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Abstract

Algorithmic pricing can improve efficiency by helping firms set prices more responsive to changing
market conditions. However, widespread adoption of the same algorithm could also lead to price
coordination, resulting in elevated prices. In this paper, we examine the impact of algorithmic
pricing on the U.S. multifamily rental housing market using hand-collected adoption decisions of
property management companies merged with the data of market-rate multifamily apartments from
2005 to 2019. First, our findings suggest that algorithm adoption indeed helps building managers
set more responsive prices: buildings with the software increase prices during booms and lower
prices during busts, compared to non-adopters in the same market. Second, when compared across
markets, we find markets with greater algorithm penetration also experienced higher rents and
lower occupancy in the post-crisis period. Such empirical patterns are consistent with either price
coordination through the algorithm or widespread pricing error among non-adopters. Lastly, we
estimate a structural model of housing demand and perform a test of conduct to evaluate the
“algorithmic coordination” hypothesis.
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1 Introduction

The introduction of computing technology has brought about significant changes in how firms set
prices, especially towards the use of software that set prices automatically and algorithmically. These
types of software often leverage high-frequency data collected across firms operating in the same in-
dustry or in the same market as well as consumer preferences to suggest optimal prices for firms.
Moreover, these programs are sometimes powered by artificial intelligence (AI), raising concerns that
these pricing agents might just learn to jointly play a collusive strategy rather than price competitively.
Consequently, the issue of algorithmic collusion has gained significant attention from researchers (Cal-
vano et al., 2020; Asker et al., 2022), policymakers (OECD, 2017), and antitrust agencies (Fortin,
2020; Mcsweeny and O’Dea, 2017).

The multifamily housing industry in the United States is currently facing intense scrutiny regarding
the issue of algorithmic pricing. Since 2022, a total of seven class action lawsuits have been filed
against RealPage, the software company, as well as landlords utilizing the software, alleging that the
pricing software is responsible for raising prices “above competitive levels” (Yusupov v. RealPage, Inc
et al, 2023; Navarro v. RealPage, Inc. et al, 2022; Bason v. RealPage, Inc., 2022). This issue has
garnered significant media attention1 and has also captured the interest of regulators, with the U.S.
Department of Justice reportedly launching an investigation into the potential coordination of prices
among landlords utilizing the software.2

In this paper, we empirically evaluate the impact of algorithmic pricing on the U.S. multi-family
rental market. Conceptually, it is not obvious what empirical patterns can be used as evidence for
algorithmic coordination, especially given that the adoption of the software may change several aspects
of pricing behavior simultaneously. To disentangle various channels, we start with a stylized model of
algorithmic pricing. We consider both the possibility that algorithms help building managers set prices
more responsively as demand conditions change, and the possibility that algorithms help adopters to
coordinate their prices.

The key intuition from the stylized model is that, while it is possible to extract evidence of responsive
pricing if one finds that adopters charge lower prices and produce higher quantity during a recession,
the model predictions on price and quantity during an economic boom produce identical signs for both
a model of responsive pricing and a model of coordinated pricing. As a result, it becomes impossible
to distinguish these two models with reduced-form regressions of price or quantity on adoption. In
other words, merely observing increasing prices and decreasing quantity with increasing penetration
cannot be used as evidence for price coordination.

Motivated by the findings of the stylized model, we proceed with (i) a building-level comparison
to evaluate the evidence of responsive pricing, (ii) a market-level analysis to estimate the empirical

1https://www.propublica.org/article/yieldstar-rent-increase-realpage-rent
2https://www.propublica.org/article/yieldstar-realpage-rent-doj-investigation-antitrust
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magnitude of the impact of algorithmic pricing, but not as a test of conduct, (iii) a structural model
of housing demand from renters and perform a formal conduct test.

We construct a novel data set of algorithm adoption dates merged with the universe of multi-
family rentals. We hand-collected the adoption decisions of management companies from a variety of
sources, including unstructured data such as internet archives of industry surveys, media updates of
the relevant software companies, and market intelligence reports using internet traffic. We then merge
the adoption dates with a comprehensive dataset of rental information from REIS. This data consists
of a long panel of rent and occupancy of all market-rate multifamily rental buildings in the top 50
metro markets from 2005 to 2019.

We find that at least 25% of buildings, or 34% of units, in the data, were using pricing algorithms as
of 2019. Indeed, we find that all of the top 20 management companies have adopted pricing software.
Our data is well-suited to our study because of its long panel structure, covering periods of varying
macroeconomic conditions, as well as its rich cross-sectional variations across geographical markets
with varying degrees of software penetration.

Now, to evaluate the role of responsive pricing, we conduct a building-level analysis by comparing
the price and quantity of adopters and non-adopters in the same market over time. Specifically, to
account for selection on adoption, we include a rich set of controls, including building-fixed effects,
building characteristics, and submarket-quality tier-year fixed effects. We also construct an instru-
mental variable that leverages the intuition that software adoption is often made at the management
company level, and thus can be affected by the extent of software adoption in other markets that a
management company operates. We find robust evidence that adopters charged lower prices and ex-
perienced higher occupancy during the period of economic recession (2008-2010), suggesting that the
pricing software helps buildings set more responsive prices. While we also find evidence that adopters
charge higher prices and experience lower occupancy during the period of economic recovery (after
2013), such empirical patterns could be rationalized with a model of responsive pricing alone, and thus
does not produce sufficient evidence for price coordination.

Next, because prices are strategic complements, the impact of algorithmic pricing is not only re-
stricted to adopters, but also the equilibrium responses of non-adopters in the same market. As such,
we conduct a market-level analysis to estimate the empirical magnitude of the impact of algorithmic
pricing. Across markets, we find that a higher penetration of algorithm pricing software leads to
higher rents and lower occupancy. We first show markets that experienced a sudden sharp increase in
software adoption charge considerably higher rents and have lower occupancy, compared with markets
that do not experience such jumps in adoption rates. Moreover, we find that market-average rent in-
creases monotonically as the penetration of the algorithm increased from 2014 to 2016. In terms of the
magnitude, the market average rent of a fully penetrated market is 3.0% higher than an unpenetrated
market. This positive relationship is robust to controlling for observable market characteristics and
local market conditions such as levels and changes in the unemployment rate, the house price index,
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household income, and net migration, as well as aggreated version of our instrumental variable for the
building-level adoption decision. While the reduced-form analysis is informative in terms of establish-
ing the magnitudes, we proceed to estimate a structural model of the multi-family rental market to
perform a formal test of adopter conduct. To that end, we estimate a full structural model of rental
demand based on a discrete choice random utility model in the Seattle market. We match on aggregate
shares in the REIS data and match on micro-moments from the census-tract American Community
Survey. The estimation procedure follows Petrin (2002) and Conlon and Gortmaker (2020, 2023). The
model produces sensible estimates of own-product and aggregate demand elasticities.

Then, a test of conduct amounts to testing the conditional moment restrictions where the marginal
cost shocks are conditionally independent of a set of excluded instruments under the correct model
of conduct. Operationally, we adopt a pair-wise testing framework (Backus et al., 2021; Rivers and
Vuong, 2002) to evaluate whether a model of coordination is more or less favored than a model of
own-profit-maximization. Unlike a canonical conduct test, we also allow non-adopters to be somewhat
unsophisticated where they may not be charging the full amount of markup, so our pair-wise test is
performed for each level of non-adopter behavior.

Overall, we find that a model of own-profit-maximization is favored over a model of full coordination
in the Seattle market regardless of non-adopter sophistication. However, if non-adopter are assumed to
price close to optimally, a model of coordination with a moderate level of internalization is favored over
own-profit-maximization. That said, as we consider non-adopters to become more unsophisticated, it
becomes harder for our tests to find evidence in favor of coordination.

Our paper’s main contribution is to empirically evaluate the impact of algorithmic pricing in a high-
stake context with material welfare implications. Moreover, we perform a conduct test by estimating a
full structural model of demand and supply, which allows us to incorporate the notion that the adoption
of a pricing algorithm may affect multiple aspects of firm’s pricing behavior besides coordination.
While there is a growing theoretical literature on the issue of algorithmic collusion (Calvano et al.,
2020; Asker et al., 2022), to our knowledge, the only empirical study is that of Assad et al. (2020),
which examines the effect of algorithmic pricing on the German retail gasoline market. Moreover,
their analyses are based on reduced-form regressions alone, whereas we build a structural model of
demand, allowing us to perform a conduct test formally.

Our paper finds convincing evidence that algorithmic pricing does lead to responsive prices. As
such, a key insight is that any empirical test of the algorithmic collusion also has to take into ac-
count the possibility of other changes that algorithmic pricing may produce at the same time, such as
more responsive prices. Indeed, theoretical literature have explored channels such as better informa-
tion on the demand variations, and thus set more responsive prices (Miklós-Thal and Tucker, 2019;
Harrington, 2022). But empirical analyses on responsive pricing typically rely on observing extremely
high-frequency data in a specific context (Brown and MacKay, 2021) or not explicitly concerned about
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collusion (Leisten, 2022). As such, this study is unique in that we allow for the potential interaction
of the responsive pricing channel and the coordination channel. We believe it is empirically relevant
to recognize that the adoption of algorithmic pricing could entail multiple effects, and reduced-form
estimates may not be able to isolate the coordination channel because it may produce observationally
identical predictions as other concurrent channels.

Our test for coordination builds and extends the extensive literature on conduct tests (Bresnahan,
1987; Nevo, 2001; Miller and Weinberg, 2017; Backus et al., 2021; Magnolfi and Sullivan, 2022; Magnolfi
et al., 2022). We highlight that the result of the conduct test of algorithmic pricing should be combined
with a model of non-adopter behavior.

Lastly, understanding the economic impact of pricing power (Watson and Ziv, 2021) in the context
of multifamily rentals becomes especially important given its colossal size. At least $100 billion of rent
payments are made annually in our dataset alone, representing a sector that is over $2 trillion in asset
size.3 At the household level, rent payments are often the biggest share of household expenditure
among renters. Consequently, even a minor percentage impact within this industry translates into
substantial value differences.

The remainder of the paper proceeds as follows. Section 2 provides background on the U.S. multi-
family housing market and the pricing software used. It also describes the data collection process and
shows stylized facts. Section 3 presents a stylized model of algorithmic pricing by setting responsive or
coordinated prices. It also illustrates these two models of pricing can generate same-signed predictions,
making it difficult to disentangle using reduced-form analysis alone. Next, we show evidence that the
algorithm helps landlords set efficient prices in Section 4.1, and we also measure its implication on
the market-level rents and occupancy in Section 4.2. To conduct a test of conduct, we describe and
estimate a structural model of housing demand from renters in Section 5. The procedure and the
results of the conduct test are presented in Section 6. Section 7 concludes.

2 Background and Data

2.1 Background on U.S. Multifamily Industry and Pricing Software

The U.S. multifamily housing industry has experienced fast-paced growth after the Great Recession,
with a 158% increase in value per square feet from 2010 to 2019.4 While it has been an attractive
investment opportunity for institutional investors with 80% increase in average nominal rents and 50%
decrease in vacancy rates, renters of these multifamily units spend a substantial share of their income
on their rents.5

3https://cre.moodysanalytics.com/insights/market-insights/the-fed-and-banks-are-putting-the-squeeze
-on-multifamily-cap-rate-spreads/. Based on REIS data and a conservative assumption of 5% cap rate.

4https://www.nmhc.org/research-insight/quick-facts-figures/quick-facts-investment-returns-on-apartm
ents

5https://www.nmhc.org/research-insight/quick-facts-figures/quick-facts-market-conditions
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Owners, especially institutional investors, often outsource the day-to-day operation of buildings in
their portfolio to a management company. The management companies then “run” the buildings,
including setting monthly rents, managing leases, running promotions, and performing various main-
tenance activities. While the media has recently paid attention to the consolidation of apartment
ownership,6 more pronounced increases in concentration have occurred among management compa-
nies. Greystar, the biggest management company in the U.S., has more than quadrupled the number
of its managed units over the last ten years, reaching almost 700,000 units as of 2022.7 Other top
management companies have also experienced steady growth in the number of units they manage.

Management companies rely on IT infrastructure to streamline their operation across thousands
of units in their buildings. The management companies contract with enterprise software companies
to develop property management tools. These software companies provide a suite of services such as
processing payments, logging maintenance requests, managing lease turnovers, monitoring vacancies,
bookkeeping, etc. Besides such traditional property management services, software companies started
to offer rent optimization solutions starting early the 2000s.8 The “rent optimization” solution is an
automated pricing algorithm that suggests rents in real-time by unit type and lease lengths to property
managers. It aims to take the guesswork out of pricing for both new and renewal leases.

The adoption of algorithmic pricing solutions has grown rapidly. In 2011, it was reported that around
15% of apartment units had adopted a version of such pricing software.9 In 2017, 3 million units were
reportedly using RealPage’s Yieldstar alone, after it acquired the largest competitor, Rainmaker LRO.
Fitch reported that approximately 30% of multifamily rental units in the U.S. were using RealPage
software in 2021.10 While it not immediately clear whether all 19 million units use RealPage’s pricing
algorithm rather than some other tools, we believe this still suggests a great proliferation of more
automated property management processes in the multifamily industry.

Although the details of how exactly the software computes optimal rents are not publicly known, a
copy of RealPage’s presentation slides at a housing conference provides a glimpse of the inner workings
of its pricing module Yieldstar. The most notable feature is that the software estimates demand
elasticity and forecasts demand at the bedroom level based on lease length and renewal probability
while taking into account the prices and vacancies of selected competitors.11 Figure A2 and A3 show
the dashboard view for a property manager, which displays the price recommendations made by the
software. It summarizes complex information and reduces the action space for the property manager
to either “Accept Rates” or “Review Rates.” ProPublica reports that managers accept recommended
rents up to 90% of the time.

6https://www.propublica.org/article/when-private-equity-becomes-your-landlord
7https://www.nmhc.org/research-insight/the-nmhc-50/top-50-lists/2022-top-managers-list/
8Yardi RentMAXImizer, RealPage Yieldstar, and Rainmaker LRO
9https://web.archive.org/web/20110824021635/http://www.multifamilyrevenue.com/revenue-management-us

ers-multifamily/
10https://www.fitchratings.com/research/corporate-finance/fitch-assigns-first-time-b-idr-to-realpage

-inc-outlook-stable-11-02-2021
11See Appendix Figure A1 for the exact wordings from the slide deck.
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In terms of how the pricing software is able to measure and predict market conditions, in one of its
promotional videos, Yieldstar claims that they

“leverage the statistical analysis collected from the industry’s largest lease transaction
database, spanning over 11 million units and millions of transactions a year. No one
else has this tremendous scope of real-time data that determines daily exceptions and
opportunities for maximizing rents and reducing vacancy with utmost accuracy.”12

While it is almost certainly plausible that Yieldstar utilizes its subscribers’ data to form pricing
recommendations, it remains unclear whether this feature is designed to achieve competitive, optimal
pricing for each user or used to coordinate and maximize the joint profits of all their users.

2.2 Data

We use two main datasets for our empirical analysis. The first dataset is REIS by Moody’s Analytics,
a comprehensive survey of rent and occupancy aimed at covering all investable market-rate multifam-
ily buildings in the US. The second dataset documents the year of algorithmic pricing adoption by
management companies, hand collected by us from various, largely unstructured, sources. In addition,
we supplement our analysis with several additional datasets. We obtain ownership panels of individual
buildings in selected metros from Real Capital Analytics (RCA), which keeps track of commercial real
estate deals that are over $2.5 million in value. Lastly, we use the American Community Survey to
supplement our structural estimation of rental demand.

2.2.1 REIS

Our sample of REIS by Moody’s Analytics contains annual snapshots of US market-rate buildings
from 2005 to 2019 in the top 50 metro markets, summarized in Table 1. REIS conducts periodic
surveys on these buildings’ owners and managers and collects information on asking rents, occupancy,
concessions, and various amenities. The dataset contains building-year-level observations, including
the name of management companies. REIS also provides its own definitions of submarkets, assigning
each building to one of 625 “submarkets” in one of 50 “metros.” Submarkets completely partition a
metro without overlaps.

There are several strengths to this dataset. First and foremost, it provides us with extensive coverage
across a long panel. There are 37,216 unique buildings with 7.2 million units covered in our data.
According to Fannie Mae, there were approximately 375,000 market-rate properties with 17 million
market-rate units in 2021.13 Given that there were about 1.5 million new units constructed from 2019

12Yieldstar Revenue Management Overview Presentation Webinar, accessed by registration on Dec 1st, 2022.
13https://multifamily.fanniemae.com/news-insights/multifamily-market-commentary/assessing-market-rat

e-affordable-multifamily-sector
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and 2021,14 we believe our data covers approximately half of the universe of all market-rate apartment
units in the U.S. Second, compared to typical scraped data of posted prices, the REIS survey includes
not only price but also quantity information, characterized in the occupancy data. The presence of
both price and quantity is instrumental for our analysis of conduct and deriving welfare implications.
Lastly, market-rate buildings are a particularly attractive sample because they are not subject to
special subsidies or additional rent regulation.

That said, there are several limitations as well. The first is that the management company field is
backfilled based on the REIS data as of 2019, making it time-invariant and ignoring prior management
company changes. Because the decision to adopt pricing software is made at the management company
level, and the property management industry has experienced consolidation over the past decade, it
can lead to an over-counting of adopters in earlier periods. Misclassifying non-adopted buildings as
adopters (measurement error in the independent variable) will likely lead to attenuation bias in our
estimates.

The second source of limitation is a lack of high-frequency price data. One advantage of such data is
that it can shed light on additional pricing dynamics and responses to changes in competitors’ prices
at a higher frequency. However, our annual data sample remains sufficient to investigate the potential
impact of algorithmic pricing in the rental context. Another advantage of high-frequency pricing data
is that it can be used to detect structural breaks to infer adoption in the absence of accurate adoption
data as done in Assad et al. (2020). However, this is not a major concern for us because we were able
to collect a reasonably confident data set of management companies who adopted the software along
with when each of them had adopted.

2.2.2 Software Adoption Data

We hand-collected the adoption data from several sources. Our first source is based on survey responses
from participants at a major multifamily housing conference from 2008 to 2011. We obtained snapshots
of its archived website, which maintained and updated the list of management companies and owners
who had adopted pricing software. See Figure 1 for an example of the website snapshots.

Our second source is various media outlets. Both Rainmaker LRO and Yieldstar had an active
media presence announcing their major customer acquisitions. Through their main news outlets, not
only did they announce customer acquisitions but also major updates (or “patches”) to their price
optimization software. See Figure 2 for an example of an article.

Lastly, we supplement the data using the list from AppsRunTheWorld.com. This company collects
data on the adoption of enterprise IT applications based on a company’s technology stack, such
as network infrastructure and tools. It then sells insights to salesforces of IT companies for better
targeting. We use the list of companies that use Yieldstar. While one may be concerned about the

14https://www.jchs.harvard.edu/sites/default/files/reports/files/Harvard JCHS The State of the Nations
Housing 2020 Report Revised 120720.pdf
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accuracy of this data, fortunately, it contains only a small fraction of adopters compared to the other
two more credible sources.

The main limitation is, of course, measurement error. We expect to underestimate the number
of adopters because our collection methods are designed to identify the adoption decision of major
management companies. We conducted a validation exercise against the current list of buildings that
are RealPage customers.15 We estimate the fraction of false positives to be minimal, but the fraction
of false negatives may be much higher, likely concentrated in buildings managed by small management
companies.16 However, the presence of measurement error in the adoption decisions likely leads to
attenuation bias in our estimates.

2.3 Descriptives

We present stylized facts by merging the REIS data with the hand-collected data on software adoption.
Figure 3 illustrates the penetration trend of pricing software across buildings in REIS. We were able to
identify which software the management companies had adopted for most of them and the big jump in
the market share of Yieldstar in 2017 is due to their acquisition of Rainmaker.17 In 2012, we find about
19% of units in the REIS data had adopted the software, compared to the estimated penetration of
15% made by the surveyor mentioned in Section 2.2.2. This is not surprising because the REIS survey
focuses on investable market-rate buildings, so they are more likely to be professionally managed and
more likely to adopt pricing software compared to other types of multifamily apartments. By 2019,
we find that a significant fraction have adopted the software, standing at approximately 2.4 million
units, or 34% of all units, and 9,124, or 25% of buildings in our data.

Table 3 summarizes the distribution of algorithmic pricing penetration across submarkets. The
adoption of algorithmic pricing started in 2005 in our data. Over time, more and more markets have
shifted towards higher-valued penetration bins, while substantial variations in the extent of penetration
across markets remain.

Despite the concern that the hand-collected adoption data may be prone to false negatives, it is
reassuring that we found all 20 out of 20 top management to be adopters (shown in Table 2), based
on a ranking produced by the National Multifamily Housing Council (NMHC). In addition, our data
also correctly identifies the adoption status of management companies involved in recent class action

15https://www.realpage.com/explore,AccessedDec.2022
16We randomly select a sample of 641 buildings in our dataset and compare them to the list of RealPage customers

as of 2022. Of these buildings, we correctly identify 38% as adopters and 22% as non-adopters. There are minimal false
positives. Only 2.3% of buildings were flagged as adopters in our 2019 dataset but did not appear as RealPage customers
in 2022. The majority of these buildings were identified as Rainmaker LRO customers, so it is plausible that they have
not switched to RealPage following the acquisition. We find that 42% were using RealPage products as of 2022 but were
not flagged as adopters in our data. However, we believe it represents a less informative upper bound on false negatives
because RealPage’s algorithmic pricing tool YieldStar is only one of many property management products RealPage
offers.

17https://www.businesswire.com/news/home/20171204006136/en/RealPage-Closes-Acquisition-of-Lease-Rent
-Options-LRO
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lawsuits.

Figure 4 illustrates the pricing dynamics following the software adoption of two specific companies.
Both Essex and Greystar have appeared in multiple lawsuits accusing them of price fixing through
their software, especially in the Seattle metro area. Essex adopted the software in 2008, shortly before
the financial crisis. Panel (a) shows that Essex aggressively dropped prices and retained much of their
occupancy amid the crisis in 2009. In comparison, the rest of Seattle experienced sharp declines in
occupancy rates in the same period. Greystar, which adopted the software in 2010, raised its rent
more aggressively than the rest of the market and lost occupancy during economic recovery. As such,
these charts hint at the likely presence of the responsive pricing channel, evidenced by lowering rents
to gain occupancy during the downturn and increasing rents during the upturn.

3 Stylized Model

In this section, we outline a stylized model of the multi-family rental market. We first illustrate
when prices are more responsive to demand changes, it produces efficiency gains. We then describe
how the market functions when a fraction of the market is priced by a piece of software with the
objective of joint profit maximization for its adopters. We derive the comparative statics for prices
and quantities with respect to the degree of penetration.

3.1 Model Primitives

First, we describe the primitives of the model. Assume that a market is comprised of homogeneous
products with no differentiation,18 but a capacity constraint at K. Without loss of generality, assume
the mass of suppliers is 1. Each supplier is infinitesimal and is also capacity constrained. Further, we
assume that the marginal cost of operating the building is the same for all suppliers and it goes to
+∞ once above the capacity constraint. Let D(p) denote the quantity demanded at price p. Lastly,
assume that a fraction h of the suppliers are adopters, and a fraction of 1− h are non-adopters.

3.2 A Stylized Model of Responsive Pricing

To model the responsiveness of prices to market conditions, we consider a two-period model T = 0, 1.
At T = 0, the competitive market equilibrium is achieved at (p0, Q0) such that the total quantity
demanded equals supply. At T = 1, demand conditions change. Non-adopters are “sleepy” where
they do not adjust their prices to charging market conditions quickly, hanging on to the price from
the previous period pNA1 = p0.19 Adopters, through the usage of the software, are “alert”, where they

18The model can be readily extended to a differentiated product setting, as we do in the actual estimation.
19Implicitly, in this simple two-period setting, we are making the extreme assumption that the non-adopters do not

adjust their prices after the demand has changed. Yet, more realistically, with multiple periods, non-adopters will still
learn about the changes in demand, albeit at a rate that is slower than adopters.
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adjust their prices responsively to changing market conditions.

Negative Demand Shock Figure 5 Panel (b) illustrates the market dynamics with a negative
demand shock. At T = 1, consider a contraction of aggregate demand from D to D1, whereas supply
is unchanged. A fully competitive model would generate a new market clearing price pE1 and market
clearing quantity QE1 = D1(pE1 ).

However, in our model, the non-adopters do not readily update their price pNA1 = p0 and experience
a much-reduced quantity at QNA1 . The adopters, with the help of the software, set prices p = pA,h1

responsively so that their residual demand equals their supply.

DA,h
1 (p) = D1(p)− (1− h)QNA1 (3.1)

SA,h1 (p) = hS(p) (3.2)

With a negative demand shock, because non-adopters are under-producing compared to the compet-
itive benchmark QNA1 < QE1 , it means that adopters will price lower than non-adopters and produce
a quantity higher than non-adopters to clear the market:

pA,h1 < pNA1 (3.3)

QA,h1 > QNA1 . (3.4)

Note that the price difference between non-adopters and adopters can exist even in this homogeneous
product good model because each supplier is capacity-constrained.

As the fraction of adopters h increases, the price of the adopters approaches the full competitive
equilibrium.20 With h = 1, it restores the full competitive price where pA,h=1

1 = pE1 and QA,h=1
1 = QE1 .

The shaded area in Figure 5 Panel (a) indicates the welfare gains that are achieved when all suppliers
price responsively compared to when all suppliers are unresponsive, in the form of increased surplus
accrued to renters.

To summarize, with a negative demand shock, a model of responsive pricing model predicts that
adopters charge lower prices and produce higher quantities than non-adopters within a market. Conse-
quently, across markets with a negative demand shock, average market prices decrease with the share
of adopters h, and total quantity increases with h.

Positive Demand Shock Figure 5 Panel (b) illustrates the market dynamics with a positive de-
mand shock. As such, with an outward-shifted demand, the full equilibrium is indicated by pE1 and
QE1 .

20In fact, for any intermediate level of adoption h < 1, the adopters charge a lower price than the non-adopters, but a
higher price than the full competitive equilibrium pE1 < pA,h1 < pNA1 . The reason that adopters do not necessarily go all
the way down to pE1 is that a non-zero fraction of 1 − h non-adopters are under-producing. As h increases, the adopters’
price and quantity follow the expansion along its supply curve.
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Much analogous to the negative demand shock, we consider non-adopters to be “sleepy” and stick
with their old prices pNA1 = p0 and experience a much greater quantity than the full competitive
benchmark (but may be limited by their capacity constraint) QNA1 = min{D1(pNA1 ),K} > QE1 . On
the other hand, the adopters set responsive prices to balance its residual demand and supply as
described in Equation (3.1) and (3.2).

With a positive demand shock, because non-adopters are over-producing compared to the competi-
tive benchmark, it means that a model of responsive pricing will lead to adopters pricing higher than
non-adopters, and producing a quantity lower than non-adopters. Just as before, as the fraction of
adopters h increases, the price of the adopters approaches the full competitive equilibrium. The shaded
area in Figure 5 Panel (b) indicates the net welfare gains that are achieved when all suppliers price
responsively compared to when all suppliers are unresponsive, in the form of reduced losses accrued
to the non-adopters (net of some consumer surpluses accrued to the over-production).

To summarize, with a positive demand shock, a model of responsive pricing makes exactly the
opposite prediction to the negative demand shock: adopters charge higher prices and produce lower
quantities than non-adopters within a market. Consequently, across markets with a positive demand
shock, average market prices increase with the share of adopters h and total quantity decreases with
h.

3.3 A Stylized Model of Coordinated Pricing

Next, we derive the markup formula when a fraction h of the market becomes adopters of algorithmic
pricing where the algorithm sets a coordinated price for them jointly.

Monopoly Benchmark It is instructive to first consider the full monopoly benchmark, which
corresponds to a scenario where the fraction of adopters h = 1 with a model of coordinated prices. In
this case, the sole supplier sets the price to maximize profit:

max
p

πM (p) = pD(p)− C(D(p)). (3.5)

Taking the derivative with respect to price yields the following the first-order condition

p
dD

dp
+D(p)−mcdD

dp
= 0, (3.6)

which yields a monopoly price where the percentage mark-up equals the inverse demand elasticity:

pM −mc
pM

= 1
εD(pM ) , where εD(p) = −dD

dp

p

D
. (3.7)

Adopter Coordination Consider a market where a fraction h of the suppliers are adopters of
algorithmic pricing software that coordinates the pricing among all adopters. As such, the algorithm
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maximizes the profit of all adopters combined:

max
p

πA(p) = pDA(p)− CA(DA(p)) (3.8)

where the residual demand DA becomes

DA(p) = D(p)− (1− h)S(p) (3.9)

as the remaining non-adopters will supply competitively up to S(p).

The cost faced by adopters supply becomes

CA(p) = hC
(
DA(p)/h

)
(3.10)

as the demand normalized for each adopter is DA(p)/h.

Taking the derivative with respect to price yields the following the first-order condition:

p
dDA

dp
+DA(p)−mcdD

A

dp
= 0, (3.11)

which yields a coordinated price among adopters where the percentage mark-up equals the inverse
demand elasticity of the residual demand:

pA −mc
pA

= 1
εDA(pA) , where εDA(pA) = −dD

A

dp

p

DA
. (3.12)

Notice the direct parallel between the monopoly markup formula in (3.7) and the coordination markup
in (3.12).

For any given price,21 the residual demand becomes more and more inelastic as the share of adopters
h increases

∂(1/εDA(p))
∂h

> 0, (3.13)

which implies that mark-up increases with h. For any marginal cost function that is weakly increasing
in quantity, it also implies that as the adoption share h increases, price increases and quantity decreases.

For non-adopters, given that this is a model of homogeneous products, they will set the same price
as adopters pNA = pA, but they will not restrict quantity, but will instead each offer the competitive
supply at S(pA). Note that S(pA) > D(pA) > DA(pA)/h, which is higher than what each adopter
supplies.

To summarize, a model of coordinated pricing predicts that, within the same market, adopters

21As we can expand the elasticity of the residual demand as 1
ε

DA (p) =
1−(1−h) S(p)

D(p)

εD(p)+(1−h) S(p)
D(p) εS(p)

.
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produce a lower quantity compared to non-adopters, but they all charge the same price. Moreover,
the model predicts that mark-up increases with the adoption share h. Consequently, when compared
across markets, average market price increases with the share of adopters h and total quantity decreases
with h.

Implications for Conduct Test Based on the stylized models discussed, Table 4 summarizes
the key predictions of both building-level comparisons (i.e., comparing adopters and non-adopters
within the same market) and market-level comparisons (i.e., comparing average price and quantities
by varying levels of penetration h) for each of the pricing paradigm.

The key insight is two-fold:

1. With a negative demand shock, the predictions of a responsive pricing paradigm are the opposite
of the predictions of a coordinated pricing paradigm for both building-level and market-level
comparisons.

Hence, during periods of economic recession, if one finds adopters charge lower prices and produce
higher quantity than non-adopters in the same market (or, decreasing prices and increasing
quantity in markets with greater penetration), then it is evidence supporting that the algorithm
has indeed led to more responsive prices.

2. With a positive demand shock, the predictions of a responsive pricing paradigm are the same
as the predictions of a coordinated pricing paradigm for both building-level and market-level
comparisons.22

Hence, during periods of economic boom, if one finds average price increases with penetration
and total quantity decreases with penetration (or, lower quantity among adopters than non-
adopters), it is not evidence supporting that the algorithm has led to coordinated prices.

Indeed, the fact that the predictions of responsive pricing and coordinated pricing are direction-
ally identical during economic booms is yet another conceptual reason why reduced-form “structure-
conduct-performance” regressions are limited in their ability to distinguish different models of conduct,
adding to the existing concerns documented in (Berry et al., 2019).23

Therefore, the stylized models provide us with direct guidance in terms of how to proceed with the
empirical analysis in three steps. First, we estimate the building-level differences between adopters
and non-adopters to find evidence of responsive pricing. Second, we estimate the impact of adoption

22Technically, coordinated pricing predicts that adopters and non-adopters in the same market charge the same price.
However, because it is not a positive sign, it still cannot help us isolate evidence for coordination.

23While the current discussion focuses on the predictions at the building-level comparisons and at the market-level
aggregates, the stylized models can generate additional predictions regarding other moments of the data. However, in
the appendix Figure A4, we show that when we iterate over all possible predictions on adopters, non-adopters, and their
differences by the level of penetration, as long as we allow for some degree of product differentiation where the non-
adopters are not fully pricing in, one still cannot differentiate a model of coordinated pricing from a model of sub-optimal
pricing on the part of non-adopters.
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on market-level average prices and quantity. As the stylized model shows, while the findings cannot be
used as a test for coordination, it is still empirically relevant to estimate the magnitude of the impact
of the algorithmic pricing software. Lastly, we estimate a structural model of housing demand from
renters and perform a test of conduct to evaluate the “algorithmic coordination” channel.

4 Measuring the Impact of Algorithmic Pricing

4.1 Building-level Impact of Algorithmic Pricing

In this section, we examine the responsive pricing hypothesis by comparing adopters’ prices and
quantity with non-adopters in the same market across varying market conditions.

First, we provide some suggestive evidence from the event study plots of two cohorts of adopters.
To illustrate the treatment effect heterogeneity by market conditions, we choose a cohort of buildings
that adopted the software before the financial crisis and another cohort that adopted the softer after
the crisis. The outcome of interest is yjt ∈ {log(rentjt), occjt}, which are the log of asking rents
and occupancy rate of building j in year t, respectively. We regress both outcomes on calendar-year
dummies leading up to and after the adoption. Specifically, we compare the outcomes for a cohort of
buildings that adopted the software in year Y with never-adopters as follows:

yjt =
5∑

τ=−5
τ 6=−1

βYτ 1{t− Y = τ}at(j) + βXjt + θmqt + θj + µjt (4.1)

where at(j) is an indicator for the adoption status of building j in year t, Xjt are time-varying building
level covariates, θmqt are market-quality-tier-year fixed effects where the quality-tier is measured by
its pre-adoption rent quartile, µjt are residuals, and βYτ are our coefficient of interest.

Figure 6 plots the coefficient of interest βYt for the 2007 and 2013 cohorts respectively. During
the Great Recession, the 2007 adoption cohort aggressively lowered their price in 2009 and gained
in occupancy compared to non-adopters. By contrast, the 2013 adoption cohort exhibited significant
price growth compared to non-adopters after 2014 and experienced almost 1.5 percentage points lower
in occupancy. In both cases, the parallel trends before adoption are satisfied.

Next, to analyze the full sample period, we estimate the treatment effects by calendar year from
2006 to 2018. That is, we are interested in measuring the impact of the pricing software in each year
t on all the buildings that have adopted the software by then:

yjt =
2018∑

τ=2006
βτ1{t = τ}at(j) + βXjt + θmqt + θj + µjt. (4.2)
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To address the issue of selection in adoption,24 we include an extensive list of controls, including the
building-specific covariatesXjt (e.g., year built, number of floors, the presence of various amenities such
as parking, doorman, clubhouse, and swimming pool). In addition, we also include an exhaustive list of
fixed effects. We include building fixed-effects θj to account for persistent building-level unobservable
quality. We also include a fully saturated market-quality-tier-year fixed effect θmqt, which accounts
for the differential trends for buildings in different quality segments in the same market. In other
words, it allows for the possibility that luxury buildings may be experiencing faster rent growth than
non-luxury buildings in the same market at the same time. Further, given the staggered adoption
structure of the data, we also estimate the treatment effects using Callaway and Sant’Anna (2020).

Figure 7 succinctly summarizes the impact of algorithmic pricing at the building level for both log
rent and occupancy. During the Great Recession (2008 to 2010), adopters charged lower rents and
experienced higher occupancy than non-adopters. After the recession, especially after 2013, adopters
charged higher rents and tolerated more vacancies than non-adopters. The price and quantity patterns
during the recession provide evidence that algorithmic pricing has resulted in more responsive prices.

In addition, to the extent that there may still be residual endogeneity after controlling for the ex-
haustive list controls and fixed effects, we also implement an instrumental variable strategy leveraging
the notion that the adoption decisions are typically made at the management company level rather
than at the individual building level. All of the top 20 management companies in 2022 operate across
multiple states, so it is plausible that these adoption decisions are not driven by any one specific time-
varying condition of a building.25 We expect management companies that are exposed to metros with
high share of adopters to be more likely to adopt the software, driving buildings under their portfolio
in other metros to become adopters.

As such, the extent of software penetration in other metro markets that a management company
operates is likely relevant for a company’s adoption decision but could be viewed as plausibly exogenous
to the local market conditions of the focal building. Hence, we construct the instrument for the
adoption status of a given building j in market m based on the extent of algorithmic penetration in all
other metro markets m′ that its management c = c(j) company operates, weighted by the importance
of that market m′ to the company based on its portfolio share:

AdoptIVcmt =
∑
m′ 6=m

∑
c′ 6=cN

A
c′m′t∑

c′ 6=cNc′m′t
× Ncm′t

Nct
(4.3)

where Nc′m′t denotes the number of buildings managed by c′ in metro m′ in year t, the superscript A
denotes the number of adopters, and Nct denotes the total number of buildings managed by c across
all metros. The variation of the instrument is at the management company-metro-year level.

24There is clear evidence of selection when it comes to the adoption algorithmic pricing. Table 5 shows that adopters
are more likely to be newer buildings, have more floors, and have more luxury amenities.

25https://www.nmhc.org/research-insight/the-nmhc-50/top-50-lists/2022-top-managers-list/
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Table 6 summarizes the estimated coefficients on price and occupancy for all three specifications
(TWFE, 2SLS, and CSDID). We find consistent patterns across all of them, where adopters charge
lower prices during busts and higher prices during booms. Overall, we believe the building-level
regression results during the recession from 2008 to 2010 provide robust evidence that the adoption of
the software has led to more responsive prices.

4.2 Market-level Impact of Algorithmic Pricing

In this section, we estimate the impact of algorithmic pricing across markets by the degree of its
penetration across different time periods. It is an important exercise because it not only gives a sense
of the total magnitude of rent and occupancy changes but also captures the equilibrium effect of
adoption, including non-adopters’ strategic response.

The “market” definition we consider is a submarket-building class.26 We categorize the markets
into four bins by time period and ten bins by degrees of penetration to allow non-linearity in the
treatment effects. Each time-period bin has three years: 2008-2010, 2011-2013, 2014-2016, and 2017-
2019. We drop 2005 to 2007 due to low adoption shares, yielding noisy estimates, and drop 2017 to
2019 which likely suffer the most from false negatives (i.e., actual adopters flagged as non-adopters).
Markets are then binned by the share of algorithm adopters in 10 percentage point increments. We
find considerable mass at 0% by our market definition, and these markets will be considered as the
baseline group.27 We then regress:

ymt =
T=3∑
T=2

10∑
B=1

βT,B1{(T (t) = T}1{Bt(m) = B}+
10∑
B=1

βB1{Bt(m) = B}

+ βXmt + θm + θt + µmt,

where T (t) denotes the year bin that year t belongs to, Bt(m) denotes the binned share of adopters
that market m belongs to in year t. Xmt includes average building characteristics as well as local
economic conditions. To sufficiently control for local, time-varying demand conditions that may be
correlated with adoption decisions, we include levels and changes in unemployment rates, household
income, housing price, and net migration. The coefficients of interest are β̂T,B + β̂B for each T,B.

Figure 8 plots the coefficients on average rent and occupancy for each penetration bin and time
period. The coefficients that belong to the periods before and during the financial crisis are in light
blue, and the coefficients for the post-crisis period are plotted in light red. From 2008 to 2010, we find
clear evidence that average rents decreased significantly with the degree of algorithmic penetrations,
whereas average occupancy increased with penetration. From 2014 to 2016, in sharp contrast, we find
that rent increased rapidly with the penetration of the algorithm up to nearly 5%, whereas occupancy

26A building is classified as either Class A or Class B/C. The choice of submarket-class is intended to capture the
group of buildings that are reasonable substitutes. Our results are robust to various alternative market definitions.

27Table 3 shows the variation in penetration by the binned years.
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decreased with the penetration.

Moreover, to examine the robustness of the effect of algorithm penetration at the market level, we
construct an instrument for the penetration in market m in year t by aggregating the previous-defined
building-level instrument to the market level:

AlgoShareIVmt = 1
Nmt

∑
j:m(j)=m

AdoptIVc(j),Metro(m),t (4.4)

where Nmt denotes the number of buildings in market m in year t, and AdoptIVc(j),Metro,t is constructed
above as shown in Equation (4.3). We then run the following two-stage least square regression to
estimate the time-varying treatment effects:

AlgoSharemt = α1st + β1stAlgoShareIVmt + β1st,XXmt + θ1st
m + θ1st

t + µ1st
mt

ymt =
T=3∑
T=2

βT,Share1{(T (t) = T} ̂AlgoShareIVmt + βShare
̂AlgoShareIVmt

+ βXmt + θm + θMetro(m)t + µmt,

(4.5)

where the first row is the regression equation for the first-stage regression, and the outcomes of interest
are market-level average rent and occupancy, log(rentmt), occmt.

Table 7 shows the IV estimates of β̂T,Share + β̂Share for each year bin T , while controlling for metro-
year fixed effects θMetro(m),t as well as time-invariant submarket-class fixed effects θm. The magnitude
and signs of the IV estimates are similar to the OLS estimates and also consistent with the estimates
shown in Figure 8: during the recession, we see rents decreasing and occupancy increasing with the
share of adopters, and during the boom the opposite is true.

Overall, both the building-level and market-level results show a clear and consistent picture. The
estimates during the Great Recession point toward the presence of responsive pricing. The estimates
after the recession show that rents increased and occupancy decreased with the penetration of algo-
rithmic pricing. Because such patterns can be consistent with both responsive pricing and coordinated
pricing, it is not evidence of coordination. Hence, we proceed to estimate a full structural model of
demand and supply and conduct a formal test of conduct.

5 Renter Demand For Multifamily Housing

In this section, we estimate a structural model of rental housing demand, which can be used to test
conduct. We estimate the demand side while remaining agnostic on the model of pricing or competition
among multifamily buildings on the supply side.
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5.1 Demand Specification

We model renters’ decisions as a multinomial discrete choice problem across differentiated rental
housing units. We first lay out a general model of the renter’s choice and then proceed to specify the
empirical implementation of the model. We consider a renter’s choice set as all the rental units in a
(REIS-defined) submarket m and in year t. We define “product” as bedroom type in building b, j(b)
(which we call “unit type,” in short). For brevity, we use j instead of j(b) unless otherwise noted
since j is unique to a building, and we use jt instead of jm(j)t to denote product-market pair since a
building is unique to a geographical market.

We specify household i’s utility from unit type j in market t as:

uijt = αi log(yi − pjt) +Xjtβi + ξjt + εijt (5.1)

where yi is the household’s income, pjt is the effective monthly rent of the unit, which we interchange-
ably call “price”, Xjt is the observable characteristics of the unit type, and ξjt is the unobservable
quality or demand shock to the unit type unobservable to econometrician. βi is a vector of house-
holds’ valuation of observable characteristics in Xjt, and αi is the marginal utility of income net of
rent. These preference parameters are a function of a set of renter demographics, di. We consider
the outside good j = 0 all the other non-REIS rental units in the submarket. The idiosyncratic taste
parameter ε is i.i.d. type 1 extreme value. A renter chooses a unit type j ∈ Jmt∪{0} to maximize their
utility uijt, where Jmt denotes the set of unit types present in market m in year t. The probability of
renter i choosing to live in j ∈ Jmt ∪ {0} is

sijt = αi log(yi − pjt) +Xjtβi + ξjt∑
j′∈Jmt∪{0} αi log(yi − pj′t) +Xj′tβi + ξj′t

. (5.2)

5.2 Demand Estimation Procedure

Our estimation goal is to recover parameters governing the demand system θD := (ααα,βββ,ξξξ). We follow
the literature in estimating a multinomial logit demand system with heterogeneous tastes (Berry et
al., 1995; Nevo, 2001; Petrin, 2002; Conlon and Gortmaker, 2020).

In terms of model specification, we assume the unobserved quality of a unit type can be decom-
posed into ξjt = ξj + ξmt + ξ̃jt, where ξj is unit type-level fixed effects, and ξmt submarket, year-level
fixed effects. The unit type-fixed effects, ξj , captures the time-invariant vertical quality of a build-
ing and its unit types. For the part of the renter utility that allows for heterogeneity in taste, we
rewrite αi log(yi − pjt) as its first-order approximation, αi(yi − pjt

yi
), which reduces down to −αi pjtyi ,

and let marginal utility of residual income, αi, to vary across five annual income bins of renters (in
$1,000s): {[0, 20), [20, 35), [35, 50), [50, 75), [75,∞)}, which flexibly allows for non-homothetic prefer-
ence for housing. We also allow one’s household size di = [hsi] to affect their preference for the number
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of bedrooms and the outside good. Hence the full empirical utility specification becomes

uijt = −αI(yi∈Iy)
pjt
yi

+ [1 bedj ]βββhsi + ξj + ξmt + ξ̃jt + εijt, (5.3)

where Iy denotes one of the income bins specified above, and β(hsi) = β · hsi.

Estimation of these parameters is achieved by two sources of variations: (1) the observed market
shares of unit types and their prices (ssst, pppt) and (2) the joint distribution of building characteristics
and renter demographics across markets, Ft(pj , Xj , di).

The first set of moments helps to identify demand parameters by inverting the observed market
shares à la Berry (1994) and Berry et al. (1995) using price and quantity data from REIS. To impose
the exclusion restriction, it requires a set of instruments zD to be independent of unobserved demand
shock ξ̃jt, namely E[ξ̃jtzjt] = 0. Hence, we construct a sample analog to the moment condition:

Ĝ1(θD) = 1
Njt

∑
j,t

ˆ̃ξjt(θD)zDjt . (5.4)

Given that we already include rich building-level and submarket-year fixed effects ξj + ξmt in our
model, the candidate instruments in zD should be uncorrelated with time-varying demand shocks
that are specific to buildings or neighborhoods. As Nevo (2000) noted, once product fixed effects
are included, the source of endogeneity becomes demand shocks to specific products or markets. An
example of such endogeneity in our context could be changes in the provision of public amenities at a
given time, such as the addition of a subway station or a park, raising the rents of nearby buildings.

To address such endogeneity, we use the amount of local property tax paid by each building each
year as instruments for rent. While the tax paid by each building every year may not fit the strictest
definition of marginal cost, it is well documented that landlords pass some of the property taxes
to renters (Watson and Ziv, 2021). The validity of tax instruments relies on the assumption that
the assessed value of the building measured by local authorities is set before the realization of the
contemporaneous demand shock, but building managers set prices after observing the tax obligations
calculated from the assessed value, along with other contemporaneous demand shocks. We believe
that once the amount of tax is residualized by the product fixed effects and the market-year fixed
effects, the remaining variation reflects idiosyncratic timings of assessment value change and changes
in the local tax regime.

The second set of moments are “micro-moments” on the joint distribution of building characteristics
and renter demographics. We use census tract-level estimates from the 5-year American Community
Survey (ACS) to construct the covariances between demographics (yi, hsi) and the characteristics
(pi, bedi) chosen by such renters. For each census tract, we observe the joint distribution of renter
households’ income and fraction spent on rent, and the joint distribution of households’ size and
occupancy per room. Once tracts are aggregated to the submarket level, this gives two micro-moments
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to target for each market: Covmt(yi, pi) and Covmt(hsi, bedi). These moments further help us pin down
αi and heterogeneous taste for the number of bedrooms by household size.

The difference between observed moments and corresponding moments given a set of parameters
form a criterion function Ĝ2(θD) = v − v̂(θD), where v denotes a statistical moment from the data,
and v̂(θD) denotes corresponding, predicted moment as a function of parameters from estimation. For
example, the criterion function that targets the covariance between income and income spent on rent
for renters in market mt is

Gmt2 (θD) =

“observed” ACS Covmt(yi,pi)︷ ︸︸ ︷
1

IACS
mt

∑
i

piyi −
∑

i

pi

∑
i

yi

−
∑

i,j

wisijt(θD)pjyi −
∑
i,j

wisijt(θD)yi ·
∑
i,j

wisijt(θD)pj


︸ ︷︷ ︸

computed Covmt(yi,p∗i ) given θD

,

where wi denotes sampled individual’s weight and sijt is renter’s choice probability as explained above.
Intuitively, the estimation procedure finds some set of parameters θD that gives rise to the choice
probabilities of renters for each building, ŝijt(θD) that yields a similar pattern of covariance between
rent paid and income as observed from the ACS data.

By stacking the set of exclusion restriction moments G1(θ) and micro-moments G2(θ), the estimation
procedure finds a parameter vector that minimizes the stacked criteria of moments:

arg min
θD
G(θD) = G(θD)′WG(θD), G(θD) = [G1(θD);G2(θD)],

where W is the optimal weighting matrix from the two-step GMM procedure.

5.3 Demand Estimation Results

We focus our estimation of renter demand and the subsequent tests of conduct on the Seattle market
from 2011 to 2018 for several practical reasons. First, the Seattle market has been at the center of
litigation with a significant degree of algorithmic pricing penetration. Second, we were able to hand-
collect a detailed ownership panel of most buildings in Seattle from Real Capital Analytics to account
for existing underlying ownership of buildings.

Table 8 summarizes key moments from the Seattle market. Panel (A) contains key statistics that
relate to market share and prices, which includes the unit-type effective rent and occupancy. Panel
(B) contains key moments from the ACS that form the basis of the micro-moments G2. The advantage
of using the ACS is that REIS buildings are a proper subset. Hence, we get a precise estimate of the
entire market size and how renters choose across units in general. As shown in Panel (C), there are
319 census tracts covering 16 REIS-submarkets, providing us with a level of granularity to construct
the covariance moments for each submarket. Summary statistics from the ownership data in Panel
(D) resolve one of our key underlying concerns that the building ownership may be concentrated. We
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match individual buildings to transactions recorded by Real Capital Analytics (RCA) from 2000 to
2020. We were able to match 75% of buildings in Seattle. Among the 876 matched buildings, we
found 607 different owners, implying a Herfindahl-Hirschman index (HHI) of less than 600, which
is well below even a “moderately” concentrated industry as defined by the Department of Justice.28

Hence, we do not consider ownership concentration to be a major concern for the Seattle market. The
fraction of units priced by the software is considerably high at 43%.

We estimate the demand parameters using pyblp (Conlon and Gortmaker, 2020, 2023), summarized
in Table 9. The first column shows the estimates using the tax IV, and the second column is estimated
with the approximated demand “optimal instruments” in the spirit of Chamberlain (1987) implemented
by Conlon and Gortmaker (2020). Note that the optimal IV is approximated without any supply-side
restriction, hence also agnostic to supply-side assumptions.

The parameters governing the marginal utility of income for each income group are significant
and sensible across two columns. Since the coefficient divided by income can be interpreted as the
price coefficient of individual −αI

yI
, our estimates show that renters in higher income bins are less

price sensitive than those in lower income bins. Renters who choose buildings in REIS tend to be
smaller households, as implied by a significant negative coefficient on the interaction term between the
household size and the inside-good indicator. This also makes sense given that REIS buildings tend
to be high-rise multifamily apartments mostly comprised of studios, one-bedroom, and two-bedroom
units, averaging 1.5 bedrooms per unit. In contrast, non-REIS dwellings have more bedrooms than
REIS buildings from the ACS data, averaging 1.9 bedrooms per unit. Lastly, we see renters with
greater household size deriving higher utility from units with more bedrooms, as implied by a positive,
significant coefficient on household size-bed interaction term.

We close the section on renter demand for housing by discussing estimated elasticities. The median
own-elasticity of buildings ranges from -2.5 to -3, which implies that each building faces elastic residual
demand. This estimate is similar to the recent findings of Watson and Ziv (2021), where they also
find median elasticity of -2.2 to -3.5. When aggregated up to REIS buildings, they face inelastic
aggregate demand with elasticity of -0.58 to -0.47, again largely in line with the existing literature
(Chen et al., 2011; Albouy et al., 2016; Watson and Ziv, 2021). The degree of substitution from
REIS buildings to non-REIS rental buildings is captured by the mean diversion ratio to the outside
good, −E[∂s0t

∂pjt
/
∂sjt
∂pjt

], which is around 0.57, suggesting that on average, for every person leaving a REIS
building, 0.57 choose to live in a non-REIS building. Overall, our demand-side estimation shows that,
while individual buildings face elastic demand, they collectively fact inelastic aggregate demand and
face some competitive pressure from other landlords not present in the REIS dataset.

28RCA tracks transactions involving more than $2.5M. It also attempts to uncover the ownership based on various
public sources beyond deed records. If we treat unmatched buildings under the RCA-size threshold as individual owners,
the implied HHI is less than 400.
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6 Testing Alternative Models of Conduct and Pricing

6.1 Testing Procedure

With the demand estimates recovered, we proceed to test across alternative models of coordination
among adopters, adopting a pair-wise testing procedure based on Backus et al. (2021). Their approach
builds upon the intuition from Berry and Haile (2014) and the non-nested testing framework of Rivers
and Vuong (2002), which compares two models of conduct and asks which one is “favored” over the
other.

To provide intuition behind the testing procedure, we write each unit type’s rent pjt as being
decomposed into two parts: marginal cost mcjt and markup ηjt, neither of which is directly observable
to the researcher:

pjt = mcjt + ηjt.

Given that we assume buildings are pricing according to a static pricing game, the first order condition
gives rise to a vector of marginal costs and markups such that:

pppt = mcmcmct +

ηηηt(HM )︷ ︸︸ ︷(
−HM � ∂ssst

∂pppt

)−1

ssst, (6.1)

where HM is a Njt×Njt “internalization matrix” under a given conduct assumption, ∂st∂pt
is a Njt×Njt

matrix of own- and cross- derivatives of shares with respect to price, and � denotes element-by-element
product of those two matrices.

Notably, because the demand derivatives ∂st
∂pt

are separately estimated already, the internalization
matrix HM becomes the sole determinant of markup. As such, we treat marginal cost mcjt as a
residual, namely, mcMj,t = pj,t − ηj,t(HM ). Intuitively, to test for conduct, what we have to do is to
find instruments zzzSt that affect demand and markup but otherwise orthogonal to marginal cost shocks,
where the corresponding moment condition would hold under that correct model of conduct

E[ωjt|zzzSt ] = 0. (6.2)

Here, we extend the canonical testing literature by further parameterizing the internalization matrix
H to encapsulate both the possibility of coordination by the adopters and the possibility of mispricing
by non-adopters. Such mispricings on the part of non-adopters take the form of charging less than their
full markup.29 To fix ideas, consider three buildings each with single unit-type j = 1, 2, 3. j = 1, 2

29We believe allowing for some degree of sub-optimal pricing among non-adopters is an important empirical consid-
eration of this market. Besides stale prices that we have discussed before, there may be various reasons that may lead
non-adopters not to charge their full markup, ranging from information friction, bounded rationality, agency problems,
risk aversion, etc. While we do not pinpoint the exact source of the friction, it is encapsulated in the model parameter
τNA, namely, the fraction of markup that non-adopters charge.
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are adopters of the software and j = 3 is not. If all firms operate independently and price to compete
with one another, the true internalization matrix H would look like the one on the left. If the adopters
coordinate to a degree of τA ∈ (0, 1], and non-adopters price optimally, then the internalization matrix
would look like the one in the middle. Finally, if non-adopters are pricing sub-optimally to charge only
a fraction τNA ∈ (0, 1] of their full markup, the internalization matrix would look like the far-right
one. 

1 0 0
0 1 0
0 0 1




1 τA 0
τA 1 0
0 0 1




1 0 0
0 1 0
0 0 1

τNA


Together, we write the corresponding internalization matrix as a function of (τA, τNA) as follows:

H(τA, τNA) =


1 τA 0
τA 1 0
0 0 1

τNA


While it may seem straightforward to directly estimate (τA, τNA) through GMM, there are several

cautions against it. Such estimation of the conduct parameter requires strong instruments for markup
(Nevo, 1998), and could be sensitive to misspecification of demand model and functional form of
marginal cost (Magnolfi and Sullivan, 2022; Duarte et al., 2023). Therefore, we take the more conser-
vative approach of pair-wise testing (Backus et al., 2021). For any two models of conduct M1 and M2,
the null hypothesis is that they fit the data equally well. The two-sided alternative hypothesis is that
one model is “favored” over the other. To the extent that the underlying model may be misspecified,
the pair-wise approach asks which model of conduct is “less wrong”.

Because we have a two-dimensional mechanism of interest including both coordination and mispric-
ing, we hold the degree of mispricing fixed while testing for coordination. Therefore, we ask whether
a model of coordination at level τA is more or less favored than a model of own-profit maximization,
holding fixed a given level of non-adopter behavior at τNA.

To perform the test, we model the marginal cost of each building as a non-parametric function plus
an additively separable unobservable shock:

mcjt = f(xjt, wjt, occjt) + ωjt, (6.3)

where xjt is characteristics of the unit type that enters both renter’s demand and the building’s
marginal cost, such as the number of bedrooms, wjt is a vector of characteristics that only enters
cost, such as tax, and occjt = qjt

Kj
∈ [0, 1] is the occupancy, which is the number of occupied units, qjt

divided by the building’s capacity of each unit type, Kj .

While it may be reasonable that quantity does not affect marginal cost in other contexts such as
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Backus et al. (2021), in the housing context, however, given the binding nature of building capacity, we
believe that it is paramount that occupancy itself enters into the marginal cost to match the empirical
fact that buildings cannot be rented at above 100% occupancy. While the inclusion of occupancy in
marginal cost is economically motivated, it produces an econometric problem in that it introduces
another endogeneity problem in estimating f̂(·). As such, it requires us to also instrument for building
occupancy. Moreover, because we want to maintain a flexible function form in f(·), instead of using a
two-stage least square, we adopt a non-parametric IV sieve estimation procedure by Newey and Powell
(2003) to address this concern.

Given two competing models characterized by differing internalization matrix HM1 and HM2 , the
pair-wise testing amounts to computing a test statistic based on the difference of unconditional moment
restriction

E[(ωM1
j,t )′A(zzzSt )]− E[(ωM2

j,t )′A(zzzSt )] (6.4)

where A(zzzS) denotes the expected markup difference conditional on the instruments

A(zzzS) = E[∆η1,2
jt |zzz

S ], (6.5)

where ∆η1,2
jt = ηjt(HM1)− ηjt(HM2) and the rest of the details are described in Algorithm 1.

We can use the same set of zzzS to address endogeneity in occjt and for the moment condition in
Eq (6.2). The exclusion restriction of candidate instruments is that they affect markup and quantity
but are not correlated with unobserved marginal cost shocks. Following Backus et al. (2021), we use
the demand-side optimal IV approximated from the demand estimates to capture efficient non-linear
combinations of individual demand instruments. We also consider other instruments, such as census-
tract level capacity. Any change in nearby capacity is due to the completion of new buildings or
demolition of old buildings, where the exact timings of such events are plausibly exogenous to nearby
buildings’ marginal cost shocks. Yet, it should generate variations in markups in the nearby buildings
as they change the set of close competitors in the local market.

6.2 Results of the Conduct Tests

As mentioned above, we test whether a model of adopter coordination is more or less favored by
data than a model of adopter own-profit maximization while holding fixed the level of mispricing by
non-adopters.

Figure 9 summarizes the result of our test using data from Seattle. The X-axis denotes the conduct
test, namely, whether data favor a model of coordination at level τA or a model of own-profit maxi-
mization. A value of τA = 1 indicates we are testing full coordination vs. own-profit maximization. A
value of τA = 0.1 indicates we are testing coordination where adopters internalize 10% of their fellow
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Algorithm 1 Testing Procedure

1. Recover marginal cost mcM from implied markups under each model M = M1,M2, η(HM ):

pobsjt = mcMjt − ηjt(HM )

2-1. For each cost estimate m̂cM , fit f(xjt, wjt, occjt) using a non-parameteric estimation procedure
and compute the residual, ω̂M :

ωMjt = m̂cMjt − f̂M (xjt, wjt, occjt).

2-2. Compute the difference between markups ∆η1,2
jt := ηjt(HM1)− ηjt(HM2) and fit another flexible

function as a function of candidate instrumental variables, zzzS :

∆η1,2
jt = g(xjt, wjt, zzzS) + ζjt

3. With (ω̂M1
jt , ω̂

M2
jt , ĝ(·)), compute the moment criterion value for each model M :

Q̃(ηM ) =

N−1
jt

∑
j,t

ω̂Mjt · ĝ(·)

2

4. Repeat Steps 1 to 3 on bootstrapped samples and estimate the standard error, ŝe, of the difference
between M1 and M2, Q̃(ηM1)− Q̃(ηM2) across bootstrap iterations.

5. Compute the test statistic

T = Q̃(ηM1)− Q̃(ηM2)
ŝe

∼ N (0, 1).

adopters’ profit. The y-axis denotes the level of non-adopter sophistication τNA. At τNA = 1, non-
adopters are sophisticated and maximize their own profit by charging the full markup. At τNA = 0,
non-adopters do not charge any markup and are marginal-cost pricers. We fill out the entire matrix by
illustrating the range of possible non-adopter behavior. The color of the figure indicates the sign, and
the depth of the color indicates its statistical significance. A shade of green indicates a positive-valued
test statistic, whereby a model of coordination is favored over a model of own-profit-maximization. A
shade of blue indicates a negative-valued test statistic, whereby a model of own-profit-maximization
is favored over a model of coordination. Table 10 shows the value of test statistics for each cell in
Figure 9.

We make several observations: First, with fully sophisticated non-adopters (τNA = 1), our test
favors a model of own-profit-maximization over full coordination (τA = 1), as indicated by the blue
color in the top right corner of the chart. Second, at any level of non-adopter sophistication, our test
still favors a model of own-profit-maximization over full coordination, as indicated by the blue color

25



in the right-most column. Third, with fully sophisticated non-adopters (τNA = 1), our test favors
a model of moderate-degree- coordination over own-profit-maximization, as indicated by the green
shades in the top row.30 Lastly, as we allow for less sophisticated non-adopters, it becomes harder to
find evidence that favors coordination, as indicated by the increasing amount of blue shades as one
goes down in the vertical direction.

Intuitively, we think that the gradient of test statistic over what we assume of non-adopters and
the conduct of adopters makes sense. If we assume non-adopters are unsophisticated and charging
closer to their marginal cost, the difference in prices between adopters and non-adopters can then be
rationalized by adopter charging their full markup. So it becomes harder for us to find evidence of
coordination. However, if non-adopters are already charging the full markup, then price difference
between adopters and non-adopters are better explained by the coordination channel.

Currently, our test does not prove there is evidence for coordination, nor does it exonerate the
algorithm from coordination. Nonetheless, our series of tests provides us with a range of assumptions
on non-adopter behavior in which a model of some coordination may be favored over own-profit-
maximization. Given our reduced form evidence of the responsive pricing channel, it is unlikely that
non-adopters are behaving optimally, suggesting the scope for coordination may be more limited than
what is implied from a full rational benchmark.

7 Conclusion

In this paper, we examine the impact of algorithmic pricing software adoption on the U.S. multifamily
housing industry. We hand-collect a dataset of management company adoption status from a variety
of sources and merge it with a comprehensive database of building-level rents and occupancy across
50 metro areas.

First, we find robust evidence that the algorithm helps building managers price more responsively.
The treatment effect of the algorithm at the building level is heterogeneous across time periods.
During the great recession from 2009 to 2010, the adopters of the algorithm lowered rents and increased
occupancy, compared to comparable non-adopters in the same submarket. Conversely, during a period
of economic recovery from 2014 to 2017, the adopters of the algorithm increased rents and reduced
occupancy.

Second, to measure the aggregate impact, we estimate the market-level treatment effect of algo-
rithmic pricing penetration. Again, during periods of economic recovery, we find that across markets,
higher levels of penetration have led to significantly higher rents and lower occupancy. This pattern is

30To the extent that a model of coordination at a moderate level is favored when non-adopters are sophisticated, it
still begs the question of the incentive compatibility problem. In other words, it is rather inconceivable that building
owners can transfer profits to other adopter building owners. As such, this may be another reason that high levels
of coordination may lead to some adopters being worse off, which is not consistent with the incentive of the software
company, which presumably attempts to maximize the number of subscribers.
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robust across alternative market definitions, regression specifications, and instrumenting a building’s
adoption with its management company’s exposure to algorithmic pricing in other markets.

While both the building-level and the market-level results provide us evidence that the software
helps adopters set more responsive prices, we caution against using the reduced-form results as a
conclusive test for conduct. This is because a model of coordination produces directionally the same
results as a model of responsive pricing during an economic boom.

Lastly, to test for conduct, we take a structural approach. We estimate a model of housing choices
from renters based on housing characteristics and household demographics. A pair-wise testing pro-
cedure shows that a model of own-profit-maximization is favored over a model of full coordination
in the Seattle market. However, if non-adopter are assumed to price optimally, a model of coordina-
tion at a moderate level is favored over own-profit-maximization. That said, to the extent that we
consider non-adopters to be somewhat unsophisticated, the test becomes more likely to favor own-
profit-maximization than coordination.

While the conduct test is powerful for testing coordination for a given level of non-adopter behavior,
as it currently stands, it is not well-suited to test the degree of non-adopter sophistication. Hence,
an appropriate next step is to extend the structure model to incorporate the extent of non-adopter
responsiveness and sophistication in a more unified conduct test framework.

Overall, our findings and empirical approach have far-reaching implications. The real estate in-
dustry is colossal, with an estimated asset value exceeding 2 trillion dollars within our dataset alone.
Consequently, even a minor percentage impact within this industry translates into substantial value
differences. Moreover, as intelligent algorithmic pricing becomes increasingly prevalent across various
sectors, and given the market concentration of such business services software, the proper treatment
and regulation of “algorithmic coordination” emerge as pressing concerns for businesses, consumers,
and regulators alike.
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8 Figures

Figure 1: Snapshot of Surveyed List of Adopters

https://web.archive.org/web/20110128035809/http://www.multifamilyrevenue.com/revenue-
management-users-multifamily/

Figure 2: Example Articles of Client Acquisition Made by Software Companies

(a) Rainmaker (b) Yieldstar

(Rainmaker) https://www.prweb.com/releases/rainmakerlro/adds30newcompanies/prweb10779081.htm
(Yieldstar) https://www.realpage.com/news/realpage-announces-that-wilkinson-selects-yieldstar-price-optimizer/
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Figure 3: Share of Adoption by Software
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Figure 4: Case Study: Pricing and Occupancy Trend of Companies Adopted the Software
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(b) Non-Adopters
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(c) Greystar
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(d) Non-Adopters
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Restricting samples to Seattle metro-area apartments. Solid, navy line follows Log(Rent) and dashed, red line
follows occupancy rate. The vertical dashed line indicates the year of adoption of each management company.
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Figure 5: Responsive Pricing to Demand Shocks

(a) Negative Demand Shock

(b) Positive Demand Shock

A stylized model of responsive pricing. In the top panel, with a negative demand shock, stale
prices that are too high relative to the new equilibrium prices lead to excessive vacancies. Low-
ering prices more quickly results in welfare gains that are indicated by the blue shaded region.
In the bottom panel, with a positive demand shock, stale prices that are low low relative to the
new equilibrium prices lead to a shortage. Increasing prices more rapidly leads to an increase in
net social welfare that are indicated by the brown shared region.
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Figure 6: Dynamic TE of Adoption on Log(Asking Rent) and Occupancy Rate

(a) 2007 Adopters
-.0

8
-.0

6
-.0

4
-.0

2
0

.0
2

Lo
g.

 R
en

t (
$)

2005 2006 2007 2008 2009 2010 2011 2012

TE in Log(Asking Rent), Cohort 2007

-.5
0

.5
1

1.
5

O
cc

up
an

cy
 (%

)

2005 2006 2007 2008 2009 2010 2011 2012
Year

TE in Occupancy (%), Cohort 2007

(b) 2013 Adopters

-.0
5

0
.0

5
.1

Lo
g.

 R
en

t (
$)

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

TE in Log(Asking Rent), Cohort 2013

-3
-2

-1
0

1
O

cc
up

an
cy

 (%
)

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

TE in Occupancy (%), Cohort 2013

Sample restricted to buildings built before 2005. Building-level and time trend (year) fixed effects for the building’s
metro and pre-treatment period rent quartile are included. Controls include months of free rent offered, average
concession offered in the submarket. Standard errors are clustered at the management company level.
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Figure 7: Calendar Year TE on Adopted Buildings
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Sample restricted to buildings built before 2005. Building-level and time trend (year) fixed effects for the building’s
metro and pre-treatment period rent quartile are included. Controls include months of free rent offered, average
concession offered in the submarket. For the Callaway and Sant’Anna (2020) specification (CSDID), building-level
characteristic-specific time trends are also controlled through the doubly robust estimator in addition to the fixed
effects. Standard errors are clustered at the management company level for both specifications.
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Figure 8: Market-Level Treatment Effects by Degree of Penetration, Submarket-Rent Quartile

(a) Y = log(rent)
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Figure 9: Test for Coordinated Pricing, Sieve 2SLS
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Notes: The result of the RV test comparing a model of coordination at level τA and a model of own-profit-
maximization, controlling for the level of non-adopter pricing sophistication. At τNA = 1, non-adopters are
sophisticated and maximize their own profit by charging the full markup. At τNA = 0, non-adopters do not charge
any markup and are essentially marginal-cost pricers. The color of the figure indicates the sign and the depth
of the color indicates its statistical significance. A shade of green indicates a positive test statistics, whereby a
model of coordination is favored over a model of own-profit-maximization. A shade of blue indicates a negative
test statistic, whereby a model of own-profit-maximization is favored over a model of coordination. The standard
errors are computed based on 1000 draws of the bootstrap whereby we redraw the management companies in the
market.
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9 Tables

Table 1: REIS Summary Statistics

Avg. Asking Rent($) 1373.9
(825.8)

Occupancy Rate(%) 93.15
(7.807)

Avg. Units 193.9
(168.4)

Nbuilding 37,216
Ncompany 11,523
Nstate 30
Nmetro 50
Nsubmkt 663

Table 2: Top Multifamily Building Management Companies

Company Units Adoption Adoption NMHC
Managed Date Ranking (2019)

Greystar 320,598 1 2010 1
Lincoln Property Mgmt 123,920 1 2009 2
Pinnacle 91,977 1 2010 3
MAA 81,641 1 2007 7
Alliance Residential 74,281 1 2011 4
Equity Residential 70,979 1 2006 10
BH Management 63,650 1 2010 8
Avalon Bay 58,377 1 2008 11
Essex 54,361 1 2008 18
Camden 54,170 1 2006 21
Irvine Company 53,796 1 2010 17
Bozzuto 52,203 1 2010 12
United Dominion Realty 45,576 1 2007 30
Cortland 43,889 1 2013 26
Morgan Properties 42,527 1 2011 28
ZRS 36,594 1 2010 32
Bell Partners 35,979 1 2008 31
FPI Management 35,729 1 2011 5
Highmark Residential 32,490 1 2012 19
Avenue5 32,353 1 2018 20

Notes: NMHC Ranking from https://www.nmhc.org/research-insight/the-nmhc-50/top-50-lists/2019-
managers-list/
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Table 3: Distributions of Markets by Penetration of Adopters

Year 0% 0-10% -20% -30% -40% -50% -60% -70% -80% -90% -100% Total
2005 2,506 0 0 0 0 0 0 0 0 0 0 2,506
2006 2,289 104 69 34 5 2 3 1 0 0 0 2,507
2007 2,108 142 135 83 20 9 8 2 0 0 0 2,507
2008 1,864 196 188 144 48 27 27 7 3 3 1 2,508
2009 1,627 256 266 197 76 33 37 8 3 3 2 2,508
2010 1,225 276 368 267 121 103 84 44 8 6 5 2,507
2011 896 277 388 326 198 128 140 85 25 27 18 2,508
2012 846 259 415 340 197 127 154 86 34 25 24 2,507
2013 799 258 413 345 198 155 164 94 28 32 22 2,508
2014 798 250 370 350 208 180 168 88 41 33 22 2,508
2015 771 256 377 322 229 146 172 123 56 34 22 2,508
2016 730 231 394 311 239 168 190 134 50 38 22 2,507
2017 684 244 385 324 247 195 196 115 53 40 25 2,508
2018 634 228 397 346 270 184 188 143 58 34 26 2,508
2019 596 252 371 374 271 177 216 147 53 33 18 2,508

The market definition used is submarket, rent quartile pair.
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Table 4: Model Predictions of Different Pricing Paradigms

Panel A: Building-Level Comparison Between Adopters and Non-Adopters
Responsive Pricing Responsive Pricing Coordinated Pricing

(Bust Period) (Boom Period) (All Periods)
pA − pNA − + 0

QA −QNA + − −

Panel B: Market-Level Comparative Statics with Penetration h

Responsive Pricing Responsive Pricing Coordinated Pricing
(Bust Period) (Boom Period) (All Periods)

p ↘ ↗ ↗

Q ↗ ↘ ↘

Notes: The table above summarizes the model predictions for each of the pricing paradigms based on the stylized
models. The top panel summarizes the building-level differences in price and quantity between adopters and non-
adopters in the same market. The bottom panel summarizes the market-level comparative statics in terms of how
average price and total quantity changes as the adoption penetration h increases. Notably, there are no predictions
for a model coordinated of pricing that cannot be generated from a model of responsive pricing.
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Table 5: Building characteristics comparison between adopters vs. non-adopters

Non-Adopters Adopters
Log(Avg. Asking Rent($)) 7.03 7.27

(0.47) (0.47)
Occupancy Rate(%) 93.64 91.63

(7.37) (8.84)
Free Rent(Month) 0.03 0.04

(0.02) (0.02)
Num. Floors 3.88 4.97

(4.38) (6.11)
Year Built 1979.67 1995.05

(23.93) (19.47)
Frac. Pool 0.64 0.83

(0.48) (0.38)
Frac. Doorman 0.03 0.05

(0.18) (0.21)
Frac. Tennis Court 0.00 0.01

(0.07) (0.08)
Frac. Parking Garage 0.04 0.09

(0.21) (0.29)
Frac. Clubhouse 0.35 0.65

(0.48) (0.48)
Nbuilding 27,991 9,225
Shrbuilding 75.2% 24.8%
Nunit 4,774,640 2,441,191
Shrunit 66.2% 33.8%
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Table 6: Building-level Calendar Year TE of Pricing Software Adoption

TWFE 2SLS CSDID
Year Log(Ask Rent) Occ(%) Log(Ask Rent) Occ(%) Log(Ask Rent) Occ(%)
2006 0.032*** -0.387 -0.253 6.356 0.003 -1.069

(0.005) (0.302) (0.304) (11.649) (0.022) (0.730)
2007 0.011*** -0.418 0.050 -11.444 -0.017 -0.006

(0.004) (0.274) (0.059) (8.168) (0.015) (0.853)
2008 0.004 0.158 0.004 -2.542** -0.032 0.787

(0.004) (0.189) (0.016) (1.294) (0.021) (0.587)
2009 -0.032*** 0.352* -0.115*** -0.516 -0.100*** 0.993*

(0.008) (0.200) (0.027) (1.094) (0.030) (0.601)
2010 -0.013*** -0.144 -0.046*** -0.538 -0.021** -0.321

(0.004) (0.112) (0.012) (0.493) (0.010) (0.254)
2011 -0.003 -0.148 -0.021*** -0.892** -0.003 -0.321

(0.002) (0.111) (0.007) (0.367) (0.005) (0.209)
2012 0.003 -0.409*** -0.003 -1.101*** 0.003 -0.894***

(0.002) (0.117) (0.006) (0.377) (0.005) (0.257)
2013 0.008*** -0.311*** 0.004 -1.266*** 0.013** -0.904***

(0.003) (0.121) (0.006) (0.368) (0.006) (0.247)
2014 0.013*** -0.369** 0.028*** -1.231*** 0.020*** -0.942***

(0.003) (0.146) (0.006) (0.360) (0.006) (0.265)
2015 0.025*** -0.509*** 0.054*** -1.519*** 0.041*** -1.197***

(0.003) (0.131) (0.008) (0.335) (0.007) (0.251)
2016 0.026*** -0.313** 0.057*** -0.987*** 0.035*** -0.923***

(0.003) (0.134) (0.008) (0.335) (0.008) (0.305)
2017 0.022*** -0.389*** 0.058*** -0.836** 0.035*** -1.160***

(0.003) (0.140) (0.009) (0.351) (0.009) (0.315)
2018 0.021*** -0.134 0.062*** -0.387 0.031*** -0.757**

(0.003) (0.144) (0.010) (0.357) (0.009) (0.310)
Building FE Y Y Y Y Y Y
Submkt-Tier-Year FE Y Y Y Y Y Y
F-Stat 50.9 50.9
Nobs 413,850 413,850 413,850 413,850 413,850 413,850

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Sample restricted to buildings built before 2005. Building-level and time trend (year) fixed effects for the building’s
metro and pre-treatment period rent quartile are included. Controls include months of free rent offered, average
concession offered in the submarket. For the Callaway and Sant’Anna (2020) specification (CSDID), building-level
characteristic-specific time trends are also controlled through the doubly robust estimator in addition to the fixed
effects. Standard errors are clustered at the management company level for both specifications.
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Table 7: Market-level Impact of Algorithm Penetration on Rent and Occupancy

(1) (2) (3) (4)
Log(Rent) Log(Rent) Occupancy Occupancy

OLS IV OLS IV
06-07 × AlgoShare 0.091*** -0.007 0.063 -0.212

(0.033) (0.029) (1.210) (1.184)
08-09 × AlgoShare -0.036*** -0.090*** 1.856*** 1.432

(0.013) (0.024) (0.562) (1.161)
10-11 × AlgoShare -0.010 -0.054*** 3.052*** 3.845***

(0.010) (0.018) (0.338) (0.830)
12-13 × AlgoShare 0.032*** 0.007 0.507* 0.628

(0.009) (0.016) (0.280) (0.700)
14-15 × AlgoShare 0.052*** 0.029** -1.469*** -1.797***

(0.010) (0.015) (0.360) (0.695)
16-17 × AlgoShare 0.011 -0.018 -2.568*** -2.919***

(0.011) (0.015) (0.439) (0.650)
Metro-Year FE Y Y Y Y
Submkt-Class FE Y Y Y Y
F-stat 1108.59 1108.59
Nmt 17441 17441 17441 17441

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Sample restricted to buildings built before 2005. Controls include avg. number of floors, building age, fraction of
buildings with pool, doorman, tennis court, parking garage and clubhouse in the submarket, as well as submarket-
level level and changes of house price index, unemployment rate, income, and net migration. All regressions are
weighted by number of buildings in each market. The reported F-stat is Kleinberg-Paap rk Wald F Statistics from
the 2SLS regression of outcome on AlgoShare intrumented with the IV but without the year-dummy interaction
terms. Standard errors are clustered at the submarket-class level for all specifications.
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Table 8: Estimation Sample Statistics, Seattle 2011-2018

Panel A: Price and Quantity
Eff. Rent (100$) 14.81

(6.294)
Occupancy (%) 94.75

(9.203)
Panel B: ACS Moments

Outside Good Share s0 0.805
Cov(incomei, rentj) 11.79
Cov(hsi, bedj) 0.163
Panel C: Geographical Markets
Nsubmkt 16
Ntract 319

Panel D: Concentration
Nbld 1163
Nowner 1012
HHI 376.9
Nmatched
bld 876

Nmatched
owner 607

HHImatched 562.5
Frac. j by Adopters 0.430
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Table 9: Estimated Demand Parameters, Seattle, 2011-2018

Tax IV Optimal IV
α : yi < $20, 000 9.363 8.352

(3.678) (2.586)
α : $20, 000 ≤ yi < $35, 000 7.274 7.428

(1.4) (1.286)
α : $35, 000 ≤ yi < $50, 000 9.954 7.627

(1.875) (1.255)
α : $50, 000 ≤ yi < $75, 000 9.673 7.888

(2.218) (1.454)
α : yi > $75, 000 15.175 10.635

(3.645) (2.013)

HH Size HH Size
Inside Good -5.168 -2.996

(0.607) (0.194)
Bed 1.959 0.28

(0.392) (0.094)

Nmt 128 128
Nbld 1,163 1,163
Nj 3,065 3,065
Njt 18,638 18,638

Unit-type FE Y Y
Submkt-year FE Y Y

Median Own Elas. -3.032 -2.521
Median Agg Elas. -0.584 -0.478

Mean Outside Good Div. 0.57 0.548
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Table 10: Test for Coordination, Seattle 11-18

τA = 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
τNA = 1 3.08 3.00 2.92 2.64 1.52 0.00 -1.05 -1.53 -1.75 -1.91
τNA = .9 2.85 2.81 2.88 2.19 1.04 -0.28 -1.16 -1.59 -1.82 -1.96
τNA = .8 2.56 2.58 2.35 1.67 0.65 -0.52 -1.31 -1.64 -1.86 -2.00
τNA = .7 2.25 2.12 1.84 1.18 0.23 -0.73 -1.38 -1.71 -1.87 -2.01
τNA = .6 1.97 1.77 1.32 0.73 -0.09 -0.87 -1.45 -1.76 -1.92 -2.04
τNA = .5 1.76 1.23 0.93 0.39 -0.31 -1.07 -1.54 -1.80 -1.92 -2.06
τNA = .4 1.20 0.93 0.57 0.08 -0.51 -1.17 -1.58 -1.85 -1.94 -2.05
τNA = .3 0.85 0.54 0.33 -0.12 -0.68 -1.22 -1.61 -1.83 -1.96 -2.04
τNA = .2 0.63 0.36 0.10 -0.33 -0.83 -1.33 -1.67 -1.86 -1.98 -2.06
τNA = .1 0.39 0.15 -0.11 -0.49 -0.93 -1.36 -1.71 -1.90 -1.99 -2.02
τNA = 0 0.22 -0.00 -0.27 -0.60 -1.02 -1.42 -1.73 -1.83 -1.90 -2.03

The result of the RV test comparing a model of coordination at level τA and a model of own-profit-maximization,
controlling for the level of non-adopter pricing sophistication. At τNA = 1, non-adopters are sophisticated and
maximize their own profit by charging the full markup. At τNA = 0, non-adopters do not charge any markup
and are essentially marginal-cost pricers. The standard errors are computed based on 1000 draws of the bootstrap
whereby we redraw the management companies in the market.
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A Appendix Figures

Appendix Figure A1: How Yieldstar optimizes rents

Appendix Figure A2: Manager’s view of dynamic pricing by Yieldstar
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Appendix Figure A3: Manager’s view of Yieldstar pricing dashboard

(a) Price recommendation made by Yieldstar

(b) Competitor data and recommendation acceptance
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Appendix Figure A4: Model Predictions of Different Pricing Paradigms with Differentiated Products

(a) (b)

(c) (d)

Notes: Simulation based on a stylized model of differentiated product markets. It evaluates the predictions of two pricing
paradigms. On the left, it plots the predictions by penetration when non-adopters is not charging their full markup, and
the effects of the software adoption allows adopters to charge their full markup. On the right, it plots the predictions
by penetration when adopters are coordinating on price via adopting the same pricing algorithm. Across all moments
for adopters, non-adopters, differences, and market aggregates, they generate the same sign for the comparative statics.
The only exception is the price difference, but the sign difference is a function of the marginal cost function. As such, it
remains impossible to find evidence of coordination by reduced-form analysis alone.
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Appendix Figure A5: REIS Defined Submarket, Seattle
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B Appendix Tables

Appendix Table A1: Top and Bottom 5 Metro Areas by Penetration, as of 2019

Metro Adopted Blds Total Blds Penetration(%)
Top 5 Metros

Raleigh-Durham 224 504 44
Seattle 573 1331 43
Charlotte 229 546 42
Suburban Virginia 236 580 41
Austin 287 734 39

Bottom 5 Metros
Columbus 44 565 8
Cleveland 14 363 4
New Orleans 8 209 4
Cincinnati 16 486 3
Milwaukee 13 400 3

Appendix Table A2: Top and Bottom 10 Submarket Areas by Penetration, as of 2019

Metro Submarket Adopted Blds Total Blds Penetration(%)
Top 10 Submarkets

Orange County Irvine 72 78 92
Orange County Newport Beach 14 17 82
Fort Lauderdale Plantation 21 27 78
Austin Far Northwest 35 47 74
Orange County Mission Viejo 34 48 71
Charlotte Carmel 35 50 70
Denver Arapahoe County 15 22 68
Austin Near South Central 17 25 68
Dallas Central Dallas 67 101 66
Seattle Redmond 43 65 66

Bottom 10 Submarkets
Memphis East Memphis/University 0 14 0
Milwaukee Greenfield/Greendale/Franklin 0 54 0
Cleveland Beachwood 0 25 0
Pittsburgh Monroeville/Mckeesport/White Oak 0 20 0
San Francisco Russian Hill/Embarcadero 0 20 0
St. Louis Airport/I-70 0 43 0
Memphis Frayser 0 8 0
Pittsburgh Wilkinsburg/Penn Hills 0 30 0
New Orleans Kenner 0 13 0
Milwaukee City West 0 45 0
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