)}^{1 \text {-coins rate }} \underbrace{A C_{\theta j m}\left(H_{j m}\right)}_{\begin{array}{c}
\text { average } \\
\text { cost }
\end{array}}) \underbrace{s_{i j m}\left(H_{m}\right)}_{\begin{array}{c}
\text { choice } \\
\text { prob. }
\end{array}}
$$

Competition and equilibrium

- Nash equilibrium. Insurers choose networks to maximize:
$\Pi_{j m}\left(H_{m}\right)=$ current profit + future profit - network formation cost

Competition and equilibrium

- Nash equilibrium. Insurers choose networks to maximize:

$$
\begin{aligned}
\Pi_{j m}\left(H_{m}\right)= & \sum_{\theta, m}(\underbrace{\left(\pi_{i j m}\left(H_{m}, \theta\right) N_{\theta m}\right.}_{\text {current profit }} \\
& +\underbrace{\sum_{s=t+1}^{T} \zeta^{s} \sum_{\theta^{\prime}}\left(1-\rho_{\theta^{\prime}}\right) \mathcal{P}\left(\theta^{\prime} \mid \theta\right) \pi_{i j m}\left(H_{m}, \theta^{\prime}\right) N_{\theta^{\prime} m}}_{\text {future profit }}) \\
& -\underbrace{\sum_{k}\left(\omega H_{j k m}+\xi_{j k m}\right) H_{j k m}}_{\text {network formation cost }}
\end{aligned}
$$

- Individuals do not switch (switching rate in the data $<1 \%$).
- $\xi_{j k m}=\xi_{k}+\vartheta_{j k m}$

Competition and equilibrium

FOC at an interior solution $H_{j k m} \in(0,1)$:

$$
M V P_{j k m}\left(H_{m}\right)=2 \omega H_{j k m}+\xi_{k}+\vartheta_{j k m}
$$

- $M V P_{j k m}$ is the marginal variable profit.

Competition and equilibrium

FOC at an interior solution $H_{j k m} \in(0,1)$:

$$
M V P_{j k m}\left(H_{m}\right)=2 \omega H_{j k m}+\xi_{k}+\vartheta_{j k m}
$$

- $M V P_{j k m}$ is the marginal variable profit.
- Insurers internalize the cost-coverage trade-off from demand.

$$
c_{\theta j m}=\mu_{y} A C_{\theta j m}\left(H_{j m}\right)+\epsilon_{\theta j m}
$$

- $H_{j k m}$ is observed together with $\vartheta_{j k m}$.

Network formation cost identification and estimation

Identification:

- Variation in average claim probabilities across markets.
- Network breadth in 2010.
- Estimate FOC in 4 largest markets with no corners.

Out-of-sample fit

asinh $\left(\mathrm{MVP}_{j m k}\right)$	coef	se
Network breadth	6.86	(0.16)
Service		
Cardiac Vessels	1.47	(0.20)
Stomach	1.25	(0.20)
Intestines	4.77	(0.20)
Imaging	6.64	(0.20)
Consultation	6.37	(0.21)
Laboratory	7.35	(0.20)
Nuclear Medicine	4.67	(0.20)
Hospital Admission	4.90	(0.20)
First stage F-stat	$1,718.5$	
N	2,262	
R^{2}	0.76	

Note: 2-step GMM estimation on the subsample of markets $05,08,11,76$, and the subsample of the 10 largest insurers in these markets. Robust standard errors in parenthesis and first-stage F-statistic reported.

Model-based evidence of adverse selection

- Insurer average and marginal costs are positively correlated with consumer willingness-to-pay for network breadth.
- Decomposition exercise: suppose an insurer deviates and increases network breadth by 10%.
- Adverse selection explains $\mathbf{4 6 \%}$ of variation in total costs.
- Cost heterogeneity explains the rest.

Contents

(1) Data overview
(2) Descriptive evidence
(3) Model
(4) Counterfactuals

The effect of risk adjustment of network breadth

- Simulate two counterfactual scenarios:
- Eliminate risk adjustment.
- Improve risk adjustment.
- For simplicity, estimate counterfactuals with data only from the capital, Bogotá.
- Around $1 / 3$ of all enrollees to the contributory regime live in Bogotá.
- Has presence of all insurers.

No risk adjustment

- Per-capita transfer equals national base transfer times adjustment factor to match observed short-run gov spending:

$$
R_{\theta m}^{c f}=\lambda \times R, \quad \forall(\theta, m)
$$

- Prediction: Eliminating risk adjustment should exacerbate risk selection incentives and reduce network breadth.

Improved risk adjustment

- Counterfactual risk-adjusted transfer is:

$$
R_{\theta m}^{c f}=\lambda \times a_{m} \times 360 \times \frac{\sum_{\theta(i)=\theta} T_{i}}{\sum_{\theta(i)=\theta} b_{i}}
$$

- T_{i} is total cost, b_{i} is number of days enrolled in the year, a_{m} is a market multiplier, λ is adjustment factor to match gov spending.

Improved risk adjustment

- Counterfactual risk-adjusted transfer is:

$$
R_{\theta m}^{c f}=\lambda \times a_{m} \times 360 \times \frac{\sum_{\theta(i)=\theta} T_{i}}{\sum_{\theta(i)=\theta} b_{i}}
$$

- T_{i} is total cost, b_{i} is number of days enrolled in the year, a_{m} is a market multiplier, λ is adjustment factor to match gov spending.
- Eliminates demand-side incentives to risk-select. Shows relative importance of adverse selection vs. cost heterogeneity.
- Prediction: Improving risk adjustment should reduce risk selection incentives and increase network breadth.

Better risk adjustment promotes broader networks

Observed risk adjustment is better than no risk adjustment

Table: Networks, costs, and welfare under alternative risk adjustment

Variable	No RA	Improved RA	
			9 diseases
	27 diseases		
A. Overall			
Median network breadth	-1.9	4.2	4.8
Avg. cost per enrollee	2.4	-0.9	-0.1
Total avg. cost	2.7	-0.4	0.3
Consumer surplus (sick)	-1.1	2.2	2.8
Consumer surplus (healthy)	-0.8	2.0	2.7
B. Service network breadth			
Eyes, ears, nose, mouth	-2.3	2.5	5.9
Heart and cardiac vessels	-0.5	6.7	4.9
Imaging, lab, consultation	0.3	4.5	3.2

[^0]
Better risk adjustment promotes broader networks

Observed risk adjustment is better than no risk adjustment

Table: Networks, costs, and welfare under alternative risk adjustment

Variable	No RA	Improved RA	
			9 diseases
	27 diseases		
A. Overall			
Median network breadth	-1.9	4.2	4.8
Avg. cost per enrollee	2.4	-0.9	-0.1
Total avg. cost	2.7	-0.4	0.3
Consumer surplus (sick)	-1.1	2.2	2.8
Consumer surplus (healthy)	-0.8	2.0	2.7
B. Service network breadth			
Eyes, ears, nose, mouth	-2.3	2.5	5.9
Heart and cardiac vessels	-0.5	6.7	4.9
Imaging, lab, consultation	0.3	4.5	3.2

[^1]
Better risk adjustment promotes broader networks

Observed risk adjustment is better than no risk adjustment

Table: Networks, costs, and welfare under alternative risk adjustment

Variable	No RA	Improved RA	
			9 diseases
	27 diseases		
A. Overall			
Median network breadth	-1.9	4.2	4.8
Avg. cost per enrollee	2.4	-0.9	-0.1
Total avg. cost	2.7	-0.4	0.3
Consumer surplus (sick)	-1.1	2.2	2.8
Consumer surplus (healthy)	-0.8	2.0	2.7
B. Service network breadth			
Eyes, ears, nose, mouth	-2.3	2.5	5.9
Heart and cardiac vessels	-0.5	6.7	4.9
Imaging, lab, consultation	0.3	4.5	3.2

[^2]
Better risk adjustment promotes broader networks

Observed risk adjustment is better than no risk adjustment

Table: Networks, costs, and welfare under alternative risk adjustment

Variable	No RA	Improved RA	
		9 diseases	27 diseases
A. Overall			
Median network breadth	-1.9	4.2	4.8
Avg. cost per enrollee	2.4	-0.9	-0.1
Total avg. cost	2.7	-0.4	0.3
Consumer surplus (sick)	-1.1	2.2	2.8
Consumer surplus (healthy)	-0.8	2.0	2.7
B. Service network breadth			
Eyes, ears, nose, mouth	-2.3	2.5	5.9
Heart and cardiac vessels	-0.5	6.7	4.9
Imaging, lab, consultation	0.3	4.5	3.2

[^3]
Better risk adjustment promotes broader networks

Observed risk adjustment is better than no risk adjustment

Table: Networks, costs, and welfare under alternative risk adjustment

Variable	No RA	Improved RA	
			9 diseases
	27 diseases		
A. Overall			
Median network breadth	-1.9	4.2	4.8
Avg. cost per enrollee	2.4	-0.9	-0.1
Total avg. cost	2.7	-0.4	0.3
Consumer surplus (sick)	-1.1	2.2	2.8
Consumer surplus (healthy)	-0.8	2.0	2.7
B. Service network breadth			
Eyes, ears, nose, mouth	-2.3	2.5	5.9
Heart and cardiac vessels	-0.5	6.7	4.9
Imaging, lab, consultation	0.3	4.5	3.2

[^4]
Better risk adjustment promotes broader networks

Observed risk adjustment is better than no risk adjustment

Table: Networks, costs, and welfare under alternative risk adjustment

Variable	No RA	Improved RA	
			9 diseases
	27 diseases		
A. Overall			
Median network breadth	-1.9	4.2	4.8
Avg. cost per enrollee	2.4	-0.9	-0.1
Total avg. cost	2.7	-0.4	0.3
Consumer surplus (sick)	-1.1	2.2	2.8
Consumer surplus (healthy)	-0.8	2.0	2.7
B. Service network breadth			
Eyes, ears, nose, mouth	-2.3	2.5	5.9
Heart and cardiac vessels	-0.5	6.7	4.9
Imaging, lab, consultation	0.3	4.5	3.2

[^5]
The effect of premiums on network breadth

- Insurers compete simultaneously in premiums and networks.
- Insurers can discriminate premiums along sex, age, and income.

The effect of premiums on network breadth

- Insurers compete simultaneously in premiums and networks.
- Insurers can discriminate premiums along sex, age, and income.
- In the observed scenario:

$$
c_{\theta j m}=\text { Coins }_{\theta j m}+\text { Copay }_{\theta m}+\underbrace{\operatorname{Tax}_{\theta}}_{1 / 3 \text { of total taxes }}
$$

- In counterfactual, let $\theta=\left(\theta_{1}, \theta_{2}\right)$, where θ_{2} are diagnoses.

$$
\text { Coins }_{\theta j m}+\text { Copay }_{\theta m}+\operatorname{Tax}_{\theta}+(1 / 3) \times \tilde{P}_{\theta_{1} j m}
$$

- Calibrate α to (roughly) match average elasticity from other papers: Abaluck and Gruber (2011) -1.17; Shepard (2022) -1.48.

Premiums reflect risk pooling

Table: Average premiums

Variable		Low price sens.	Med price sens.
Sex	Female	127	120
	Male	221	269
Age group	$19-24$	173	154
	$25-29$	171	161
	$30-34$	183	220
	$35-39$	288	298
	$40-44$	280	305
	$45-49$	243	284
	$50-54$	212	232
	$55-59$	187	232
	$60-64$	132	192
	$65-69$	121	172
	$70-74$	53	49
	≥ 75	45	34
		81	61
Income group	Low	178	200
	Medium	-	-

Premiums reflect risk pooling

Table: Average premiums

Variable		Low price sens.	Med price sens.
Sex	Female	127	120
	Male	221	269
Age group	$19-24$	173	154
	$25-29$	171	161
	$30-34$	183	220
	$35-39$	288	298
	$40-44$	280	305
	$45-49$	243	284
	$50-54$	212	232
	$55-59$	187	232
	$60-64$	132	192
	$65-69$	121	172
	$70-74$	53	49
	≥ 75	45	34
		81	61
Income group	Low	178	200
	Medium	-	-

Premiums reflect risk pooling

Table: Average premiums

Variable		Low price sens.	Med price sens.
Sex	Female	127	120
	Male	221	269
Age group	$19-24$	173	154
	$25-29$	171	161
	$30-34$	183	220
	$35-39$	288	298
	$40-44$	280	305
	$45-49$	243	284
	$50-54$	212	232
	$55-59$	187	232
	$60-64$	132	192
	$65-69$	121	172
	$70-74$	53	49
	≥ 75	45	34
		81	61
Income group	Low	178	200
	Medium	-	-

Premiums reflect risk pooling

Table: Average premiums

Variable		Low price sens.	Med price sens.
Sex	Female	127	120
	Male	221	269
Age group	$19-24$	173	154
	$25-29$	171	161
	$30-34$	183	220
	$35-39$	288	298
	$40-44$	280	305
	$45-49$	243	284
	$50-54$	212	232
	$55-59$	187	232
	$60-64$	132	192
	$65-69$	121	172
	$70-74$	53	49
	≥ 75	45	34
		81	61
Income group	Low	178	200
	Medium	-	-

Premiums and networks are substitutes for risk selection

Table: Networks, costs, and welfare under premium deregulation

Variable	Low price sens.	Med price sens.
A. Overall		
Median network breadth	24.2	21.2
Avg. cost per enrollee	9.2	8.1
Total avg. cost	8.2	6.4
Consumer surplus (sick)	-6.7	-9.6
Consumer surplus (healthy)	-5.5	-8.4
Elasticity	-1.8	-2.0
B. Service network breadth		
Skull, spine, nerves, glands	29.3	23.7
Abdominal wall	24.4	22.7
Imaging, lab, consultation	20.1	23.1

[^6]
Premiums and networks are substitutes for risk selection

Table: Networks, costs, and welfare under premium deregulation

Variable	Low price sens.	Med price sens.
A. Overall		
Median network breadth	24.2	21.2
Avg. cost per enrollee	9.2	8.1
Total avg. cost	8.2	6.4
Consumer surplus (sick)	-6.7	-9.6
Consumer surplus (healthy)	-5.5	-8.4
Elasticity	-1.8	-2.0
B. Service network breadth		
Eyes, ears, nose, mouth	30.8	31.6
Heart and cardiac vessels	21.7	11.6
Imaging, lab, consultation	20.1	23.1

[^7]
Premiums and networks are substitutes for risk selection

Table: Networks, costs, and welfare under premium deregulation

Variable	Low price sens.	Med price sens.
A. Overall		
Median network breadth	24.2	21.2
Avg. cost per enrollee	9.2	8.1
Total avg. cost	8.2	6.4
Consumer surplus (sick)	-6.7	-9.6
Consumer surplus (healthy)	-5.5	-8.4
Elasticity	-1.8	-2.0
B. Service network breadth		
Eyes, ears, nose, mouth	30.8	31.6
Heart and cardiac vessels	21.7	11.6
Imaging, lab, consultation	20.1	23.1

[^8]
Premiums and networks are substitutes for risk selection

Table: Networks, costs, and welfare under premium deregulation

Variable	Low price sens.	Med price sens.
A. Overall		
Median network breadth	24.2	21.2
Avg. cost per enrollee	9.2	8.1
Total avg. cost	8.2	6.4
Consumer surplus (sick)	-6.7	-9.6
Consumer surplus (healthy)	-5.5	-8.4
Elasticity	-1.8	-2.0
B. Service network breadth		
Eyes, ears, nose, mouth	30.8	31.6
Heart and cardiac vessels	21.7	11.6
Imaging, lab, consultation	20.1	23.1

[^9]
Conclusions

- Study how insurers use their hospital networks to risk-select.
- In a setting where hospital networks are service specific:
- Consumers choose insurers with broad networks in services they need.
- Insurers choose their hospital networks per service to select the most profitable consumers.
- Better risk adjustment can increase network breadth by 4.8%, holding government spending fixed.
- Premiums and hospital networks are substitutes for risk selection.
- Zero premiums lead to narrow networks.

Thank you

References

Abaluck, J. and Gruber, J. (2011). Choice Inconsistencies Among the Elderly: Evidence from Plan Choice in the Medicare Part D Program. American Economic Review, 101(4):1180-1210.
Aizawa, N. and Kim, Y. (2018). Advertising and Risk Selection in Health Insurance Markets. American Economic Review, 108(3):828-867.

Geruso, M., Layton, T., and Prinz, D. (2019). Screening in Contract Design: Evidence from the ACA Health Insurance Exchanges. American Economic Journal: Applied Economics, 11(2):64-107.
Ghili, S. (2022). Network formation and bargaining in vertical markets: The case of narrow networks in health insurance. Marketing Science, 41(3):501-527.
Ho, K. and Lee, R. (2019). Equilibrium provider networks: Bargaining and exclusion in health care markets. American Economic Review, 109(2):473-522.
Liebman, E. (2018). Bargaining in Markets with Exclusion: An Analysis of Health Insurance Networks.
Prager, E. and Tilipman, N. (2020). Regulating Out-of-Network Hospital Payments: Disagreement Payoffs, Negotiated Prices, and Access.

Shepard, M. (2022). Hospital Network Competition and Adverse Selection: Evidence from the Massachusetts Health Insurance Exchange. American Economic Review, 112(2):578-615.

Risk adjustment

- Risk-adjusted capitated payments from gov. to insurers.
- Payments equal average health care cost per risk pool.
- Ex-ante risk adjustment:
- Paid at the beginning of every year.
- Risk pool is a combination of sex, age group, location.
- Ex-post risk adjustment:
- Paid at the end of every year.
- Insurers with above-average share of patients with certain diseases receive payments from those with below-average share.

New enrollees

- People who move from subsidized (SR) to contributory system.
- People who age into the contributory system.
- Insurers in the CR participate in the SR.
- $1 / 6$ of my sample moved from only one insurer in the $S R$ to the $C R$.
- People with 3 continuous months of non-payment of taxes would be disenrolled and information removed from system \rightarrow "fresh start".

Back

Service coverage within hospital

Figure: Fraction of services covered per hospital (zero is 60%)

$H_{j k m}$ varies either because of selection or cost differences

Figure: Distribution of network breadth
Note: Distribution of service-level network breadth conditional on four largest markets.

- Variation: 30% insurer, 10% service, 4% market.

Do risk selection incentives exist? (Geruso et al., 2019)

Figure: Service-level selection incentives after risk adjustment
Note: Dots are services weighted by number of enrollees who make claims for the service. One enrollee can appear in multiple dots. Enrollees who make no claims are not represented in this figure.

Distribution of health care costs

- Avg. cost $\longmapsto \mathrm{p} 10-\mathrm{p} 90$ cost

Figure: Health care cost by risk-adjusted transfer

$H_{j k m}$ covaries with service profitability - selection story

Figure: Correlation between network breadth and service profitability
Note: Dots are services weighted by number of enrollees who make claims for the service. One enrollee can appear in multiple dots. Enrollees who make no claims are not represented in this figure.

Do consumers respond to $H_{j k m}$?

- Claim probability is positively correlated with network breadth.
- Women in childbearing ages choose insurers with broad networks for delivery.
- Higher likelihood of dialysis and chemo claims the broader the networks for renal disease and cancer treatment.
- People switch towards insurers with broad networks after health shock (.06\% of current).
- The newly diagnosed with arthritis switch to insurer with broad network for procedures in bones and joints.
- Insurers with broad networks imply higher out-of-pocket costs.

Selection into moral hazard

Table: Service-specific network breadth and types of claims

	(1) Current	(2) Full
(1) Any childbirth claim		
$H_{j m}$ Delivery	$\begin{aligned} & 0.02^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.01^{* * *} \\ & (0.001) \end{aligned}$
N (2) Any dialysis claim	1,085,206	3,078,555
$H_{j m}$ Dialysis	$\begin{aligned} & 0.03 * * * \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0.03 * * * \\ & (0.003) \end{aligned}$
N (3) Any antirheumatic drug claim	83,768	120,330
$H_{j m}$ Bones and Joints	$\begin{gathered} 0.002 \\ (0.001) \end{gathered}$	$\begin{aligned} & 0.002 * * \\ & (0.001) \end{aligned}$
N (4) Any chemotherapy claim	102,612	156,385
$H_{j m}$ Therapy	$\begin{aligned} & 0.003^{*} \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.002 \\ & (0.001) \end{aligned}$
N	439,176	785,727

Note: Each regression is conditional on the sample of individuals who received a diagnosis during 2010. All regressions include market fixed effects and control for sex and age group. Robust standard errors in parenthesis. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$.

Where do people switch after receiving a diagnosis?

Table: Insurer choice among switchers with changes in health status

	Insurer choice
(1) Women in childbearing ages	
$H_{j m}^{2010}-H_{j^{\prime} m}^{2011}$ Delivery	-2.77***
	(0.12)
N	14,958
(2) Additional diagnosis of renal disease	
$H_{j m}^{2010}-H_{j^{\prime} m}^{2011}$ Dialysis	-1.51*
	(0.84)
N	40
(3) Additional diagnosis of cancer	
$H_{j m}^{2010}-H_{j^{\prime} m}^{2011}$ Therapy	-3.23***
	(0.37)
N	1,658
(5) Newly diagnosed	
$H_{j m}^{2010}-H_{j^{\prime} m}^{2011}$ Hospital admissions	$-1.94 * * *$
	(0.21)
N	5,787

Note: Conditional logit estimated on the sample of switchers with a new diagnosis. The main explanatory variable is the difference in network breadth for delivery services between the incumbent insurer j and all other insurers j^{\prime}. Robust standard errors in parenthesis. ${ }^{* * *} \mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05,{ }^{*} \mathrm{p}<0.1$.

Variation in OOP costs

Figure: Distribution of OOP costs as percentage of monthly minimum wage
Note: Conditional on observed choices.

- Explained variation: 66% consumer types, 33% insurer-market.

OOP costs and network breadth

Figure: Correlation between OOP costs and network breadth

Relation between r_{y} and μ_{y}

- If OOP costs were only coinsurance payments, then $r_{y}=\mu_{y}$.
- OOP costs include other components that the insurer does not cover (taxes and copays), so we can expect $r_{y} \geq \mu_{y}$

Table: Pass-through of average costs to out-of-pocket costs

	Out-of-pocket cost		
	(1) Low income	(2) Middle income	(3) High income
$A C_{\theta j m}$	11.21	13.02	18.59
	(0.00)	(0.01)	(0.15)
Constant	-0.17	1.14	0.62
	(0.00)	(0.01)	(0.12)
N	178,533	318,588	2,879
R^{2}	0.97	0.88	0.84

Note: Regression of out-of-pocket costs on observed average cost per enrollee conditional on observed insurer choices. Column (1) uses the sample of individuals earning less than 2 times the monthly minimum wage (MMW), column (2) uses the sample of individuals earning between 2 and 5 times the MMW, and column (3) uses the sample of individuals earning more than 5 times the MMW. Robust standard errors in parenthesis.

Game

- Players: insurers, $j \in \mathcal{J}_{m}$
- Payoffs: $\Pi_{j m}\left(H_{m}, \vartheta_{j k m}\right) \in \mathbb{R}$, where $H_{m}=\left\{H_{j m}\right\}_{j=1}^{\# \mathcal{J}_{m}}$ and $H_{j m}=\left\{H_{j k m}\right\}_{k=1}^{\# K_{m}}$
- Strategies: $\mathbb{R} \rightarrow[0,1]^{58}$
- Information: $\vartheta_{j k m}$ is private information. Rest is common knowledge $\left(q_{j k m}, \rho_{\theta}, \mathcal{P}\left(\theta^{\prime} \mid \theta\right)\right)$.

Reference service prices

- In 2005 the Colombian government published a list of reference prices for each service in the national plan.
- Hospitals are reimbursed with these prices in three situations: terrorist attacks, car accidents, natural disasters.
- Reference prices were not meant to guide insurer-hospital negotiations. But insurers use them as a starting point.

Reference service prices

Figure: Correlation between average negotiated price and reference price

Identification threats in demand

Network breadth may be correlated with unobserved insurer quality. Robustness checks:

- Include other insurer quality measures (enrollee satisfaction score, avg. wait times).
- Include a star hospital coverage indicator.
- Subsample of markets without star hospitals.

Network breadth and hospital quality

- Network breadth assumes hospital quality as a constant.
- Problematic if it matters which hospitals are included and not just how many (e.g, star hospitals).

Network breadth and hospital quality

- Network breadth assumes hospital quality as a constant.
- Problematic if it matters which hospitals are included and not just how many (e.g, star hospitals).
- Ignoring hospital quality could be problematic for:
(1) Model specification.
(2) Bias.

Network breadth and hospital quality

- Network breadth assumes hospital quality as a constant.
- Problematic if it matters which hospitals are included and not just how many (e.g, star hospitals).
- Ignoring hospital quality could be problematic for:
(1) Model specification.
» Arises if network breadth is negatively correlated with hospital quality this is not the case.
(2) Bias.

Network breadth and hospital quality

- Network breadth assumes hospital quality as a constant.
- Problematic if it matters which hospitals are included and not just how many (e.g, star hospitals).
- Ignoring hospital quality could be problematic for:
(1) Model specification.
» Arises if network breadth is negatively correlated with hospital quality this is not the case.
(2) Bias.
» Arises if there is significant variation in hospital quality within service robustness checks suggest otherwise.

Identification threats in cost

- There may be unobserved cost variation within consumer type.
- Adverse selection can bias coefficients in average cost function.
- Robustness check using patient-level data.

Variation in $q_{\theta k m}$

Figure: Variation in service claim probability

In-sample demand model fit

Table: National market shares

Insurer	Observed	Predicted
EPS001	2.15	2.16
EPS002	7.23	7.28
EPS003	3.94	3.94
EPS005	4.39	4.41
EPS008	4.03	4.04
EPS009	2.10	2.09
EPS010	6.87	6.85
EPS012	1.17	1.19
EPS013	14.64	14.61
EPS016	19.51	19.47
EPS017	6.30	6.29
EPS018	3.91	3.86
EPS023	2.00	2.00
EPS037	21.75	21.79

Marginal variable profits

Table: Summary statistics of marginal variable profits per insurer

Insurer	mean	sd
EPS001	1,046	6,746
EPS002	3,124	17,865
EPS003	2,414	16,812
EPS005	2,084	15,493
EPS010	1,995	9,205
EPS013	2,570	13,594
EPS016	3,459	12,803
EPS017	3,412	27,619
EPS018	1,406	9,073
EPS037	3,942	20,676

Note: Mean and standard deviation of marginal variable profits in the left-hand side of
equation (??). Measured in millions of Colombian pesos per service per market.

First-stage

Table: First stage regression of network breadth

Out-of-sample fit

Figure: Comparison of model's predictions to public income statements

Insurer profit function with premiums

- Let $P_{m}=\left\{\left\{P_{\theta_{1} j m}\right\}_{\theta_{1}}\right\}_{j=1}^{\# \mathcal{J}_{m}}$. The annual per-enrollee profit is:

$$
\pi_{i j m}\left(H_{m}, P_{m}, \theta\right)=(\underbrace{R_{\theta m}}_{\begin{array}{c}
\text { govmt } \\
\text { transfer } \\
+ \text { copays }
\end{array}}+\underbrace{P_{\theta_{1} j m}}_{\text {premium }}-\overbrace{\left(1-r_{i}\right)}^{\text {1-coins.rate }} \underbrace{A C_{\theta j m}\left(H_{j m}\right)}_{\begin{array}{c}
\text { average } \\
\text { cost }
\end{array}}) \underbrace{s_{i j m}\left(H_{m}, P_{m}\right)}_{\begin{array}{c}
\text { choice } \\
\text { prob. }
\end{array}}
$$

- FOC w.r.t to $P_{\theta j m}$ defines a fixed point in premiums.
- FOC w.r.t to $H_{j k m}$ defines a fixed point in networks.
- Simulation is a nested fixed point.

[^0]: Note: Table presents percentage change in counterfactual relative to observed scenario. Baseline average network breadth equals 0.36.

[^1]: Note: Table presents percentage change in counterfactual relative to observed scenario. Baseline average network breadth equals 0.36 .

[^2]: Note: Table presents percentage change in counterfactual relative to observed scenario. Baseline average network breadth equals 0.36.

[^3]: Note: Table presents percentage change in counterfactual relative to observed scenario. Baseline average network breadth equals 0.36.

[^4]: Note: Table presents percentage change in counterfactual relative to observed scenario. Baseline average network breadth equals 0.36.

[^5]: Note: Table presents percentage change in counterfactual relative to observed scenario. Baseline average network breadth equals 0.36.

[^6]: Note: Table presents percentage change in counterfactual relative to observed scenario. Baseline average network breadth equals 0.36.

[^7]: Note: Table presents percentage change in counterfactual relative to observed scenario. Baseline average network breadth equals 0.36.

[^8]: Note: Table presents percentage change in counterfactual relative to observed scenario. Baseline average network breadth equals 0.36 .

[^9]: Note: Table presents percentage change in counterfactual relative to observed scenario. Baseline average network breadth equals 0.36.

