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Abstract

This paper shows the importance of technological synergies among heterogenous firms for

aggregate fluctuations. First, we document five novel empirical facts using micro data

that suggest the existence of important technological synergies between trading partners,

the presence of positive assortative matching among firms, and their evolution during the

business cycle. Next, we embed technological synergies in a general equilibrium model

calibrated on firm-level data and show that frictions in forming trading relationships and

separation costs explain imperfect sorting between firms in equilibrium. In particular,

an increase in the volatility of idiosyncratic productivity shocks significantly decreases

aggregate output without resorting to non-convex adjustment costs.
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1 Introduction

The premise of our analysis is that technological synergies —cooperation between firms to

enhance productivity— are prevalent in modern economies where final output results from

complex operations that require strategic partnerships. If one of the technologies, or a partner,

fails to fulfill the technical requirements of interlinked manufacturing processes, production

decreases, and the partnership may terminate.

An archetypal example of technological synergies is the consortium of Symbian with Nokia

for the provision of new operating systems in 2004. At that time, Nokia planned to develop

a new user interface for Nokia handsets to start the development of nascent smartphones and

formed a trading relationship with Symbian, the leading provider of operating systems for mobile

devices in the world. Nokia undertook a series of major hardware updates (by 2008, the Nokia

N95 handset had the most advanced camera in the market with 5 megapixels f/2.8 Carl Zeiss

Tessar lens), but the old-fashioned C++ code in the Symbian operating system prevented the

development of a functional and fully integrated interface for the new handsets.1 By 2008, despite

Nokia being the leading producer of handsets in the world, sales plummeted, and the company’s

profitability and stock market value greatly declined. The trading relationship terminated in

2010, Nokia formed a new partnership with Windows Phone and lost half of its market share in

mobile technology by the end of the same year. Symbian ceased operations in 2012.

Our example highlights the dynamic nature of technological synergies, which evolve and

operate in the economy even without economic distortions such as financial frictions. Despite

similar vicissitudes of fortune are ubiquitous in modern economies, the study of technological

synergies for aggregate fluctuations has been overlooked by macroeconomists.

With these recurrent business stories in mind, we provide a first attempt to explore the

role of technological synergies in the business cycle. We consider two key questions: How do

technological synergies influence the sorting between producers with different productivity? How

does a heightening in the volatility of idiosyncratic productivity affect aggregate output?

To answer these questions, we use the Compustat fundamental annual data, Compustat

Segment data, Factset Supply Chain Relationships data, and the BEA input-output tables to

1Alcacer et al. (2014), Doz and Wilson (2017) and Lamberg et al. (2019) provide detailed accounts of the
demise of the Nokia-Symbian trading relationship. For a general discussion on the partnership between Symbian
and Nokia, see: https://en.wikipedia.org/wiki/Symbian. For details on the technical follies of Symbian, see
https://www.silicon.co.uk/mobility/smartphones/symbian-mobile-history-227097.
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study the link between technological synergies and idiosyncratic shocks and uncover five novel

empirical facts.

Fact 1 is that the economic fundamentals of trading partners, measured as labor productivity,

profit-to-sales ratio, profit, and sales growth, are positively correlated. By focusing on the year

before establishing the trading relationship, Fact 1 cannot be driven by common shocks to the

firms.

Fact 2 is that a firm’s output is positively correlated with its partner’s productivity, conditional

on the firm’s productivity. The correlation increases with the level of the firm’s productivity,

suggesting supermodularity of the production function.

Fact 3 is that the relationship of trading partners with very different economic fundamentals,

which we refer to as mismatches, is less durable. Facts 1-3 indicate that positive assortative

matching of trading relationships is prominent in the economy and is more stable than mis-

matching, which can be accounted for parsimoniously by technological synergies between trading

partners.

Fact 4 is that a higher absolute value of idiosyncratic productivity shocks to either side of

a trading relationship predicts a higher probability of separation in the subsequent years. We

show that Fact 4 is not driven by the dominating role of negative or positive shocks. Instead,

it is the magnitude of the shocks that lead to separation. Fact 4 can be rationalized by the

destabilizing role of idiosyncratic shocks of both signs that make trading partners more different

from each other, leading to less efficiency and endogenous separation.

Fact 5 is that higher volatility of idiosyncratic productivity shocks in a sector is correlated

with a fall in sectoral output paired with a fall in output in connected sectors. Fact 4 can be

explained by the fact that the volatility of idiosyncratic productivity shocks systematically alters

the extent of mismatching in the economy. Facts 4 and 5 motivate us to investigate the role of

technological synergies and idiosyncratic productivity shocks in a real business cycle model.

Motivated by these empirical facts, we develop a simple and static model with synergies

in production input. We assume that manufacturing one unit of output requires a distinct

input from firms in each sector whose productivity is either low- or high-type. Synergies in

production technology entail a trading relationship with similarly productive firms to produce

larger output (our fact 3). High-productivity firms prefer to form a trading relationship with

partners of high productivity, a standard assumption in matching theory since the seminal study
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by Gale and Shapley (1962). Technological synergies indicate that sorting between firms with

the same productivity type is the stable (and efficient) equilibrium (our Fact 1). While trading

relationships between firms with different types of technology are unstable (our Fact 3) since

the partner with high-type of technology optimally terminates the trading relationship with a

firm of low-type technology to seek to establish a new trading relationship with a firm of equally

high-type technology that yields a larger payoff.

The simple model illustrates that idiosyncratic shocks destabilize trading relationships

by transforming positive assortative matching into mismatching (our Fact 4). Technological

synergies (our Fact 2) introduce a “bottleneck effect” that generates an asymmetry in output

response to negative and positive idiosyncratic shocks. Adverse idiosyncratic shocks that reduce

the productivity of one partner (such as the poor coding of Symbian Ltd.) decrease output by

impairing the production capacity of the trading relationship. In contrast, positive idiosyncratic

shocks (such as Nokia’s hardware updates) exert limited benefits to the trading relationship

since the partner with low productivity cannot exploit the improved technology.

The asymmetric effect of idiosyncratic shocks implies that the heightening in the volatility of

idiosyncratic shocks depresses output on average (our Fact 5). In particular, an increase in the

volatility of idiosyncratic productivity in one sector raises the number of trading relationships

with a partner of different technology types, for which technological synergies imply sub-

optimal production. Misallocation of trading relationships arises due to idiosyncratic shocks

and technological synergies. It is intrinsic to business cycle fluctuations and not generated by

exogenous distortions in goods or labor markets. Moreover, since technological synergies apply

to all interlinked industries, the volatility of idiosyncratic shocks in one industry induces a local

contraction in output and a contraction in the connected industries.

We embed the intuition of the simple static model into a quantitative and dynamic framework

which allows us to quantify the relevance of the critical mechanisms at play for the importance

of technological synergies for economic activity in a more realistic environment that encapsulates

the empirical features of the process of trading relationship formation.

The quantitative model has four new features. First, frictions in the matching process

across firms prevent the instantaneous and costless formation of trading relationships, which is

motivated by the fact that sorting is far from perfect in the data. Second, we assume directed

4



search from both sides of the market to form trading relationships.2 We show theoretically that,

with the above two features, log-supermodularity (which is stronger than supermodularity) of the

surplus function is a sufficient condition for the stability of positive assortative matching. Third,

the termination of trading relationships with different productivity types is staggered, motivated

by the time-consuming separation of trading relationships observed in the data. Fourth, we

propose a generalization of the production technology in which the degree of technological

synergies is governed by a single parameter, which we estimate using firm-level data.

We use the extended model to quantitatively assess the vital propagation channels for

technological synergies. We calibrate the novel parameters in the system that govern the degree

of technological complementarity, search frictions, and endogenous separations using Compustat

firm-level data. We show that under the benchmark calibration, search frictions and delayed

separations generate imperfect sorting of firms and a 21% drop in output in the stationary

steady state, which can be decomposed to a 12% decrease in the utilization rate of productive

resources and an 11% decrease in the average production efficiency. The size of output losses is

comparable to the output gap due to other types of frictions or misallocations.3

We find that an increase of 34% in the standard deviation of idiosyncratic productivity shocks,

which is of the same magnitude as the increase in uncertainty during the Great Recession, leads

to a 1.2% drop in aggregate output. The model shows that the fall in production is explained

by a significant increase in the measure mismatch and the persistent rise in the separation rate.

The effects of increased idiosyncratic uncertainty are persistent since the termination of ongoing

trading relationships with inefficient production is time-consuming, and the process of new

trading relationship formation is costly.

Our analysis is related to three realms of research. First, we contribute to the literature

on technological synergies by focusing on short-run output fluctuations. Kremer (1993) and

Jones (2011) study the implication of technological synergies to economic development and the

secular allocation of resources. Technological synergies are also central to the study of strategic

mergers and acquisitions of firms (Rhodes-Kropf and Robinson, 2008; Xu, 2017; David, 2021),

2Our assumptions of directed search from both sectors are more suitable for our analysis of inter-firm trading
relationship than the conventional search models with two-sided heterogeneity, such as in Shimer and Smith
(2000) who considered random search, or in Eeckhout and Kircher (2010) who assume that only one side of the
matching market conducts a directed search, while the other side posts prices.

3For example, the output gap induced by financial constraints, through capital misallocation and inefficiently
low capital accumulation, ranges from 35% to 70% (see the literature review by Hopenhayn, 2014).
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the magnification effect of technology adoption (Eslava et al., 2015), the slowdown in aggregate

productivity (Acemoglu et al., 2023) and patterns of international trade (Demir et al., 2023).4

Compared to these studies, we investigate the role of technological synergies on short-run output

fluctuations and study how they evolve dynamically in response to exogenous disturbances.

Second, we add to the literature on misallocation. The literature attributes misallocation to

distortions in physical capital (Banerjee and Duflo, 2005; Hsieh and Klenow, 2009; Restuccia

and Rogerson, 2008) or human capital (Alder, 2016; Hsieh and Moretti, 2019; Baley et al.,

2022), while we study the misallocation in trading relationships, a new source of dynamic

misallocation that yields significant output losses. Our source of misallocation originates from

idiosyncratic shocks to technology rather than exogenous distortions such as financial frictions

and distortionary taxes and, thus, is endogenous to business cycle fluctuations.

Finally, we link with the literature on idiosyncratic uncertainty (Christiano et al., 2014;

Bloom et al., 2018; Arellano et al., 2019) by showing that technological synergies trigger large

output losses for the heightening of idiosyncratic volatility without resorting to non-convex

adjustment costs.

The rest of the paper is structured as follows. Section 2 documents the five novel facts

about the technological synergies embedded in trading relationships. Section 3 develops a simple

model to outline the interplay between technological synergies, idiosyncratic shocks, and sorting.

Section 4 extends the simple model to a rich general equilibrium framework. Section 5 calibrates

the model, and Sections 6-8 explore its quantitative predictions. Section 9 concludes.

2 Empirical evidence

This section documents five facts about the assortative matching of trading relationships.

These five facts will motivate our model and offer a benchmark against which to compare our

quantitative findings.

Data. We study the formation of trading relationships using two data sets. The first is the

Compustat Customer Segment data, which provides information on inter-firm trading for the

universe of publicly listed firms in the US. The data have a yearly frequency and cover 1976-2020,

4See Fernández-Villaverde et al. (2019, 2021) for alternative sources of complementarities based on the
formation of vendor contracts and firm partnerships to study fiscal policy and monopsony power in labor markets.
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with approximately 18 thousand firms. Since publicly listed firms must supply the identity of

trading partners that account for more than 10% share of yearly sales, we can obtain 72,694

distinct customer-supplier trading relationships. The second dataset is the FactSet Supply Chain

Relationships data, which comprises firms’ relationship information from public sources such as

SEC 10-K annual filings, investor presentations, and press releases since 2003. Using the sample

2003-2021, we obtain 289,239 distinct customer-supplier trading relationships.5
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Figure 1: Distribution of duration of trading partnerships (years)

Figure 1 plots the cross-sectional distribution of the yearly duration of the trading partnership

(the duration of a relationship that starts in year t1 and ends in year t2 is t2−t1+1) in each dataset.

Trading relationships are persistent, with a mean duration of about 4 years in Compustat Segment

data and 3.5 years in the Factset data. Since the sample for the two data sets ends in 2020

and 2021, respectively, with many ongoing relationships, 4 and 3.5 years are downward-biased

estimates of the true persistence.

Fact 1: Positive assortative matching of trading relationship

Fact 1 is that the economic fundamentals of trading partners are positively correlated. Since

the correlation of economic fundamentals between trading partners could be driven by common

shocks in addition to the force of positive assortative matching, we control for the effect of

common shocks by focusing on the trading partners in a newly formed partnership and assessing

the correlation of economic fundamentals in the year before the formation of a trading relationship.

5To avoid repetition, we will drop “trading” from “trading relationship” when no ambiguity occurs.
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For robustness, Table A.1 in the Appendix reports the panel regression results when the variables

are measured during the match.

More concretely, we estimate the regression:

decile (πj,k) = α + β × decile
(
πcus
j,k

)
+ ϵj,k, (1)

for j ∈ {1, 2, · · · , J} and k ∈ {1, 2, · · · , Jj}. Each observation is a distinct trading relationship

in equation (1). The dependent variable πj,k is the firm j’s economic fundamental in the year

before the start of its partnership with its kth customer. The dependent variable decile (πj,k) is

the decile of πj,k within firm j’s three-digit NAICS industry in the year before the start of the

partnership, ranging from one (bottom 10%) to ten (top 10%). We will use as fundamentals

three different measures: labor productivity (ratio of sales to employment), profit-to-sales ratio

(profit is earnings before interest, tax, depreciation, and amortization or EBITDA), and sales

growth. The regressor πcus
j,k is the economic fundamental of firm j’s kth customer in the year

before the start of the partnership, and decile
(
πcus
j,k

)
is the decile of πcus

j,k within the customer

firm’s three-digit NAICS industry in the year before the start of the partnership.

Table 1: Assortative matching for ranking of economic fundamentals, one
year before the match (Compustat Segment)

(1) (2) (3)

Labor productivity Profit/sales Sales Growth

decile
(
πcus
j,k

)
0.320*** 0.067*** 0.228***

(0.014) (0.014) (0.015)

Constant 4.133*** 4.521*** 4.562***

(0.115) (0.093) (0.088)

Adjusted R2 0.07 0.00 0.03

Observations 6,914 7,605 6,854

Note: Sample: 1976-2020. Standard errors are in the parentheses. *** denotes significance level at the 1%.

Tables 1 (for Compustat) and 2 (for Factset) show that the estimate for β is positive and

statistically significant for all the alternative measures of economic fundamentals. The results

imply that firms with stronger economic fundamentals (compared to other firms in the same

industry over the same period) establish trading relationships with customers with stronger

economic fundamentals, providing strong evidence of positive assortative matching.
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Table 2: Assortative matching for ranking of economic fundamentals, one
year before the match (Factset)

(1) (2) (3)

Labor productivity Profit/sales Sales Growth

decile
(
πcus
j,k

)
0.105*** 0.052*** 0.191***

(0.014) (0.008) (0.008)

Constant 6.783*** 5.325*** 4.238***

(0.007) (0.053) (0.047)

Adjusted R2 0.01 0.00 0.03

Observations 17,680 18,151 17,783

Note: Sample: 2003-2021. Standard errors are in the parentheses. *** denotes significance level at the 1%.

Fact 2: Firm’s sales comove with partner’s labor productivity

Fact 2 is that a firm’s output is positively correlated with its partner’s productivity, conditional

on the firm’s labor productivity. This fact implies that firms have the incentive to match

with more productive partners, generating positive assortative matching, a key property of

our theoretical model. Furthermore, the correlation between a firm’s output and its partners’

labor productivity increases with its productivity. This finding will motivate us to assume a

supermodular production function in the model.

To show these results, we estimate the regression:

yj,t = βzj,t + ηdecile
(
zcusj,t

)
+ induj + χt + ϵj,t, (2)

where yj,t and zj,t are firm j’s log sales and log labor productivity, respectively, and we remove

firm-specific time trends from both variables. The regressor decile
(
zcusj,t

)
is the average decile

of firm j’s partners’ labor productivities within partner’s three-digit NAICS industries.6 The

variables indu and χt are the industry and year fixed effects, respectively. Our main goal is to

estimate the contribution of the partner’s economic fundamentals to the firm’s output rather

than estimating the firm’s production function, which would require data on inputs that are

difficult to measure in our data sets.

Columns (1) and (2) in Table 3 show the estimation results from regression (2) using data

6Specifically, decile
(
zcusj,t

)
=

∑
k decile

(
zcusj,k,t

)
/N cus

j,t , where N cus
j,t is the number of firm j’s partners. We

consider the average decile rather than the average labor productivity since the partners can be from different
industries, making the level of labor productivity incomparable between each other.
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from Compustat Segment and FactSet datasets, respectively. A firm’s log sales are increasing in

its log labor productivity. The firm’s log sales are also positively correlated with the ranking of

its partners’ labor productivity. Conditional on the firm’s labor productivity, increasing a firm’s

partners’ labor productivity decile by one (e.g., from 5th to 6th) would increase the firm’s sales

by 5.6% and 13.7% for the two data sets, respectively, an economically significant move.

Table 3: Sales comoves with partner’s labor productivity

(1) (2) (3) (4)

Compustat Segment FactSet Compustat Segment FactSet

zj,t 0.491*** 0.477*** 0.122*** 0.261***

(0.025) (0.024) (0.039) (0.046)

decile
(
zcusj,t

)
0.056*** 0.137*** -0.174*** 0.038*

(0.012) (0.013) (0.022) (0.022)

decile
(
zcusj,t

)
× decile (zj,t) 0.028*** 0.014***

(0.002) (0.002)

Time fixed effect Yes Yes Yes Yes

Industry fixed effect Yes Yes Yes Yes

Adjusted R2 0.20 0.30 0.21 0.31

Observations 14,882 13,664 14,882 13,664

Note: Sample: 1976-2020 for Columns (1) and (3), and 2004-2020 for Columns (2) and (4). The dependent

variables are the firm’s log sales.

Then, we extend the regression to include the interaction between the partner’s labor

productivity ranking and the firm’s labor productivity ranking as an additional independent

variable.

yj,t = βzj,t + ηdecile
(
zcusj,t

)
+ decile

(
zcusj,t

)
× decile (zj,t) + induj + χt + ϵj,t, (3)

Columns (3) and (4) in Table 3 show the estimation results. The estimate for the coefficient

of the interaction term is positive, indicating that the correlation between a firm’s log sales and

its partners’ productivity ranking is higher when it has a higher ranking in labor productivity.

In other words, the partners’ labor productivity is more critical for a more productive firm than

a less productive one.

This approach can be motivated by a simple example. Imagine we have firm j and its

intermediate goods supplier k. Supplier k produces intermediate goods at a unit cost of ewt−ζk,t ,

where wt and ζk,t are log wage and supplier k’s efficiency. We use the term efficiency to
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distinguish this shifter of the cost function from the measured labor productivity in our empirical

exercises. Firm i output is determined by Yj,t = ext+f(ζj,t,ζk,t)Lα
j,tM

γ
j,t, α+ γ < 1, where xt is the

aggregate TFP. The idiosyncratic TFP g (ζj,t, ζk,t) can be potentially determined by both firms’

efficiencies, ζj,t and ζk,t. Finally, Lj,t and Mj,t are firm j’s labor and intermediate inputs.

If factor markets are competitive, the firm j’s first-order conditions are αext+f(ζj,t,ζk,t)Lα−1
j,t Mγ

j,t =

ewt and γext+f(ζj,t,ζk,t)Lα
j,tM

γ−1
j,t = ewt−ζk,t , which be derived as:

log (Yj,t) = log

(
Yj,t
Lj,t

)
︸ ︷︷ ︸
log labor prod

+
1

1− α− γ
[γζk,t + f (ζj,t, ζk,t) + xt − wt + ϵ]︸ ︷︷ ︸

log labor input

, (4)

where ϵ = γ
γ

1−α−γα
1−γ

1−α−γ is a constant, which can be industry-specific. Equation (4) shows that

firm j’s log output can be decomposed among log labor productivity, the supplier k’s efficiency

(ζk,t), a term that captures synergies (f (ζj,t, ζk,t)), and the aggregate state (xt − wt), exactly

the form of regression (3).

Fact 3: Mismatches are less durable

Fact 3 is that the relationships of trading partners with very different economic fundamentals,

which we refer to as mismatches, are less durable. More specifically, the larger the mismatch,

the more likely the separation of trading partners.

First, we need a concept of mismatch. We measure the degree of mismatch in a trading

relationship as the distance between two partners’ deciles in the distribution of economic

fundamentals (defined as in Fact 2) in the year preceding the establishment of the trading

relationship, measured by ∆j,k,t = |decile (πj,k,t) − decile
(
πcus
j,k,t

)
|, where the variable ∆j,k,t

measures the degree of mismatch and takes values between zero and nine, with zero indicating

no mismatch and a positive value indicating a mismatch.

Second, we estimate the regression:

durj,k,t = β ×∆j,k,t + χt + ϵj,k,t,

where durj,k,t is the expected annual duration of trading relationship. In particular, the expected

duration for a trading relationship that terminates in year t+ p had an expected duration of p
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years in year t. Also, ∆j,k,t is the degree of mismatch, and χt is the year fixed effect.

Table 4: Partnership duration and the degree of mismatch (Compustat
Segment)

(1) (2) (3)

Labor productivity Profit/sales Sales Growth

∆j,k,t -0.078*** -0.071*** -0.153***

(0.009) (0.009) (0.011)

Time fixed effect Yes Yes Yes

Adjusted R2 0.10 0.09 0.10

Observations 38,357 29,538 28,151

Note: Sample: 1976-2020. Standard errors are in the parentheses. *** denotes significance level at the 1%.

Table 5: Partnership duration and the degree of mismatch (Factset)

(1) (2) (3)

Labor productivity Profit/sales Sales Growth

∆j,k,t -0.043*** -0.102*** -0.136***

(0.008) (0.007) (0.007)

Time fixed effect Yes Yes Yes

Adjusted R2 0.16 0.16 0.16

Observations 75,719 76,009 75,001

Note: Sample: 2003-2021. Standard errors are in the parentheses. *** denotes significance level at the 1%.

Tables 4 and 5 show that the duration of a trading relationship decreases with the degree of

mismatch. The regression coefficient is statistically significant and quantitatively large across

the alternative measures of economic fundamentals. These findings capture that the instability

of the trading relationships increases for partnerships with different economic fundamentals. In

contrast, partnerships among firms with similar economic fundamentals are stable and durable.

For robustness, Table A.2 in the Appendix shows the cross-sectional results when we focus on

the year proceeding the start of matches.

Fact 4: Idiosyncratic shocks lead to separation of trading relationships

Fact 4 is that a higher absolute value of idiosyncratic productivity shocks to either side of a

trading relationship predicts a higher probability of separation in the subsequent years.
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We proxy idiosyncratic productivity shocks with the change in the labor productivity and

profit-to-sales ratio decile. Then, we study the relationship between the absolute value of

idiosyncratic shocks to a firm and its trading partner and the subsequent separation of trading

relationships by estimating:

sepj,k,t = β1 × |∆decile (πj,k,t−1)|+ β2 ×
∣∣∆decile (πcus

j,k,t−1

)∣∣+ γt + ϵj,t,

where sepj,k,t is a dummy variable which is equal to 1 if firm j terminates an existing partnership

with customer k in year t, and the variables |∆decile (πj,k,t−1) | and |∆decile
(
πcus
j,k,t−1

)
| are the

absolute value of the change of firm j and customer k’s decile of labor productivity or the

profit-to-sales ratio. Variable γt is a time fixed-effect that controls for the potential comovement

between the time trends of separation and the magnitude of idiosyncratic shocks.

Table 6: Absolute value of idiosyncratic shocks and trading relationship
separation (Compustat Segment)

(1) (2) (3) (4) (5) (6)

Meas. of fundamental Labor productivity Profit/sales

|∆decile (πj,k,t−1)| 0.027*** 0.011***

(0.003) (0.002)∣∣∣∆decile(πcus
j,k,t−1

)∣∣∣ 0.016*** 0.012***

(0.006) (0.003)

|∆decile (πj,k,t−2)| 0.013*** 0.023***

(0.003) (0.002)∣∣∣∆decile(πcus
j,k,t−2

)∣∣∣ 0.022*** 0.014***

(0.006) (0.003)

∆decile (πj,k,t−2) 0.004 -0.000

(0.003) (0.002)

∆decile
(
πcus
j,k,t−2

)
0.0002 0.002

(0.006) (0.003)

Time fixed effect Yes Yes Yes Yes Yes Yes

Adjusted R2 0.13 0.13 0.13 0.12 0.12 0.12

Observations 23,150 22,000 22,000 25,596 23,997 23,997

Note: Sample: 1976-2020. Standard errors are in the parentheses. *** denotes significance level at the 1% level.

Tables 6 and 7 show the benchmark results in their Column (1). The estimation evinces a

significant positive correlation between idiosyncratic shocks to either side of the match and the

separation of a trading relationship. Column (2), using the lagged absolute value of the change
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Table 7: Absolute value of idiosyncratic shocks and trading relationship
separation (Factset)

(1) (2) (3) (4) (5) (6)

Meas. of fundamental Labor productivity Profit/sales

|∆decile (πj,k,t−1)| 0.010*** 0.003***

(0.002) (0.001)∣∣∣∆decile(πcus
j,k,t−1

)∣∣∣ 0.012*** 0.012***

(0.003) (0.001)

|∆decile (πj,k,t−2)| 0.006*** -0.001

(0.002) (0.001)∣∣∣∆decile(πcus
j,k,t−2

)∣∣∣ 0.012*** 0.006***

(0.003) (0.001)

∆decile (πj,k,t−2) 0.003 0.002

(0.002) (0.001)

∆decile
(
πcus
j,k,t−2

)
0.0003 -0.002

(0.002) (0.001)

Time fixed effect Yes Yes Yes Yes Yes Yes

Adjusted R2 0.14 0.14 0.14 0.13 0.13 0.13

Observations 67,187 67,616 67,616 72,141 71,451 71,451

Note: Sample: 2003-2021. Standard errors are in the parentheses. *** denotes significance level at the 1% level.

in profit-to-sales ratio as the independent variable, delivers the same result. Our estimates

support the assumption that separations are time-consuming (e.g., due to adjustment costs or

long-term contracts) and positively correlated with changes in productivity and profitability in

the preceding years.

As a robustness check, we check whether the separation in trading relationships depends

on the sign of idiosyncratic shocks (i.e., on whether a firm’s ranking or its trading partner

rises or falls). Column (3) in the tables shows that if we use the simple change in profit in the

regression instead of the absolute change, the coefficient is statistically insignificant, suggesting

that the joint combination of positive and negative changes in profits is critical to account for

the termination of trading relationships. In particular, our main results in Columns (1) and

(2) do not point to large negative shocks dissolving trading relationships but to technological

synergies between firms.
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Fact 5: Micro uncertainty decreases output in connected industries

Fact 5 is that higher volatility of idiosyncratic productivity shocks in a sector is correlated with

a fall in sectoral output paired with a fall in output in connected sectors. We construct measures

of the volatility of idiosyncratic productivity using Compustat Fundamentals annual data that

provides information on publicly listed firms in the United States. We focus on the post-1998

period since it comprises consistent measures of real output at the 3-digit NAICS industry level.7

We proxy the volatility in idiosyncratic productivity in two alternative ways commonly

used in the literature as in Bloom et al. (2018). We use the inter-quartile range (IQR) of the

profit-to-sales ratio, where sales are measured as net sales and profit as EBITDA. To avoid

measurement bias generated by the entry and exit of firms, we trim the data to a fully balanced

panel by retaining firms with a continuous record of profits and sales between 1998 and 2019.

Moreover, as small industries tend to suffer from severe small sample bias when computing

cross-sectional moments, we drop small industries with less than ten firms with a continuous

record of profits and sales over our sample periods. Our adjusted panel provides yearly measures

of the volatility of idiosyncratic shocks and output growth for 37 industries for 1998-2019.

Next, we construct an index for each industry that measures its connected industries’ volatility.

We define industry i’s connected industries as those industries that account for more than 1%

of industry i’s trade in intermediate goods as imputed by the BEA input-output tables, which

report input-output values of intermediate goods for 66 private industries in 3-digit NAICS. On

average, an industry is connected to 20 other industries, and the three most connected industries

account for around 45% of the total trade volume in intermediate goods. For each industry i, we

derive an index σconnect
i,t that measures the volatilities in the connected industries by weighting

our volatility measures by the value of input-output intermediate goods traded with industry i.

Then, we estimate the panel regression:

∆yi,t = β1 × σi,t + β2 × σconnect
i,t + χi + γt + ϵi,t,

where ∆yi,t is the growth rate of real gross output in each industry i at time t constructed

using the BEA dataset, σi,t is the constructed index of the volatility of idiosyncratic shocks

7We use GDP by industry data constructed by BEA and available between 1998 and 2018. Historical data for
1947-1997 is not consistent with the data for the post-1997 period.
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for industry i, σconnect
i,t is the constructed measure of the volatility of idiosyncratic shocks for

industry i’s connected industries, and χi and γt are industry and time fixed-effect, respectively.

The standard errors are clustered by industry.

Table 8: Volatility of idiosyncratic shocks in the connected industries is
negatively correlated with output growth

(1) (2)

σi,t -0.009** -0.008***

(0.004) (0.003)

σconnect
i,t -0.080* -0.062*

(0.041) (0.037)

∆yconnecti,t 0.906***

(0.196)

Time fixed effect Yes Yes

Industry fixed effect Yes Yes

Adjusted R2 0.22 0.33

Observations 22× 37 22× 37

Note: Sample: 1998-2019. Standard errors are in the parentheses. Standard errors are clustered at the industry

level. *, **, and *** denote significance level at the 10%, 5%, and 1%, respectively.

Column (1) in Table 8 shows results for our benchmark estimation where the volatility of

idiosyncratic shocks is measured by the interquartile range (IQR) of the profit-to-sales ratio. The

volatility of idiosyncratic shocks within an industry and in the industry’s connected industries

has a significant and contractionary effect on sectoral output growth. Important for our analysis,

the effect of the volatility of idiosyncratic shocks from other connected industries has a larger

negative impact on output growth compared to the volatility of idiosyncratic shocks originating

within the same industry. This finding shows that the transmission of changes in the volatility

of idiosyncratic shocks across industries is significant and hurts the industry’s output.

Unfortunately, as it is common in the literature, we face the measurement of exogenous

changes in the volatility of idiosyncratic shocks. Therefore, we cannot identify the causal effect

of volatility on connected industries’ output.8 But to partially alleviate the issue induced by the

lack of exogenous shock or instrumental variable, in Column (2), we include the output growth

in industry i’s connected industries, ∆yconnecti,t , as a control variable. ∆yconnecti,t is computed as

the mean of the gross output growth in industry i’s connected industries, weighted by their

8See Fernandez-Villaverde and Guerron-Quintana (2020), Fernández-Villaverde et al. (2015), and Mumtaz
and Zanetti (2013) for a discussion on the impact of volatility of shocks as a measure of economic uncertainty.
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value of intermediate goods input and output traded with industry i. The coefficients of σi,t and

σconnect
i,t are still estimated as negative and statistically significant conditional on ∆yconnecti,t . The

finding suggests that the negative effect of the volatility of idiosyncratic shocks in connected

industries on industrial output is not a byproduct of the fall in output in connected industries

that drags down industrial output.

Taking stock

Facts 1-3 above suggest the existence of technological synergies between trading partners and

that positive assortative matching of trading relationships is the stable equilibrium of a matching

game. Facts 4 and 5 motivate us to investigate the role of technological synergies and idiosyncratic

productivity shocks in a business cycle model. We move to do so now in two steps: first, with a

simple model that illustrates the main mechanisms at work and, second, with a fully-fledged

quantitative model. We will see how the latter replicates all five facts we just documented.

3 A simple model

We present a simple model that illustrates the interplay between inter-firm sorting, technological

synergies, and idiosyncratic shocks. The economy is composed of two sectors, A and B. Each

sector contains two firms, a firm H with high productivity, zH , and a firm L with low productivity,

zL, where zH > zL.

Output f
(
zj, zk

)
is produced by a trading relationship formed by two firms, each belonging to

a different sector, where zj is the productivity of the firm in sector A, and zk is the productivity

of firm in sector B. The output from the relationship is divided between a payoff for the firm

in sector A, fA
(
zj, zk

)
, and a payoff to the firm in sector B, fB

(
zj, zk

)
. Aggregate output is

f
(
zj, zk

)
+ f

(
z−j, z−k

)
(where −i and −k denote the other firm in each sector).

We call the relationships formed by firms of the same productivity positive assortative

matchings, while we call the relationships of different productivity firms as cross-matchings.

Panels (a) and (b) in Figure 2 illustrate each of these cases. We assume that firms are always

matched to focus on the key mechanisms, but we will relax this assumption in Section 4.
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Figure 2: Alternative matching patterns

3.1 Positive assortative matching

First, we show that a standard assumption of monotonicity in the payoff functions produces

positive assortative matching.

Assumption 1. (Partial monotonicity). The payoff of high-productivity firm strictly increases

with the partner’s productivity. Specifically, fA
(
zH , zH

)
> fA

(
zH , zL

)
, and fB

(
zH , zH

)
>

fB
(
zL, zH

)
.

Assumption 1 implies that a high-productivity firm strictly prefers forming a relationship

with a high-productivity partner because it generates a larger payoff than matching with a

low-productivity partner. Assumption 1 generates positive assortative matching in equilibrium

since the H-type firm forms a relationship with a H-type partner and a L-type firm is forced to

form a relationship with a L-type partner.

Assumption 1 also generates stable matches in the sense of Gale and Shapley (1962). H-

type firms matched with other H-type firms do not want to switch partners. In comparison,

cross-matching is unstable since firms of H-type wish to separate from L-type firms and match

with an H-type partner. Since cross-matching is unstable, we refer to it as mismatch.

Proposition 1 summarizes the effect of monotonicity for the sorting of firms across productivity

types (the proof follows directly from Assumption 1).

Proposition 1. (Positive assortative matching). Under the assumption of partial monotonicity,

a trading relationship is stable if and only if it has positive assortative matching.
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3.2 Technological complementarity and its implications

Next, we show that technological complementarities make positive assortative matching the

efficient equilibrium. But first, let us introduce the concept of supermodularity.

Definition 1. (Supermodularity). A production function is supermodular and entails technologi-

cal complementarity if f
(
zH , zH

)
+ f

(
zL, zL

)
> f

(
zH , zL

)
+ f

(
zL, zH

)
.9

Definition 1 implies that the output of a relationship is greater with positive assortative

matching than in a mismatch. Intuitively, supermodularity implies that firms have a comparative

advantage in working with firms of the same productivity type. Supermodularity is embedded

in standard production technologies and is widely used in economics (León-Ledesma and Satchi,

2019). For example, the Cobb-Douglas production function, f
(
zj, zk

)
= (zj)

α (
zk
)1−α

, is

supermodular. Clearly,
(
zH

)α (
zH

)1−α
+
(
zL

)α (
zL

)1−α
>

(
zH

)α (
zL

)1−α
+
(
zL

)α (
zH

)1−α
with

zH > zL and 0 < α < 1.10

Supermodularity delivers key results. For instance, assume that the economy starts from

positive assortative matching with aggregate output y = f
(
zH , zH

)
+ f

(
zL, zL

)
. Then, suppose

that an unexpected idiosyncratic productivity shock hits sector A changing the firm with H-type

from zH to zL and the firm with L-type from zL to zH (but productivity in sector B remains

unchanged). If firms cannot re-match, the new aggregate output is y′ = f
(
zL, zH

)
+f

(
zH , zL

)
<

y. In other words, shocks that change firms’ idiosyncratic productivities translate into lower

output under supermodularity if firms cannot rearrange their matches.

More pointedly, changes in the variance of the idiosyncratic shock generate movements in

aggregate output. To see this, assume that each sector is populated by a continuum of firms

of size two (rather than two single firms). Half of the firms are H-type and the other half is

L-type. Also, the economy starts from positive assortative matching with a measure one of

HH- and LL-type relationship, respectively. The total payoff in sectors A and B are equal to

yA = fA
(
zH , zH

)
+ fA

(
zL, zL

)
and yB = fB

(
zH , zH

)
+ fB

(
zL, zL

)
.

9If the production function is twice differentiable, an equivalent definition of supermodularity is
∂2f(zj ,zk)

∂zj∂zk > 0.
10A production technology can also be submodular, such that output is greater in mismatch than in positive

assortative matching: f
(
zH , zH

)
+ f

(
zL, zL

)
< f

(
zH , zL

)
+ f

(
zL, zH

)
. An example of submodular production

function is f
(
zj , zk

)
= log

(
zj + zk

)
. Moreover, the production function can be neither supermodular nor

submodular. For instance, f
(
zj , zk

)
=

(
zj
)α

+
(
zk

)γ
implies the same output under positive assortative

matching and mismatch.
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We let the idiosyncratic shock in sector A follow a Markov-switching process with a transition

matrix: 1− ρ ρ

ρ 1− ρ

 ,

where ρ is the probability of changing technology type. We continue to assume that there is no

shock in sector B. Assuming a law of large numbers, ρ is also the fraction of firms in sector A

that change productivity type and, hence, the share of mismatched relationships. Thus, the

expected payoff in the next period for firms in sector A is:

y′A = (1− ρ)
[
fA

(
zH , zH

)
+ fA

(
zL, zL

)]
+ ρ

[
fA

(
zL, zH

)
+ fA

(
zH , zL

)]
, (5)

and for firms in sector B:

y′B = (1− ρ)
[
fB

(
zH , zH

)
+ fB

(
zL, zL

)]
+ ρ

[
fB

(
zL, zH

)
+ fB

(
zH , zL

)]
. (6)

We can rewrite equations (5) and (6) as y′A = yA − ρ∆yA, and y′B = yB − ρ∆yB, where

∆yi = fi
(
zH , zH

)
+fi

(
zL, zL

)
−fi

(
zH , zL

)
−fi

(
zL, zH

)
, with i ∈ {A,B}, and ∆yi represents the

difference of total output between positive assortative matching and mismatch. Thus, ∆yi > 0 if

and only if the payoff function is supermodular. In other words, the total payoff in both sectors

is strictly decreasing with ρ, or equivalently, the variance of idiosyncratic productivity shocks in

sector A decreases aggregate output if the payoff function is supermodular.

3.3 Takeaways

The simple model establishes four results. First, under the assumptions of monotonicity

and supermodularity in technology, positive assortative matching is the stable and efficient

equilibrium, corresponding to Facts 1 and 3. Second, mismatching is an unstable and inefficient

equilibrium, corresponding to Fact 2. Third, idiosyncratic productivity shocks transform positive

assortative matching to mismatching, predicting separation of the relationship, which relates to

Fact 4. Fourth, an increase in the variance of idiosyncratic productivity shocks in one sector

generates a fall in the output of both sectors, consistent with Fact 5.

While our simple model parsimoniously accounts for our empirical facts, it is unsuitable for
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quantitative analysis. There are also critical observed patterns that the simple model cannot

account for. In particular, sorting is far from perfect in the data, suggesting search frictions

exist. Separation of relationship in response to idiosyncratic shocks is staggered rather than

instantaneous, implying another form of friction missing in the simple model. Lastly, as shown by

Shimer and Smith (2000) and Eeckhout and Kircher (2010), the condition for positive assortative

matching becomes more stringent once we have search frictions. The following section will

address these issues with a fully-fledged general equilibrium model.

4 A General equilibrium model

In this section, we reforge our simple model by adding households and firms that endogenously

create and terminate relationships using directed search.

4.1 Households

There is a representative household of unitary size with a continuum of members and utility

function:

E0

∞∑
t=0

βt [log (Ct)−Nt] ,

where E0 is the conditional expectation operator at time t = 0, Ct is consumption of final goods,

Nt is labor input, and β ∈ (0, 1) is the discount factor. For future reference, the household’s

stochastic discount factor is Λt+1 = βCt/Ct+1.

The household maximizes utility subject to the budget constraint Ct = WtNt +Πt, where

Wt is the wage rate set up in a competitive market, Nt is the total hours, and Πt is the profit

gained by the household from owning the firms.

4.2 Firms and technology

There is a unitary measure of intermediate- and final-goods producers, indexed by lI ∈ [0, 1]

and lF ∈ [0, 1], respectively. An intermediate-goods producer must form a relationship with a

final-goods producer to manufacture final goods. Such relationship is indexed by (lI , lF ). A firm

not part of a relationship stays idle. We call it a “single firm.”
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Figure 3: Timeline of firm events

At the beginning of each period t, firms experience aggregate and idiosyncratic productivity

shocks and an exogenous separation shock with probability δ. Besides this exogenous shock,

firms in a relationship might decide to separate from the current partner and become single.

The firms produce if the partnership is not terminated either exogenously or endogenously.

Otherwise, single firms search to form new relationships with partners from the opposite sector.

At the end of each period t, each relationship sells the produced goods to the households in a

competitive market. Figure 3 summarizes the firms’ timeline.

The final output in the relationship (lI , lF ) is yt (lI , lF ) = ext+f(zI,t(lI),zF,t(lF ))ht (lI , lF )
α, where

yt (lI , lF ) is the final-goods output and ht (lI , lF ) is labor input. As in Khan and Thomas (2013),

we assume decreasing returns to scale (i.e., 0 < α < 1) to prevent exclusive allocation of

labor to the most productive firms. The variables zI,t (lI) and zF,t (lF ) are the log idiosyncratic

productivity (defined below) for the intermediate goods producer and the final goods producers,

respectively. The exogenous variable xt is the log aggregate productivity shock that follows the

AR(1) process xt = ρxxt−1 + σxϵx,t, where 0 < ρx < 1, and ϵI,t ∼ i.i.d. N (0, 1).

The production function f (zI,t (lI) , zF,t (lF )) determines the efficiency of a relationship in

producing final goods. To encompass different degrees of technological complementarity, we

consider a generalized technology function:

f (zI,t (lI) , zF,t (lF )) = (1− γ) [zI,t (lI) + zF,t (lF )] /2 + γmin [zI,t (lI) , zF,t (lF )] , (7)

where γ encapsulates the degree of technological complementarity.11 Equation (7) shows that

11Another way to encompass different degrees of technological complementarity is to use the CES production

function in Jones (2011): [zI,t (lI)
γ
/2 + zF,t (lF )

γ
/2]

1
γ , where a low γ indicates strong technological complemen-

tarity. This production function converges to a Leontief technology when γ → −∞. The CES function requires
all inputs to be positive, while our generalized production function allows for a negative log productivity zi,t.
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the log productivity of the relationship is a weighted average of the distinct idiosyncratic

productivities in each sector, zI,t (lI) and zF,t (lF ). The weight assigned to the firm with a lower

productivity increases with γ. When γ = 0, the log productivity of the relationship becomes

the unweighted mean of the productivity of the two firms. In this special case, the TFP of the

relationship is ext+f(zI,t(lI),zF,t(lF )) = ext (ezI,t)1/2 (ezF,t)1/2, which is the Cobb-Douglas function

of the idiosyncratic productivities of the two firms scaled by the aggregate productivity. When

γ > 0, the log productivity function becomes supermodular by assigning a larger weight to the

firm with the lowest productivity in the production process.12

To study the interplay between the variance of the idiosyncratic shock and inter-firm sorting,

we let the idiosyncratic productivities follow an AR(1) process with time-varying volatility,

zi,t (li) = ρzzi,t−1 (li) + σz,tϵi,t (li), for i ∈ {I, F}, where ϵi,t ∼ i.i.d. N (0, 1), and σz,t is the

standard deviation of the idiosyncratic productivity shocks, which follows a Markov chain. See

Fernandez-Villaverde and Guerron-Quintana (2020) for an empirical motivation.

Each relationship (lI , lF ) chooses the labor input to maximize profits πt (lI , lF ) = yt (lI , lF )−

ht (lI , lF )Wt. Profit maximization yields that each relationship produces:

yt (lI , lF ) =
{
ext+f(zI,t(lI),zF,t(lF ))

} 1
1−α

(
Wt

α

)− α
1−α

. (8)

Since output is identical across relationships with the same idiosyncratic productivities, for

parsimony, we re-write equation (8) as:

yt (zI , zF ) =
{
ext+f(zI ,zF )

} 1
1−α

(
Wt

α

)− α
1−α

, (9)

and express the profit of a relationship as a function of idiosyncratic productivities:

πt (zI , zF ) = (1− α) yt (zI , zF ) . (10)

Equations (9) and (10) show that for γ > 0, the production function and the profit function

12For γ = 1, the log productivity of the relationship becomes a Leontief production technology, and it is
determined by minimum value between zF,t (lF ) and zI,t (lI), the special case that nests Kremer (1993). When
γ < 0, the log productivity function is submodular.
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are log-supermodular, a condition that will play a key role in the next section.13

4.3 Directed search and relationship formation

To form a relationship, firms must search for a firm in the opposite sector. We assume directed

search: firms in each sector choose optimally the submarket with firms of the productivity

type that they want to match with. The matching process is organized in a continuum of

submarkets of productivity types, indexed by the idiosyncratic-productivity type of each sector,

(zI , zF ) ∈ R2. Specifically, single firms from sector I with a productivity of zI can choose to

enter any submarket (zI , zF ), where zF ∈ R. Productivity is observable, i.e., firms in sector I

with idiosyncratic productivity zI cannot go to an alternative submarket (zI , zF ) with zI ̸= zI .

Analogously, single firms in sector F with productivity zF can choose to enter any submarket

(zI , zF ) with zI ∈ R, but cannot enter a submarket (zI , zF ) with zF ̸= zF .
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Figure 4: Organization of the submarkets

Figure 4 shows the organization of the submarkets. Each dot represents a submarket. A

13Formally, functions (9) and (10) are log-supernormal since:

log [yt (zI,t, zF,t)] + log
[
yt

(
zI,t, zF,t

)]
> log

[
yt

(
zI,t, zF,t

)]
+ log

[
yt

(
zI,t, zF,t

)]
, for zI,t > zI,t, zF,t > zF,t,

which implies that firms have a comparative advantage in working with partners with similar productivities,
and positive assortative matching yields higher output and profit than mismatch. As we will show later,
log-supermodularity is a sufficient condition for positive assortative matching under our benchmark calibration.

24



single firm F with productivity zF can enter any submarket on the dash-dotted vertical line

(the yellow and orange dots). Analogously, a single firm I with productivity zI can enter any

submarket on the dashed horizontal line (the green and orange dots). Under sectoral symmetry

(i.e., the value functions and the distribution of firms are symmetric between the two sectors),

positive assortative matching arises when firms only enter the submarket with firms of the

same productivity type in the opposite sectors on the 45-degree line (the orange dot), and the

alternative submarkets off the 45-degree line remain empty. We will establish later the sufficient

condition for positive assortative matching to be a stable equilibrium, such that no pair of firms

prefer to deviate from positive assortative matching and form a relationship with a firm in a

submarket off the 45-degree line.

To formalize the process of directed search, we characterize the choice of a single firm I to

enter a specific submarket as a function of its idiosyncratic productivity, z∗F = z∗F,t (zI), where

z∗F is the productivity of partner that the single firm I is targeting by entering the submarket

(zI , z
∗
F ). Analogously, a single firm F ’s optimal choice of entering submarket is characterized

by z∗I = z∗I,t (zF ), where z
∗
I is the productivity of partner that the single firm F is targeting by

entering the submarket (z∗I , zF ).

Under sectoral symmetry, positive assortative matching is a set of decision rules z∗I,t (z) and

z∗F,t (z) that satisfies z
∗
I,t (z) = z∗F,t (z) = z, for any z. The measure of single firms in sector I

with productivity zI is ñI (zI) and the measure of single firms in sector F with productivity zF is

ñF (zF ). In addition, the measure of single firms from sector I with productivity zI that choose

to enter submarket (zI , zF ) is ñI (zI , zF ). Analogously, ñF (zI , zF ) is the measure of single firms

from sector F with productivity zF that choose to enter submarket (zI , zF ). Since single firms

must choose one submarket to enter, the number of single firms in each submarket is equal to:

ñI,t (zI) =

∫ ∞

−∞
ñI,t (zI , zF ) dzF , and ñF (zF ) =

∫ ∞

−∞
ñF (zI , zF ) dzI .

Under positive assortative matching, a firm enters the submarket with firms in the opposite

sector that have the same productivity type, such that:

ñI,t (zI , zF ) =

ñI,t (zI) if zI = zF

0 if zI ̸= zF

and ñF,t (zI , zF ) =

ñF,t (zF ) if zI = zF

0 if zI ̸= zF .
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Our model differs from conventional models of frictional assignment with two-sided hetero-

geneity (Chade et al., 2017). For example, Shimer and Smith (2000) have symmetric buyers

and sellers but assume random search. Eeckhout and Kircher (2010) considers directed search

but with asymmetric buyers and sellers: the seller posts a price and the buyer decides in which

submarket to shop. Our model aims at representing the process of relationship formation among

firms given that their location and productivity are public information (suggesting directed

search) and where firms are not inherently different in their position regarding price setting.

Nonetheless, our model still delivers positive assortative matching under the mild sufficient

conditions we will discuss later, and the equilibrium allocations are similar to those achieved by

the studies above.

The formation of relationships in each submarket depends on the measure of single firms from

each sector searching in the submarket. A constant-returns-to-scale matching function determines

new relationship formation, M (ñI (zI , zF ) , ñF (zI , zF )), where ñI (zI , zF ) and ñF (zI , zF ) are the

measures of single firms in the two sectors defined above.

Conditional that a submarket (zI , zF ) has positive measures of visiting firms from both

sectors (i.e., ñI (zI , zF ) > 0 and ñF (zI , zF ) > 0), the matching probability for firms in sector I

in the submarket (zI , zF ) is:

µI (zI , zF ) =
M (ñI (zI , zF ) , ñF (zI , zF ))

ñI (zI , zF )
=M (1, θ (zI , zF )) ,

and, similarly, the matching probability for firms in sector F in the same submarket (zI , zF ) is

µF (zI , zF ) =
M (ñI (zI , zF ) , ñF (zI , zF ))

ñF (zI , zF )
=M (1/θ (zI , zF ) , 1) ,

where θ (zI , zF ) = ñF (zI , zF ) /ñI (zI , zF ) is the tightness ratio in submarket (zI , zF ).

4.4 Firm value functions

Next, we define the firms’ Bellman equations. The value JI,t (zI , zF ) of the intermediate-goods

producer that starts the period t in a relationship is:

JI,t (zI , zF ) = [δ + ϕst (zI , zF )] J̃I,t (zI) + [1− δ − ϕst (zI , zF )] ĴI,t (zI , zF ) ,
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where J̃I,t (zI) is the value of a single intermediate-goods producer and ĴI,t (zI , zF ) = πI,t (zI , zF )+

Et

[
Λt+1JI,t+1

(
z
′
I , z

′
F

)]
is the value of continuing the relationship, equal to the flow profit of

πI,t (zI , zF ) whose size is established by Nash bargaining (to be described below), plus the

expected discounted continuation value EtΛt+1JI,t+1 (z
′
I , z

′
F ). The term st (zI , zF ) (derived

below) is an indicator of the endogenous termination of a relationship, equal to one if at least

one firm prefers to terminate the relationship. The probability of endogenous separation, ϕ,

reflects the observed staggered separation process outlined in Section 2.

The value of the final-goods producer JF,t (zI , zF ) in a relationship at the start of period t is:

JF,t (zI , zF ) = [δ + ϕst (zI , zF )] J̃F,t (zF ) + [1− δ − ϕst (zI , zF )] ĴI,t (zI , zF ) ,

where J̃F,t (zF ) is the value of a single intermediate-goods producer and ĴF,t (zI , zF ) = πF,t (zI , zF )+

Et

[
Λt+1JF,t+1

(
z
′
I , z

′
F

)]
is the value of continuing the relationship.

The value of a single firm in sector I is:

J̃I,t (zI) = µI,t (zI , z
∗
F )

{
πI,t (zI , z

∗
F ) + Et

[
Λt+1JF,t+1

(
z
′

I , z
∗′
F

)]}
,

where z∗F is the productivity of the partner chosen by the single firm in sector I, µI,t (zI , z
∗
F ) is the

probability of forming a relationship in the chosen submarket, πI,t (zI , z
∗
F ), and Et

[
JI,t+1

(
z
′
I , z

∗′
F

)]
are the profit and the expected value conditional on relationship formation, respectively.

Similarly, the value of a single firm in sector F is:

J̃F,t (zF ) = µF,t (z
∗
I , zF )

{
πF,t (z

∗
I , zF ) + Et

[
Λt+1JF,t+1

(
z∗

′

I , z
′

F

)]}
,

where z∗I is the productivity of partner that the single firm F is targeting.

Finally, we derive the indicator variable for the termination of a relationship. A relationship

endogenously terminates if the value of becoming a single firm for any of the partners in the

relationship exceeds the value of continuing with the relationship:

st (zI , zF ) =

0 if ĴI,t (zI , zF ) ≥ J̃I,t (zI) and ĴF,t (zI , zF ) ≥ J̃F,t (zF )

1 if ĴI,t (zI , zF ) < J̃I,t (zI) or ĴF,t (zI , zF ) < J̃F,t (zF )

.
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4.5 Nash bargaining

The division of profits from the relationship is negotiated after the separation decision and

before production. The total surplus of the relationship, TSt (zI , zF ), is equal to the sum of the

surpluses obtained by each firm in forming a relationship versus remaining a single firm, such

that:

TSt (zI , zF ) =
[
ĴI,t (zI , zF )− J̃I,t (zI)

]
+
[
ĴF,t (zI , zF )− J̃F,t (zF )

]
.

This surplus is split according to Nash bargaining, and the bargained profits, πi,t, satisfy

ĴI,t (zI , zF )−J̃I,t (zI) = τTSt, and ĴF,t (zI , zF )−J̃F,t (zF ) = (1− τ)TSt, where τ is the bargaining

share of the intermediate-goods producer. Thus, a firm terminates a relationship if the total

surplus becomes negative, and the indicator variable for endogenous termination becomes:

st (zI , zF ) =

0 if TS (zI , zF ) ≥ 0

1 if TS (zI , zF ) < 0

.

4.6 Flow motion of firms

The measure of relationships after the realization of shocks and before separation and matching

is:

mt (zI , zF ) =

∫ ∞

−∞

∫ ∞

−∞
nt−1 (ẑI , ẑF )× gI,t (zI | ẑI) gF,t (zF | ẑF ) dẑIdẑF ,

where ẑI and ẑF are the productivities in the period t − 1, and nt−1 (ẑI , ẑF ) is the measure

of relationships from the period t − 1 with productivities (ẑI , ẑF ). The conditional density

gj,t (zj | ẑj) is the transition probability of idiosyncratic productivity in sectors j, as implied by

their AR(1) process. The transition probability functions change over time due to time-varying

volatility in the idiosyncratic shocks.

The measure of relationships after separation and matching is:

nt (zI , zF ) = [1− δ − ϕst (zI , zF )]mt (zI , zF ) +Mt (zI , zF ) ,

where [1− δ − ϕst (zI , zF )] is the fraction of relationships that survive separation and Mt (zI , zF )

is the measure of new relationship formation in the submarket (zI , zF ).

The measure of single firms in sector I after the realization of shocks and before separation
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and matching is:

m̃I,t (zI) =

∫ ∞

−∞
ñI,t−1 (ẑI)× gI,t (zI | ẑI) dẑI ,

where ñI,t−1 (ẑI) is the measure of single firms in the previous period t− 1 with productivity ẑI .

After separation and matching, the measure of single firms in sector I is:

ñI,t (zI) = [1− µI (zI , z
∗
F (zI))] m̃I,t (zI) +

∫ ∞

−∞
[δ + ϕst (zI , zF )]mt (zI , zF ) dzF , (11)

where µI (zI , z
∗
F (zI)) is the probability of forming a relationship in the optimal submarket

(zI , z
∗
F (zI)) for the zI-type single firms. The integrated term on the RHS of equation (11) is the

measure of zI-type single firms newly separated from relationships.

Similarly, the measure of single firms in sector F is:

m̃F,t (zF ) =

∫ ∞

−∞
ñF,t−1 (ẑF )× gF,t (zF | ẑF ) dẑF

and

ñF,t (zF ) = [1− µF (z∗I (zF ) , zF )] m̃F,t (zF ) +

∫ ∞

−∞
[δ + ϕst (zI , zF )]mt (zI , zF ) dzI ,

where m̃I,t (zI) and ñI,t (zI) are the measure of single firms in sector F before and after separation

and matching, respectively.

4.7 Positive assortative matching

Next, we establish sufficient conditions for positive assortative matching to be the stable

equilibrium. As discussed in Subsection 4.3, positive assortative matching is the stable equilibrium

if no firms prefer to meet in a submarket off the diagonal in Figure 4. We focus our analysis

on the case of sectoral symmetry in which the two sectors have the same distribution of single

firms, that is, ñI,t (z) = ñF,t (z) for any t and z.
14

14The existence of a symmetric equilibrium depends on three conditions: (1) same transition probability
functions (i.e., gI,t (z | z′) = gF,t (z | z′)); (2) symmetric matching functions (i.e., M (n, n′) = M (n′, n)); (3)
symmetric decision rules (i.e., z∗I,t (z) = z∗F,t (z), and st (z, z

′) = st (z
′, z)). We have already assumed condition

(1) and will assume condition (2) in our benchmark calibration. Condition (3) holds under conditions (1) and
(2), and the joint surplus is split according to Nash bargaining.
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Assortative matching without search frictions. Becker (1973) shows that in markets

without search frictions, a supermodular surplus function TSt (zI , zF ) is sufficient for positive

assortative matching to be the stable equilibrium. To see the intuition, suppose the economy

begins from an equilibrium with assortative matching. A pair of firms with idiosyncratic

productivity zI = z, zF = z′ (z ≠ z′) prefer to depart from positive assortative matching and

establish a new relationship together if the total surplus in new joint ventures is larger than the

total surplus in the ongoing relationship, which occurs if:

τTS (z, z′) > τTS (z, z) , and (1− τ)TS (z, z′) > (1− τ)TS (z′, z′) (12)

hold simultaneously. Equation (12) implies 2TS (z, z′) > TS (z, z) + TS (z′, z′), which cannot

be satisfied when TS is supermodular. In other words, supermodularity ensures that no pair of

firms prefer to deviate from the equilibrium with positive assortative matching.15

Assortative matching with search frictions. The main intuition of Becker (1973) continues

to hold in our model. However, search frictions mean that a firm may prefer to enter a submarket

with lower productivity firms but with a higher probability of forming a mutually beneficial

relationship. Thus, for positive assortative matching to arise as a stable equilibrium, we need

more stringent conditions on the supermodularity of the total surplus.

Formally, an intermediate-goods producer with idiosyncratic productivity zI = z would

invite θ measure of final-goods producers with idiosyncratic productivity zF = z′ to meet in the

submarket (z, z′) submarket (θ is also the tightness ratio for that submarket) if:

τµI (θ)TS (z, z′) > τµI (θ (z, z))TS (z, z) , (13)

where the LHS and the RHS of equation (13) are the expected surplus of the intermediate-goods

producer in submarkets (z, z′) and (z, z), respectively.

The final-goods producers with productivity z′ would accept the invitation by going to the

15For simplicity, we assume that the two firms split the total surplus by Nash bargaining. However, the result
of Becker (1973) applies to any bargaining rule.
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new submarket (z, z′) if:

(1− τ)µF (θ)TS (z, z′) > (1− τ)µF (θ (z′, z′))TS (z′, z′) , (14)

where the LHS and the RHS of equation (14) are the expected surplus of the final-goods producer

in submarkets (z, z′) and (z′, z′), respectively.

To incentivize the two sides to deviate from positive assortative matching, equations (13)

and (14) must hold simultaneously, which implies that:

µI (θ)µF (θ)

µI (θ (x, x))µF (θ (y, y))
TS2 (z, z′) > TS (z, z)TS (z′, z′) . (15)

Under sectoral symmetry, we have that θ (z, z) = θ (z′, z′) = 1, and equation (15) becomes:

µI (θ)µF (θ)

µI (1)µF (1)
TS2 (z, z′) > TS (z, z)TS (z′, z′) . (16)

Equation (16) cannot be satisfied, which implies that equations (13) and (14) cannot hold

simultaneously, if log [TS (z, z)] + log [TS (z′, z′)] > log (µ0) + 2 log [TS (z, z′)], where we define:

µ0 = max
θ

µI (θ)µF (θ)

µI (1)µF (1)
, s.t. µI (θ) < 1, µF (θ) < 1.

Note that log (µ0) can be zero or positive depending on the matching function. Under our bench-

mark calibration below with µI (θ) = ψθ1/2 and µI (θ) = ψθ−1/2, we have that µI (θ)µF (θ) = ψ2

for any θ, and hence log (µ0) = 0. In this case, log-supermodularity is a sufficient condition for

positive assortative matching. Log-supermodularity is stronger than supermodularity: the former

implies the latter, but the opposite does not hold. This is consistent with our previous argument

that search frictions make positive assortative matching more difficult to achieve. Interestingly,

log-supermodularity is also identified as a sufficient condition for positive assortative matching

by Shimer and Smith (2000) and Eeckhout and Kircher (2010), who study alternative models of

sorting whose market structures are very different from ours.16

16In contrast, Lentz (2010) show that supermodularity is sufficient for positive assortative matching when
search intensity is endogenous.
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4.8 Market-clearing conditions and equilibrium

Given a set of relationships Ωt ⊆ [0, 1]× [0, 1], aggregate output, Yt =
∫
Ωt
yt (lI , lF ) d (lI , lF ), is

the sum of final goods output produced by all the relationships in the economy. Notice that

Ωt ̸= [0, 1]× [0, 1] due to the presence of single firms that remain idle and forego production. Con-

sumption equals output, Ct = Yt, and the labor market clears when Nt =
∫
Ωt
ht (lI , lF ) d (lI , lF ).

The definition of equilibrium is standard, and we omit it in the interest of space.

5 Calibration

We calibrate the model by matching the steady state of the model to post-WWII U.S. data at a

quarterly frequency. Table 9 summarizes the calibration of the model.

Table 9: Calibration

Description Parameter Value
Preference and technology

Discount factor β 0.987
Labor share α 0.66
Degree of supermodularity γ 0.15

Matching, separation, and bargaining
Matching efficiency ψ 0.66
Matching elasticity ι 0.5
Exogenous separation rate δ 6.17%
Staggerness of endogenous separation ϕ 0.25
Bargaining share of intermediate goods producers τ 0.5

Shock process
Persistence of aggregate productivity (prod.) shock ρx 0.95
Standard deviation (std.) of aggregate prod. shock σx 0.006
Persistence of idiosyncratic prod. shock ρz 0.95
Std of idiosyncratic prod. shock (low uncertainty) σL

z 0.039
Std of idiosyncratic prod. shock (high uncertainty) σH

z 0.052
Transition prob. from low to high uncertainty πL,H 0.05
Transition prob. of remaining in high uncertainty πH,H 0.92

Conventional parameters. The discount factor, β, equals 0.987 (equivalent to 0.95 at a

yearly frequency) to replicate the average annual interest rate of 5% over the sample period.

The labor share, α, is set to 0.66 to match the labor share of income.
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Following Khan and Thomas (2008), we set the persistence of the AR(1) processes for

aggregate and idiosyncratic productivity, xt and zi,t (li), to 0.95. The aggregate productivity

shock standard deviation is 0.006, which implies that the quarterly standard deviation of

aggregate productivity is 0.02, consistent with the estimates in Zanetti (2008).

We assume that the process for the time-varying volatility of idiosyncratic productivity shock,

σz,t, follows a two-state Markov chain. σz,t ∈
{
σL
z , σ

H
z ,

}
, where Pr

(
σz,t+1 = σk

z | σz,t = σj
z

)
= πkj.

Following Bloom et al. (2018), we set σL
z , to 0.039. Since the variance of plan-level TFP shocks

increased by 76% during the Great Recession of 2008 (an increase of 34% in the standard

deviation), we set σH
z = 0.052. Also, after Bloom et al. (2018), we calibrate the transition

probability from low to high uncertainty equal to 0.05 and the probability of remaining in

high uncertainty equal to 0.92. Conditional on receiving an idiosyncratic shock that makes a

relationship mismatched, Section 2 documents it takes one year for firms to separate, which

implies ϕ = 0.75. We let the firms in a relationship split the surplus evenly by setting τ = 0.5.

We assume a standard Cobb-Douglas matching function M (ñI , ñF ) = ψ (ñI)
1−ι (ñF )

ι, where

ψ is the matching efficiency. We set ι = 0.5 consistent with sectoral symmetry, implying that

µI = ψθι = ψθ0.5 and µF = ψθι−1 = ψθ−0.5. Hence µIµF = ψ2 for any tightness ratio θ.

Under this calibration, log-supermodularity (achieved for γ > 0) is a sufficient condition for the

equilibrium with positive assortative matching.

Model-specific parameters. Three parameters are new in our analysis: the degree of

technological complementarity in the production function, γ, the efficiency in the matching

function, ψ, and the rate of exogenous separation of relationships, δ. We calibrate these

parameters to jointly replicate three moments in the data: the average duration of relationships,

the idleness rate (i.e., the fraction of single firms in the model), and the degree of sorting (i.e.,

the correlation of productivity between partners).

We target the average duration of a relationship to 16 quarters, consistent with the findings

from Compustat data documented in Section 2. We target the fraction of single firms equal

to the observed 12% average idleness rate in the U.S. non-manufacturing and manufacturing

sectors before the Great Recession (Michaillat and Saez, 2015, and Ghassibe and Zanetti, 2022).

We target the degree of sorting to 0.6. The correlation of labor productivity between trading

partners equals 0.27 in the Compustat Segment data. However, the correlation of productivity
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is underestimated due to measurement errors. For example, Bils et al. (2021) establish that

measurement errors are twice as important as productivity shocks in the measured productivity

dispersion, implying that the correlation of productivity is, on average, 2/3 underestimated.17

Moreover, firms are likely to pick their partners based on only weakly correlated (or uncorrelated)

factors with measured productivity. For example, the producer of a mobile device might choose

to work with a software company with an operating system with a high potential to build a rich

ecosystem for app developers but low current measured productivity. Targeting the correlation

of productivity to 0.27 would exaggerate the extent of misallocation and the resulting output

loss. Thus, we adjust the original estimate from Compustat data by three to 0.6.

To match these targeted moments, we set γ = 0.15 such that the production function

entails technological complementarity. In particular, using equation (7), the weight of the

high-productivity firm in the log-productivity of a relationship is 9%, while the weight of the

low-productivity firm is 91%. We set ψ = 0.66, implying that forming a relationship takes 1.51

quarters. We calibrate δ = 6.17%. Given that 0.8% of relationships separate endogenously in

each period, the gross separation rate is 6.25%, which implies an average duration of a trading

relationship of 16 quarters (see Hamano and Zanetti, 2017, for a discussion on the empirical

estimates of the plant separation rate). Since the number of moments equals the number of

unknown parameters, we can match our target exactly.

Table 10: The effect of γ, ψ, and δ on selected moments

γ ψ δ
Duration of trading relationship ↓ ↓ ↓
Degree of sorting ↑ ↑ ∼
Idleness rate ↑ ↓ ↑

Note: The symbols ↓, ↑ and ∼ indicate a decrease, increase, and unchanged effect of the degree of technological
complementarity (γ), the efficiency in the matching frictions (ψ), and the rate of exogenous separation of
relationships (δ) on the reported moments.

To illustrate how each parameter is identified, Table 10 and Figure 5 display the comparative

statics on the effect of each parameter on the endogenous variables. In each panel of Figure

5, we fix two parameters and let the other parameter move around its calibrated value. The

x-axis is the value of the moving parameter. The y-axis is the ratio of the moment implied by

the model with the parameter value on the x-axis to the targeted value of the moment, which is

17Suppose z̃i,t = zi,t + ϵ̃i,t, where z̃i,t is measured productivity, ϵ̃i,t is measurement error. By assuming that
σ (ϵ̃i,t) ≥

√
2σ (zi,t) and corr (zi,t, ϵ̃i,t) = 0, it entails that corr (z̃I,t, z̃F,t) ≥ 3corr (zI,t, zF,t).
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equal to one when moment matching is successful (thus, the crossing of the three curves in each

panel corresponds to our benchmark calibration).
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Figure 5: The effect of degree of technological complementarity (γ), the
efficiency in the matching frictions (ψ), and the rate of exogenous separation
of relationships (δ) on selected moments

We start with γ (the upper row of Table 10 and the left panel of Figure 5). A higher γ

increases the degree of sorting. It also induces more endogenous separations, increasing the

idleness rate and decreasing the relationships’ average duration. Next, we discuss the role of ψ

(the middle row of Table 10 and the middle panel of Figure 5). A higher ψ makes the reallocation

of a relationship easier, decreasing the relationship duration and increasing the degree of sorting.

It also improves the matching speed, leading to a lower idleness rate. Lastly, the bottom row of

Table 10 and the right panel of Figure 5 show that a higher δ increases the idleness rate and

decreases the average duration of a relationship, yet its effect on the degree of sorting is smaller

than its effect on the other moments.

6 Quantitative analysis I: Steady state

This section studies the steady state of the model by fixing the aggregate productivity (x) at the

normalized value of one. However, we still have idiosyncratic productivity shocks and compute

the stationary distribution for relationships, single firms, and aggregate variables by simulating

the model for 100,000 periods (we checked that those were more than enough for convergence).

We also consider three alternative calibrations that abstract from search frictions and

staggered separation. In alternative calibration A, we assume that the parameter for matching

efficiency ψ is 1 and the rate of staggered separation ϕ equals 1 − δ (since the exogenous
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separation rate is δ, the gross probability of separation is δ + ϕ for firms who want to separate).

This frictionless calibration entails perfect sorting and no single firms. In alternative calibration

B, we set ϕ = 1 − δ (search frictions only), and, in alternative calibration C, we set ψ = 1

(staggered separation only). By comparing our benchmark calibration with the alternative

calibrations, we can measure the role of search frictions and staggered separation for (i) the

separation policy of relationships, (ii) the stationary distribution of relationships, and (iii) the

level of aggregate output.

6.1 The separation policy

We first investigate the separation of relationships in the steady state by plotting, in grey,

the values of the productivity of firms in sectors F (x-axes) and I (y-axes) where an existing

relationship continues. For other values, the relationship is dissolved.

The top panel in Figure 6 shows the separation policy for our benchmark calibration. The

grey area is wide: we have imperfect sorting because firms endogenously prefer to remain in a

trading relationship with a partner of a different productivity type. Search frictions reduce the

likelihood of forming a trading relationship upon separation and thereby lower the expected

profits of re-matching. Although we do not have non-convex adjustment costs, the optimizing

behavior of firms leads to endogenous separation of relationships that is reminiscent of the Ss

policy rules outlined in Scarf (1963) and exploited in general equilibrium by Bloom (2009).

In comparison, in alternative calibration A (top-right panel), firms only stay in the relationship

if they achieve perfect sorting: the region where the relationship continues is the 45-degree line.

In alternative calibration B (bottom-left panel), the grey-shaded area remains sizeable. That

is, search frictions explain the bulk of imperfect sorting across firms in a trading relationship.

In alternative calibration C (bottom-right panel), we are back to a continuation region of

just the 45-degree line: while staggered separation will hinder the realization of separation by

construction, it does not discourage firms’ separation decision without search friction.

6.2 Stationary distribution of relationships

Figure 7 plots the stationary distribution of relationships across different productivity levels

for firms in sectors I and F implied by the separation policies above. The top-left panel
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Figure 6: Separation policy: Benchmark and alternative calibrations

shows the distribution of relationships in the benchmark calibration. Despite perfect sorting

being predominant in the steady state, as displayed by the larger density in the distribution

of relationships along the 45-degree line, the economy entails a sizable fraction of mismatches,

exhibited by the positive density off the 45-degree line. Recall that our model replicates the

calibrated target of a degree of sorting of 0.6.

The top-right panel shows that the alternative calibration A begets perfect sorting: the

distribution of relationships retains a positive mass on the 45-degree line of productivity and

zero mass elsewhere. In this case, the degree of sorting equals 1. The bottom-left panel shows

alternative calibration B, with a degree of sorting of 0.65, and the bottom-right panel shows

alternative calibration C, with a degree of sorting of 0.85. Thus, we learn that the bulk of the

mismatch in the steady state comes from search frictions, not staggered separations.
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Figure 7: Distribution of relationships

6.3 Comparing model prediction to the firm level data

Next, we re-conduct the empirical analysis in Section 2 with the data simulated by our model and

show that our model generates the same regressions as the data. We simulate 18,500 firms for 160

quarters.18 Then, we convert the remaining quarterly data to yearly series (the time-frequency

of Compustat Customer Segment data) with time averaging. Appendix D explains the details of

the simulation.

Distribution of trading relationship’s duration Figure 8 plots the histogram of match

duration (in years) for the model’s simulation and the Compustat data (the same as Figure 1),

respectively. The figure demonstrates that the model generates a cross-sectional distribution of

match duration close to the data.

18The simulated model has 37 productivity grids. Each grid accommodates 500 firms in the starting period.
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Figure 8: Distribution of trading relationship’s duration

Positive assortative matching of relationships Does our model match the positive

assortative matching in the data documented in Section 2? Table 11 reports the results of

estimation for equation (1) with our simulated data and the actual data, respectively.

Table 11: Assortative matching for ranking of economic fundamental

(1) (2) (3) (4)

Model Data

Labor productivity Profit/sales Sales Growth

decile (zI,t) 0.742*** 0.320*** 0.067*** 0.228***

(0.012) (0.014) (0.014) (0.015)

Constant 1.423*** 4.133*** 4.521*** 4.562***

(0.054) (0.115) (0.093) (0.088)

Adjusted R2 0.54 0.07 0.00 0.03

Observations 124,390 6,914 7,605 6,854

Note: Standard errors are in the parentheses. ** and *** denote significance level at the 5% and 1%, respectively.

In Column (1), the dependent variable, decile (zF,t), is firm F ’s decile of productivity in the

year before the start of the partnership simulated from the model. The independent variable,

decile (zI,t), is firm I’s decile of productivity in the year before the start of the partnership.

Columns (2)-(5) shows the results estimated with actual data, which is the same as Table 1.

Both the model and the data indicate positive assortative matching in partnership formation.

However, our model entails a stronger degree of sorting than the data as the coefficient is

estimated higher in Column (1) than in Column (2). The high degree of sorting in the year

before match formation is driven by construction. In particular, our directed search model
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predicts a perfect sorting in the quarter of partnership formation. Given that the volatility of

idiosyncratic shocks is calibrated to a low value, the degree of sorting must be high the year

before the start of the partnership. As we argued earlier, the relatively low degree of sorting

measured in the data is likely explained by unobserved firm characteristics and measurement

errors. Consequently, we consider the model prediction empirically plausible.

Mismatches are less durable Next, we examine whether our model implies that mismatches

are less durable, an empirical fact documented in Section 2. Table 12 shows the estimation

result for equation (2) with our simulated data and the actual data, respectively.

Table 12: Partnership duration and the degree of mismatch

(1) (2) (3) (4)

Model Data

Labor productivity Profit/sales Sales Growth

∆t -0.126*** -0.078*** -0.071*** -0.153***

(0.010) (0.009) (0.009) (0.011)

Time fixed effect Yes Yes Yes Yes

Adjusted R2 0.00 0.10 0.09 0.10

Observations 384,540 38,357 29,538 28,151

Note: Standard errors are in the parentheses. ** and *** denote significance level at the 5% and 1%, respectively.

Column (1) shows the model prediction. The dependent variable is the expected duration

of the match. The independent variable is the distance between two partners’ deciles in the

distribution of productivity, measured by the metric, ∆I,F,t = |decile (zI,t)− decile (zF,t) |. The

∆I,F,t coefficient is estimated as negative and statistically significant, indicating that mismatches

are less stable. Columns (2)-(6) report the empirical result estimated with actual data, which

is the same as Table 4. The empirical results are close to the prediction of our model. The

consistency of our model to the data is impressive, given that our calibration does not use any

information from this regression.

Idiosyncratic shocks lead to separation of relationships Lastly, we examine if our

model implies that idiosyncratic shocks predict the separation of relationships, an important

observation documented in Section 2. Table 13 shows the estimation results for equation (2)

with our simulated data and the actual data, respectively.
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Table 13: Changes in productivity and match separation

(1) (2) (3)

Model Data

Labor productivity Profit/sales

|∆decile (zI,,t−1)| 0.008** 0.027*** 0.011***

(0.003) (0.003) (0.002)

|∆decile (zF,,t−1)| 0.010*** 0.016*** 0.012***

(0.003) (0.006) (0.003)

Time fixed effect Yes Yes Yes

Adjusted R2 0.01 0.13 0.12

Observations 247,040 23,150 25,596

Note: Standard errors are in the parentheses. * and ** denote significance level at the 10% and 5%, respectively.

In Column (1), the dependent variable is a dummy variable, sepI,F,t, which equals 1 if firm I

terminates an existing partnership with firm F in year t,. The independent variables are the

absolute values of the change of firm F and firm I’s decile of productivity.19 The result shows

a significant and positive correlation between idiosyncratic shocks to either side of the match

and the separation of the match. Columns (2) and (3) show the estimation result using actual

data, which is the same as Columns (1) and (4) in Table 6. Once again, our model prediction is

consistent with data even when our calibration does not depend on the estimated regression

coefficient.

6.4 Aggregate output

Finally, we examine in this section the aggregate implication of the model. The aggregate output

can be decomposed as the product of the measure of trading relationship and the output per

trading relationship:

Yt =

∫
Ωt

d (lI , lF )︸ ︷︷ ︸
Measure of trading relationship

×
∫
Ωt
yt (lI , lF ) d (lI , lF )∫

Ωt
d (lI , lF )︸ ︷︷ ︸

Output per trading relationship

, (17)

where Ωt is the set of relationships. If all firms are matched in relationships, the rate of idleness

is zero, and the measure of join-ventures is unitary. In contrast, if some firms fail to form a

19In particular, |∆decile (zI,t−1) | = |decile (zI,t−1)−decile (zI,t−2) | and |∆decile (zF,t−1) | = |decile (zF,t−1)−
decile (zF,t−2) |.

41



trading relationship, the rate of idleness is positive, and the measure of relationships is equal to

one minus the rate of idleness. We can rewrite equation (17) with the more intuitive notation:

Yt = (1− idlenesst)× yt, (18)

where idlenesst is the idleness rate, and yt is the output per trading relationship defined by the

second term on the RHS of equation (17).

Frictions generate output gap by introducing a positive rate of idleness or reducing the

output per trading relationship:

Y n − Yt ≈ (yn − yt) + yn × idlenesst, (19)

where Y n and yn are the natural total output and natural output per trading relationship

achieved in the steady state in the frictionless economy.20

Table 14: The effect of frictions on the the aggregate output

(1) (2) (3) (4)
Benchmark Frictionless Search frictions Staggered separation
calibration economy only only

Output 0.81 1.03 0.81 0.97
Output per trading relationship 0.92 1.03 0.93 0.97
Idleness rate 0.12 0 0.11 0

To study the contribution of the different components of output, Table 14 shows the idleness

rate and the output per trading relationship for alternative calibration of the model. Column (1)

shows the stationary steady state for output, output per trading relationship, and the idleness

rate in the benchmark calibration of the model. Column (2) shows the results for the frictionless

economy that abstracts from search frictions and staggered separation. Thus, the first and

second rows correspond to Y n and yn in equation (19), respectively. The entries reveal that

output is 21% higher in the frictionless economy. This output loss is the joint effect of search

frictions and staggered separation, which generate a reduction of 11% in the output per-trading

relationship, and an increase in the idleness rate of 12%.

20To derive equation (19), we take the total derivative of equation (18) at Y n, yn, and idlenessn (the natural
idleness rate):

Yt − Y n ≈ (1− idlenessn)× (yt − yn)− yn (idlenesst − idlenessn) ,

and impose idlenessn = 0 (i.e., the idleness rate is equal to zero in the frictionless economy).
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To disentangle the role of staggered separation and search frictions in determining output

losses, we simulate the economy abstracting from each of the two frictions in turns. Column

(3) shows results for the case of search frictions with instantaneous separation of relationships,

while column (4) shows results without search frictions and delayed separation of relationships.

Column (3) shows that search frictions alone explain most of the output loss in the benchmark

case. In comparison, staggered separation plays a limited role in explaining output losses.

7 Quantitative analysis II: Aggregate TFP shocks

We move now to study the effect of aggregate TFP shocks. Figure 11 shows the impulse-response

functions (IRFs) to a negative 10% TFP shock for aggregate output (left panel), the correlation

of productivity within trading relationship, which measures the degree of sorting (middle panel),

and the separation rate of trading relationship (right panel).
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Figure 9: IRFs to a negative 10% TFP shock

The left panel shows that the aggregate output decreases in response to the decline in TFP.

The middle and right panels show a slight improvement in the degree of sorting and a mild

increase in separation increases, indicating a small cleansing effect of the decreasing TFP. The

cleansing effect is as follows: because single firms cannot produce, unsuccessful matching after

separation entails a loss of a cash flow stream. These cash flows are lower when TFP is low.

Hence, a lower TFP implies a lower opportunity cost of separation. As a result, firms are more

willing to separate and search for more efficient matches.

Figure 10 illustrates the cleansing effect by displaying the policy rules for separation in high

TFP (10% above SS, dark-shadowed area) and low TFP (10% below SS, light-shadowed area)
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states, respectively. The figure shows that more mismatches dissolve in the low TFP state

than in the high TFP state. This will lead to a more efficient allocation of matches. However,

the cleansing effect is negligible since the two shadowed areas almost overlap. In our model,

matches with different degrees of sorting are affected by aggregate TFP shock almost uniformly,

making the value gap between different matches relatively inelastic to aggregate TFP. Hence the

incentive of improving the degree of sorting responds mildly to aggregate TFP. The cleansing

effect can be much stronger once we introduce mechanisms that make mismatches more sensitive

to aggregate TFP shock.
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Figure 10: TFP and separation decision

8 Quantitative analysis III: Uncertainty shocks

Our next step is studying the effect of uncertainty shocks that result from an increase in the

variance of idiosyncratic productivity shocks. We follow the approach in Bloom et al. (2018) and

simulate 400 economies independently for 200 periods. We let each economy have low uncertainty

in the first 100 periods (to settle the distribution toward an area where low uncertainty has been

prevalent for some time), increase uncertainty to a higher level from period 101 onwards, and

let the system evolve according to the Markov-transition process described in Section 3 from

period 101 onwards. Then we take the mean of the time series across the simulated economies.

Since the stochastic discount factor and the wage rate are functions of the distribution of firms
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that fluctuates over time due to uncertainty shocks, we implement a dimensionality reduction

algorithm inspired by Krusell and Smith (1998). See Appendix E for details.
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Figure 11: IRFs to an uncertainty shock

Figure 11 shows the IRFs to the uncertainty shock from period 100 to period 150 or aggregate

output (left panel), the correlation of productivity within trading relationships (middle panel),

and the separation rate of trading relationship separation (right panel). Responses are represented

in percentage deviations. The blue solid line and the red dashed line show the responses for the

benchmark and frictionless models, and the black-dotted and magenta-dotted lines show the

responses for the staggered separation only and search friction only, respectively.

We start by focusing on the benchmark model. The increase in uncertainty reduces aggregate

output by 1.2% in the four periods after the shock, before the economy starts recovering. The

initial drop in output is driven by the increase in the measure of relationships with mismatched

productivity types that generate inefficient production.

In the frictionless economy, output increases in response to the rise in uncertainty. Without

frictions, an increase in uncertainty generates a raise in the mass of firms that manufacture

output with high idiosyncratic productivity, and firms in relationships with mismatched types of

idiosyncratic productivity terminate the ongoing partnerships and form new relationships with

equally productive partners. In other words, the fall in output in the benchmark calibration is

primarily determined by search frictions since the output drop remains large in the absence of

delayed separation of joint ventures, as shown by the magenta dash-dotted line in the left panel

of the figure. The economy with delayed separation but without search frictions, represented by
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the black dotted line, shows a mild initial drop in output, followed by a persistently higher level

of output as in the frictionless economy.

The middle panel in Figure 11 studies the degree of sorting, represented as before by the

correlation of productivity between partners within relationships. The blue line shows that

uncertainty sharply and persistently reduces the degree of sorting. The red dashed line shows

that the degree of sorting remains unchanged in the frictionless economy as firms instantaneously

establish relationships between equally productive firms. The comparison between the economy

with search frictions only (magenta dash-dotted line) and staggered separation only (black

dotted line) illustrates that the two frictions evenly contribute to the overall drop in the degree

of sorting.

The right panel in Figure 11 plots the rate of trading relationship separation. The uncertainty

shock decreases separation in the first period after the shock, followed by a sharp and persistent

increase in separation. In the frictionless economy, separation mildly increases, driven by the

technological complementarity that indices firms with different productivity types to separate.

With search frictions only, separations rise substantially, even more than in the benchmark case.

Compared to the benchmark case, firms in mismatched relationships can separate instantaneously.

Finally, staggered separations only have less effect on the rate of separation than the frictionless

case, as separation is time-consuming.

An important question from our benchmark results is: What drives the decline in the measure

of separation in the first period after the shock? To answer the question, we look at the effect

of uncertainty on the decision rule for firms’ separation. A higher uncertainty increases the

probability that a positive assortative matching becomes mismatched (hence reduces the value

of positive assortative matching). Meanwhile, a higher uncertainty also increases the probability

that a mismatch becomes positive assortative matching (hence increasing the value of mismatch).

Therefore, a higher uncertainty narrows the gap of value between mismatched relationships and

positive assortative matching, making mismatched trading relationships less willing to pursue a

re-match.

Figure 12 shows the policy rules for separation in low uncertainty states (dark-shadowed

area) and high uncertainty states (light-shadowed area), respectively. With high uncertainty,

many firms remain in mismatched relationships across all productivity levels. In other words,

uncertainty discourages endogenous separation, which heightens the degree of mismatch across
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relationships and raises the loss in output, decreasing the degree of sorting (this result resembles

the increase in inaction regions after an uncertainty shock in Bloom, 2009). In the second

period after the shock, the mass of mismatch relationships increases, uncertainty diminishes,

and the rate of trading relationship separation increases. As trading relationship formation is

time-consuming, these new separations amplify the drop in output and halt the speed of the

output recovery.

9 Conclusion

In this paper, we have documented five empirical facts about the creation of trading relationships

among firms. These facts suggest the existence of technological synergies between trading

partners that lead to positive assortative matching among firms and their potential impact on

aggregate fluctuations.

Then, we have built a general equilibrium model with heterogeneous firms calibrated on

new firm-level data and shown that frictions in forming trading relationships and separation

costs explain imperfect sorting between firms by matching the model’s predictions with the data.

Among the most interesting quantitative implications of the model, we have illustrated how an

increase in the volatility of idiosyncratic productivity shocks significantly decreases aggregate

output without resorting to non-convex adjustment costs.

Our investigation opens many doors for future research, including extending the model to
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multiple-firm production networks, exploring the consequences of relationship-specific capital,

and the effects of IT and automation on technological synergies. We hope to follow some of

these ideas shortly.
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Lamberg, J.-A., S. Lubinaitė, J. Ojala, and H. Tikkanen (2019): “The curse of agility:
The Nokia Corporation and the loss of market dominance in mobile phones, 2003–2013,”
Business History, 1–47.

Lentz, R. (2010): “Sorting by search intensity,” Journal of Economic Theory, 145, 1436–1452.

León-Ledesma, M. A. and M. Satchi (2019): “Appropriate technology and balanced
growth,” Review of Economic Studies, 86, 807–835.

Michaillat, P. and E. Saez (2015): “Aggregate demand, idle time, and unemployment,”
Quarterly Journal of Economics, 130, 507–569.

Mumtaz, H. and F. Zanetti (2013): “The impact of the volatility of monetary policy shocks,”
Journal of Money, Credit and Banking, 45, 535–558.

Restuccia, D. and R. Rogerson (2008): “Policy distortions and aggregate productivity
with heterogeneous establishments,” Review of Economic dynamics, 11, 707–720.

Rhodes-Kropf, M. and D. T. Robinson (2008): “The market for mergers and the boundaries
of the firm,” Journal of Finance, 63, 1169–1211.

Scarf, H. (1963): “Optimality of (s, S) policies in the infinite horizon dynamic inventory
problem,” Management Science, 9, 259–267.

Shimer, R. and L. Smith (2000): “Assortative matching and search,” Econometrica, 68,
343–369.

Van Nieuwerburgh, S. and L. Veldkamp (2006): “Learning asymmetries in real business
cycles,” Journal of Monetary Economics, 53, 753–772.

Xu, J. (2017): “Growing through the merger and acquisition,” Journal of Economic Dynamics
and Control, 80, 54–74.

Zanetti, F. (2008): “Labor and investment frictions in a real business cycle model,” Journal
of Economic Dynamics and Control, 32, 3294–3314.

51



Appendix

This appendix provides extra robustness exercises related to our empirical findings and

additional details about the computation of the paper.

A Alternative specifications

In the main text, we studied the impact of economic fundamentals on assortative matching

using data from the year before the trading relationship was formed to control for the effect of

common shocks. Here, Table A.1 shows that our results remain the same if we use data for the

year when the relationship is formed.

Table A.1: Assortative matching for ranking of economic fundamentals,
during match

(1) (2) (3) (4)

Profit-to-sales ratio Profit Sales Sales Growth

decile
(
πcus
j,k,t

)
0.037*** 0.267*** 0.452*** 0.215***

(0.0107) (0.010) (0.010) (0.008)

Time fixed effect Yes Yes Yes Yes

Adjusted R2 0.02 0.07 0.17 0.08

Observations 29,982 30,172 32,096 28,597

Note: Sample: 1976-2020. Standard errors are in the parentheses. ** and *** denote significance level
at the 5% and 1%, respectively.

Tables 4 and 5 in the main text proved that the duration of a trading relationship decreases

with the degree of mismatch. Here, Table A.2 demonstrates the robustness of our results when

we focus on the year proceeding the start of matches.
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Table A.2: Partnership duration and the degree of mismatch, one year
before the match

(1) (2) (3) (4)

Profit-to-sales ratio Profit Sales Sales Growth

∆j,k -0.062*** -0.202*** -0.223*** -0.136***

(0.019) (0.014) (0.017) (0.022)

Constant 3.927*** 4.545*** 4.536*** 4.213***

(0.075) (0.072) (0.073) (0.08)

Adjusted R2 0.00 0.03 0.02 0.01

Observations 7,750 7,901 8,349 6,969

Note: Sample: 1976-2020. Standard errors are in the parentheses. ** and *** denote significance level
at the 5% and 1%, respectively.

B The gain from the establishment of trading relationship

In this appendix, we show that forming trading relationships increases the yearly growth rates

of market value and sales, obtained from CRSP and Compustat Fundamentals Annual data,

respectively. Therefore, firms have a strong incentive to establish trading relationships.

We measure partnership creation with a dummy variable equal to one if a firm establishes

a trading relationship with a new firm in a given year. Thus, the variable crej,t describes new

joint-venture formalization for firm j in year t. We keep only the firms with continuous records

of major customers between 1999 and 2014.

Table B.3: Partnership creation, sales and market value

(1) (2) (3) (4)

Market Return Sales Growth Market Return Sales Growth

crej,t
0.144∗∗ 0.026∗∗ 0.119∗ 0.008

(0.065) (0.012) (0.067) (0.012)

Firm fixed effect Yes Yes Yes Yes

Time fixed effect No No Yes Yes

Adjusted R2 0.00 0.00 0.06 0.08

Observations 2,456 2,219 2,456 2,219

Note: Sample: 1999-2014. Standard errors are in the parentheses. * and ** denote significance level at
the 10% and 5%, respectively.
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Columns (1) and (2) in Table B.3 show that newly formed trading relationships are associated

with a 14.4% increase in the growth rate of a firm’s market value and a 2.7% increase in sales

growth. Columns (3) and (4) run the same regressions controlling for year fixed effects. The

relationship remains significant for market returns but not for sales growth. The analysis

supports a positive relationship between joint-venture formation and firm profitability.

C Robustness checks for the effect of sectoral uncertainty

shock

Section 2 established a negative and significant correlation between output growth and volatility

of idiosyncratic shocks in connected industries. However, it did not identify the direction

of causality on whether it is the volatility of idiosyncratic shocks in the connected industry

that causes a fall in output growth or the fall in output growth in the connected industries

that generate a downturn in output growth, as in Van Nieuwerburgh and Veldkamp (2006) or

Bachmann and Moscarini (2011).

A direct assessment of the causality direction would require an instrumental variable that

exogenously shifts volatility in connected industries without affecting output growth in the same

industries. Unfortunately, such an instrument is not easily constructed since it is difficult to

recover a proxy for the primitive exogenous shock to volatility at the industry level. Therefore,

we provide support to the direction of causation from the volatility of idiosyncratic shocks in

related industries to output growth in a given industry by showing that the data reject two

critical implications from the reverse direction of causation.

A first alternative explanation for our result in the main text is that a fall in output in an

industry is a byproduct of the fall in output in connected industries rather than a consequence of

the increase in volatility of idiosyncratic shocks in connected industries. We can test the validity

of this alternative explanation by including a measure of changes in real activity in connected

industries (∆yconnecti,t ) as an independent variable in the regression (2). Suppose real activity in

connected industries is critical to explain the fall in output in a given industry. In that case, the

coefficient for the volatility in connected industries (σconnect
i,t ) becomes statistically insignificant

once we enrich the estimation equation with a measure of real activity in connected industries.
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Table C.4: Volatility of idiosyncratic shocks is not synchronized between
connected industries

(1) (2) (3) (4)

Measure of volatility IQR IQR corr. of rank corr. of rank

σconnecti,t

0.28 −0.12 0.13 −0.06

(0.17) (0.23) (0.09) (0.11)

Time fixed effect No Yes No Yes

Industry fixed effect Yes Yes Yes Yes

R2 0.00 0.03 0.02 0.03

Observations 16× 42 16× 42 16× 42 16× 42

Note: Sample: 1998 -2013. The dependent variable is the measure of volatility in industry i. σconnecti,t

and ∆yconnecti,t are the mean of volatility measures and mean of gross output growth in the industry
i’s connected industries, weighted by their value of intermediate goods input and output traded with
industry i obtained from 2007 NIPA input-output table. We keep only the firms with continuous
records of major customers between 1998 and 2013. Standard errors are in the parentheses. Standard
errors are clustered at the industry level.

Column (3) in Table 8 shows that the coefficient for the volatility of idiosyncratic shocks in

connected industries remains negative and statistically significant, despite including the measure

of real activity in connected industries in the estimation equation. The negative correlation

between real activity and volatility within the industry remains equally significant, and it also

shows the positive and significant correlation between output growth in an industry with output

growth in related industries. Column (4) shows that results hold for the alternative measure of

the volatility of idiosyncratic shocks based on the correlation of rankings. These results allow us

to rule out the possibility that the fall in output in the industry correlated with volatility in the

connected industries is driven by the fall in real activity in connected industries.

A second alternative explanation is that the fall in output in connected industries increases

the volatility of idiosyncratic shocks in the linked industry, generating a fall in real activity

in that industry, which our estimation equation interprets as a negative correlation between

volatility of idiosyncratic shocks in related industries and output growth of the industry. We

test this alternative explanation by studying whether volatility measures in the industry and

the connected industries are significantly correlated. We estimate the panel regression:

σi,t = βσconnect
i,t + χi + γt + ϵi,t. (20)
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Table C.4 shows results of the estimation of equation (20) for the volatility of idiosyncratic

shocks measured as the interquartile range (IQR) of profit-to-sales ratio (columns (1) and (2))

and the autocorrelation of firms’ profit-to-sale ratio ranking between consecutive years (columns

(3) and (4)), controlling for industry and time fixed-effect. Entries consistently show that

correlation coefficients are insignificant across specifications, thus suggesting that volatility is not

synchronized between connected industries and thus ruling out the possibility that the negative

effect of volatility in connected industries on output growth is a byproduct of the joint increase

in the volatility of idiosyncratic shocks across all industries.

Overall, the analysis shows that the negative effect of the volatility of idiosyncratic shocks

in linked sectors on sectoral output is neither a byproduct of the fall in output in connected

industries that drags down sectoral output nor a consequence of the rise in sectoral volatility as

a result of the increase of the volatility in linked sectors.

D Simulation with finite number of firms

Here, we explain how we simulate the model with idiosyncratic shocks to the firms. A key set of

variables of the model are the allocation of single firms across submarkets. In particular, one

needs to solve the matrix of ñI,t (zI , zF ) such that no firm wants to deviate from the allocation

given the matrix of tightness ratios, θt (zI,zF ), which are implied by ñI,t (zI , zF ).

Given the large number of unknowns, this is a difficult numerical problem. Fortunately, we

can show that when the distribution of firms is symmetric between the two sectors and when

log-supermodularity holds, the model entails positive assortative matching with the following:

ñI,t (zI , zF ) =

ñI,t (zI) if zI = zF

0 if zI ̸= zF

and ñF,t (zI , zF ) =

ñF,t (zF ) if zI = zF

0 if zI ̸= zF

,

which further implies that: θt (zI,zF ) = 1 and µ (zI , zF ) = ψ if zI = zF , where µ is the matching

probability.

These theoretical results simplify our numerical analysis because the transition rule of

ñI,t (zI , zF ) and the equilibrium level of θt (zI,zF ) and µ (zI,zF ) are all analytically given. However,

when we simulate the model with a finite number of firms in both sectors (as one is forced to do
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in practice), it is impossible to achieve sectoral symmetry given that the idiosyncratic shocks

are stochastic and independent, which prevents us from using the above theoretical results. We

simulate the model by imposing sectoral symmetry with the following procedure to solve the

issue.

In period 0, we randomly draw N firms I. We assume each is matched to a firm F with the

same productivity.

In period t:

• Step 1: Each firm I is hit by an idiosyncratic shock.

• Step 2: Each F that is matched to a firm I is hit by an idiosyncratic shock.

• Step 3: Trade relationships decide whether to separate. If they continue to match, they

jump to Step 6. If they separate, they proceed to Step 4.

• Step 4: Every single firm I is matched to a firm F with the same productivity with

probability ψ. If they fail to match, they jump to period t+1. If they form a new match,

they proceed to Step 5. Notice that here we are imposing sectoral symmetry and positive

assortative matching to the single firms.

• Step 5: For every single firm I that forms a new match in period t, we simulate the history

of productivities for its new partner firm F .

• Step 6: Trading relationships produce according to the production function.

E Solution with uncertainty shocks

When the volatility of idiosyncratic shocks is stochastic, the distribution of firms, Ωt, becomes a

time-varying state variable in a trading relationship’s value and policy functions. In particular, a

trading relationship state space consists of (zI,t, zF,t, σt,Ωt), which is infinitely dimensional. The

intuition is that the stochastic discount factor Λt+1 and the wage Wt, which are used to discount

the future utility and to determine the labor demand, depend on aggregate consumption. And

since aggregate consumption depends on the distribution of firms, firms need to keep track of

the transition of Ωt to make decisions.
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We simplify the model solution with a set of forecasting rules:

Λt = α1,Λ + α1,ΛΛt−1 + α1,Λσt−1 + α1,Λσt

Λt+1 (σt+1) = α1,Λ + ρ2,ΛΛt−1 + β2,σσt−1 + γ2,σσt + ϕσσt+1

Wt = αW + ρWΛt−1 + βWσt−1 + γWσt

where A = (α1,Λ, α1,Λ, α1,Λ, α1,Λ, α1,Λ, ρ2,Λ, β2,σ, γ2,σ, ϕσ, αW , ρW , βW , γW ) is the vector of coef-

ficients to be determined. The second forecasting rule for Λt+1 (σt+1) is contingent on the

realization of σt+1. Intuitively, firms do not need to know the transition process of Ωt to make

decisions if the forecast rule is accurate, which reduces the dimension of the space to a finite

number. In particular, the new state space of the trading relationship is (zI,t, zF,t, σt, σt−1,Λt−1).

To do so, we proceed as follows:

• Step 1: We initialize the forecasting rule with some initial guess:

A(0) =
(
α
(0)
1,Λ, α

(0)
1,Λ, α

(0)
1,Λ, α

(0)
1,Λ, α

(0)
1,Λ, ρ

(0)
2,Λ, β

(0)
2,σ, γ

(0)
2,σ, ϕ

(0)
σ , α

(0)
W , ρ

(0)
W , β

(0)
W , γ

(0)
W

)

• Step 2: We solve for the value functions, JF , JI , ĴF , ĴI , J̃F , J̃I , and the policy functions,

sF and sI .

• Step 3: We simulate the model for 10,000 periods (disregarding the first 2,000 as a burn-in)

with random draws of (zI,t, zF,t, σt). Then, we compute the series of Λt and Wt.

• Step 4: Based on the simulated data, we update the coefficient of the forecast rule A(q)

with A(q+1) using ordinary least squares. If A(q) and A(q+1) are sufficiently close to each

other, we stop the iteration. Otherwise, we return to Step 2.

The converged forecasting rules explain the fluctuations of Λt, Λt+1 (σt+1), and Wt well, with

R2 of 0.92, 0.95, and 0.87, respectively.
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