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1 Introduction

There is a growing literature focused on the increased market concentration seen across

many U.S. industries and the role that large firms might play in this trend. One strand

considers the possibility that large firms have achieved greater technological dominance

through innovation, and that this allows them to expand their market share (e.g., Autor,

Dorn, Katz, Patterson and Van Reenen, 2020; Crouzet and Eberly, 2019). Another strand

of thought posits that the increasing dominance of large firms is associated with market

imperfections that are deleterious to economic growth (e.g., Gutiérrez and Philippon, 2017;

De Loecker, Eeckhout and Unger, 2020). These market imperfections may result from

firms using various methods to deter potential competitors, such as lobbying for political

favoritism (Gutiérrez and Philippon, 2019; Akcigit, Baslandze and Lotti, 2023) or acquiring

innovative startups only to terminate their operations (Cunningham, Ederer and Ma, 2021).

This paper proposes and tests another type of strategy used by large firms: using patents

to deter competition while not actually innovating or advancing the state of technology in

the market.

The patent system’s main purpose is to promote innovation by incentivizing inventors

to invest in costly research projects. Today, however, the patent system is viewed with

increasing skepticism, and both policy-makers and academic scholars are pointing out its

deficiencies.1 Some of those deficiencies are associated with the perverse incentives for large

firms to maintain their market power by patenting ideas before their potential competitors,

which leads to patents not for innovation, but solely to deter other firms from coming up

with future innovations (Gilbert and Newbery, 1982). While these patenting deficiencies

are often discussed, it is unclear how prevalent they are in practice and by how much they

hinder innovation. In this paper, we develop a theoretical framework and build a unique

patents-to-products data set to identify the prevalence and implications of patenting without

product innovation.

We first build a simple theoretical model that illustrates how the relationship between

product introduction and patenting decisions differs for firms with different market positions.

The model provides a set of testable predictions and identifies relevant data moments that

guide our empirical strategy. We formalize the occurrence of strategic patents—defined as

patents that deter innovation without leading to product introductions—and show which

data moments can identify strategic patenting in the data.

1See a survey of the literature by Bryan and Williams (2021), as well as Jaffe and Lerner (2004), Boldrin
and Levine (2013), and Cohen, Nelson and Walsh (2000). Some of the popular press articles are: “The
Experts: Does the Patent System Encourage Innovation?” (WSJ, 2013) and “Save Americas Patent System”
(NYT, 2022).
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The framework builds on the quality-ladder model of innovation through creative de-

struction introduced in Aghion and Howitt (1992) and adds an additional distinction be-

tween a firm’s decision to innovate and their decision to patent. In the model, product

innovation takes the form of quality upgrades to products in the market.2 These innova-

tions come either from the incumbent’s efforts to prolong its technological lead or from

market entrants’ attempts to become new leaders. Once an incumbent firm obtains an idea

for a new innovation, it makes a one-time decision about whether to commercialize the

idea as a product and/or patent it. Both patenting and new product commercialization

are costly activities. If the incumbent decides to commercialize the idea, it gains additional

profits from introducing higher-quality product into the market. Patenting the idea grants

the incumbent additional protection against creative destruction by potential entrants. The

model shows that patenting and product introduction are complementary activities: the

higher the return from product introduction, the higher the benefit of protecting new prod-

ucts with patents; the stronger the protection from patents, the more profitable it is to

introduce a new product. These results formalize why we should observe, in practice, a

positive relationship between patent filings and product innovation.

More importantly, the model shows that larger incumbents optimally rely more on strate-

gic patenting because the incentives for patenting increase in the incumbents’ size while the

incentives for product introduction decrease. Large incumbents forego many new ideas that

smaller firms would find worth commercializing to avoid cannibalizing their existing rents.

The incentives for patenting go in the opposite direction: larger incumbents want to protect

their existing rents relatively more and file patents even if they do not intend to commer-

cialize the product. Putting these results together, the model predicts that the strength of

the relationship between product commercialization and patents declines with the incum-

bent’s size, reflecting the increase in the probability of strategic patenting to protect existing

products.3

Our model leads to a set of empirical moments on product introduction and patenting

that help identify the presence of strategic patents and their implications. To study these

empirical moments, we need detailed data on firms’ patents and their linkage to product

introductions, in addition to measures of firm revenue and innovations by firms’ competitors

within a product category. Assembling such a data set presents three empirical challenges.

First, while patent data are broadly available, measures of product innovation in the market

are rarely available at large scale. To address this challenge, we use comprehensive data

2Throughout the paper, we will interchangeably use “product innovation”, “product introduction”, and
“product commercialization”.

3We show that if the economy did not allow for patenting without product introduction, the strength of
the relationship between patenting and product introduction would, in fact, increase with firm size.
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on firms and products sold in the consumer goods sector from 2006 to 2015 collected by

Nielsen-Kilts from point-of-sale systems in retail locations. This data set includes detailed

information about the characteristics of each consumer-goods product; notably, it includes

information on product attributes (e.g. formula, style, content), well-measured prices, and

sales. We exploit this rich data set to construct measures of product innovation. Our

simplest measure is the number of new products (barcodes) introduced at the firm and

product category level in a given year. Since many new products represent only minor

innovations relative to existing products, we also construct measures of the quality-adjusted

number of new products. We measure quality improvements by tracking the new attributes

that a product brings to the market and by exploiting variation in product prices and sales.

The second challenge lies in linking product innovations to their respective patents.

We start by using firm names in the patent and product data sets to map each firm’s

patents to its full product portfolio. After this parsimonious matching procedure, we can

simultaneously measure patenting and product introduction at the firm level over time.

However, we need a more granular procedure to match patents with products within firms.

Establishing this closer link between products and patents is particularly important for firms

operating in multiple product categories or filing patents that are not related to products

in our data. In addition, this link allows us to exploit variation within-firm and across

time in our analysis. We leverage the richness of the information about product and patent

characteristics in our data and use modern methods from the fields of natural language

processing and information retrieval to link each firm’s patents with the products it sells

(Manning, Raghavan and Schütze, 2008). We define product categories—sets of similar

products—by applying clustering analysis to the short product descriptions included in

the Nielsen data enriched with text from Wikipedia articles about the products. We then

analyze the texts of patent applications and assign each patent to the product category with

which it has the highest text-similarity score.4 This categorization of firms’ products and

patents leads to our benchmark patent-to-products data set, which includes variation at the

firm-category-year level.

Finally, it is important to accurately measure product commercialization and patenting

decisions by all firms competing in the same relevant product market. By using the scanner

data covering hundreds of consumer goods products (e.g. lamps, batteries, yogurts, diapers)

with near-universal coverage and our unique firm-category-year match, we can identify rel-

evant competitors in narrowly defined product categories, determine their market shares,

and measure their activities.

4Younge and Kuhn (2016), Kelly, Papanikolaou, Seru and Taddy (2021), and Webb (2019) use similar
techniques when analyzing patent documents.
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The resulting granular data set tracks patents and products for firms in the consumer

goods sector. Although our empirical results come only from this sector, the patenting

intensities and product introduction rates of such firms are, on average, comparable to

those in other manufacturing sectors. Out of 35 thousand firms covered in our data set,

15% applied for a patent at least once (9% applied during the period covered by Nielsen).

This patenting rate is in line with that of the manufacturing sector and is substantially higher

than that of other sectors in the economy (Graham, Grim, Islam, Marco and Miranda, 2018).

The consumer goods sector also covers a wide range of product categories with distinct

patenting intensities, allowing us to show the heterogeneity of our results by product types.

Over our sample period and across all product categories, never-patenting firms introduce

more than 54% of new products and 65% of quality-adjusted new products.

We begin our empirical analysis by exploring the relationship between patents and prod-

uct introduction across all firms, independent of their market share. Our theoretical frame-

work shows that product introduction and patenting are complementary activities; hence we

should observe a positive relationship between these activities in the data. To capture this

relationship in the data, it is key that we can directly associate specific patents with specific

products. We use variation within firm × product category over time and estimate how filing

new patents relates to introducing new products, controlling for product category-specific

trends and firm-category fixed effects that capture, for example, heterogeneous propensities

to innovate and file patents. We find that a 10% increase in the number of new patent filings

is associated with a 0.4% increase in product introduction in the next year. We observe

higher elasticities between product introduction and filings of higher-quality patents, such

as granted patents and those with more forward citations.

Next, we evaluate how patenting and innovation decisions change with firm size. Using

variation across firms within product categories, we estimate that firms at the bottom

quintile of the size distribution in a given year, as measured by total sales within a product

category, introduce one new product for every five existing products in their portfolio, on

average. Firms at the top quintile of the size distribution, on the other hand, introduce

one new product for every seven existing products in their portfolio. Though larger firms’

innovation rates are lower, they file more patents. We show that the patent filings of larger

firms have a significantly weaker association with product introduction.

Through the lens of our model, the weakening relationship between patenting and prod-

uct innovation for large firms reflects the higher occurrence of strategic patenting, which is

not directed toward product innovation but aims to deter the competitors of market leaders.

We find additional evidence consistent with this idea in the data, namely that patents filed

by market leaders carry a larger revenue premium above and beyond what would be pre-
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dicted by the quantity and quality of new products introduced by these firms. In contrast,

the patent revenue premium of small firms is fully accounted for by the product introduction

associated with these patents. This empirical regularity is consistent with the model pre-

diction that large firms enjoy higher revenue premiums from patents because patents reduce

competitive pressure. We also show that patent filings by market leaders are associated with

a decline in competitors’ product introduction in shared product categories. The same is not

true if we consider smaller firms’ patent filings. Finally, we rule out alternative hypotheses

that might explain the weakening patents-to-innovation relationship, such as market lead-

ers having longer time lags between patent filings and the introduction of products in the

market (for example, because of higher experimentation) or their use of patents for licensing

purposes. We also show that patents of market leaders often exhibit lower quality in terms

of novelty and their scientific impact: these patents have fewer follow-on citations, a higher

self-citations share, exhibit higher textual similarity with preceding patents, and are more

often used in litigation.

We then provide back-of-the-envelope calculations for the frequency of strategic patent-

ing and its aggregate implications using the structure of our model. We calibrate the model

parameters and compare the benchmark economy to a counterfactual one, where firms can

file patents but strategic patents without product introduction are not allowed. Our quan-

tification implies that 61.6% of the patent filings of an average firm and 83.5% of the filings

of the largest firms at the top of the sales distribution are strategic. This share of strate-

gic patents reduces aggregate creative destruction by 2.5% relative to the counterfactual

economy with no strategic patenting.

Finally, we analyze further counterfactuals to understand the potential benefits and

costs of different patent policies. We compare economies with different patent regimes: no

patents, no strategic patents , and a benchmark regime with no restrictions on the nature

of patents. Comparing the no-patents regime to the no-strategic-patents regime illustrates

the innovation-enhancing role of patent rights in the economy (Bryan and Williams, 2021):

incumbents introduce new products at a much higher rate in a no-strategic-patents regime

because their new products can be protected by patents. However, if the economy also allows

for strategic patents, two important forces operate. On the one hand, creative destruction

and reallocation fall relative to the no-strategic-patents regime, but, more interestingly,

incumbents’ product introduction rate falls too. In an economy where incumbents can rely

on strategic patenting to maintain their market shares, the incentives for additional product

introduction are lower. The comparison of these three patent regimes indicates that while,

in principle, patent protection can incentivize ex-ante product innovation by firms, the

possibility of obtaining patent protection without product commercialization can reverse
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the benefits of the patent system for the economy as a whole.

Related Literature – Our findings regarding the patenting and innovation decisions of

firms can speak to several puzzling macroeconomic trends in recent data: patenting is soar-

ing, but productivity growth is stagnating (Gordon, 2016; Bloom, Jones, Van Reenen and

Webb, 2020); large firms funnel more resources into intangible capital—including intellectual

property—but these expenditures are manifested in the increasing dominance of those firms

instead of perceptible improvements in aggregate innovation in the economy (Crouzet and

Eberly, 2019). Our results show that large incumbents have limited incentives to direct their

efforts towards productive rather than strategic patenting, which is particularly relevant as

more economic activity is reallocated towards firms with a large degree of market power

(De Loecker, Eeckhout and Unger, 2020; Autor, Dorn, Katz, Patterson and Van Reenen,

2020; Gutiérrez and Philippon, 2017) and business dynamism declines (Decker, Haltiwanger,

Jarmin and Miranda, 2016). Recently, Akcigit and Ates (2023, 2021) have argued that the

decline in knowledge diffusion from market leaders to laggards has largely contributed to

the slowing business dynamism in the United States. Our study lends support to this idea

by providing direct evidence on strategic patenting by market leaders and showing that

these patenting practices lead to a quantitatively sizable decline in aggregate reallocation

and innovation.

Our results also contribute to our understanding of firms’ growth strategies. Recent

studies have shown that large firms rely on other protective strategies such as acquiring

potential competitors (Cunningham, Ederer and Ma, 2021) or forging political connections

(Akcigit, Baslandze and Lotti, 2023) as their innovative activity slows down (Akcigit and

Kerr, 2018; Cavenaile and Roldan-Blanco, 2021).5 We show both theoretically and empiri-

cally that patenting is yet another protective tool that firms substitute for actual product

innovation as they grow.

Given the importance of strategic patenting for market leaders, there is surprisingly

little empirical evidence on the differential use of patents by firms with different market

positions. Relevant papers that have studied patents and the associated follow-on innovation

include: Williams (2013) and Sampat and Williams (2019) for human genes; Cockburn

and J. MacGarvie (2011) for software products; and Lampe and Moser (2015) for follow-

on patenting with patent pools. While these papers have not considered their effects by

firm size, Galasso and Schankerman (2015) examined 1,357 Federal Circuit patents and

showed that invalidating patent rights of large patentees led to more follow-on citations to

the focal patents by small patentees. In our data, we observe direct measures of product

5See Baslandze (2021) for a review.
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innovation in the market for all firms in the consumer goods sector and show that patenting

by market leaders is related to lower product commercialization by competitors. To the

best of our knowledge, this paper is the first to study the relationship between patent filings

and product innovations over the full firm size distribution using direct information on the

commercialization of products.

Finally, our novel data set sheds light on the usefulness of patent statistics for measuring

innovation. In the absence of direct measures of innovation, the literature has relied on

indirect inference approaches using data about employment growth (Garcia-Macia, Hsieh

and Klenow, 2019) or valuing innovation from patent statistics themselves (e.g., Akcigit and

Kerr, 2018). Other researchers have looked at innovations that occur outside of the patent

system by examining the number of new books on technical topics (Alexopoulos, 2011)

or innovations featured at World Fairs between 1851 and 1915 (Moser, 2012). By linking

patents to specific products within firms—usually an unobservable relationship—our data

enable us to document that the usefulness of patent metrics in inferring innovation depends

significantly on the market position of the firms that own the patents.

The rest of the paper is organized as follows: we start from a theoretical framework

in Section 2; we then describe the data sets, our data-matching procedures, and extensive

validation checks in Section 3; the main empirical results are presented in Section 4; Section

5 provides model-based estimates of the frequency and aggregate implications of strategic

patenting and evaluates various counterfactual patent regimes; and Section 6 concludes.

2 Conceptual Framework

We build a simple Schumpeterian model of endogenous innovation and creative destruction

(e.g. Aghion and Howitt, 1992) that illustrates the relationship between product introduc-

tion and patenting decisions for firms with different market positions. The model provides

a set of empirical predictions and identifies relevant data moments that guide our empirical

strategy.

2.1 Setup

Production – Consider a partial equilibrium framework that depicts the innovation pro-

cess in a single product category. There are J potential producers, and aggregate output is

produced using a combination of their quality-weighted varieties:
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Y =
1

1− β

[
J∑
j=1

q
α

1−β
j yj

]1−β

, (1)

where yj denotes the quantity, and qj is the quality level of variety j. This specification

implies that products from different producers are perfect substitutes after adjusting for

their qualities. The parameter α captures the consumer’s satiation with respect to additional

quality. Labor is the only factor of production. Producers use labor to make intermediates

by hiring workers at the common wage w. Output of variety j is then given by yj = lj,

where lj is the amount of labor used to produce variety j. We assume that an overhead cost

of production ε must be paid before choosing prices and output. Since producers’ marginal

costs are the same and qualities are different, under Bertrand competition, even a small

overhead cost allows the highest-quality firm to act as a the sole producer.6

The incumbent producer maximizes profits by choosing the price of its product subject

to demand from (1),7 which delivers the following equilibrium values for output (y), sales

(R), and profits (Π):

y =
1− β
β

π

w
qγ, R =

π

β
q
γ

, Π = πq
γ

, (2)

where π ≡ β
(

1−β
w

) 1−β
β and γ ≡ α

β
. Hence, an incumbent with a higher-quality product is

larger and generates higher sales and profits. We assume 0 < α < β (meaning 0 < γ < 1)

so that the marginal quantity, sales, and profits decrease with quality. Later in the paper,

we show that this is the relevant empirical case, so for brevity we adopt this parametric

assumption now.

Product Introduction and Patenting – Incumbent firms can improve upon their ex-

isting products and file patents. We consider a one-time decision of product introduction

and patenting for an incumbent with quality q who exogenously obtains an idea of size

λ.8 Product introduction is not certain. The firm chooses the probability of product in-

troduction zm by incurring marketing and product commercialization cost cmz2m
2

. If product

introduction is successful, the incumbent brings a new product with a higher quality q + λ

6This assumption, common in this class of models, simplifies the setup. Alternatively, we could work
with limit pricing where the firm with the highest quality still captures the entire market, but the price is
determined by the price of the second highest-quality producer.

7Price of Y is normalized to one.
8For simplicity, we consider a one-shot decision; an idea is either used or disappears afterwards. A

dynamic problem of patenting and product introduction would bring similar qualitative predictions at the
expense of tracking the evolution of a firm’s position both in the product and patent spaces.
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to the market and earns higher profits.

Simultaneously, the firm also chooses the probability of patenting, zp, and incurs patent-

ing cost
cpz2p

2
. This cost of obtaining patent protection on the idea λ can be thought of as

a combination of research, filing fees, legal fees, and potential patent enforcement costs. A

patent grants the firm additional protection against being replaced by a competitor (more

details below). If the incumbent successfully obtains a patent, even if the idea is not com-

mercialized, the highest-available quality in the economy becomes q+λ since, by patenting,

the firm makes the idea public (Hegde, Herkenhoff and Zhu, 2022). As a result, the highest-

available quality in the economy could be different than that commercialized by the firm and

available to consumers. In this sense, firms’ activities in the product and patent spaces are

separated. New product introduction does not necessarily imply a patenting activity, and

obtaining a patent does not necessarily imply that the firm introduces a new product—an

important departure from standard models of innovation and growth.

Creative Destruction – Incumbents can be replaced by competing entrants through

creative destruction. For that to happen, entrants need to introduce a higher-quality product

and clear the legal barrier created by incumbents’ patents, if any.

Entrants arrive at an exogenous rate p at each instant and draw an innovation of step

size λe from a uniform distribution on (0, 1) relative to the highest available quality. They

build on “the shoulders of giants” and learn from products available in the market as well as

from existing patents. Hence, the highest available quality on which entrants are building

corresponds to q + λ if the incumbent does product introduction and/or patents, and to q

if incumbent does neither of these two activities.

Normally, an entrant would win the market if it introduced a higher-quality product

than that offered to consumers by the incumbent. However, this is not necessarily the case

when the incumbent also holds legal protection from patents. Patenting protects the quality

level of incumbents q + λ by creating a “wall” of height ε (0 < ε < 1) that entrants need

to overcome to enter the market. The parameter ε captures the idea that entrants need to

come up with an innovation sufficiently different from what has been patented before, which

can depend on the strength of intellectual property protection as well as the scope of the

patent. As a result, the probability of creative destruction is p if the incumbent does not

patent and is p(1 − ε) if the incumbent patents (Appendix A.1 provides the proof). This

implies that, in contrast to standard models of creative destruction, not all product quality

improvements by entrants will find their way to the market. The separation between the

patent space and the product space introduces the possibility that a higher-quality product

developed by an entrant does not get introduced to the market because it is blocked by an

9



incumbent’s patents.

Value Function – Consider an incumbent with initial product quality q.9 Denote its

(gross) value when it introduces a new product and patents the idea by V 11, the value of

only introducing a new product by V 10, the value of only patenting by V 01, and the value

of neither introducing a new product nor patenting the idea by V 00. Then we obtain

V 11(q) =
π(q + λ)γ

r + p(1− ε)
, V 10(q) =

π(q + λ)γ

r + p
,

V 01(q) =
πqγ

r + p(1− ε)
, V 00(q) =

πqγ

r + p
,

(3)

where r is interest rate. The value of the incumbent firm with existing quality q is then an

expectation over these values, net of product introduction and patenting costs:

V(q) = max
zm,zp

{
zmzpV

11(q) + zm(1− zp)V 10(q) + (1− zm)zpV
01(q) (4)

+ (1− zm)(1− zp)V 00(q)− cmz
2
m

2
−
cpz

2
p

2

}
.

A key feature of this economy is that incumbent firms can engage in strategic patenting,

defined as filing patents without product introduction. This possibility of patenting without

product introduction is captured by the availability of option V 01(q).

2.2 Equilibrium

After solving the firm’s problem in (4), we obtain the optimal product introduction zm and

patenting zp choices. While the setup is fairly simple, it produces key predictions about the

relationship between product introduction and patenting activities. We present all proofs

in Appendix A.2.

Proposition 1: Product introduction and patenting activities are complementary: ∂zm
∂zp

> 0.10

9Notice that we analyze the problem of a single incumbent in a product category that faces potential
competition from entry. Our model implications can be generalized to a richer setting with multiple com-
peting incumbents holding different market shares. Here, instead of comparative statics with respect to firm
market share, for simplicity, we chose to analyze the single incumbent problem and consider the comparative
statics of product introduction and patenting decisions with respect to firm size (sales), captured in the
model by q.

10With some abuse of notation, ∂zm
∂zp

denotes the degree of complementarity– the cross-derivative of the

benefit component of V(q), which we formalize in Appendix A.2.
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This proposition implies that any change to the returns from product introduction or patent-

ing will move both activities in the same direction. For example, if the return from product

introduction increases, then the benefit from protecting new products with patents also

increases. Likewise, if a firm anticipates stronger protection from patents, it will also find

it more profitable to introduce a new product. Note that the latter captures the funda-

mental reason for the existence of the patent system in the first place—patent protection

provides ex-ante innovation incentives. In fact, the following comparative static shows that

the complementarity between patenting and product introduction is stronger when patent

protection is stronger.

Proposition 1’: All else equal, if patent protection is stronger (ε is larger), the complemen-

tarity between product introduction and patenting is stronger: ∂2zm
∂zp∂ε

> 0.

Next, we move to analyze how this complementarity between product introduction and

patenting varies with an incumbent’s size, captured by its quality level q. We show that:

Proposition 2: The degree of complementarity between product introduction and patenting is

weaker for larger firms: ∂2zm
∂zp∂q

< 0.

This decline in the degree of complementarity is a sign of higher strategic patenting by

larger firms. In other words, this result stems purely from the fact that firms have the

option to patent with no accompanying product introduction and that larger firms have

higher incentives to choose this option.11

To illustrate this more clearly, let us compare the implied product introduction and

patenting incentives of the firms in our economy with those in a counterfactual economy

where we do not allow for the existence of strategic patenting. In particular, we consider a

counterfactual economy where the patent office does not grant patent protection for an idea

that is not commercialized in the market.12 In such a case, the value function becomes:

V∗(q) = max
zm,zp

{
zmzpV

11(q) + zm(1− zp)V 10(q)+(1− zm)zpV
01(q) (5)

(1− zp) + (1− zm)V 00(q)− cmz
2
m

2
−
cpz

2
p

2

}
.

11To keep the analysis tractable and intuitive, our model abstracts from some features such as size-
dependent costs and proportional innovation step sizes that might be relevant for this theoretical result. In
Appendix Section A.3, we discuss these alternative modeling assumptions and show how this result carries
over under new assumptions.

12Though commercialization has never been required in the United States, until 1880 the USPTO did
require applicants to submit a (possibly working) model of their invention when feasible (Federico, 1936).
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Figure 1: Patents and Innovation Complementarity over Firm Size

Counterfactual economy

  
  (strategic patents allowed)

*

*(strategic patents not allowed)

Benchmark economy

The difference between V∗(q) and V(q) is simply the omission of the V 01(q) term (and the

residual probability on V 00(q)). We can show that the result from the previous proposition

is reversed in the counterfactual economy:

Proposition 2*: If strategic patents are not allowed, the complementarity between product

introduction and patenting is stronger for larger firms: ∂2z∗m
∂z∗p∂q

> 0.

Figure 1 schematically shows the degree of complementarity between patents and innovation

for the benchmark and counterfactual economies, ∂zm
∂zp

and ∂z∗m
∂z∗p

. In both cases, product

introduction and patents are positively associated. However, as incumbent’s size increases

(larger q), the strength of the association between patents and product introduction diverges

between the two economies. In the counterfactual economy, where strategic patents are not

allowed, the link between product introduction and patents is stronger with firm size because

larger firms have more incentives to protect, but at the same time, firms have to introduce

new products to benefit from patent protection. This is not the case in the benchmark

economy where firms can protect their position solely by filing patents. Hence, it is the

availability of the option of patenting without commercialization that generates the decline

in the association between patents and product introduction with firm size.

To further evaluate how the incentives for patenting and product introduction vary with

firm size, we can conveniently express the gap in the degree of complementarity between

the counterfactual and benchmark economies as

∆ ≡ ∂z∗m
∂z∗p
− ∂zm
∂zp

=
πεpqγ

(r + p(1− ε))(r + p)
. (6)
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This gap is essentially a revenue premium from strategic patenting, (V 01−V 00). Importantly,

this revenue premium varies with firm size

Proposition 3: The revenue premium from strategic patenting is higher for larger firms:
∂(V 01−V 00)

∂q
> 0.

Intuitively, larger incumbents have a higher value to protect, hence, they reap a larger

return from patenting. Contrary to the incentives for patenting, the incentives for product

introduction decline with incumbent’s size (∂(V 10−V 00)
∂q

< 0): similar to the well-known

Arrow-replacement effect, the incremental returns from product introduction decline with

firm size.13 These opposing incentives for product introduction and patenting with firm size

explain the higher return from strategic patenting for larger firms.

In the aggregate, the occurrence of strategic patents has negative consequences for cre-

ative destruction and reallocation in the economy. The expected creative destruction rate

can be expressed as

τ ≡ zpp(1− ε) + (1− zp)p (7)

The rate decreases with the patenting rate and because the rate varies with the size of

incumbent firms:

Proposition 4. The expected creative destruction rate is lower when incumbents are larger:
∂τ
∂q
< 0.

Intuitively, because larger incumbents rely on patenting more, we find that larger incumbents

face a lower risk of creative destruction.14

2.3 Main Takeaways and a Pathway to Empirics

We propose a simple extension of the Schumpeterian growth framework (Aghion and Howitt,

1992) that entertains a distinction between a firm’s choice to innovate and their choice to

patent. The model illustrates how the incentives for patenting and product introduction go

in opposite directions as firms grow. Large incumbents give up on many ideas that smaller

firms would find worth commercializing to avoid cannibalizing their existing rents. Mean-

while, the incentives for patenting go in the opposite direction—larger firms want to protect

13This result requires that γ < 1 and thus the marginal profits decrease as q increases. We provide
an empirical estimate of γ and confirm that it is lower than one. However, instead of using decreasing
returns to generate a declining relationship between firm size and innovation, one can can also generate it
by introducing weaker scalability of R&D technology with increasing size as in Akcigit and Kerr (2018) or
an innovation-advertising trade-off as in Cavenaile and Roldan-Blanco (2021).

14In the proof, we provide sufficient parametric conditions that guarantee zp to grow with firm size.
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their existing rents relatively more and file patents even if they do not intend to commercial-

ize them. The occurrence of these strategic patents, i.e., patents without associated product

introduction, has negative implications for creative destruction and innovation.

Our model leads to a set of empirical moments on product introduction and patenting

that help identify the presence of strategic patents and their implications. To start with,

Proposition 1 implies that empirically, we should observe a positive association between

product introduction and patenting by firms. In turn, Proposition 2 and 2∗ tell us that this

association naturally gets weaker with the incumbent’s size, but only if strategic patenting

is allowed. Hence, these propositions highlight that the key moment that helps us detect the

existence of firms’ strategic patents is the observed empirical association between patenting

and product introduction decisions and how it varies with the incumbent’s size. Proposition

3 corroborates these findings and shows that the returns to strategic patenting are particu-

larly high for larger incumbents. This implies that while we generally expect incumbents to

increase their revenue when they file patents, as patents would reflect product innovations,

for larger firms, this patent revenue premium goes beyond product commercialization. Fi-

nally, Proposition 4 implies that due to patenting, we should observe lower levels of product

introduction by competitors of larger incumbents.

To speak to these empirical predictions from the model, we need to have detailed data

on firms’ patents linked to product introductions, as well as the revenue and innovation

levels of their competitors. The following section describes how we assemble such a data

set.

3 Data and Measurement

In this section, we show how we take advantage of rich granular product- and patent-level

data and leverage techniques from natural language processing to build a unique data set

that allows us to study the relationship between patents and product introduction and

ultimately to test the predictions of our theory.

3.1 Patent and Product Data

3.1.1 Overview

We face two main challenges in our study of the relationship between patents and prod-

uct innovation. First, while data about patents are broadly available, information about

the introduction of new products is rarely available at large scale. Second, the link be-

tween patents and related new products is challenging to create. This section overviews the
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empirical strategies we use to address these challenges.

We construct a data set about product introduction using product-scanner data that

cover the product portfolio of firms in the consumer goods sector between 2006 and 2015.

This data set allows us to identify new products by their barcodes and to observe their

detailed characteristics from which we can compute various measures of product innovation

for a large sector. Our patent information comes from the United States Patent and Trade-

mark Office (USPTO). The combination of these two data sets gives us information about

patents and product innovations covering a large sector of the economy.

To address the second challenge of linking patents to products, we start by using firm

names recorded in the patent and product data sets to produce a mapping between firms’

patent portfolios to their products.15 This data is too coarse to allow us to connect patents

with specific products. Moreover, it does not take into account that some patents are

associated with process innovation, or with innovations outside the consumer goods sector

that we do not capture with our product introduction measures. Thus, we leverage the

richness of product and patent characteristics and use methods from the natural language

processing literature to create systematic links between sets of patents and sets of products

within a firm.

A patent may generate no products or multiple products, and a product may have ben-

efited from multiple patents or from none at all. Therefore, forcing a one-to-one matching

between a specific narrowly defined product and a specific patent is neither possible nor

desirable. Hence, our approach is to first define product categories as sets of similar prod-

ucts, which are identified using clustering analysis of product descriptions extended with

Wikipedia-based dictionaries. We then assign each individual patent to the product cate-

gory with which it has the highest text similarity within the set of consumer goods covered

by the product data. This classification of a firm’s products and patents into the various

product categories offered by that firm yields our benchmark patent-to-products data set.

Figure 2 illustrates our data schematically, and our matching algorithms are described in

detail below.

To our knowledge, our algorithm generates a data set that is truly unique. de Rassenfosse

(2018) has collected data on about 100 firms with virtual patent markings; and some private

companies link patents to products of their clients.16 However, none of these data sets have

15Because this matching procedure is simple and parsimonious, we use this firm-level panel data set in
multiple robustness exercises.

16Some examples of these companies are FairTech, IPStrategy, Powering ideas, and Intelectual Peritus.
Their data sets are confidential and apply only to the portfolio of products of their clients. These services
help clients identify their most important patents and the protection they provide to their products portfolio,
in addition to helping firms prepare in case of litigation. These companies also use text similarity techniques,
using various parts of the patents text and short descriptions of products from trademark data and other
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Figure 2: Product and Patent Data Sets

Nielsen Data

ABC Company Match 1
firm level

upc1

upc4

upc2 upc3

upc5 upc6

upc7

cat A cat B cat C
cat B

cat C
Match 2

firm x category Patents         product
categories [text similarity]

ABC Company

USPTO Data

pat1

pat4

pat2 pat3

pat5 pat6
pat7

cat D

Notes: This diagram exemplifies the construction of the two data sets linking products and patents. In this example, under
Match 1, all products of a firm with name “ABC Company” match to all the patents with assignee name “ABC Company”.
Under Match 2, upc2, upc5, and upc7 match to pat1, pat2, and pat5 under product category B; upc3 and upc6 match to pat4
and pat7 under product category C; upc1 and upc4 of category A do not match to any patents of the firm; pat3 and pat6
of category D do not match to any products of the firm in the consumer goods sector (are either process patents or refer to
products outside the consumer goods sector).

rich systematic product-level data for all firms in a sector.

3.1.2 Data Sources

Product Data – Our primary source of product information is the scanner data set from

Nielsen Retail Measurement Services (RMS), provided by the Kilts-Nielsen Data Center at

the University of Chicago Booth School of Business. This data set is collected from point-of-

sale systems in grocery, drug, and general-merchandise stores. The original data set consists

of more than one million distinct products identified by Universal Product Codes (UPCs),

which are scanned at the point of sale. Each UPC consists of 12 numerical digits that

are uniquely assigned to each product, and we use these to identify products. UPCs carry

information about the brand and a rich set of product attributes like its size, packaging,

formula, and flavor.

The data focus on the consumer product goods (CPG) sector, which accounts for 14% of

the total consumption of goods in the U.S. This sector includes food and non-food categories

(health and beauty aids, non-food grocery, and general merchandise such as cookware,

electronics, gardening, household supplies). Our data cover the years from 2006-2015, and

combines all sales, quantities, and prices at the national and annual levels. We use the

panel structure of each UPC to measure its entry year. This product data set covers about

sources.
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40% of the CPG sector sales, and nearly the universe of firms and new products in the

sector. Appendix B.1 provides additional details about the coverage and representativeness

of Nielsen RMS to measure product innovation in the consumer goods sector.

Patent Data – Our main source of data for patent analysis is the USPTO data on the

universe of published patent applications, granted or not. We use the original bulk data

files provided by USPTO’s Bulk Data Storage System for our analysis. Our sample initially

contains information on more than 7 million patent applications filed by more than 500

thousand patent assignees in the years 1975-2017. For each patent, we use information

about the patent application year, patent status (granted, pending, or abandoned), patent

technology classifications, forward patent citations received, the number of claims on a

patent, and whether it is a utility or design patent. For our textual analysis of patent

documents, we extract patent titles, the text of patent abstracts, the text of corresponding

patent classification titles, claims text, and the titles of citing patents. Appendix B.2 gives

more detail about our sample and the variables we use.

3.1.3 Matching Firms

We match patents to products at the firm level using the firm names in both patent and

product data sets. To match firms to patents, we obtain the firm names for each product

using data from the GS1 US, which is the single official source of UPCs. This data set links

barcodes with the names of firms that sell the product. For the patent data, we begin with

the assignee name(s) of each patent. This name is typically the original assignee of the

patent and may not represent the current user of the patent because of sales or company

reorganizations. We combine the USPTO patent re-assignment data with Thomson Reuters

Mergers & Acquisition data to re-assign each patent to its most current holder. This step

relies on the assumption that when a firm acquires (or merges with) another firm, the new

firm will own all patents that the firms owned before the acquisition (merger). The details

of these steps are described in Appendix B.1 and B.2.

A firm’s name could be formatted or abbreviated differently in the product and patent

data sets, or it may even be misspelled, which presents a challenge in joining information

from the two data sets. We developed a name-cleaning algorithm to clean and standardize

the firm names to overcome this challenge. This procedure builds on and extends cleaning

algorithms from the NBER Patent Data Project (Hall et al., 2001) and Akcigit et al. (2016)

and is described in detail in Appendix B.3.

17



3.1.4 Matching Patents to Product Categories

The algorithm used to build our firm × category panel data set has three key steps. In

this section, we describe the details of these steps. The first step creates product categories

at a level of aggregation such that they collect distinct and sufficiently large sets of similar

products that are meaningfully related to a distinct set of patents. This step yields a set of

product categories, a vector of terms used to describe each product category, and a mapping

of products into categories. In the second step, similarity scores between patents and product

categories are computed. We use various text descriptions to build a vector of terms that

describe each patent. We then compute similarity scores between each patent and every

product category. These scores represent the overlap between the texts in patents and the

text associated with each product category. The final step of our patent-product matching

algorithm consists in using the similarity scores and information about the production of

the respective patenting firms to classify each patent into a product category and filter out

patents not related to CPG products.

Defining Product Categories and Product Category Term Vectors – We define

product categories by exploring the product classification scheme used by Nielsen. In the

original data, each product is classified into one of 1,070 detailed product modules. These

product modules are further aggregated into a set of 114 product groups, and those are

further aggregated into ten departments. For example, “disposable cups” and “disposable

dishes” are two distinct product modules that are part of the group “paper products” which

is part of the department “non-food grocery”. Nielsen’s modules aggregate products that

are close in their technological characteristics. However, there are some sets of distinct

modules that have very similar products. At the same time, many Nielsen’s groups include

products that are quite distinct. For example, “disposable cups”, “disposable dishes”, “pre-

moistened towelettes” and “paper napkins” are all part of the group “paper products”, but

only “disposable cups” and “disposable dishes” are technically similar. Hence, we seek an

intermediate categorization of products—more aggregated than modules and less aggregated

than groups—to be able to meaningfully associate patents to a well-defined set of products.

To this end, we apply a clustering procedure to aggregate the Nielsen modules into dis-

tinct product categories. Each module is paired with a vector of descriptive terms (single

words and two-word phrases) that are weighted by their importance. We expand short

module descriptions from Nielsen data with the text of hand-collected Wikipedia articles

to get to a comprehensive description of the product content of the modules. The re-

sulting vectors of descriptive terms collect all the words from the Wikipedia and Nielsen
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texts, after applying standard parsing and lemmatizing algorithms. When building term

vectors, one must appropriately weight terms by their importance. We use the leading

approach in textual analysis—the “term-frequency-inverse-document-frequency” sublinear

transformation—that accounts for both the frequency with which a term appears describ-

ing a module and how commonly it is used to describe other modules (Aizawa, 2003). This

approach ensures that we under-weight common terms that appear in many documents as

these are less diagnostic of the content of any individual document.

We then aggregate these module vectors into clusters using a popular technique known

as k-means clustering (Lloyd, 1982). This procedure allows one to specify the desired num-

ber of clusters and yields a clustering assignment that minimizes the within-cluster term

vector variance. As a baseline, we use an aggregation of modules into 400 clusters which

we refer to as product categories. We find that this partition strikes a balance between

aggregating very similar products while maximizing the difference between products across

categories. Appendices B.4.1 and B.4.2 provide extensive descriptions of methods we have

taken from the literature on natural language processing, including the details of clustering,

quality assessment, and alternative methods to encourage robustness. Appendix E shows

the sensitivity of our main findings using the aggregation of product modules defined by

Nielsen.

After defining the level of aggregation, we build term vectors describing each product

category. We use the same methodology that we used to build the term vectors for modules,

but now we use the titles of the clustered module(s) and all the text from their corresponding

Wikipedia articles. We ensure that when a product category aggregates multiple modules,

we first vectorize each module description and then average these vectors together so that

we do not overweight longer entries. The final product category vectors are normalized to

have unit length.

Patent Term Vectors and Similarity Scores – We next describe how we measure

the amount of overlap between the texts of patent applications and product categories. We

create patent term vectors from the patent descriptions using the following fields from the

patent applications: the title, abstract, international patent classification description, and

the titles of cited patents. We create vectors of terms by concatenating all these fields

into one document, followed by the same parsing and lemmatizing algorithms. As before,

we adjust the weights of each term according to the “term-frequency-inverse-document-

frequency” sublinear transformation and normalize patent vectors to have unit length.

Finally, we construct a similarity score for each patent p and each product category j

by computing the cosine similarity between two normalized vectors, sjp = fj × fp. This
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similarity score is guaranteed to be in the range [0, 1] with zero indicating no word overlap

and one indicating that the documents are identical. Appendix B.4.3 provides technical

description of this step.

Classifying Patents into Product Categories – The final step of our patent-products

matching algorithm consists in using the similarity scores and determining which product

categories are valid matches for each patent. We must, however, make some adjustments

because we use all patents of each firm with products in the consumer goods sector, and

some patents may relate to goods outside the consumer goods sector or correspond to more

general process/method patents. Hence, we should allow for the possibility that a patent

will not be assigned to any product category. After an extensive review of patent texts and

a great deal of testing, we identified systematic adjustments to the algorithm that ensure

that irrelevant patents remain unmatched with products.

We first adjust the algorithm to include a similarity score threshold. We tested different

threshold levels and, in our baseline algorithm, we restrict the set of potential categories

for each patent p to the product categories whose similarity score exceeds 0.025. The idea

is that patents with low text similarity are unrelated to the product categories that we

consider. The implication of this adjustment is that patents whose highest similarity are

below that threshold are more likely to be classified as “non-matched”.

Second, we use information about the set of product categories sold by the firm. For

each patent, we define the set of potential matches, whose elements consist of all product

categories in which the patenting firm ever sold a product, according to our product data.

Together, these criteria imply that patent p will be classified as unmatched if no prod-

uct categories satisfy the threshold similarity and belong to the set of categories the firm

produces or will produce in. For the patents that have more than one product category

satisfying those conditions, we assign the final patent-product category match so that the

patent matches to the product category with the highest similarity score.

Our methodology assumes one product category match for each patent. However, some

patents may be more general in nature so that they relate to multiple categories. Our

baseline algorithm abstracts from this possibility. However, our procedure to define product

categories is designed to ensure that the product categories would encompass a broad range

of products that are technically similar such that one patent plausibly relates to this and

only this range of products.17 In Appendix B.4.4, we present the details of this procedure

and all the robustness exercises with which we tested our baseline algorithm. Appendix E

17In this sense, the methodology delivers a many-to-many patent-to-product match, where each patent
can be matched to multiple products of the firm.
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Table 1: Match Statistics

Period
1975-2017 2006-2015

Number of patent applications
All assignees in USPTO 7,304,072 3,386,208
CPG firms 1,046,030 505,544
CPG firms in product categories 399,684 190,575

Number of firms
All CPG firms 34,665
CPG with at least a patent applied in 1975-2017 5,209
CPG with a patent applied in 2006-2015 3,266

Notes: Match statistics for the baseline firm-level and firm × category level data sets.

shows the sensitivity of our main findings under higher similarity thresholds.

3.1.5 Match Statistics and Validation

Table 1 provides statistics of the baseline data used in our analysis. Our data includes

annual data for all 34,665 firms that sold at least one product in our consumer goods sector

data (CPG firms). The raw USPTO patent data cover information from 1975 to 2017,

but because our product data only cover years from 2006 to 2015, our analysis can only

consider annual variation for the period 2006-2015. In this shorter period, the USPTO

data include about 3.4 million patent applications in total, and about 500 thousand patent

applications filed by CPG firms. The firm × category data set includes 40% of those patent

applications.18 The remaining 60% of patents, while filed by CPG firms, could not be

associated with products in the consumer goods sector.

We perform an extensive set of validation exercises to evaluate the robustness and qual-

ity of our match. Appendix B.5 presents details on these validation exercises, while here we

focus on summarizing the most important ones. We use four main types of validation exer-

cises: manual checks, external validations using online-collected data on patent markings,

analysis of the robustness of the algorithm-implied similarity scores and placebo tests, and

validation of non-matches.

Manual checks – We manually checked many of the patent-to-products matches and

some examples are listed in Table A1 in the Appendix. The table lists 100 patent applica-

tions by the top-selling firms in the largest product categories according to Nielsen. One

18Appendix B.6 illustrates examples of a variety of patent applications and the corresponding products
with their respective product entry dates.
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can easily see that the patent titles reflect well the product categories to which the patents

were assigned. For most patents we analyzed, we found that our manual choices of product

categories also coincide with the product categories chosen by our matching algorithm using

similarity scores.

Virtual patent markings – We next use virtual patent markings to validate our matches.

Using virtual patent markings, firms may give a notice to the public that their product is

patented by publishing their products and the patents protecting them online. Website

searches showed that very few firms in our data used virtual patent markings, and even

when they did, only a selection of products and patents appeared in the markings. Nev-

ertheless, these data give a unique opportunity for an external validation of our matching

algorithm.

For Procter & Gamble (P&G) and Kimberly Clark (KC), we manually collected virtual

patent markings from the company websites and mapped them to our product categoriza-

tion. We then validate our patent-product category matches for these firms against this

information. Appendix B.5.2 shows that the patent-product category mapping from virtual

markings is also selected by our matching algorithm in about 70% of cases.

Robustness of the match and placebo tests – We evaluate robustness of the product

category choice by our matching algorithm to potential small perturbations in the algorithm.

For the algorithm to be robust against small changes, we should observe that highest-ranked

product categories have substantially higher similarity scores with the patents than lower-

rank product categories do. Section B.5.3 in the Appendix shows this is the case. Next we

verify that we are indeed carving out well-defined neighborhoods in the technological space

by matching patents into distinct categories. For that, we compare the actual distribution

of similarity scores between patents classified in the same product category versus a placebo

group of patents drawn at random. Section B.5.4 in the Appendix shows that the distribu-

tion of similarity scores between pairs of patents within product categories is indeed very

different and first order stochastically dominates that of the placebo group.

Validating non-matches – In our last step of the algorithm for Match 2, multiple criteria

are used to allow for the possibility that some patents filed by CPG firms are not associated

with any of the consumer-good product categories. A valid “non-match” can arise for two

main reasons. First, a patent may relate to goods that the firm may be producing outside

the CPG sector; second, a patent may be about a general process or method that does

not affect the introduction of new products. In the spirit of Hoberg and Phillips (2016),
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we use information from publicly traded companies’ 10K reports to identify firms whose

output is mostly in the consumer-goods sector, and we find that only a minority of their

patents are classified as “non-match”, contrasting with patents held by firms who mostly

sell products outside the consumer goods sector. Next, we use alternative procedures to

proxy for process patents (completely independently from the algorithm) and compare them

with the algorithm’s “non-matches”. We follow Bena and Simintzi (2017), and use patent

claims to create proxies for process-related and product-related patents. We find that the

share of “non-matches” is significantly higher among the claims-based measure of process-

related patents. These exercises, which are presented in Section B.5.5 in the Appendix, offer

reassurance that our algorithm successfully filters out patents that are not directly related

to the products in our data.

3.2 Measures of Product Introduction and Patenting

3.2.1 Product introduction

Our measures of product introduction are based on the number of products that firms

introduce to the market and the quality improvements in those products. We use the

product data described above to identify the entry dates of products in the market and

their respective characteristics and performance. We create separate measures of innovation

for the firm-level and firm×category level data. Our first measure is the number of new

products of firm i (in product category j) in year t, as in Broda and Weinstein (2010) and

Argente, Lee and Moreira (2018):

Nijt ≡
Tijt∑
u=1

1[u is entrant],

where product u is sold by firm i in product category j, Tijt is the number of products

that firm i sells in j as of period t, and 1[u is entrant] is an indicator that takes the value

of one if u is a new barcode in t. This measure is simple and parsimonious but does not

distinguish major product innovations from innovations that make relatively minor changes

to a product’s characteristics. In contrast to the previous literature, we construct the

second set of measures of quality-adjusted new products that deals with this potential

drawback by explicitly accounting for differences in characteristics across new products:

qNijt ≡
Tijt∑
u=1

qu1[u is entrant],
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where qu ∈ [0, 1] is a measure of quality that we describe below. Together these two metrics

allow us to account for differences in both the quantity and quality of product innovation

across firms and over time.

Our baseline measure of product quality aims at capturing differences in novelty and

economic impact across new products. We build on Argente and Yeh (2022) and use detailed

information on product attributes that is available from the product data. Products can then

be compared on the basis of characteristics associated with their attributes {vu,1, ..., vu,A}.19

We test if each new product has characteristics distinct from those of all existing products

available in the market, and we compute the quality of a new product as a weighted sum of

its novel characteristics across all product attributes:

qu ≡
A∑
a=1

ωa1[vua is new].

where ωa are weights that reflect the economic value associated with a particular attribute.

We develop a novel approach to estimate weights that capture the importance of each

attribute by using “shadow prices” from hedonic pricing regressions (Bresnahan and Gordon,

1996). The underlying assumptions here are that the degree of novelty of a product should

be reflected in the price of a product and that the price of a product reflects its embodied

characteristics as valued by shadow prices. A new product has a high novelty score if it

has many new characteristics and/or if its characteristics are associated with high implicit

prices. We provide details on the properties of this procedure in Appendix B.7, along with

some evidence that the novelty score is strongly associated with the performance of the firm

and its products.20

We use three alternative measures of new product quality to evaluate the robustness of

our empirical results. First, we use a simpler version of the quality measure that weighs

each attribute equally (quality q1 ). This measure only captures variation in the share of

new product characteristics contained in a product. Second, we use a weighted quality

measure using weights that reflect “shadow sales” (quality q2 ). This measure assigns lower

quality to new products that are associated with high shadow prices but do not reach many

19For example, “children” and “regular” are two mutually exclusive characteristics associated with the
attribute “formula” for “pain remedies-headache” products. Naturally, the number and type of attributes
varies across product categories. For example, the product category “pain remedies-headache” includes 10
attributes: brand, flavor, container, style (i.e. children, regular), form, generic, formula (i.e. regular, extra
strength, rapid release), type (i.e. aspirin), consumer (i.e. trauma, migraine), and size. On average, we
observe that the different product categories include between 5 to 12 attributes. Appendix B.7 gives details.

20We show that our measure is correlated with the growth rate of the firm, the share of sales generated
by new products, and the average duration of new products in the market even after conditioning on the
number of products being introduced by the firm (Table A2 in the Appendix).
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customers. Finally, we use a measure of residual demand taken from Hottman et al. (2016)

and Argente et al. (2022) (quality q3 ). This measure does not use information about the

degree of novelty of a product and instead captures the appeal of new products relative to

other products sold in the market, under some functional-form assumptions. Overall, our

baseline measure and these alternative metrics allow us to consider many critical dimensions

of the quality of new products and to assess the robustness of our results.

3.2.2 Patent Measures

Using an approach similar to how we measured product introduction, we compute measures

that allow us to account for differences in the quantity and quality of patent applications

across firms and over time. Our baseline measure is the number of patent applications

(Pit). Using our patent-product category match, we are also able to measure the number of

patent applications filed by firm i in product category j in year t as follows:

Pijt ≡
Pit∑
p=1

1[p is match to j].

Throughout the paper, we use information about whether a patent was granted and infor-

mation about patent citation counts to compute our measures of patent quality. Patent

applications that become granted patents (gPijt) are perceived as high-quality patents

because the patent office deemed them novel enough to not be rejected. We compute the

number of patent applications that are granted as:21

gPijt ≡
Pit∑
p=1

1[p is granted]× 1[p is match to j].

We also define patent citations (cPijt) as the total number of patents weighted by forward

citations received in the first five years since the application was filed:22

cPijt ≡
Pit∑
p=1

cp × 1[p is match to j].

Measures based on forward citations have traditionally been used to assess the economic and

technological significance of a patent (for earlier contributions, see Pakes (1986), Schanker-

man and Pakes (1986), Trajtenberg (1990)).

21The condition 1[p is match to j] is only used for Match 2.
22A 5-year citations measure attempts to reduce the truncation issue inherent to citations—the fact that

patents filed more recently have had less time to accumulate citations (Hall et al., 2001).
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3.3 Summary Statistics

Table 2 provides summary statistics about the product- and patent-related variables for

the firms in our sample, grouped by their patenting activity. We split firms into three

groups: (i) firms that have never filed a patent application, (ii) firms whose last patent

application was filed before 2006 (the beginning of the Nielsen RMS data set), and (iii)

firms that filed a patent application between 2006 and 2015. The share of patenting firms

and product introduction rates in the consumer goods sector are comparable to those of

other manufacturing sectors. More than 5 thousand firms (15%) applied for at least one

patent and more than 3 thousand firms (9.5%) filed a patent application during the period

2006-2015. For comparison, Graham et al. (2018) links Census data to the USPTO and finds

that 6.3% of manufacturing firms have at least one granted patent application between 2000

and 2011.23 The corresponding number in our data is 7.6%, which is only slightly higher.24

Table 2 indicates that product introduction rates are on average 20%. While there is no

equivalent comprehensive product data for other sectors, Goolsbee and Klenow (2018) use

the Adobe Analytics data on online transactions covering multiple products and report

product introduction rates that are comparable to those of other non-durable consumer

manufacturing sectors.25

Firms with patent applications between 2006 and 2015 file more than six patents per

year, on average. Because many patents receive no citations, especially in the first five

years, the average number of citation-weighted patent applications, cPijt, is very similar

to the average raw number of patent applications, Pit. These firms may hold some design

patents, but the majority of patents in our sample are utility patents. Unsurprisingly, the

summary statistics show that firms who filed a patent between 2006 and 2015 hold a larger

stock of patents than firms who last filed a patent application before 2006.

As expected, patenting firms are on average larger: they sell more products, operate in

more product categories, and have higher sales. Nevertheless, a large amount of innovation

is associated with firms that never used the patent system. Table 3 shows that in our data,

54% of new products were introduced by firms that never applied for a patent. If we account

for the degree of novelty of new products, we estimate that about 65% of quality-adjusted

product introduction comes from never-patenting firms. This indicates that, on average,

patenting firms introduce more products that make only an incremental improvement over

23The incidence of patenting in the rest of the economy is lower, at 1%.
24Notice that Graham et al. (2018)’s patent data include only granted patents, while our data also include

unsuccessful patent applications. If we count only granted applications, we would have 2629 patenting firms.
25Goolsbee and Klenow (2018) show that some durable consumer goods (e.g. furniture), not covered in

our data set, have entry rates that are larger than those of non-durables (e.g. food).
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Table 2: Summary Statistics by Firm’s Patenting Status

Patents Patents
No Patents before 2006 2006-2015

Product data
Number of products 15.49 31.08 78.35
Number of new products (N) 2.58 5.26 13.45
Average quality of new products (q) 0.27 0.20 0.20
Quality-adjusted number of new products (qN) 0.46 0.62 1.48
Product introduction rate (n) 0.19 0.17 0.22
Quality-adjusted product introduction rate (qn) 0.07 0.04 0.06
Sales from all products 2371.59 9392.09 37094.71
Sales from new products 454.74 1811.01 8130.00
Number of product categories 2.36 3.07 5.46
Average quality of new products (q1) 0.13 0.10 0.10
Average quality of new products (q2) 0.18 0.11 0.12
Average quality of new products (q3) 0.06 0.32 0.10

Patent data
Number of patent applications (P ) 0.00 0.00 6.34
Number of granted patent applications (gP ) 0.00 0.00 4.57
Number of citations-weighted patent applications (cP ) 0.00 0.00 5.88
Stock of patent applications 0.00 11.33 125.36
Stock of granted patent applications 0.00 11.02 107.63
Stock of citations-weighted patent applications 0.00 17.97 215.24

Number of firms 29215 1943 3266
Observations 186934 15803 29052

Notes: The table shows the average of product-based and patent-based variables of the Match 1 data set. The first column
groups firms that have no patents; the second column considers firms that have patents, but filed them before they first appear
in Nielsen RMS (before 2006); and the third column is for firms that have patents in our focus period of 2006-2015. The
statistics regarding product introduction can only be computed for the period 2007-2015 because we cannot determine entries
for products first introduced in 2006 (left-censored). The statistics for sales are given in thousands of dollars, deflated by the
Consumer Price Index for all urban consumers. Patent statistics are very skewed; the table reports averages after winsorizing
patent-based variables at the top 0.1%.

existing products on the market.26 Since they rely on the firm-level match, the above

statistics implicitly attribute all new products introduced by a patenting firm to some of

its patents. However, highly diversified firms might be patenting in one product category,

while introducing many products that have no relation to the patents they are filing in other

categories. Thus we may be attributing too much product introduction to patents if we rely

only on the firm’s overall patenting status. This observation exemplifies the importance of

establishing a closer link between patents and products using the Match 2 data set. To

make these more granular links, we replicate the above exercise but define patenting status

at the firm × category level. As seen from Table 3, firms that never patented in a category

26This observation holds true regardless of the quality adjustment we use. For example, the share of
q1N accounted by never-patenting firms is 65%, and the share of q2N by never-patenting firms is 77%.
Our residual quality measure of innovation, q3, does not allow us to construct a good counterpart to q3N ,
however as seen from Table 2, q3 is not necessarily higher for patenting firms.
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Table 3: Share of New Products Accounted for by Patenting Firms

Quality-adjusted
New Products, N New Products, qN

Match 1
Firms with patents in 2006-2015 0.38 0.28
Firms with patents before 2006 0.08 0.07
Firms with no patents 0.54 0.65

Match 2
Firm × category with patents in 2006-2015 0.23 0.16
Firm × category with patents before 2006 0.07 0.05
Firm × category with no patents 0.71 0.79

Notes: the table shows the share of product innovation in the market measured by our two benchmark measures—product
introduction (column 1) and quality-adjusted product introduction (column 2)—accounted for by firms and firm×categories
with or without patents.

are responsible for a greater share of new products introduced in that category.

Our data cover product categories that exhibit substantial heterogeneity in entry rates

and patenting intensity. In Appendix D we provide some descriptive statistics grouped across

food and non-food categories.27 The two types of product categories have, on average,

similar entry rates but distinct patent intensities. The share of patenting firms and the

ratio of patents per product is higher for non-food categories such as health and beauty aids

(including over-the-counter drugs), non-food groceries, and general merchandise (including

cookware, electronics, and various household supplies). It is not surprising that a large

fraction of new product introduction is not directly linked with specific patents, especially

in the food sector. Even if firms wanted to patent all new products, some products represent

only small upgrades to existing ones and thus may not be patentable. Patents are only

granted if the idea exhibits “novelty and non-obviousness,” and new products that result

from incremental changes will likely not be captured by raw patent metrics.

4 Empirical Analysis

In this section, we use our data set with measures of the firms’ product introduction and

patenting to test the implications of the theoretical framework. We start by studying the

average relationship between product introduction and patenting for all firms, followed by

the analysis of the key moments that identify strategic patenting by exploring firm size

heterogeneity.

27Throughout the analysis, we mostly use variation within detailed product categories which do not
capture heterogeneity in innovation and patenting intensities across types of products. Nevertheless, in
Appendix D, we provide the results using only food or non-food product categories to ensure that the
results are not driven by variation within some specific product categories.
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4.1 Relationship Between Product Introduction and Patents

The first implication of the theoretical framework (building from Proposition 1) is that

product introduction and patenting are complementary activities. We use our dataset and

employ the following baseline specification using variation at the firm × category level over

time

log Yijt = β logPijt−1 + αij + γjt + uijt (8)

where Yijt is the measure of product introduction for firm i in category j in year t and Pijt−1

is the log number of patent applications filed by the firm i in category j in year t− 1. The

key coefficient is the elasticity β that captures how product introduction activities relate

to patenting activities. By using firm × category × year level data, we can control for

many potential confounding effects using product category-specific trends (e.g., controls for

market-wide demand for specific products) and firm-category specific effects (e.g., controls

for the effects of firm-specific market power on the sales of specific products). Importantly,

this set of fixed effects also ensures that results are not driven by differences in patentability

or coverage across distinct product categories, or firm-specific time-invariant predispositions

to apply for patents.

Table A11 shows the estimates of equation (8) for both measures capturing product intro-

duction decisions—new products (logN) and the quality-adjusted new products (log qN).

The rows present results from using different explanatory variables—the log number of

patents, granted patents, and non-granted patents.28 The results indicate that there is a

significant positive elasticity of product introduction and quality-adjusted product intro-

duction to patent applications, which we interpret as evidence that product introduction

and patenting are complementary activities.29

Our conceptual framework predicts that the association between product introduction

and patenting increases with the degree of protection rendered by the patent. Consistent

with this implication, the complementarity between product introduction and patenting is

mainly driven by granted patents, which more effectively deter competitors’ innovations

(Table A11). We also evaluate this implication by exploring heterogeneity in the degree of

patent protection across product categories. We find that the association between product

introduction and patents is only strong for product categories that are likely to be able

to be well protected by patents, such as the non-food categories. Table A7 in Appendix D

shows that the association between product introduction and patents is frail for food-related

28Appendix Table A3 uses citations and claims as independent variables, while Appendix Table A4 shows
the main results at the firm level (using Match 1).

29The estimated elasticities between 0.02 and 0.04 are in line with the magnitude of elasticities implied
by our model, as discussed in Section 5.
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Table 4: Product Introduction and Patenting

Log N Log qN
(1) (2) (3) (4) (5) (6)

Patents(t-1) 0.0380*** 0.0189***
(0.009) (0.005)

Patents granted(t-1) 0.0405*** 0.0192***
(0.010) (0.005)

Patents non-granted(t-1) 0.0234* 0.0082
(0.013) (0.007)

Observations 409,641 409,641 409,641 409,641 409,641 409,641
R-squared 0.692 0.692 0.692 0.623 0.623 0.623
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table shows regressions of the log number of new products (log qN) and of log quality-adjusted new products (log
qN) in a firm × category over time as a function of the log number of patents. Our benchmark quality measure is defined in
Section 3.2.1. The alternative innovation-quality measures (q1, q2, q3) produce consistent results. Patents is the log number
of any patent applications in firm × category × year; Patents granted is the log number of granted patent applications;
Patents non-granted is the log number of patent application that have not been granted (abandoned or pending). The inverse
hyperbolic sine transformation is used for logs. Standard errors robust against heteroskedasticity and serial correlation are
reported in parentheses.

categories and is mostly driven by products in categories such as health and beauty care,

non-food grocery, and general merchandise.

Our baseline specification uses one year lag between patent filing and product introduc-

tion to account for the fact that it may take longer for firms to develop and commercialize

a new product after they apply for patents. We also allow for alternative lags governing

the relationship between product introduction and patenting. Figure 3 plots the estimated

coefficients for different lags, where k refers to the lag between patenting and product intro-

duction. Consistent with the results above, we find a positive association between patents

and product introduction fairly concentrated around one year lag. With an exception for

product introduction at k = −1, we do not find a significant relationship for k below zero

(i.e. where the time of product introduction precedes the time of patent application), and

product introduction does not respond significantly after 2 years of the increase in patenting

intensity. In Figure A13 in the Appendix, we also show that other variables such as the

stock of products or sales significantly increase after patents and that the association is

typically concentrated around a one-year lag.

The estimated coefficients of equation (8) capture the relationship between patent ap-

plications and product introduction. Not all patents, however, necessarily relate to product

improvements: some patents may relate to cost savings from improvements to the firm’s

general production processes. Our firm × category data set filters out patents that are

not specifically related to product introductions. Hence, to a large extent, our estimates

should be driven by product patents rather than general process or organizational patents.
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Figure 3: Product Introduction and Patenting: Dynamics
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Note: The figure plots the estimated coefficients after estimating equation log Yijt+k = βk logPijt + αij + γjt + uijt+k , k =
−4, ..., 0, ..., 4 for log product introduction N in (a) and quality-adjusted product introduction qN in (b). Our benchmark
quality measure is defined in Section 3.2.1. The main explanatory variable in (a) and (b) is a dummy equal to one after the
firm’s first patent in a product category and log number of patent applications in (c) and (d). The inverse hyperbolic sine
transformation is used for logs. The vertical bands represent +/- 1.65 × st. error of each point estimate. Standard errors are
clustered at the firm × category level.

We find strong evidence supporting this point when we employ independent proxies for

product-related and process-related patents drawn from claims texts as in Bena and Sim-

intzi (2017). We find that the coefficient on product-related patents is essentially the same as

our benchmark coefficient, while process-related patents are entirely unrelated to measures

of product introduction (Section B.2 and Table A5 in the Appendix).

4.2 Strategic Patenting

Our conceptual framework provides a set of empirical moments to test the occurrence of

strategic patenting – patents that deter innovation without leading to product introduc-

tions. First, we show that the degree of complementary between product introduction and

patenting activities reduces with firm size. Through the lens of the model (Propositions

2 and 2*), this is a key moment reflecting the occurrence of strategic patenting. Second,

consistent with Proposition 3, we show that patent revenue premium, not accounted for by

quantity and quality of product introduction, is higher for larger firms. Finally, consistent

with Proposition 4, we show that patents filed by market leaders are associated with a

decline in creative destruction, unlike those filed by smaller firms.

4.2.1 Product Introduction and Patenting by Firm Size

We start by exploring the key moments that identifies strategic patenting among market

leaders – how the relationship between patenting and product introduction varies with the
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Figure 4: Product Introduction Rates by Firm Size
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Notes: This figure plots the relationship between product innovation rates and the relative size of the firm, defined by the
firm’s sales. We use the firm × product category level data for the period 2007–2015, restricting the analysis to observations
with sales above $1,000. For each firm × product category, we compute average sales, the average product innovation rate (new
products divided by the total number of products sold), and the quality-adjusted product innovation rate (quality-adjusted
new products divided by the total number of products sold). Within each product category, we assign firms to 50 bins for
average sales and plot the average product innovation rate and the quality-adjusted product innovation rate for each bin. Each
dot/triangle plots the averages after weighting each product category by its importance in the whole sector, as measured by
the share of sales accounted for by the category.

incumbent’s size. Figure 4 plots the average product introduction rate—the ratio of product

introduction to a firm’s stock of existing products—for firms across product categories.

Larger firms (within product categories) have lower product innovation rates. On average,

firms in the top sales quintile have annual introduction rates of about 16%, while firms in the

bottom quintile have rates twice as large. Larger firms do not compensate for this decline in

the rate of new product introduction with innovations of higher quality. On average, firms

in the top sales quintile have quality-adjusted product introduction rates of 3%, while firms

in the bottom sales quintile have rates four times larger. The fact that the quality-adjusted

introduction rate declines more steeply than the simple product introduction rate indicates

that, on average, new products introduced by larger firms are more likely to represent

incremental improvements over existing products and are thus less novel.30

Figure 5 shows that larger firms, on average, file more patents for each new product

introduced.31 Note that this higher intensity of patenting activity relative to the number of

new products introduced is not explained by the possibility that larger firms introduce fewer

but more novel products: as one can see, after we adjust for the quality of new products,

30Figure A14 in the Appendix confirms similar patterns using alternative metrics. This result is consistent
with previous evidence from patent statistics in Akcigit and Kerr (2018).

31If we do not scale our measures of patenting, results are even starker: the unconditional probability of
patenting and the total number of patents filed by large firms are much higher than they are for small firms
(see Figure A15 in the Appendix).
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Figure 5: Patents per New Products, by Size
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Notes: This figure plots the relationship between the ratio of patent applications per new products and firm size as defined by
sales. We use the firm × product category level data set for the period 2007–2015, restricting the analysis to observations with
sales above $1,000. For each firm × product category, we compute average sales, the average number of patent applications
per new products, and the average number of patent applications per quality-adjusted new products. Within each product
category, we assign firms to 50 bins of size based on average sales and compute the average ratio of patents per new products
and the average ratio of patents per quality-adjusted new products for each bin. Each triangle plots the averages after weighting
different product categories by their importance in the whole sector, as measured by their share of sales. The left figure plots
the log ratio of patents per new products (× 1000), and the right figure plots the log ratio of patents per quality-adjusted new
products (× 1000).

small and large firms’ introduction rates diverge even more.

The patterns above are suggestive that the relationship between product introduction

and patenting changes with firm size. We now, more formally, explore how the relationship

varies with firm size by estimating equation (8) for small and large firms. As before, we

control for time × product category and firm × product category fixed effects to ensure

that our results are not driven by potential confounders such as differences in patentability

across firms and product categories. Table A12 reports the estimated coefficients for firms

in different size groups. In line with the results discussed above, we estimate an average

coefficient of 0.038 (column “All”). The table shows that the relationship between patents

and product innovation weakens with a firm’s size: larger firms in the top sales quintile

have an elasticity twice as small as that of firms in the bottom sales quintile (0.030 versus

0.059). The results are similar for the quality-adjusted new products shown in the last three

columns of the table.

We further evaluate if the relationship between patents and product innovation weakens

with firm’s size for the different types of product categories independently of their hetero-

geneity. Figure A17 in Appendix D shows the elasticities by firm size for food and non-food

categories. Although the magnitudes of the elasticities vary, we see that the strength of the

patents-to-product innovation relationship declines with firm size for both types of products.

We interpret this result as suggestive that a weaker association between product introduc-
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Table 5: Product Introduction and Patenting: by Size

Log N (t) Log qN (t)
All Small Large All Small Large

Log P(t-1) 0.038*** 0.059*** 0.030** 0.019*** 0.033*** 0.017***
(0.007) (0.018) (0.013) (0.003) (0.007) (0.006)

Observations 409,641 61,350 86,953 409,641 61,350 86,953
R-squared 0.692 0.463 0.742 0.623 0.407 0.686
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table shows regressions of the log number of new products (log qN) and of log quality-adjusted new products (log
qN) in a firm × category over time as a function of the log number of patents. P is the number of patent applications for a
firm × category × year. For each firm × product category, we define size based on the average sales over our sample period.
The “All” column shows data for all sizes. The“Small” column is restricted to the bottom size quintile. “Large” is restricted
to the top size quintile. The inverse hyperbolic sine transformation is used for logarithms.

tion and patenting activities may prevail for different types of sectors, independently of their

degree of patentability or other product characteristics.

4.2.2 Patent Revenue Premium by Firm Size

We next estimate the patent revenue premium that is not accounted for by quantity and

quality of product introduction by firms. If market leaders rely more on strategic patenting

to reduce competitive pressure, we expect them to enjoy a larger patent revenue premium

above and beyond the one explained by the product introduction. To evaluate this in

the data, we estimate the relationship between patents and sales growth, conditional on

measures of a firm’s product innovation. Specifically, we estimate:

∆ log Salesijt = ψ logPijt−1 + ρ logNijt + θij + γjt + εijt (9)

where the dependent variable is the logarithm of the change in sales at time t, logPijt−1

is the total number of patent applications until time t − 1, and logNijt is the number

of new products introduced at t (we also use the quality-adjusted product introduction

log qNijt). Our coefficient of interest is ψ, which measures a percent change in sales growth

associated with a percent change in patents, conditional on the effect coming from product

introduction.

Table A13 shows the results for all firms and for firms grouped according to size. Over-

all, we find a positive significant relationship between patents and future growth in sales

even after controlling for product innovation (columns “All”). This finding suggests that

holding an additional patent allows firms to increase their sales even after accounting for the
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Table 6: Patenting and Sales Growth

∆ Log Sales (t) ∆ Log Sales (t)
All Small Large All Small Large

Log P(t-1) 0.061*** -0.081 0.099*** 0.073*** -0.101 0.111***
(0.016) (0.077) (0.019) (0.016) (0.077) (0.019)

Log N(t) 0.265*** 0.316*** 0.160***
(0.003) (0.011) (0.004)

Log qN(t) 0.406*** 0.581*** 0.215***
(0.006) (0.029) (0.007)

Observations 296,320 40,666 65,680 296,320 40,666 65,680
R-squared 0.291 0.377 0.296 0.275 0.368 0.281
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table presents estimated outcomes of changes in log sales at the firm × category level as a function of the log
number of patent applications by until time t−1 and the log number of new products introduced at time t (or quality-adjusted
new products), by size groups. We use the firm × product category data set for the period 2007–2015, restricting the analysis
to observations with sales above $1,000. For each firm × product category, we define size based on average sales over the
sample period. The “All” column uses data for all sizes. The “Small” column is restricted to the lowest size quintile. “Large”
is restricted to the top size quintile. The inverse hyperbolic sine transformation is used for logarithms.

increase in sales that results from new product offerings. Importantly, this effect is highly

heterogeneous across firm sizes. For firms in the bottom sales quintile (columns “Small”),

there is no statistical association between patents and sales growth after we control for prod-

uct introduction. However, for firms in the top quintile (columns “Large”), we find that an

increase in total patent applications has a significant positive association with sales growth

above and beyond its effect through product introduction. Note also that the direct impact

of product innovation on sales growth (coefficients on Log N(t) and Log qN(t)) decreases

as firms increase in size. Hence, by splitting the sample into small and large firms, we learn

that, while both patents and new products are associated with increased future sales, the

conditional impact of new products is more important for smaller firms, while the impact

of patents is quantitatively more important for larger firms.

We further explore if this difference in the association between sales and patenting be-

tween small and large firms operates through changes in prices and/or changes in quantities

sold. Table A6 in Appendix shows the results using specification (9) for prices and quan-

tities. We find that the additional incremental revenue from strategic patenting for large

firms occurs both because of higher quantities sold and higher prices. These patterns are

consistent with the idea that patents of larger firms are relatively more likely to reduce cre-

ative destruction as they discourage competitors from introducing new products, allowing

large firms to serve a larger market and charge higher prices.
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4.2.3 Creative Destruction

Next, we use our data set to investigate whether patents by market leaders are more likely

associated with declining product introduction on the part of their competitors, who we

will refer to, for simplicity, as market followers. We start by identifying the market leader

in each category as the firm with the highest sales in that category and the followers as the

remaining firms operating in that market.32 Then, for each year t and product category

j, we compute the total number of new products introduced by the leader NL
jt and by its

followers NF
jt in t, and we compute the total numbers of patent applications introduced by

the leader P L
jt and by its followers PF

jt until t. We evaluate how product introduction by

followers responds to patenting (and product introduction) of the leaders using the following

specification:

logNF
jt = ηF logP L

jt−1 + αF logNL
jt−1 + θF

j + γF
t + εF

jt, (10)

where ηF is our coefficient of interest, measuring the association of patents of leaders with

the product introduction by followers. We control for lnNL
jt−1 to ensure that the relation-

ship between leaders’ patents and followers’ product introduction is not driven by possible

direct interactions between the leader’s and followers’ product offerings (such as learning

from new products on the market).33 We also include time- and category-fixed effects to

control for time trends and differences in the intensities of patenting and product innovation

across product categories. Likewise, we estimate a symmetric regression that estimates the

relationship between leaders’ innovation and the followers’ patenting:

logNL
jt = ηL logPF

jt−1 + αL logNF
jt−1 + θL

j + γL
t + εL

jt (11)

These regressions help us test if the relation between patents of competitors and product

introduction is affected by whether we focus on leaders or followers.

Table 7 presents the estimated coefficients. Column 1 shows that product introduction

by followers is negatively correlated with the size of the leader’s patent portfolio. This

result suggests that followers reduce the introduction of new products in categories where

the leader intensifies its patenting efforts. In column 2, we also control for total sales of

the market to account for potential shifts over time in the importance of different types of

products. In turn, columns 3 and 4 show that product innovation by leaders is not related to

the followers’ patenting activity. Hence, while patents can be thought of as a protective tool

32To have a static firm-level measure, we define leaders as of 2006, which is the first year of our data.
However, the results are not sensitive to a different choice, like using average sales over all years. Moreover,
we consider alternative definitions of market leaders (e.g. top quintile) and the results are robust.

33We also use quality-adjusted new products in all of these regressions, and the results are similar.
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Table 7: Patenting of Market Leaders and Followers

Followers Leaders
Log NF Log NL

(1) (2) (3) (4)
Leaders Followers

Log PL (t-1) -0.071*** -0.059*** Log PF (t-1) -0.015 -0.012
(0.007) (0.007) (0.047) (0.044)

Log NL (t-1) 0.010*** 0.005* Log NF (t-1) 0.215* 0.185*
(0.002) (0.002) (0.112) (0.094)

Observations 3,192 3,192 Observations 3,188 3,188
Category Y Y Category Y Y
Time Y Y Time Y Y
Controls N Y Controls N Y

Notes: The table shows the relationship between the patents of leaders (followers) and the product introduction of followers
(leaders). The leader is defined as the firm with the highest sales in a given category in 2006; the followers are defined as the
rest of the firms in the categories. In columns (1) and (2), the dependent variable is the log number of products introduced by
followers at time t, and the independent variables are the log number of patent applications by leaders until time t− 1 and the
log number of new products introduced by the leader at time t− 1. In columns (3) and (4), the dependent variable is the log
number of products introduced by leaders at time t, and the independent variables are the log number of patent applications
filed by followers until time t− 1 and the log number of new products introduced by the followers at time t− 1. Columns (2)
and (4) also control for total sales in the category-time. The inverse hyperbolic sine transformation is used for logarithms.

used to hinder competition in the product market, our results indicate that this hypothesis

is likely to apply when patents are in the hands of large market leaders. These findings

support that market leaders are more likely to use strategic patenting, and by accumulating

patents, they reduce competition and protect their market shares.

4.3 Discussion and Additional Evidence

In this section, we perform a battery of robustness checks to show that our empirical findings

are not driven by alternative explanations and examine additional evidence from patent

characteristics.

4.3.1 Alternative Explanations

First, we examine whether the relatively weaker association between patent and product

introduction of larger firms could be explained by differences in data coverage across firms

of different sizes. The patent data set covers the entire portfolio of patents of firms, but our

product data set does not cover products outside the consumer goods sector. This could,

in turn, result in lower rates of attribution of patents to new products for firms that also

produce in other sectors. To allay this concern, we note that our empirical findings are based

on our Match 2 algorithm, which filters out patents that are not related to the consumer

goods sector. Moreover, we obtain similar results when we use a sample of firms that sell
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exclusively CPG products (see Section B.1 for details on the construction of this sample).

Second, we also assess the possibility that our textual analysis of patents artificially

weakens the relationship between patents and products of large firms. The potential concern

is that the text of patents filed by firms of different sizes may be systematically different and

that our matching algorithm could be less effective in ascribing patents filed by larger firms

to specific product categories. To better gauge this concern, we study textual characteristics

of patents such as patent document length, number of unique words, textual diversity, and

relative entropy of patents’ word distribution, and we evaluate whether these characteristics

vary systematically across firms of different sizes within the same product categories. We

do not find systematic differences in these metrics of textual characteristics of patents filed

by large and small firms. Furthermore, we also do not observe significant differences in

the share of matched patents across firm size (see Figure A18 in Appendix for details).

Overall, our exercises indicate that differences in data coverage and in the properties of the

matching algorithm seem unlikely to explain the weaker association between patents and

product innovation for large firms.

We also study whether the relatively weaker association between patents and product

innovation of larger firms could be explained by economic factors other than the strategic

use of patents. One possibility is that larger firms shift toward process patents as they

grow (Cohen and Klepper, 1996), thereby weakening the relationship between total patents

and product introduction for larger firms. Using alternative proxies for product-related

and process-related patents constructed in Appendix Section B.2, we find no systematic

relationship between the share of this independent measure of process patents in the firm’s

portfolio and the firm’s size (Figure E.1 in the Appendix). Moreover, if cost reductions

due to process innovations are reflected in lower subsequent prices, we can test whether

future price changes of larger firms react to patents more. However, we do not find such a

relationship in the data.34

Lastly, we evaluate whether large firms do more experimental research and take more

time to commercialize their inventions, which could explain a weaker association between

patents and products. Using the dynamic specifications of equation (8), we do not find

evidence that patents held by larger firms are associated with product innovation with a

longer delay.

34A similar concern is that larger firms may file patents not to commercialize products but to license
those patents to other firms. We assign patents to the patent holders and do not have information on
temporary licensing agreements for all patents (such data do not exist). Moreover, prior work (Fosfuri,
2004; Gambardella, Giuri and Luzzi, 2006) suggests that, if anything, larger firms are less likely to license
their patents out.
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4.3.2 Additional Evidence from Patent Characteristics

There are multiple accounts of strategic patenting practices in the law and economics inno-

vation literature. For example, the term “sleeping patent” refers to patenting ideas that are

not commercialized by the patentee or licensed to another for use (Torrisi, Gambardella,

Giuri, Harhoff, Hoisl and Mariani, 2016), the term “patent thickets” refers to filing numer-

ous patents on the same product (Shapiro, 2000; Hall, Graevenitz and Helmers, 2021), and

the term “patent evergreening” refers to filing for new patents on secondary features of a

particular product as earlier patents expire to extend patent exclusivity past the original

twenty-year term, among others (Righi and Simcoe, 2020). There are also some examples

from case studies and media reports. A good example for our sector is the patent for P&G

Swiffer Wet Jet mops. Instead of patenting the features of the invention, P&G patented the

specific functionality of the disposable cloths. The original patent and the more than 80

follow-up patents have made it difficult for competitors to enter the market. Indeed, during

our sample period, generic sweeper mops were basically absent. P&G has a market share of

approximately 95% in sweeper mops—much larger than that of leaders in other categories,

whose share is 40-50% on average. It is also not unusual to find examples of firms with

“sleeping” patents that deter entry but do not lead to products on the market. An example

is Driscoll’s, which controls a third of the U.S. berry market. The company invests heavily

in a breeding program to develop new berry varieties which it patents but often does not

commercialize. Driscoll’s has one of the highest ratios of patents per new product in our

data. The company has also recently been involved in several lawsuits to protect its patent

portfolio from potential competitors.35

While these practices are often discussed, it is not possible to identify in a systematic

way for every patent if it does not lead to product innovation but hinders competition.

Our benchmark approach to identify strategic patenting relied on using patents-to-products

data guided by our model. We now complement our analysis by comparing patents along

various dimensions that likely capture the types of patents described above. Note that these

measures can only be computed for a smaller set of firms that have multiple patents.

We start by computing measures of patent text similarity to previous patents of the

firm to evaluate the average degree of novelty of the firm’s patents. Figure 6 plots the

average novelty for firms of different sizes. We find that larger firms’ patents exhibit lower

text-based patent novelty and thus are more similar to their previous patents. Columns 1

and 2 of Table 8 quantify these patterns in the regression analysis. For the cross-section

of firms, we look at the average patent characteristics of firms as a function of the leader

35“How Driscoll’s Reinvented the Strawberry”, The New Yorker, August 21, 2017.
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Figure 6: Text-Based Patent Novelty by Firm Size
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Notes: This figure plots the relationship between patent novelty and the relative size of the firm, defined by the firm’s sales.
We use the firm × product category level data for the period 2007–2015, restricting the analysis to observations with sales
above $1,000. For each firm × product category, we compute average sales and patent novelty, which is a patent-level metric
between zero and one. The text-based patent novelty measure is equal to one minus the text similarity between a given patent
and its most similar predecessor within a firm (patent text similarity is computed using the same methods outlined in Section
B.4.3); Within each product category, we assign firms to 50 bins for average sales and plot patent novelty for each bin. Each
dot/triangle plots the averages after weighting each product category by its importance in the whole sector, as measured by
the share of sales accounted for by the category.

Table 8: Patent Characteristics: Leaders vs Followers

(1) (2) (3) (4) (5) (6) (7) (8)
Text Novelty Citations Share Cited Others Share Litigated

Leader -0.042*** -0.033*** -0.538** -0.675*** -0.062** -0.076** 0.004 0.008**
(0.008) (0.008) (0.247) (0.257) (0.027) (0.030) (0.005) (0.003)

Observations 2,633 1,830 2,179 1,526 1,569 1,095 2,179 1,526
R-squared 0.015 0.405 0.002 0.247 0.003 0.335 0.000 0.094
Controls N Y N Y N Y N Y

Notes: The table compares the average patent characteristics of leaders and other firms. “Leader” is a dummy equal to one
for the firm with the highest sales in a given category; the followers are defined as the rest of the firms in the categories. Text
Novelty is a patent-level metric between zero and one. The text-based patent novelty measure is equal to one minus the text
similarity between a given patent and its most similar predecessor within a firm (patent text similarity is computed using the
same methods outlined in Section B.4.3); Citations is the mean number of citations received by patents in the first five years
after the application; Share Cited Others is the share of forward citations accounted for by citations from other firms different
from the patent owner; Share Litigated is the share of patents involved in litigation. Data on litigations come from the USPTO
Patent Litigation Dataset. Due to truncation concerns, we provide statistics for the patents filed in 2005. Controls include the
total number of firms in a category and fixed effects at the firm level.

dummy, without controls (odd columns) and controlling for the total number of firms in

the product category and firm fixed effects for multi-category firms (even columns). The

estimation indicates that patent text novelty is less likely among market leaders.

We explore several other metrics that are characteristic of strategic patenting practices.

Columns 3 and 4 of Table 8 show that large firm’s patents accumulate fewer forward citations
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Table 9: Model Parameters

Parameter Identification Value

r Interest rate External calibration 0.04
p Arrival rate of entrants Direct data 0.103
ε Patent protection Direct data 0.25
λ Innovation step Internal calibration 0.09
γ Elasticity of revenue to quality Internal calibration 0.88
c̃m Cost of commercialization Internal calibration 2.94
c̃p Cost of patenting Internal calibration 54.99

Notes: Table presents all parameters, and the procedure to parameterize its value. Appendix
A.4 provides details.

per patent, hence lead to lower follow-on research. Columns 5 and 6 indicate that the share

of forward citations by other firms is lower for market leaders, hence follow-on research is

even relatively less likely to occur by potential competitors. Finally, as the last two columns

suggest, large firms’ patents are somewhat more likely to involve litigation.36

5 Frequency and Implications of Strategic Patenting

Strategic patenting can have negative consequences for creative destruction and overall

innovation in the economy. In this section, we calibrate the model parameters and use the

structure of the model to build counterfactuals that allow us to provide rough calculations

of the frequency of strategic patenting and its implications for innovation and creative

destruction.37

We start by parameterizing the model using our data set with measures of product in-

troduction and patenting. The model has seven structural parameters: {r, p, ε, λ, γ, c̃m, c̃p}.
Table 9 reports the calibrated parameters. We set the interest rate to r = 0.04, and quan-

tify the parameters governing creative destruction—the arrival rate of entrants (p) and the

patent protection step (ε)—using data on sales growth across firms depending on their

patenting and product introduction status. In the model, if firms do not innovate or patent,

they face a negative expected revenue growth from creative destruction equal to log(1− p),
and in the data, this implies a p = 0.103. This decline in sales is attenuated if a firm holds a

patent. Conditional on not innovating, the effect of patenting on firm growth is log 1−p(1−ε)
1−p ,

which we estimate in the data to imply ε = 0.25. For the remaining four parameters, we

calibrate the model to match the innovation rate, patents per innovation, and sales growth

36Litigation is a rare event – the average share of litigated patents is 0.04, so the coefficient on the leader
dummy is economically large.

37A comprehensive optimal policy and welfare analysis is beyond the scope of this paper.
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Figure 7: Patenting choices with and without strategic patents
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Notes: We use the model parameters in Table 9 to compute the benchmark and counterfac-
tual patenting rates. We evaluate the counterfactual z∗p by holding product introduction
rates as in the benchmark economy. Appendix A.4 provides details.

of firms in different firm size percentiles. Intuitively, c̃m, and c̃p affect the levels of innovation

and patenting, λ determines the average growth when the firm innovates, and the curvature

parameter γ affects how this growth varies with firm size. Despite the stylized nature of

our model and few parameters, the model is able to match the innovation rate, patenting

intensity, and growth of firms over the size distribution quite well.38 Appendix A.4 provides

more details about the calibration procedure and shows the resulting match between the

model and the data.

Using these parameters, we now quantify the frequency of strategic patents and their

aggregate impact on creative destruction. We compute the share of strategic patents by

comparing the rate of patenting zp in the benchmark economy (value function in (4)) with

the rate of patenting in the counterfactual economy z∗p (value function in (5)) in which firms

can only patent if they simultaneously introduce a new product improvement in the mar-

ket, while keeping product introduction rates the same as those in the benchmark economy.

The gap between z∗p and zp captures the additional amount of patenting induced by the

possibility of filing patents without product introduction. Figure 7 plots the estimated opti-

mal patenting zp from the benchmark economy, and the optimal z∗p from the counterfactual

38In addition, model-implied elasticities calculated from equation (12) are consistent in magnitude with
elasticities estimated in Table A11.
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Table 10: Implications of Strategic Patenting for Innovation: Counterfactual
Patent Regimes

Without Without Benchmark
Patents Strategic

Innovation
Incumbents’ product introduction (zm) 0.1582 0.2276 0.1624
Creative destruction (τ) 0.1030 0.1023 0.0999

Patenting
Incumbents’ patenting (zp) 0 0.0284 0.1190

Notes: We compute the optimal innovation rates using the estimates for the model parameters in Table 9. The
table Product introduction, patenting, and creative destruction with large incumbents.

economy, fixing the introduction rate zm to be the same as that in the benchmark model.

We plot these values for firm sizes corresponding to the empirical deciles of the firm size dis-

tribution in product categories. Our quantification implies that about 62% of patent filings

by an average firm and more than 80% of filings by large firms in the 90th-95th percentiles

are strategic. This high share of strategic patents of large firms implies that the creative

destruction is 2.5% lower in the benchmark economy with patenting rate zp relative to the

counterfactual economy where incumbents patent at rate z∗p .

Finally, we quantify the overall implications of strategic patents by comparing the equi-

librium innovation in three economies with different patent regimes: the benchmark economy

with no restrictions on the nature of patents, the counterfactual with no strategic patents,

and a counterfactual without any kind of patents. Table 10 shows the optimal rates of

incumbents’ product introduction and creative destruction under the three regimes.

The comparison of the first and second columns illustrates the importance of patent

protection for providing innovation incentives. While creative destruction is lower relative

to the no-patents economy, incumbents choose to introduce new products at a much higher

rate because their new products can be protected by patents. Hence, on net, the availability

of patent protection has a positive effect on aggregate product introduction in the economy.

This comparison is reminiscent of standard arguments for the innovation-enhancing role of

patents in the economy (Bryan and Williams, 2021), and in the model, this result comes

about from the complementarity between product introduction and patenting (see Propo-

sition 1).

The comparison of the second and third columns shows the additional effect of allowing

for strategic patenting. In the benchmark economy, the innovation rate is lower for two rea-

sons. First, in the benchmark economy, the patenting rate is higher, leading to a reduction

in the creative destruction rate by 2.4% and hence the lower entry of new products from
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entrants.39 The second channel is less obvious but is quantitatively more important. In the

benchmark economy, incumbents’ product introduction rate is lower because incumbents

can rely on strategic patenting to maintain their market shares, and thus the incentives for

additional product introduction are lower.

Overall, the comparison of these three patent regimes indicates that while, in principle,

patent protection can incentivize ex-ante product innovation by firms, the possibility of

obtaining patent protection without product commercialization can reverse the benefits of

the patent system for the economy as a whole.

6 Conclusion

We study the relationship between patents and product innovation by developing a simple

framework that separates the decision to upgrade a product and the decision to patent

it. Introducing higher-quality products increases a firm’s profit, while patenting decreases

the firm’s chances of being displaced by competitors. Patenting and product innovation

are complementary activities because an increase in the effort to patent the idea increases

the probability that the firm will maintain its dominance and thus increases the present

discounted value of the additional profit from upgrading the product. Crucially, the degree

of complementarity is lower for large firms because of the incremental benefits of strategic

patents—those that deter competition without leading to product commercialization by the

patentee.

The key contribution of our paper is the construction of a unique data set linking patents

to products by firms in the consumer goods sector. We rely on textual analysis of patent

documents and product descriptions from Wikipedia articles to assign sets of patents to sets

of products. We find that patents filed by market leaders are less likely to lead to product

introduction. Instead, we find strong evidence that the role of many patents by large firms

is to deter future product introduction of competitors and to protect sales of their existing

products. Our results indicate that although, on average, patents capture product inno-

vation in the market, patent-based measures of innovation distort the differences between

firms of different sizes.

We then perform several counterfactual experiments under different patenting regimes

to determine the prevalence of strategic patenting. We find that most patents by large firms

are strategic. The pervasiveness of strategic patents in the economy both hinders innovation

39Notice that the difference with the previous exercise in Figure 7 is that now we solve for optimal
product introduction and patenting choices in both economies, while before we fixed zm in the counterfactual
economy to be equal to the benchmark value.
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by market leaders and decreases creative destruction. Our results illustrate that while, in

principle, patent protection can incentivize ex-ante product innovation, the possibility of

obtaining patent protection without product commercialization can reverse the benefits of

the patent system. They also highlight the possibility that adjustments to the patent system,

such as granting patent protection only to patents leading to innovations in the market, can

greatly improve creative destruction in the economy.

Lastly, although our estimates point out inefficiencies arising from the existence of strate-

gic patenting, a comprehensive optimal policy and welfare analysis are beyond the scope

of this paper. An interesting research agenda going forward is to perform these analyses

in a rich structural model, accurately quantifying forces such as the potential knowledge

diffusion from patents, the endogenous arrival rate of entrants’ ideas as well as the arrival

of incumbents’ ideas, and the feedback loop between innovation policies and the firm size

distribution. These are important considerations that future research should incorporate to

quantify the implications of intellectual property rights policies for firm dynamics, aggregate

innovation, and growth.
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A Theoretical Appendix

A.1 Derivation of Rates of Creative Destruction

Depending on the actions of the incumbent firm, our model delivers the following rates of
creative destruction.

• If the incumbent firm neither patents the idea nor introduces a new product, creative
destruction happens at a rate

p× Pr

(
q + λe > q

)
= p.

Hence, any product of higher quality introduced by an entrant will capture the full
market.

• If the incumbent firm does not patent but successfully commercializes the product,
creative destruction happens at a rate

p× Pr

(
q + λ+ λe > q + λ

)
= p.

Again, any product of higher quality introduced by an entrant will capture the market.

• If the incumbent firm patents but does not introduce new products:

p× Pr

(
q + λ+ λe > q + λ+ ε

)
= p(1− ε).

Although higher quality products by entrants can still win the market, now entrants’
innovation needs to be sufficiently large to also withstand the legal protection from
the incumbent’s patent.

• Similarly, if the incumbent firm patents and also introduces new products:

p× Pr

(
q + λ+ λe > q + λ+ ε

)
= p(1− ε).
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A.2 Proofs of Propositions

In what follows, to simplify the derivations, we adopt the following notation:

(q + λ)γ − qγ ≡ Qλ,
pε

(r + p(1− ε))(r + p)
≡ Pε.

Some properties that will be useful for the subsequent proofs are: Pε > 0, Qλ > 0, ∂Qλ/∂q <
0 for γ < 1.

With this notation, some of the main value differences can be written as:

V 11(q)− V 10(q)− V 01(q) + V 00(q) =

[(q + λ)γ − qγ] πεp

(r + p(1− ε))(r + p)
= πQλPε,

V 01(q)− V 00(q) = πqγPε,

V 10(q)− V 00(q) = Qλ
π

r + p
,

V 11(q)− V 10(q) = π(q + λ)γPε.

In addition, we normalize costs such that c̃m ≡ cm/π and c̃p ≡ cp/π.
In the main text, we define the value function V(q) to be inclusive of the costs cm(zm)

and cp(zp). However, when discussing complementarity, it is useful to characterize things
purely in terms of benefits. For that reason we define

U(q, zm, zp) ≡ zmzpV
11(q) + zm(1− zp)V 10(q) + (1− zm)zpV

01(q) + (1− zm)(1− zp)V 00(q)

We then define complementarity between zm and zp to be

∂zm
∂zp
≡ ∂2U

∂zp∂zm
> 0

In a fairly general setting, this type of benefit-side complementarity will imply that there
will be positive co-movement between zm and zp in response to some external forcing, such
as q. To formalize this notion, let such a factor be denoted by θ and consider the firm’s
optimization problem

max
zm,zp
{U(zm, zp, θ)− cm(zm)− cp(zp)}

This problem has associated first order conditions: Um = c′m(zm) and Up = c′p(zp). Using
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the implicit function theorem we can find the differential effect of a change in θ to be

∂zm
∂θ

=

[
−1

Umm − c′′m(zm)

](
∂zp
∂θ

Ump + Umθ

)
≡ Am

(
∂zp
∂θ

Ump + Umθ

)
∂zp
∂θ

=

[
−1

Upp − c′′p(zp)

](
∂zm
∂θ

Ump + Upθ

)
≡ Ap

(
∂zm
∂θ

Ump + Upθ

)
where Am > 0 and Ap > 0 are abbreviated for simplicity. Solving these two equations we
then arrive at

∂zm
∂θ

=
AmApUpθUmp + Umθ

1− AmApU2
mp

and
∂zp
∂θ

=
AmApUmθUmp + Upθ

1− AmApU2
mp

The ratio of these two expressions then yields the co-movement of zm and zp, namely

∂zm/∂θ

∂zp/∂θ
=
AmApUpθUmp + Umθ
AmApUmθUmp + Upθ

So long as Ump > 0 and Umθ and Upθ have the same sign, we can ensure that this has a
positive sign.

Proof of Propositions 1 and 1’.

To show complementarity, we need to show that the value function is supermodular in zp
and zm. The degree of complementarity between patenting and product introduction is

∂zm
∂zp
≡ ∂2U

∂zp∂zm
= V 11(q)− V 01(q)− V 10(q) + V 00(q)

= πQλPε > 0,

(12)

which proves Proposition 1. Taking derivative of (12) with respect to ε shows that ∂2zm
∂zp∂ε

> 0,

proving Proposition 1′.

Proof of Proposition 2.
Taking derivative of (12) with respect to q gives:

∂2zm
∂zp∂q

= πPε
∂Qλ

∂q
< 0 (13)

when γ < 1.

Proof of Proposition 2∗.
The value function in (5) implies the following degree of complementarity:
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∂z∗m
∂z∗p

= V 11(q)− V 10(q) = π(q + λ)γPε > 0. (14)

Taking derivative of (14) with respect to q gives:

∂2z∗m
∂z∗p∂q

= γπPε(q + λ)γ−1 > 0.

Proof of Proposition 3.

∂(V 01 − V 00)

∂q
= πPε

∂qγ

∂q
> 0.

Proof of Proposition 4.
Creative destruction rate is τ = zp(q)p(1 − ε) + (1 − zp(q))p. Showing that τ increases

with firm size is equivalent to showing that ∂zp
∂q

> 0. Next, we will find the conditions when
this holds.

We first derive zp(q). The first-order conditions from optimizing (4) are

c̃pzp = qγPε + zmQλPε, (15)

c̃mzm = Qλ
1

r + p
+ zpQλPε. (16)

From plugging (15) into equation (16), we get:

c̃pzp = qγPε +

(
Qλ

1

r + p
+ zpQλPε

)
Qλ

Pε
c̃m

zp = Pε
qγ +Q2

λ
1

c̃m(r+p)

c̃p −Q2
λ
P 2
ε

c̃m

(17)

Notice that since zp is the probability, the denominator has to be positive, and the whole
ratio is bounded by one. Hence, two conditions are satisfied:

Cond. 1 : c̃p −Q2
λ

P 2
ε

c̃m
> 0

Cond. 2 : c̃p −Q2
λ

P 2
ε

c̃m
> Pε

[
qγ +

Q2
λ

c̃m(r + p)

]
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Now, consider the sign of the derivative:

sign

[
∂zp
∂q

]
= sign

[(
γqγ−1 +

2QλQ
′
λ

c̃m(r + p)

)
(c̃p −Q2

λ

P 2
ε

cm
) +

(
qγ +

Q2
λ

c̃m(r + p)

)
2QλQ

′
λ

P 2
ε

c̃m

]
Now, denoting the above term in the bracket on the right hand side by A and using

Cond. 2, we get:

A >

(
γqγ−1 +

2QλQ
′
λ

c̃m(r + p)

)
Pε

[
qγ +

Q2
λ

c̃m(r + p)

]
+

(
qγ +

Q2
λ

c̃m(r + p)

)
2QλQ

′
λ

P 2
ε

c̃m

=

[
qγ +

Q2
λ

c̃m(r + p)

]
Pε

(
γqγ−1 + 2QλQ

′
λ(

1

c̃m(r + p)
+
Pε
c̃m

)

)
Hence, a sufficient condition for zp to increase with firm size is γqγ−1+2QλQ

′
λ(

1
c̃m(r+p)

+ Pε
c̃m

) >
0. Simplifying, we get:

qγ−1 >
2

c̃m(r + p)
[(q + λ)γ − qγ][qγ−1 − (q + λ)γ−1]

(
1 +

pε

r + p− pε

)
, or

2

c̃m(r + p)
[(q + λ)γ − qγ][1− (1 + λ/q)γ−1]

(
1 +

pε

r + p− pε

)
< 1

Notice that [(q + λ)γ − qγ][1 − (1 + λ/q)γ−1] → 0 when q → ∞, and it is bounded by
the maximum value of λγ at q = 0. So, the left-hand side expression is bounded above by

2λγ

c̃m(r+p−pε) . Hence, the following sufficient condition guarantees that ∂zp
∂q

> 0:

2λγ < c̃m(r + p− pε) (18)

This condition essentially requires the discounted cost-adjusted return from product
introduction to be sufficiently low. This sufficient condition turns out to be numerically
quite strict, and in our numerical trials, zp always increases in q, even if parameters violate
the condition (18).

A.3 Alternative Modeling Assumptions

Our model abstracts from various features relevant for the innovation and patenting choices
of firms to keep the analysis tractable and intuitive. We discuss some alternative modeling
assumptions and show how the main qualitative implication of the model regarding innova-
tion and patenting choices with respect to firm size carry over under these assumptions.

Size-Dependent Cost– Our model assumes the same innovation and patenting cost
irrespective of firm size: ∂cm/∂q = 0, ∂cp/∂q = 0. However, the main features of the model
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can be easily generalized to include size-dependent costs.40 Larger firms might be more
experienced in patent filings, have dedicated legal lawyers, and have more resources to engage
in litigation if need be, effectively leading to lower patenting costs, so that ∂cp/∂q < 0. In
such a case though, large firms’ incentives for strategic patent filings would be even bigger
than what we find, strengthening the model implications.

Likewise, one could think that because of more effective production process and man-
agement, supply chains, and marketing experience, product introduction cost parameter cm
might be lower for larger firms. In this case, as can be seen from equations (12) and (13),
Proposition 2 depends on the values of certain parameters. We can show that if the decline
in the elasticity of the return to product introduction with respect to size is larger than the
decline in the elasticity of the cost parameter cm: ∂Qλ

∂q
/Qλ <

∂c̃m
∂q
/c̃m, then the same results

hold. Alternatively, the relationship between patents and product introduction would be
predicted to be stronger with firm size. However, this prediction would contradict what we
find empirically.

Proportional Innovation Step Size– The model assumes a constant innovation step
size λ irrespective of firm size. Many endogenous growth models generate continual growth
by having innovation step sizes that are proportional, rather than absolute. In addition,
these models also scale up R&D costs with some term proportional to overall output (such
as a wage). We can adopt these assumptions in our setting as well, as a point of reference.
We find that both patenting and innovation rates (zp and zm) are invariant to firm size, but
product introduction and patenting are complements in this setting, too.

Consider that product innovation now results in a size λq innovation, and innovation
costs scale up with the base value level V 00. We will use the notation ck = V 00c̃k and
Q̃λ = (1 + λ)γ − 1. Then we can express the optimal choices of the firm as

zm =
Pε(c̃p + Q̃2

λ)

c̃mc̃p − Q̃2
λP

2
ε

and zp =
Q̃λ(c̃m + P 2

ε )

c̃mc̃p − Q̃2
λP

2
ε

These probabilities do not depend on q, though they do require the condition c̃mc̃p > Q̃2
λP

2
ε

to be well defined. With these, we can do some simple comparative statics. The direct effect
of costs is unambiguously negative, meaning ∂zk

∂c̃k
< 0. Meanwhile, the cross derivatives can

shed some light on the nature of complementarity here. These evaluate to

∂zm
∂c̃p

= − PεQ̃
2
λ(1 + Pε)

(c̃mc̃p − Q̃2
λP

2
ε )2

< 0 and
∂zp
∂c̃m

= − Q̃λP
2
ε (1 + Q̃λ)

(c̃mc̃p − Q̃2
λP

2
ε )2

< 0

So from a cost perspective, there is complementarity. From a benefits perspective (Q̃k or
Pε), we can also see complementarity, as we have both ∂zm/∂Pε > 0 and ∂zm/∂Q̃λ > 0, as
well as ∂zp/∂Q̃λ > 0 and ∂zp/∂Pε > 0.

40In the literature, there are multiple examples of size-dependent costs, e.g. Breuer, Leuz and Vanhaver-
beke (2021).
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A.4 Model Quantification and Counterfactuals: Details

Direct data We quantify the parameters governing creative destruction—the arrival rate
of entrants (p) and the patent protection step (ε)—using data on sales growth across firms
depending on their patenting and product introduction status.

In the model, if firms do not innovate or patent, they face a negative expected sales
growth from creative destruction equal to log(1− p). We use our baseline firm × category
× year data set for the period 2007-2015 and compute the median log revenue change for
firm × category that did not file a patent nor introduced new products. This statistic is
equal to −0.109, implying p = 1− exp(−0.109) = 0.103.

In the model, conditional on not innovating, the effect of patenting on firm revenue
growth is log 1−p(1−ε)

1−p . We use our baseline firm × category × year data set for the period
2007-2015 and estimate the coefficient from regressing log revenue change on log patents
and firm-category and category-year fixed effects, conditional on no product introduction.
The estimated coefficient is 0.0324 (se=0.023), which results in ε = 0.25.41

Internal Calibration To jointly estimate λ, γ, c̃m, and c̃p, we match the following set of
three moments in the data: innovation rate, patents per innovation, and revenue growth of
firms in different firm size percentiles.

We use the firm × product category level data for the period 2007–2015, restricting
the analysis to observations with sales above $1,000 and firms between the 10th and 90th
percentiles. For each firm × product category, we compute innovation rate (new products
over its existing products), patents per innovation (log number of patent applications over
new products), and revenue growth (change in revenue as in DHS, i.e., 2(yt − yt−1)/(yt +
yt−1)), for innovators relative to non-innovators) and aggregate to the average within a size
bin.

To map data percentiles to quality levels in the model, we first normalize the quality q
of the average firm in each product category to one. Then, using equation (2), we obtain
q = (Rev

Rev
)1/γ, where we measure Rev as the firm’s revenue per products in a product category,

and Rev denotes the average revenue in the product category. This gives us a mapping
between the average normalized revenue in various percentiles to their corresponding levels
of q in the model.

We minimize distance between the model innovation zm(q), log patent to innovation ratio

log zp(qi)

zm(qi)
, and log revenue growth ∆ logR to their corresponding data moments. Hence, we

minimize the following objective function:

min
λ,γ,c̃m,c̃p

90∑
i=10

[
5(zm(qi)−m1

i )
2 + (log

zp(qi)

zm(qi)
−m2

i )
2 + (∆ logR(qi)−m3

i )
2
]1/2

,

where m1 is firm’s product introduction rate, m2 is the log number of patent applications
over new products, and m3 is revenue growth. We weight the innovation moment heavier

41We calculate a move from zero patents to one patent which implies (with inverse hyperbolic sine trans-

formation for log patents) multiplying the regression coefficient by 0.88. So, log 1−p(1−ε)
1−p = 0.88× 0.0324.
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Figure A1: Model vs Data
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(b) Patents per Innovation
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than other moments to overrepresent the cleanest moment not influenced by a potential
noise in the matching procedure with patents.

Figure A.4 shows the resulting match between data and the model. With only four
parameters, we can capture the three important moments over the whole size distribution
quite well.

A8



B Additional Data Information

B.1 Product Data

Coverage.— The main advantage of the RMS data set is its size and coverage. Overall,
the RMS data consists of more than 100 billion unique sales observations at the week × store
× UPC level. The data set comprises around 12 billion transactions per year which are worth
$220 billion dollars on average. Over our sample period, 2006-2015, the total sales across
all retail establishments are worth approximately $2 trillion and represent 53% of all sales
in grocery stores, 55% in drug stores, 32% in mass merchandisers, 2% in convenience stores,
and 1% in liquor stores. A key distinctive feature of this database is that the collection
points include more than 40,000 distinct stores from around 90 retail chains, across 371
metropolitan statistical areas (MSAs) and 2,500 counties. We keep a balanced set of stores
throughout the entire period under the analysis.

Because of its size, the data provides good coverage of the universe of products in the
consumer goods sector. Our assessment is based on three considerations. First, comparisons
with other scanner data sets reveals that Nielsen RMS covers more product introductions
and provides more accurate information on product entry time. Argente et al. (2018) com-
pares Nielsen RMS with other scanner data sets collected at the store level and shows that
Nielsen RMS covers a much wider range of products and stores. In comparison to scanner
data sets collected at the household level, Nielsen RMS also has a wider range of products
because it reflects the universe of all transactions for the categories it covers, as opposed to
the purchases made by a sample of households. For example, Nielsen Homescan covers less
than 60% of the products the Nielsen RMS covers in a given year.

Second, while the data only covers sales in traditional retail channels and not e-commerce,
we do not expect this to substantially affect the total level of innovations in the sector. Be-
tween 2000 and 2014, the fraction of all retail sales accounted for by e-commerce went from
0.9 to 6.4 percent, according to figures from the US Census Bureau (Hortaçsu and Syver-
son, 2015). Thus, during our sample period, online commerce is still a small part of retail
activity and will affect innovation numbers by firms that only sell online.

Finally, the data covers sales in food and non-food categories (health and beauty aids,
non-food grocery, and general merchandise). However, because the data set has higher
coverage of grocery stores, food categories have relatively higher coverage than some gen-
eral merchandise categories (see, for example, Jaravel (2019) for a thorough comparison of
Nielsen RMS and Homescan with the Consumer Expenditure Survey). We assess the impact
of this differential coverage of product categories on our measures of product innovation by
comparing product introduction rates in our data with those in Nielsen Homescan and other
sources (e.g. Goolsbee and Klenow, 2018). We do not find a significant association between
sales coverage and the differences in product introductions between data sets across various
product categories. Nevertheless, throughout the paper we evaluate the robustness of the
results when we keep only products that have high coverage.

Nielsen Product Classification System.— The data is organized into detailed prod-
uct modules that are aggregated into product groups. The product groups are then grouped
into ten major departments. These departments are: Health and Beauty Aids, General
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Merchandise, Dry Grocery (e.g., baby food, canned vegetables), Frozen Foods, Dairy, Deli,
Packaged Meat, Fresh Produce, Non-Food Grocery, and Alcohol. For example, a 31-ounce
bag of Tide Pods has UPC 037000930389, is produced by Procter & Gamble, and belongs
to the product module ”Detergent-Packaged” in product group ”Detergent,” which belongs
to the ”Non-Food Grocery” department. The product group ”Detergent” includes several
product modules, including automatic dishwasher compounds, detergents heavy duty liquid,
detergents light duty, detergents packaged, dishwasher rinsing aids, and packaged soap.

Over time, Nielsen expanded coverage of certain product modules (for instance, some
in-store food goods), but we keep a consistent set of product modules that are available
throughout the period. This leaves us with 10 departments, 114 product groups and 1,070
modules.

Defining a Product.— Defining products by their UPCs has some important advan-
tages. First, UPCs are by design unique to every product: changes in any attribute of a good
(e.g. forms, sizes, package, formula) result in a new UPC.This offers a unique opportunity
for economists to identify products at the finest level of disaggregation.

Second, UPCs are so widespread that our data is likely to cover all products sold in
the consumer goods sector. Producers have a strong incentive to purchase UPCs for all
products that have more than a trivial amount of sales because the codes are inexpensive,
and they allow sellers to access stores with scanners and internet sales.

For each product in a year, we define its sales as the total sales across all stores and
weeks in the year. Likewise, quantity is defined as total quantities sold across all stores and
weeks in the year. Price is defined by the ratio of revenue to quantity, which is equivalent to
the quantity-weighted average price.42 To minimize concerns about potential measurement
error caused by Nielsen’s treatment of private-label products to protect the identity of the
retailers, we exclude all private-label goods from the data.

Assigning Products to Firms.— Nielsen RMS data does not include information
on manufacturing firms. However, products can be linked with firms using information
obtained from the GS1 US Data Hub. In order to issue a UPC, firms must first obtain a
GS1 company prefix. The prefix is a five- to ten-digit number that identifies firms in their
products’ UPCs. Argente et al. (2018) provide more details on how to use a subset of the
product UPCs to link producers with products.

The GS1 data include the name and address of the firm associated with each prefix,
which allows us to append a firm name and location to the UPCs included in the Nielsen-
RMS data. A “firm” in the database is defined based on the entity that purchased the
barcodes from GS1, which is typically the manufacturer, such as Procter & Gamble.

Constructing a sample of CPG-only firms.— Any firm that produces at least one
product in the Nielsen RMS data is included in our analysis. We refer to these as CPG
firms. However, some of these CPG firms also produce products outside the CPG sector
(e.g. Toshiba, Samsung, Whirlpool), while others produce mostly products included in the

42We use the weight and the volume of the product to compute unit values.
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Nielsen RMS data (e.g. Procter & Gamble, Kimberly Clark, Kraft). A part of our analysis
is focused on identifying a sample of firms that are solely in the CPG sector. Inspired
by Hoberg and Phillips (2016), we use the firm’s 10-K reports, which are available from
Compustat. The 10-K is a comprehensive summary of a firm’s performance that must be
submitted annually to the Securities and Exchange Commission, in addition to the annual
report. It includes an overview of the firm’s main operations, including its products and
services. We manually classify each business line reported on the 10-K’s into CPG/non-
CPG comparing its description with the description of Nielsen modules, and classify each
publicly traded CPG firm into CPG-only if the majority of the firm’s sales results from
CPG business lines. We matched 270 publicly traded companies over our sample period;
we classify 23% of them as CPG-only firms.

B.2 Patent Data

Data Details.— Unlike other standard patent data sources such as NBER patent data
(Hall et al., 2001) and the data from the Harvard Dataverse Network (Lai et al., 2014),
we make use of all patents published in the USPTO, including non-granted patent appli-
cations. Using all patent applications, as opposed to just granted applications, offers us
two advantages. First, since patents are usually granted with a lag of roughly two years,
the more recent years of the sample suffer from severe truncation. Looking at all patent
applications alleviates this problem. Second, we can then differentiate between patents that
are granted, pending, or abandoned. We use this as one of the patent quality measures, as
discussed below. Adding non-granted patent information increases the number of patents
in our sample by 1.7 million.

Assigning Patents to Firms.— We begin by selecting all patents that have a valid
assignee name.43 We assign patents to their most recent assignee(s). For this assignment, we
use the current assignee variable from the USPTO (as of 2017 – our patent data vintage).
The current assignee variable is missing for some of the patents included in our sample.
In such a case, we start with the name of the original assignee and leverage the USPTO
reassignment data to track any change of patent ownership due to a patent sale or firm reor-
ganizations. To further track patent ownership through corporate reorganizations, we rely
on Thomson Reuters Mergers & Acquisition data. Our underlying assumption is that patent
ownership is transferred to the acquiring firm in case of corporate reorganization. Thom-
son Reuters M&A provides complete coverage of global mergers and acquisitions activity,
including more than 300,000 US-target transactions, since 1970. The data covers mergers
of equals, leveraged buyouts, tender offers, reverse takeovers, divestitures, stake purchases,
spinoffs , and repurchases. It also provides detailed information about the target, the ac-
quirer, and the terms of the deal. This comprehensiveness is particularly important given
that firms that appear both in Nielsen data and USPTO are most likely large firms that
undergo many corporate reorganizations.

43This step eliminates patents assigned to individuals as well as other patents that are missing assignee
information, which mostly constitute pending patents.
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Product-related and Process-related Patents.— Following Bena and Simintzi (2017),
we create proxies for product-related patents and process-related patents based on the for-
mal claims included in patent applications. Patent claims define the scope of a patent’s
protection and hence represent the essence of a patent application. On average, patents in
USPTO have around 15 claims. Some of these are independent claims, while others derive
from them. Claim texts are written in technical terms and often have a rigorous semantic
structure.

The formulaic nature of claims gives us an opportunity to create the following simple
classification. We say the claim is a process claim if the claim text starts with “method”
phrases (“Method for”, “Method of”, “Method in”, “Method define”, and the like) or “pro-
cess” phrases (“Process for”, “Process according”, “Process in”, and the like). Then, as
a baseline, we classify a patent as a process patent if the main (usually, the first) claim
of the patent is a process claim. The patent is a product patent if it is either a design
patent or a non-process utility patent. In the latter case, claims often start with words like
“Apparatus”, “Device”, and the like. According to this definition, up to 70% of patents
are product-related patents. We also tested an alternative definition that defines process
patents based on the criteria that the share of process claims is larger than 50%. These
two measures are highly correlated (0.74) and our results based on the baseline variable are
robust to this alternative definition.

B.3 Algorithm of Match 1

Firm Name Cleaning Algorithm.— We assign each company name (from Nielsen or
USPTO data) to a unique company identifier using the following procedure.

Step 1. In the first step, we run all company names through a name-standardization
routine to generate unique company identifiers. Our routine is the following.

(1) After capitalizing all letters, we keep the first part of the company name before the
first comma. (2) We remove leading and trailing instances of “THE”, we replace different
spellings of “AND” words with “&”, and replace accented or acute letters with regular
ones. (3) We remove special characters. (4) We standardize frequent abbreviations using
dictionaries from the NBER Patent Data Project. For example “PUBLIC LIMITED” or
“PUBLIC LIABILITY COMPANY” become ”PLC”;“ASSOCIATES” or “ASSOCIATE”
become “ASSOC”; “CENTER” or “CENTRAL” become “CENT”. (5) We delete trailing
company identifiers. (6) If the resulting string is null, we protect it. (7) We repeat the
previous steps on the original company names except for protected strings, for which we
now keep the whole string and not just the first portion before the comma. (8) If the string
is protected, we remove company identifiers in any place of the string (not just if trailing
as in 5). (9) We remove spaces to further decrease misspellings. (10) We assign unique
company identifiers based on the cleaned names.

Step 2. In addition to the extensive cleaning in Step 1, we take advantage of a “dictio-
nary” that resulted from a large effort undertaken within the NBER Patent Data Project.
After manual checks and searches of various company directories to identify name mis-
spellings and various company reorganizations, the NBER files provide a mapping between
patent assignee names and unique company identifiers (pdpass). Although this data is based
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on the assignees of granted patents before 2006, we use this mapping as a “dictionary” that
we use in conjunction with our results from Step 1. This helps us leverage both our al-
gorithm from Step 1 and the NBER pdpass information, combining the strengths of each
method to create new unique company identifiers.

For example, Siemens appears in the data with many different name variations. ”SIEMNES
AG”, ”SIEMANS ATKIENGESELLSCHAFT”, and ”SIEKENS AG” are just a few of such
variations that Step 1 does not capture, but the NBER files identify as names under the
same pdpass. In such a case, we use pdpass identifiers to group the three firms together. On
the other hand, the NBER file does not identify ”SIEMENS CORP” ”SIEMENS AG” and
”SIEMENS” as the same company as the ones referenced by the first three name variations
above. In such a case, we use the unique identifiers from Step 1 to group these firms to-
gether. Finally, after combining information from NBER files with our cleaning after Step
1, we pool all six variations into one new company code.

Our algorithm builds upon proven algorithms from Hall et al. (2001) and Akcigit et
al. (2016). We also applied an extensive number of manual quality checks to our cleaning
algorithm. For example, we identified the largest CPG firms, and for each firm we looked up
the corresponding set of patents on Google Patents to verify that our matching algorithm
was obtaining the same patents.

B.4 Algorithms of Match 2

B.4.1 Summary of the Methods of Natural Language Processing

For convenience, the following section summarizes general methods from natural language
processing that we refer to throughout our description of the algorithms below.

i) Parsing Methods
We use 1-grams and 2-grams (single words and two-word phrases) as tokens. In general

one could use n-grams, meaning distinct n-length phrases. For the types of documents we
are interested in, however, meaningful and irreducible phrases having 3 or more words are
quite rare. Also note that we will use the terms “word”,“term”, and “token” interchangeably
and these will refer to the set of 1-grams and 2-grams in all cases.

ii) Lemmatizer Methods
We use WordNetLemmatizer provided as part of the NLTK Python module (nltk.org),

which utilizes the WordNet lexical database (wordnet.princeton.edu), to reduce words
to their root forms by removing conjugations like plural suffixes (Fellbaum, 2010). For
instance, the word “compounds” would be mapped to “compound”.

iii) Word Vector Normalization
Patent (or product category) text documents are first converted into term vectors that

indicate, for each term, how many times the term appears in a document. Each document
vector is of lengthM, which is the number of terms that we include in our vocabulary. The
corpus of documents can then be represented by a very sparse matrix of term counts with
elements ckm, where k ∈ {1, . . . , K} = K represents the document (patent or a product
category) and m ∈ {1, . . . ,M} =M represents the term.

We then use a word-based weighting scheme called total-frequency-inverse-document-
frequency (tf-idf) to account for the fact that more common words tend to be less important
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and vice versa (Aizawa, 2003). A number of possible functional forms could be used here,
but we choose the commonly used sublinear form

wm = log

(
K + 1

dm + 1

)
+ 1 where dm = |{k ∈ K|ckm > 0}|

Thus if a word appears in all documents, it is assigned a weight of one, while those appearing
in fewer documents get larger weights, and this relationship is sublinear. For our weighting
scheme, we use document frequencies from the patent data, as that corpus is considerably
larger and less prone to noise.

Finally, we are left with a weighted, `2-normalized word frequency vector fk for each
document k, both on the patent and product side of our data, with elements

fkm =
wmckm√∑
m′(wmckm′)

2

B.4.2 Step 1: Defining Product Categories

We start by developing an intermediate categorization of Nielsen products into product
categories that are more aggregated than product modules but less aggregated than product
groups.

Step 1.a - Collect Representative Documents
For each low-level product classification from Nielsen (1,070 modules), we explored dif-

ferent sources of text that might allow us to characterize the modules. First, we studied
sources of text within Nielsen. For example, we explored the use of product attributes from
each UPC, and we found that while informative, some characteristics are shared and not
sufficiently different. Second, we explored sources of data outside Nielsen, like dictionaries
and various websites. After many manual checks, we decided to use Wikipedia pages, and
based on module descriptions, we manually selected the closest Wikipedia articles for each
product module.44

The main advantage of using Wikipedia entries is that they often include technical de-
scriptions that use words that also appear in patent texts and are comprehensive enough
to cover all modules. The use of Wikipedia text to encode textual knowledge is already
common in the machine learning literature. For instance, two of the most advanced word
embeddings currently available, BERT (Google, devlin2018bert, devlin2018bert) and fast-
Text (Facebook, joulin2017bag, joulin2017bag), use the entire Wikipedia corpus for training
purposes, in a addition to large corpora of text from books and websites. While there are a
number of papers in the economics literature that study Wikipedia, we are unaware of any
such usage as a direct input into a separate analysis.

44To ensure the best selection of these articles, we cross-checked the results after assigning this task to
five independent readers. Some examples of our article selection are: Wikipedia articles titled ”Humidifier”
and ”Dehumidifier” correspond to the ”Humidifier and vaporizer appliance” product module; an article
”Artificial nails” is assigned to the ”False nails and nail decorations” module; articles ”Soft drinks” and
”Carbonated water” are assigned to the ”Soft drinks- carbonated” module.
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For each Wikipedia article, we construct a representative document that includes the
title of the module (repeated 10 times), the title of the Wikipedia article (10 times), the
entire text (1 time), and the first 10% text of the Wikipedia article (10 times).

Step 1.b - Create Representative Word Vectors
To create the representative word vector for each module, we (i) concatenate all the text;

(ii) apply the parsing and lemmatizing algorithms described above; (iii) exclude terms that
appear in more than 80% of documents (to exclude words like ”the” and ”and”); (iv) and
re-weight according to the tf-idf sublinear transformation described above.

Note that for modules that include multiple Wikipedia articles, we first vectorize each
Wikipedia entry and then average these vectors together to avoid overweighting longer
entries (in an `2-norm-preserving sense).

Step 1.c - Cluster Analysis
We aggregated these module vectors into clusters using the popular k-means clustering

technique. k-means clustering (Lloyd, 1982) is used to find a partitioning of a vector space
into clusters of similar vectors. This procedure allows one to specify the desired number
of clusters K beforehand and yields a partitioning that minimizes the within-group vector
variance, or the average squared distance from the cluster mean.

Letting x be a given module vector and SKi be a cluster i of a cluster set SK , we choose
our partitioning SK so as to minimize

K∑
i=1

∑
x∈SKi

||x− µi||2, where µi =
1

|SKi |
∑
x∈SKi

x

In our main analysis, we use K = 400 clusters. This choice is supported by extensive
manual checks and experimentation with alternative partitions. We first explore k-means
clustering for K = 100, 200, ..., 900. We find that our baseline k-means clustering partitions
the product space quite well, striking a balance between minimizing the differences of vectors
within a cluster while maximizing the differences across clusters.

Additionally, we show that our clustering of the product space is robust. By experiment-
ing with various other state-of-the-art clustering techniques such as HDBSCAN (Campello
et al., 2013) – a hierarchical clustering algorithm that does not need substantial tuning – we
conclude that many product modules are grouped together independently of the clustering
method used.

Finally, the implied clustering also accords well with the external classification scheme
from Nielsen. By comparing our partitioning to the original 114 group aggregation from
Nielsen (not used an input in our clustering algorithm), we see that products clustered into
the same product categories also fall into same groups defined by Nielsen.

The final clustering into product categories groups together precisely those product
modules that the patent matching algorithm would have trouble distinguishing between,
and vice versa. For example, with this clustering, the separate product modules “Detergents
– packaged”, “Detergents – light duty”, “Detergents – heavy duty”, “Laundry treatment
aids”, and “Fabric washes – special” are grouped into one product category. The patent
matching algorithm would struggle to accurately map a related patent to only one of these
modules, especially given that the same patent could plausibly lead to innovations in all of
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these product modules at the same time.
Step 1.d - Creating Pseudo Product Categories
We create additional pseudo product categories to describe products outside of the con-

sumer goods sector. These pseudo-categories are designed purely to improve the match
to consumer products as will be explained below and are not used in our main analysis.
We selected a sufficiently large and diverse set of pseudo-categories by experimenting and
studying patents held by firms in our sample that produce goods outside of the consumer
goods sector. We add 19 of the pseudo-categories to the existing 400 product categories in
the data. Some examples include “computers” and “aviation”. As we did with the original
modules, we create word vectors for each pseudo-module based on the associated set of
Wikipedia articles that describe it.

Step 1.e - Word Vectors for Product Categories
The final word vector for product categories (including pseudo-product categories) sim-

ply combines the titles and word vectors (Step 1.b) of all modules that were clustered
together to make a product category (Step 1.c).

B.4.3 Step 2: Patent Vectors and Similarity Scores

Step 2.1 - Collect Representative Documents for Patents
We use a variety of text fields to construct patent documents, including the title, abstract,

international patent classification description, and the titles of cited patents. We upweight
the title of the patent by a factor of 5 compared to the abstract, because the title has a much
higher signal-to-noise ratio than the other patent text fields. Specifically, a patent’s title
tends to express the main application of the patent, whereas the abstract, description, and
claims contain technical implementation details that are not as relevant for our purposes.
For the same reasons we also upweight the patent classification description by a factor of 3.

Step 2.2 - Create Representative Vectors for Patents
To create the representative vector, we: (1) concatenate all the text; (2) apply parsing

and lemmatizing algorithms (see description below); (3) exclude terms that appear in more
than 80% of documents (excludes words like ”the” and ”and”); (4) and re-weight according
to the tf-idf sublinear transformation (see description above). Constructing representative
documents on the patent side consists of simply concatenating all of the available text into
one document. For the product categories, we first vectorize each Wikipedia entry, then
average these vectors together to avoid overweighting longer entries.

The patent corpus is on average shorter than the product category vectors. The average
number of words per patent is 263 with standard deviation of 333 (in terms of unique words,
we get mean 107 and standard deviation 93). The average number of words is about 7,200
per Wikipedia article, with a standard deviation of 6,500 (in terms of distinct words, the
mean is 2,500 and standard deviation of about 2,000). We evaluated if there is a good
overlap in the words used on longer documents to insure that there was not too much
noise. About 50% of the words seen in our product category vectors show up in the patents
somewhere.

Step 2.3 - Computing Similarity Scores Between Patents and Categories
At this point, we have the normalized word vectors for each product category j, fjm,

and the normalized word vectors for each patent p, fpm. Multiplying any two such word
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vectors together yields the similarity score between two documents:

sjp =
∑
m∈M

fjmfpm,

whereM, as before, denotes size of a vector, which is the number of terms in the vocabulary.
The similarity is guaranteed to lie in the range [0, 1], with zero corresponding to zero word
overlap and one corresponding to the case in which the documents are identical (or are
multiples of one another). Notice that this vectorization approach (sometimes referred to
as “bag of words”) ignores any information about the order of words or phrases.

Thus, for each patent, we now have similarity metrics for each product category. The
next section describes how we designate the matched product category for each patent.

B.4.4 Step 3: Classifying Patents into Product Categories

The final step of our patent-product matching algorithm consists in using the similarity
scores to determine which pairs of patents and products are valid matches. Because some
patents may correspond to certain general production processes – and not directly to prod-
ucts – or to products outside the consumer goods sector, we allow for the option that a
patent is not assigned to any product category, or is a “non-match”.

Step 3.1 - Threshold Similarity
We first adjust the algorithm to include a similarity score threshold below which we

believe considering the two documents as similar would be too noisy. We tested different
threshold levels and, in our baseline algorithm, we restrict the set of potential product
categories for each patent p to product categories whose similarity score exceeds 0.025. For
those patents that have less than five product categories satisfying this condition, we include
the set of product categories that have the five highest similarity scores. For each patent,
we denote the set of product categories satisfying these conditions as:

Θp = {j ∈ Ω | sjp > 0.025 ∨ rank(sjp) ≤ 5} (19)

where Ω is the set of all product categories and sjp is the similarity score between patent p
and product category j.

Step 3.2 - Production Condition To further improve the match, we leverage firms’
production information from Nielsen. For each patent, we define the set of potential matches,
Gp, whose elements consist of all product categories in which the patenting firm ever sold a
product, according to our product data.

Gp = {j ∈ Ω | p is patent of firm i ∧
2015∑
t=2006

salesijt > 0}, (20)

where salesijt are the sales of firm i in product category j in year t. Note that this production
condition, will exclude all pseudo-categories and product categories that the firm never
produced from the set of potential matches.45

45This makes it clear that having pseudo-categories helps to filter out many patents of the firms who
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Step 3.3 - Select the Maximum
Together, the criteria above imply that patent p will be classified as a “non-match” if

none of the product categories satisfy the thresholds and the production conditions:

Θp ∧Gp = ∅

For the patents that have at least one product category satisfying those conditions, we
assign the final patent-product category match j∗p to be a product category with the highest
similarity score:

j∗p = max
j∈Θp∧Gp

sjp (21)

This defines the matching of a patent p to the set of products grouped in the category
j∗p .

B.5 Robustness and Match Validation

B.5.1 Manual Checks of the Patent-Product Category Matches

We manually checked many patent-to-products matches, and Table A1 lists some examples.
The top 100 product categories sorted by their revenue and the largest firms selling in
those categories are shown. For each firm, we then list an example of the highest-similarity
patents in the corresponding product categories and their similarity scores. Comparing the
titles of the patents and product categories, we see that product categories selected by our
algorithm match the content of the patents well.

heavily produce non-CPG products. For example, some firms like Toshiba or Samsung produce small
electronics in our data, however they hold large portfolios of patents related to computer hardware or other
high-tech technologies that are not relevant for the consumer products sector that we are analyzing. For
such patents, the set Θp often consists only of pseudo-modules that then are easily filtered out by condition
(20).
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Table A1: Patents with the Highest Similarity Score: Top Selling Firms by Categories

Company Product category Application ID Title of the Patent Similarity
1 Philip Morris USA Cigarette/smoking accessories 13912780 Cigarette and filter sub-assemblies with squeezable flavor 0.544838

capsule and method of manufacture
2 Procter & Gamble Diapers and baby powder 29396475 Absorbent article with a pattern 0.487175
3 Procter & Gamble Laundry detergent 13905161 Laundry detergent composition 0.387514
4 Nikon Camera 29385057 Projector equipped digital camera 0.33897
5 General Electric Lamp 29283361 Lamp 0.427732
6 Coca-Cola USA Soft drink 13816800 Phytase in ready-to-drink soft drink 0.307128
7 Procter & Gamble Toilet 13585921 Method of reducing odor 0.191963
8 Procter & Gamble Paper cup 11897767 Array of paper towel product 0.242879
9 Warner Home Video Photographic film 10428440 Method of distributing multimedia presentation in 0.08106

different format on optical disc
10 Procter & Gamble Sanitary napkin 29465209 Absorbent article 0.204989
11 L’Oreal USA Cosmetics 9987885 Anhydrous and water resistant cosmetic composition 0.305982
12 Procter & Gamble Fabric softener 13070526 Method of making fabric softener 0.41355
13 Kimberly-Clark Facial tissue 10034881 Method of making a high utility tissue 0.198823
14 Unilever USA Soap 10320295 Soap wrapper 0.41769
15 L’Oreal USA Hair coloring 14554789 Hair coloring appliance 0.455061
16 S.C. Johnson & Son Air freshener 29438208 Dispenser 0.496183
17 Kraft Heinz Foods Cheese 11618467 Method and system for making extruded portion of cheese 0.596449
18 Nestle Waters North America Bottle 29434474 Water cooler 0.200115
19 The Hershey Company Candy 9985948 Confectionary product low fat chocolate and 0.282462

chocolate like product and method for making them
20 Procter & Gamble Hair conditioner 12047712 Tool for separating a hair bundle 0.559868
21 Wm. Wrigley Jr. Chewing gum 10453862 Method for making coated chewing gum product with a coating 0.578689

including an aldehyde flavor and a dipeptide sweetener
22 Kimberly-Clark Wet wipe 9965645 Wet wipe dispensing 0.506875
23 Procter & Gamble Razor 29387316 Shaving razor package 0.54803
24 Activision Publishing PC game 11967969 Video game forward compatibility including software patching 0.347854
25 Frito-Lay Potato chip 11777839 Method for reducing the oil content of potato chip 0.521346
26 General Mills Breakfast cereal 29183322 Layered cereal bar having cereal piece included thereon 0.28897
27 Abbott Laboratories Milk 9910094 Powdered human milk fortifier 0.492503
28 Procter & Gamble Toothpaste 11240284 Toothpaste dispenser toothpaste dispensing system and kit 0.388327
29 Procter & Gamble Deodorant 12047430 Deodorant composition and method for making same 0.290906
30 The Minute Maid Company Juice 12940252 Method of juice production apparatus and system 0.31321
31 Colgate-Palmolive Toothbrush 11011605 Oral care implement 0.425624
32 Driscoll Strawberry Associates Fruit 10722055 Strawberry plant named driscoll lanai 0.298149
33 The Duracell Company Battery charger 10042750 Battery cathode 0.262253

Notes: The table presents information on the top 100 product categories sorted by their revenue. Each row reports the name of the highest-selling firm in a category
together with an application ID and title of the firm’s patent with the highest similarity score in the corresponding product category. The last column reports a similarity
score from matching the patent to the category.
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Company Product category Application ID Title of the Patent Similarity
34 Alcon Laboratories Disinfectant 9765234 Conditioning solution for contact lens care 0.362715
35 Pennzoil-Quaker State Motor oil 10253126 Environmentally friendly lubricant 0.218752
36 Procter & Gamble Oral hygiene 13150392 Method for whitening teeth 0.361255
37 Abbott Laboratories Nutrition 10004360 Pediatric formula and method for providing nutrition and 0.108124

improving tolerance
38 Anheuser-Busch InBev Beer 12734356 Process for preparing a fermented beverage 0.419399
39 Procter & Gamble Shampoo 12040980 Shampoo containing a gel network 0.386299
40 Nabisco Biscuit Cookie 9761322 Novelty cookie product 0.155735
41 Kraft Heinz Foods Coffee 13810612 Coffee product and related process 0.497631
42 Royal Appliance Mfg. Co. Vacuum cleaner 10224483 Vacuum cleaner having hose detachable at nozzle 0.503479
43 Uniden Corp. of America Mobile phone accessories 10268080 Rotating detachable belt clip 0.052147
44 Lexmark International Ink cartridge 9766363 Ink cartridge and method for determining ink volume in 0.505055

said ink cartridge
45 Gerber Products Baby food 10295283 Blended baby food 0.24046
46 The Clorox Company Hard-surface cleaner 12141583 Low residue cleaning solution comprising a c-to-c 0.195491

alkylpolyglucoside and glycerol
47 The Clorox Company Bleach 14724349 Intercalated bleach composition related method of 0.390043

manufacture and use
48 L’Oreal USA Cosmetic mascara 10759614 Two step mascara 0.359273
49 Lifescan Stool test 10179064 Reagent test strip with alignment notch 0.123588
50 Playtex Products Tampon 10834386 Tampon assembly having shaped pledget 0.558883
51 Kimberly-Clark Urinary tract infection 12680575 Management of urinary incontinence in female 0.400734
52 Procter & Gamble Microfiber 11016522 Rotary spinning process for forming hydroxyl 0.113136

polymercontaining fiber
53 Sandisk Corporation Floppy disk 10772789 Disk acceleration using first and second storage device 0.232516
54 Procter & Gamble Acne 10633742 hptp-beta a target in treatment of angiogenesis mediated 0.026864

disorder
55 Kraft Heinz Foods Pasta 29220156 Spider shaped pasta 0.643155
56 L’Oreal USA Eye liner 14368230 Method for delivering cosmetic advice 0.200779
57 Lexmark International Printer (computing) 11766807 Hand held printer configuration 0.431107
58 Dreyer’s Grand Ice Cream Ice cream 10213212 Apparatus for forming an extruded ice cream dessert with 0.411786

inclusion
59 Imation Corp. Compact cassette 9882669 High speed tape packing 0.240291
60 Conagra Brands Canning 12814296 Method and apparatus for smoking food product 0.144703
61 Nestle Purina PetCare Dog food 29212029 Pet food 0.313367
62 Fort James Corporation Disposable food packaging 29178752 Disposable plate 0.173866
63 L’Oreal USA Face powder 9847388 Use of fiber in a care composition or a makeup composition 0.139978

to make the skin matte
64 Conair Corporation Hair styling tool 29285527 Curling iron 0.124045
65 Johnson & Johnson Adhesive bandage 11877794 Adhesive bandage and a process for manufacturing an 0.229017

adhesive bandage
66 Unilever USA Shower gel 10242390 Viscoelastic cleansing gel with micellar surfactant solution 0.121894
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Company Product category Application ID Title of the Patent Similarity
67 Procter & Gamble Dishwasher 11348667 Method of cleaning a washing machine or a dishwasher 0.296332
68 Pepsi-Cola North America Tea 12147245 Coumalic acid to inhibit nonenzymatic browning in tea 0.483404
69 General Mills Sweet roll 14340046 Method of forming dough composition 0.471588
70 Alcon Laboratories Eye drop 9919301 Use of certain isoquinolinesulfonyl compound for the 0.030695

treatment of glaucoma and ocular ischemia
71 Tyson Foods Frozen food 13245589 Big poultry cutup method 0.311296
72 Pactiv Corp Zipper storage bag 10289641 Reclosable bag having tamperevident member removable 0.224593

from the bag along a line of weakness located below the
bag zipper

73 Lipton Margarine 9880200 Preparation of a blend of triglyceride 0.317454
74 Handi-Foil Corporation Kitchen utensil 29418653 Pan with handle 0.167337
75 Hartz Mountain Pet 10647660 Pet chew and method of providing dental care to pet 0.345158
76 Acco Brands USA Notebook 11454292 Notebook computer folding ergonomic pad 0.130091
77 Johnson & Johnson Lotion 12340858 Structured lotion 0.230563
78 Glaxosmithkline Anti-inflammatory drug 11355808 Use of Immune cell specific conjugate for treatment of 0.108521

inflammatory disease of gastrointestinal tract
79 Kraft Heinz Foods Processed cheese 10207591 Processed cheese made with soy 0.43164
80 Fort James Corporation Napkin 29215802 Tabletop napkin dispenser 0.263922
81 Omron Healthcare Sphygmomanometer 29344018 Sphygmomanometer 0.463227
82 General Mills Cracker (food) 10172401 Advertising quadrate carrier assembly with premium cradle 0.02869
83 BIC USA Pen 29138586 Writing instrument 0.314765
84 The Libman Company Mop 29298481 Mop 0.426008
85 Frito-Lay Snack 10893425 Method and apparatus for layering seasoning 0.12532
86 Fresh Express Incorporated Salad 29362982 Paper bag with a transparent vertical window for salad 0.241787

ingredient
87 Procter & Gamble Shaving cream 11110034 Shaving system with energy imparting device 0.322912
88 Nestle Purina PetCare Litter box 29228923 Cat litter box 0.567078
89 Frito-Lay Corn chip 9998661 Apparatus and method for making stackable tortilla chip 0.15851
90 Elizabeth Arden Eau de toilette 29414481 Perfume bottle 0.241875
91 Bimbo Bakeries USA Bread 13618124 Method and system for the preservation and regeneration of 0.263577

pre-baked bread
92 E & J Gallo Winery Wine 10970490 Method and apparatus for managing product planning and 0.215571

marketing
93 BIC USA Lighter 11221295 Multi-mode lighter 0.369379
94 Sara Lee Foods Sausage 10014160 Split sausage and method and apparatus for producing split 0.520147

sausage
95 Frito-Lay Mixed nuts 11553694 Method for making a cubed nut cluster 0.158285
96 Kiss Nail Products Manicure 12924589 Artificial nail and method of forming same 0.361627
97 Frito-Lay Dipping sauce 10109398 Apparatus and method for improving the dimensional quality 0.1273

of direct expanded food product having complex shape
98 Kraft Heinz Foods Bacon 9799985 Bacon chip and patty 0.556922
99 Emerson Radio Corp. Microwave oven 29149130 Protective cage and radio combination 0.0148
100 Procter & Gamble Dentures 13043649 Denture adhesive composition 0.467318
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B.5.2 External Validation. Virtual Patent Markings

One of the important validation exercises for the patent-to-products match relies on external
information. We use information from virtual patent markings which were introduced with
the 2011 Leahy-Smith America Invents Act. Under that act, firms may give notice to the
public that their product is patented. Recently, de Rassenfosse (2018) provides estimates of
the adoption rate of virtual markings and studies factors that account for the likelihood of
adoption. Overall, the adoption rate is relatively small and varies systematically with firm
size. Indeed, our online searches showed that only a handful of the CPG firms in our sample
used virtual patent markings.46 This means that we cannot use patent markings to match
patents to products for all firms in our data set. We can, however, use them as a useful
validation exercise to compare the marking’s product-patent matches with our algorithm.

To this end, we selected Procter & Gamble (P&G) and Kimberly-Clark (KC) for our
validation exercise, as these are among the largest firms in our sample.47 We start by parsing
the product-patent links from the websites. In most cases the markings are associated with
brands and not particular products. Hence, an important challenge lies in linking the listed
brands on the websites with the brands in Nielsen. We use exact name matches, non-exact
name matching, and extensive manual matching to determine the closest Nielsen brand
equivalents. We then proceed to identify the product categories that include products of
those brands. This parsing process allows us to obtain a mapping between patents and
product categories that solely comes from the markings listed by P&G and KC markings.

For each patent, we then compare the matched product categories in our Match 2 data
set with the product categories obtained from the virtual markings listed by P&G and KC
(311 and 87, respectively).48 We begin by testing information from the similarity scores.
For each patent-product category pair from the virtual markings, we obtain a similarity
rank that our algorithm assigns to this product category. For example, when the rank value
is one, the product category in the virtual markings corresponds to our algorithm’s highest
top-1 similarity category. When it is two, the match was very close to the category from the
markings, and so on, thus providing a notion of closeness between the algorithm-based and
marking-based matches. The first plot in Figure B.5.2 plots the distribution of these ranks.
The algorithm-based preferred (highest-similarity) product categories coincide most of the
time with the patent-product category mapping we created based on virtual markings. For
69% of patents, and 79% of patents conditional on a match, the virtual marking product
categories are ranked as one or two based on similarity scores.49

46Even if firms use virtual patent markings, they report only a selected set of products and just a small
fraction of patent portfolio they hold.

47We also found virtual markings are Clorox and Smuckers. However, because the products reported on
their websites could not be mapped cleanly to our product categories, we did not analyze them.

48P&G and KC hold many more patents that are not included in the virtual markings. We also had to
exclude patents listed under brands that we could not cleanly match to the Nielsen data.

49Note that we cannot compare these numbers to 100% given that the ranking is unavoidably affected by
some noise that comes from our manual mapping of the product listings on the websites to the notion of
product categories in our data.
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Figure A2: Virtual Patent Markings. P&G and KC Case Study
Distribution of similarity ranks for virtual markings Distribution of similarity scores
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Notes: We use patent markings from P&G and KC. For each patent-product category pair from the virtual markings, we obtain
a similarity rank that our algorithm assigned to this product category and show the distribution of ranks in the first graph.
When the rank is one, the product category in the virtual marking corresponds to our algorithm’s highest top-1 similarity
category. The second graph shows the distribution of similarity scores for rank-1 and higher-rank product categories.

Another way to visualize the accuracy of the match is to examine the distribution of
similarities conditioning on whether the match was rank-1 (coinciding with the category
from virtual markings) or a higher rank. If these two distributions were very similar, this
would mean that even if the match is accurate, it is not very robust, as small elements of
noise or bias could change the results of the match. In fact, as shown in the second plot of
Figure B.5.2, these two distributions are quite distinct with the rank-1-match distribution
weighted towards the right, meaning the results of the match should be rather robust.

B.5.3 Robustness of the Match. Patent Similarity with Top vs Lower-Rank
Categories

As discussed, for our match, we pick product categories which have the highest similarity
scores with patents. That is, we first pick the top five categories that have the highest
similarity values with patents, and then we assign the top-similarity category conditional
on a firm producing a product in that category. However, if the similarity scores for different
categories are too close (either because the algorithm is not able to pick up the distinctions
between documents or the categories are too finely defined) so that the algorithm cannot
clearly differentiate between them, our choice of the top-rank match would not be robust
to small perturbations of the algorithm or category clustering. To explore this issue, we
plot the distribution of similarity scores of patents with different-rank product categories
(Figure B.5.3). The rank-1 category is the category with the highest similarity score for a
patent, and so on. We find that top-ranked categories have substantially different (shifted
to the right) distributions than slightly lower-ranked categories, thus providing evidence of
the robustness of the match. The patents’ mean similarity score for rank-1 categories is 3
times higher than the mean similarity score for rank-5 categories.
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Figure A3: Similarity Distribution by Rank
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Notes: The figure shows similarity scores distribution of patents for different-rank product categories. Rank-
1, Rank-3, and Rank-5 show similarities with categories ranked as the highest, rank-3, and rank-5 similarity
categories.

B.5.4 Actual vs Placebo Match of Patents to Product Categories

We next verify that by grouping patents into distinct categories, we are indeed carving
out well-defined neighborhoods in the technological space. We again employ word vectors
to assess document similarity, but this time between pairs of patent texts. Specifically,
we look at the distribution of similarity scores between pairs of patents classified into the
same product category and compare this distribution to that of pairs of patents selected at
random from the entire set of patents held by CPG firms. The similarity distribution based
on this match looks very different from our placebo distribution as seen in Figure B.5.4.
The patents’ mean similarity score is 5.6 times higher if patents are assigned to the same
product categories. In ordinal terms, the median within-category similarity lies at the 93rd
percentile in the overall distribution.

Figure A4: Distribution of Pairwise Patent Similarities
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Notes: The blue density curve shows the distribution of similarities between pairs of patents classified into the same product
category. The green curve shows the distribution of similarities between randomly drawn pairs of patents amongst all those
owned by Nielsen firms.
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B.5.5 Validating Non-matches. CPG-only Firms and Product-Related Patents

Our Match 2 of patents at the firm × product category level would ideally filter out patents
that are not related to the products in our data. Hence, correct non-matches would arise
for the following two main reasons. First, a patent may relate to other non-CPG goods
that the firm may be producing, which are not covered in our sample; and second, a patent
may be a general process/method patent that does not relate to the products directly. We
examine these possibilities.

Panel (a) in Figure B.5.5 shows the share of patents that match to firms’ product cat-
egories for a sample of firms that we can accurately identify as CPG-only firms and not
CPG-only firms (see Appendix B.1 for details). Indeed, 92% of patents held by CPG-only
firms match, while 36% of patents of not CPG-only firms match to our product categories.
This result reassures us that our algorithm indeed picks the correct matches. As seen from
Panel (b), the similarity scores for CPG-only firm patents are also significantly higher.

Figure A5: Match Validation. CPG-only Firms and Product-Related Patents
(a) Share of patents matching to firms’ product categories

0
.2

.4
.6

.8
1

Sh
ar

e 
of

 p
at

en
ts

 m
at

ch
ed

Patents of not CPG-only firms Patents of CPG-only firms

0
.2

.4
.6

Sh
ar

e 
of

 p
at

en
ts

 m
at

ch
ed

Process patents Product Patents Design patents

(b) Rank-1 similarity distribution for patents
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Notes: Panel (a) shows the share of patents that match with product categories in which firms ever sell a product. The left
figure compares patents of the CPG-only and non-CPG-only firms, while the right figure compares process, product-related,
and design patents. CPG-only firms and non-CPG-only firms refer to the sample of firms defined in Appendix Section B.1.
Process and product-related patents are defined in Appendix Section B.2. Panel (b) displays the similarity score distribution
for patents of CPG-only and non-CPG-only firms on the left and of process, product-related, and design patents on the right.

Panel (a) also demonstrates that the share of patents that are matched is higher if the
patent is more likely to be directly related to products. Using our proxies for process- and
product-related patents (see Appendix B.2 for details) and considering design patents as
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most directly related to products, we plot the share of all process, product, and design
patents that are matched. The probability of a match increases along with the likelihood
of a patent being related to a product, which is reassuring. Panel (b) also confirms that
the similarity scores of product-related patents are much higher than the similarity scores
of process patents.

B.6 Patents and Products in CPG. Examples.

Figure A6: Procter & Gamble

(a) Patent application in 2011 (b) The first Tide Pods in 2012

Figure A7: Example: Kiinde LLC

(a) Patent application in 2013 (b) Direct pump adapters intro-
duced in 2014
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Figure A8: Example: Nephron Pharma

(a) Patent application in 2012 (b) Refill vials in 2012

Figure A9: Example: Beyond Meat Inc.

(a) Patent application in 2014 (b) The first simulated beef prod-
uct in 2014
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Figure A10: Example: Coca Cola Inc.

(a) Patent application in 2005 (b) The first sugar-free Coke Zero
in 2005

B.7 Measuring Product Innovation

We use four measures of quality improvements brought by new products: a novelty index
whose weights are the contributions of each attribute to the product price (baseline q); a
novelty index that equally weights each attribute (q1); a novelty index whose weights reflect
the total sales accounted by each attribute (q2); and a quality measure that weights each
product by its residual demand (q3). These measures capture different dimensions of quality.
The first three measures (baseline q, q1 and q2) explicitly capture the novelty of a new
product by using information about its attributes. The second type of measure (q3) captures
any residual demand (or appeal), which can arise from vertical quality differentiation or
subjective differences in consumer taste. We next describe the construction of the novelty-
based measures and residual demand in detail, followed by a discussion of the descriptive
statistics for these measures.

B.7.1 Novelty-Based Measures

Overview. — We define a product u in product category j as a vector of characteristics
V j
u =

[
vju1, v

j
u2, .., v

j
uAj

]
, where Aj denotes the number of attributes (e.g. color, formula,

size) observed in product category j and vjia represents a characteristic within an attribute
(e.g. blue, red, green).50 Let Ωj

t contain the set of product characteristics for each product
ever sold in product category j at time t, then the novelty index of product u in product
category j, launched at time t is defined as follows:

qu ≡ Novelty
(j)
u(t) =

Aj∑
a=1

ωja1[vjua /∈ Ωj
t ],

50We refer to product categories for simplicity of notation. Our analysis is conducted first at the product
module level (as defined by Nielsen RMS data) and then aggregated at the firm level (Match 1) or firm ×
product category level (Match 2).
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where ωja represents the category-specific weight given to new characteristics within attribute
a. The measures q, q1 and q2 only differ in the way we compute their ωja.

For q, we estimate ωja using hedonic price regressions in order to be able to quantify the
importance of each attribute within a product category. The section below provides the
details on the hedonic methods used.

The simplest measure q1, simply weights each attribute equally. For example, if a new
product within the “pain remedies-headache” category enters the market with a flavor and
formula that has never been sold before, its novelty index is (1 + 1)/Asoft drinks = 2/10. Note
that comparing the novelty index of different products across distinct categories depends
not only on the number of new attributes of each product, but also on the total amount of
observable characteristics the Nielsen data provides for each category.

Measure q2 is very similar to q. We use weights generated by hedonic regressions and
scale them by observed quantities to get to the sales-based weights for each attribute. In
this case, we also normalize the weights so that all weights within a product category add
up to one.

Hedonic Regression Weights. — We estimate product category weights ωja for our
measure q using hedonic methods. In particular, we estimate a linear characteristics model
using the time-dummy method. The time-dummy method works by pooling data across
products and periods and regressing prices on a set of product characteristics and a se-
quence of time-dummies. Since the regression is run over data which is pooled across time
periods, any product characteristic which is held by at least one product in some period can
be included even if it is not present in all periods. The estimated regression coefficients rep-
resent the shadow price for each of the included characteristics. To implement this method,
we estimate the following equation by non-negative least squares:

put =
∑
c

πcacu + λt + εut, (22)

where u denotes the product, c is the characteristic, and t is the time period (years). acu is
an indicator that equals one if a given characteristic c is present in product u. Recall that
each attribute a (e.g color) has distinct characteristics c (e.g. blue, red). The estimated
regression coefficients, πc, represent the shadow price for each of the included characteristics.
We use non-negative least squares so that the shadow prices are weakly positive. Lastly, λt
represents time effects.

Using this method, we obtain a correlation of approximately 0.91 between the actual
price and

∑
c π

c.51 The weight ωja is the average contribution of the characteristics within

each attribute to the price normalized so that
∑Aj

a ωja = 1; these are the weights used in
our baseline novelty index.

51These dummies for characteristics seem to explain differences in prices well. The variance of linear
combination of the fixed effects of the attributes (excluding time fixed-effects) relative to the variance of
the prices is 0.827.

A29



B.7.2 Residual Demand Measure

An alternative way of measuring the degree of product innovation brought by new products
to the market is to weight them by their implied quality (or residual demand) using a struc-
tural specification of their demand function. To derive an implied quality for each product,
we follow Hottman et al. (2016) and Argente et al. (2018) and use a nested constant elas-
ticity of substitution (CES) utility system that allows the elasticity of substitution between
varieties within a firm to differ from the elasticity of substitution between varieties supplied
by different firms. The model features oligopolistic competition with a finite number of het-
erogeneous multi-product firms, where the output of each category is described by a nested
CES structure over a finite number of products within a finite number of firms (j is omitted
for simplicity of notation)

y =

 M∑
i=1

(
Ni∑
u=1

(γuiyui)
σ−1
σ

) σ
σ−1

η−1
η


η
η−1

where σ is the elasticity of substitution across products within the same firm, η is the
elasticity of substitution across firms, and γui and yui are the implied quality and quantity of
product u produced by firm i, respectively. Using the first order conditions of the consumer
we can write the demand for product u produced by firm i as follows:

yui = (γui)
σ−1

(
pui
pi

)−σ (
pi
p

)−η
Y

p
, pi =

(
Ni∑
u=1

(
pui
γui

)1−σ
) 1

1−σ

,

where the demand for the product depends on the implied quality γui and price pui of the
product, as well as the firm’s price index pi, the category’s price index p, and the size of the
category Y . Conditional on observing the prices and quantities from the data and obtaining
estimates for σ and η, we recover γuijt as a structural residual that ensures that the model
replicates the observed data up to a normalization.52 We normalize the implied quality
so that its geometric mean within each category and time period equals one. The key
advantage of this normalization is that we can compare a product’s implied quality within
the firm and across firms within a category and time period. Using this normalization and
equation B.7.2, we obtain the product implied quality as:

γui =

(
sui × si∏

u,j(sui × si)
1
M

) 1
σ−1
(

si∏
u,j(si)

1
M

) σ−η
(1−η)(1−σ)

(
pui∏

u,j(pui)
1
M

)
,

where sui and si are the share of sales of product u and the share of sales of firm i, re-
spectively, and M denotes the total number of products sold in a category. The estimation
procedure for σ and η follows Broda and Weinstein (2010) and Feenstra (1994). The es-
timation has two steps. In the first step, we estimate the elasticity of substitution across
products within firms using product shares, product prices, and firm shares using a GMM
procedure. The key identification assumption is that demand and supply shocks at the

52Normalization is required because the utility function is homogeneous of degree 1 in the implied quality.
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product level are uncorrelated once we control for firm-time specific effects. In the second
step, we use these estimates for products to estimate the elasticity of substitution across
firms for each category using the procedure developed by Hottman et al. (2016). We use
the estimates from Argente et al. (2018).

To capture the incremental effect of new products on the residual demand of the firms,
our measure of quality improvement q3 is the geometric average of the implied quality of
the new products relative to the geometric average of all products sold by the firm.

B.7.3 Descriptive Statistics

Novelty Indices Across Product Categories. — Although in our main analyses
we only consider within category variation in novelty, Figure A11 shows the degree of
heterogeneity in novelty index q across different product categories. The quality measure
q has a correlation of 0.93 with the equal-weights measure q1. Conditional on having an
equal-weights index larger than zero, the correlation is 0.79. “Juices, Drinks-frozen” has a
high novelty index mainly due to the prevalence of new brands and new flavors over our
sample period. Over our sample period, there are more than 50 new brands and 67 new
flavors in this category, which can be explained by recent trends in this category to increase
the nutrients, reduce the sugar content, and to create products according to the consumer’s
lifestyles. The novelty index for “Baking Mixes” and “Flour” can be explained by the
surge in home-based baking observed in recent years, which led to more than one thousand
new brands in these categories. Only in “Baking Mixes” we observed more than 600 new
flavors during our sample period. These categories have also seen significant innovations in
packaging. An example is stand-up pouches, which use less plastic, increase the shelf life of
products, and reduce the likelihood they are damaged during shipping.

Figure A12 shows some examples of products with high and low equal-weights novelty
q1 in our data. For example, the product Asthmanefrin Inhalation Solution - Liquid Refill
is part of the group Medications/Remedies/Health Aids. When it was introduced in the
market, this product had six of the eight attributes that we observe in our data for that
product group, it was a new brand, launched by a new firm, it was a liquid, bronchilator
refill. As a results, its equal-weights novelty index is 6/8=0.75.
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Figure A11: Novelty Index (Baseline q)
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Note: Total number of categories (groups) is 117. Only top and bottom reported.

Notes: The figure presents the average novelty index for a sample of product groups in our data. In particular, it shows the
mean novelty index by groups along with the top and bottom groups as ranked by this measure. We compute the novelty
index for each product using equation B.7.1. We average across products and product modules to the category level. We
focus on cohorts from 2006Q3 to 2014Q4 and on modules with at least 20 barcodes.

Figure A12: Novelty Index: Examples

(a) High-Novelty Products (b) Low-Novelty Products

Correlation with Product and Firm Performance. — Our baseline measure of
quality q explicitly captures the novelty of a new product by using information about its
attributes. This use of product attributes offers important advantages in the context of
our paper. Patents are granted on the basis of novelty, and thus using a quality-adjusted
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measure of product introduction that explicitly accounts for new features of the product
should help to align the notion of innovation on patents and products side. However, new
features of the product may not affect the market at all if they are not valued by customers.
Our baseline measure q partially accounts for this potential concern by weighting any new
characteristic according to its shadow price using hedonic regressions. In addition, Table
A2 shows that our baseline measure is correlated with product and firm outcomes, and thus
may be capturing some vertical quality differentiation or subjective differences in consumer
taste.

Table A2: Novelty Measure: Correlation with Firm Outcomes

(1) (2) (3) (4)
Growth rate (DH) Growth rate (New) Duration 4q Duration 16q

Novelty(t) 0.1546*** 0.3032*** 0.1081*** 0.0754***
(0.024) (0.006) (0.009) (0.016)

Log N(t) 0.1953*** 0.0245*** 0.0287*** 0.0203***
(0.004) (0.001) (0.002) (0.003)

Observations 92,430 111,339 96,942 53,611
R-squared 0.382 0.588 0.476 0.570
Time-Category Y Y Y Y
Firm-Category Y Y Y Y

Notes: The table shows the correlation between our measure of novelty q and several firm outcomes. Growth rate (DH) is the
revenue growth of the firm estimated as in Davis and Haltiwanger (1992), i.e. 2(yt − yt−1/(yt + yt−1). Growth rate (New) is
the revenue generated by new products as a share of total revenue in period t. Duration 4q and Duration 16q are the share of
products introduced a time t that last in the market more than 4 or 16 quarters respectively. log N is log number of products
introduced using the inverse hyperbolic sine transformation.
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C Additional Empirical Results

Table A3: Product Innovation and Patenting: Citations and Claims

Log N Log qN
(1) (2) (3) (4)

Citations(t-1) 0.0256*** 0.0135***
(0.006) (0.003)

Claims(t-1) 0.0111*** 0.0073***
(0.004) (0.002)

Observations 409,641 409,210 409,641 409,510
R-squared 0.692 0.692 0.623 0.623
Time-Category Y Y Y Y
Firm-Category Y Y Y Y

Notes: The table shows regressions of the log number of new products (log N) and of the log quality-adjusted new products
(Log qN) in a firm×category over time as a function of log citations- and claims-adjusted number of patents. Our benchmark
quality measure is defined in Section 3.2.1. Citations is the log number of 5-year citations received by all patents filed in the
firm×category×year; Claims is the log number of claims on all patents filed in the firm×category×year. The inverse hyperbolic
sine transformation is used for logs. Standard errors robust against heteroskedasticity and serial correlation are reported in
parentheses.

Table A4: Product Innovation and Patenting (Firm Level)

Log N Log qN
(1) (2) (3) (4) (5) (6)

Patents(t-1) 0.0310*** 0.0149**
(0.009) (0.005)

Patents granted(t) 0.0303** 0.0160**
(0.012) (0.007)

Patents non-granted(t-1) 0.0218** 0.0021
(0.008) (0.006)

Observations 178,509 178,509 178,509 178,509 178,509 178,509
Time Y Y Y Y Y Y
Firm Y Y Y Y Y Y

Notes: The table shows regressions of the log number of new products (log N) and of log quality-adjusted new products
(Log qN) in a firm over time as a function of log number of patents. Our benchmark quality measure is defined in Section
3.2.1. Patents is the log number of any patent applications in firm × year; Patents granted is the log number of granted patent
applications; and Patents non-granted is the log number of patent applications that have not been granted (abandoned or
pending). Standard errors robust against heteroskedasticity and serial correlation are reported in parentheses.
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Table A5: Product Innovation and Product & Process-Related Patents

Log N Log qN
(1) (2) (3) (4)

Product patents(t-1) 0.0402*** 0.0185***
(0.009) (0.005)

Process patents(t-1) 0.0092 0.0030
(0.016) (0.009)

Observations 409,510 409,510 409,510 409,510
R-squared 0.692 0.692 0.623 0.623
Time-Category Y Y Y Y
Firm-Category Y Y Y Y

Notes: The table shows regressions of the log number of new products (log N) and the log quality-adjusted new products
(Log qN) in a firm×category over time as a function of proxies for product-related and process-related patents. Our benchmark
quality measure is defined in Section 3.2.1. Product patents is the log number of product-related patents, while Process patents
is the log number of process-related patents. Proxies for product-related and process-related patents are defined in Section
B.2. The inverse hyperbolic sine transformation is used for logs.
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Table A6: Patenting and Sales: Role of Price and Quantities

Panel A- Prices
Log Prices (t) Log Prices (t)

All Small Large All Small Large
Log P(t-1) 0.017** 0.010 0.031*** 0.018** 0.009 0.031***

(0.007) (0.030) (0.009) (0.007) (0.030) (0.009)
Log N(t) 0.017*** 0.024*** 0.005***

(0.001) (0.004) (0.002)
Log qN(t) 0.021*** 0.035*** -0.002

(0.003) (0.009) (0.003)
Observations 520,875 84,041 109,203 520,875 84,041 109,203
R-squared 0.919 0.935 0.951 0.919 0.935 0.951
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Panel B- Quantities

Log Quantity (t) Log Quantity (t)
All Small Large All Small Large

Log P(t-1) 0.504*** 0.167* 0.345*** 0.515*** 0.159 0.376***
(0.033) (0.098) (0.040) (0.033) (0.098) (0.040)

Log N(t) 0.286*** 0.155*** 0.366***
(0.005) (0.013) (0.007)

Log qN(t) 0.268*** 0.179*** 0.393***
(0.012) (0.028) (0.014)

Observations 520,875 84,041 109,203 520,875 84,041 109,203
R-squared 0.765 0.788 0.759 0.764 0.788 0.755
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table presents estimated outcomes of log prices/quantities at the firm × product module level as a function of the
log number of patent applications by until time t − 1 and the log number of new products introduced at time t (or quality
adjusted new products), by size groups. We use prices and quantities at the product module level to have comparable units of
measurement. Patent and product innovation measures are defined at the product category level. For each firm × module, we
define size based on average sales over the sample period. “All” column uses data for all sizes. “Small” column is restricted to
the lowest size quintile. “Large” is restricted to the top size quintile. The inverse hyperbolic sine transformation is used for
logarithms.
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Figure A13: Product Innovation and Patenting: Dynamics of Other Outcomes
— Firm-level estimates (Match 1) —
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— Firm-category level estimates (Match 2) —
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Note: The figure plots the estimated coefficients after estimating equation log Yijt+k = βk logPijt + αij + γjt + uijt+k , k =
−4, ..., 0, ..., 4 for the log product introduction, N , in (a), quality-adjusted product introduction, qN , in (b), total number
of products, T , in (c) and (e), and yearly revenue in (d) and (f) on log number of patent applications. The top panel uses
firm-level data (Match 1), and the bottom panel uses firm-product category level data (Match 2). The inverse hyperbolic sine
transformation is used for logarithms. The vertical bands represent ±1.65× the st. error of each point estimate. Standard
errors are clustered at the firm × category level.
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Figure A14: Product Innovation Rate by Size: Alternative Quality Adjustments
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Notes: This figure plots the relationship between product innovation and size of the firm, defined by firm sales. We use our firm
× product category data set covering the period 2007–2015, restricting the analysis to observations with sales above $1,000.
For each firm × product category, we compute their average sales and quality-adjusted product entry rates (quality-adjusted
new products divided by total number of products) using our benchmark and three alternative quality measures – q1, q2, q3.
Within each product category, we assign firms to 50 size bins based on their average sales and we plot the average product
entry rate and the quality-adjusted product entry rate per bin. Each dot/triangle plots the averages after weighting different
product categories by their importance in the whole sector, as measured by their sales share.

Figure A15: Patenting and Firm Size
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Notes: This figure plots the relationship between patenting and firm size, defined by sales. We use our firm × product
category data set covering the period 2007–2015, restricting the analysis to observations with sales above $1,000. For each
firm × product category, we compute the probability of having filed a patent and the average number of patent applications
on file. Within each product category, we assign firms to 50 size bins based on their average sales, and we compute the average
probability and number of patents ×1000 (log) for each bin. Each dot/triangle plots averages after weighting different product
categories by their importance in the whole sector, as measured by their sales share.
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D Heterogeneity across Product Categories

In this section, we explore some of our main results for food and non-food product cate-
gories. Food categories include the Nielsen departments dry grocery, frozen foods, dairy,
deli, packaged meat, fresh produce, and alcoholic beverages. Non-food categories include
the departments health and beauty, non-food grocery, and general merchandise.

Table A7: Product Innovation and Patenting: Food and Non-Food Categories

Log N Log qN
(1) (2) (3) (4) (5) (6)

Panel 1 - Food
Patents(t-1) -0.0111 0.0070

(0.021) (0.013)
Patents granted(t-1) 0.0024 0.0109

(0.024) (0.015)
Patents non-granted(t-1) -0.0307 0.0059

(0.029) (0.018)
Observations 205,595 205,595 205,595 205,595 205,595 205,595
R-squared 0.650 0.650 0.650 0.617 0.617 0.617
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Panel 2 - Non-Food
Patents(t-1) 0.0413*** 0.0199***

(0.011) (0.006)
Patents granted(t-1) 0.0443*** 0.0210***

(0.011) (0.006)
Patents non-granted(t-1) 0.0175 0.0017

(0.016) (0.009)
Observations 104,117 104,117 104,117 104,117 104,117 104,117
R-squared 0.764 0.764 0.764 0.647 0.647 0.647
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table shows regressions of the log number of new products (log qN) and of log quality-adjusted new products (log
qN) in a firm × category over time as a function of the log number of patents. Our benchmark quality measure is defined
in Section 3.2.1. Patents is the log number of any patent applications in firm × category × year; Patents granted is the log
number of granted patent applications; and Patents non-granted is the log number of patent application that have not been
granted (abandoned or pending). The inverse hyperbolic sine transformation is used for logs. Standard errors robust against
heteroskedasticity and serial correlation are reported in parentheses.
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Figure A16: Main Summary Statistics for Food and Non-Food Product Cate-
gories
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Notes: The figure presents summary statistics for food and non-food product categories in Nielsen. Using Match 2, we compute
the average product introduction rate, quality-adjusted introduction rate, number of new products, and patent applications
at the firm × category level (patent statistics are winsorized at the top 5%). With these, we compute average product
introduction rate, quality-adjusted introduction rate, patents per new products and share of firms with patents at the product
category-level. The plot shows these statistics by aggregating them within food and non-food product category (weighting by
the total revenue of each product category).

Figure A17: Product Innovation and Patenting by Firm Size
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Notes: The figure shows coefficients of the log number of new products (log N) over time as a function of the log number
of patents. Patents is the log number of any patent applications in firm × category × year. The inverse hyperbolic sine
transformation is used for logs. Coefficients in blue include firms of all sizes. “Small” indicates coefficients of firms in the
lowest size quintile. “Large” indicates coefficients of firms in the top size quintile.
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E Robustness to Matching Algorithm

E.1 Statistics on the Matching Algorithm by Firm Size

Figure A18: Patent Text and Match Properties by Firm Size Percentile
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(a) Number of words in patent documents
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(b) Unique words in patent documents
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(c) Relative entropy of patent word dist.
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(d) Word diversity index of patent word dist.
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(e) Share of matched patents
Notes: The figure plots various text and match characteristics of patents held by firms in different size (sales) deciles. All size
deciles are constructed within product categories, except for panel (e) that is based on firm-level deciles. The first panels plot
means and medians of the average number of words (a), the number of unique words (b), the relative entropy between the
patent’s word distribution and the word distribution of all patents (c), and the Simpson’s diversity index of the patent’s word
distribution (d) of firms’ patents. Panel (e) looks at the share of matched patents in the firms’ whole patent portfolio (that is,
the number of patents from Match 2 divided by the number of patents from Match 1) for the sample of CPG-only firms (see
Section B.1 for the definition) for which the non-matches are less likely to be due to the firm’s operations outside the CPG
sector. Panel (f) plots the similarity scores of the matched patents.
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Figure A19: Share of Product-Related Patents by Firm Size Percentile
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Notes: This figure plots the shares of product-related patents held by firms across deciles of firm size, defined in terms of sales.
We classify patents into product-related patents based on the claims of patent documents (Appendix B.2).

E.2 Results with Alternative Matching

In this section, we present our main results under different specifications of our matching
algorithm. In our baseline specification, we classify product modules into 400 clusters,
which we refer to as product categories. We do so since we believe this partition strikes a
balance between aggregating very similar products while maximizing the difference between
products across categories. Nonetheless, in this section, we show that our main findings
are similar if we use the product classification scheme developed by Nielsen: 1,070 detailed
product modules aggregated into a set of 114 broad product groups.

We also present our main results using a higher matching similarity threshold. Recall
that patents with low text similarity are deemed unrelated to the product categories that
we consider. In our baseline specification, we restrict the set of potential categories for
each patent to the product categories whose similarity score exceeds 0.025. This section
shows that our main results hold if we use a higher similarity score of 0.05. As before,
the implication of this adjustment is that patents whose highest similarity is below that
threshold are more likely to be classified as “non-matched”.
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Table A8: Product Innovation and Patenting (using the Nielsen product group
aggregation)

Log N Log qN
(1) (2) (3) (4) (5) (6)

Patents(t-1) 0.0307*** 0.0173***
(0.010) (0.006)

Patents granted(t-1) 0.0366*** 0.0191***
(0.010) (0.006)

Patents non-granted(t-1) 0.0079 0.0025
(0.014) (0.008)

Observations 309,718 309,718 309,718 309,718 309,718 309,718
R-squared 0.710 0.710 0.710 0.631 0.631 0.631
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table shows regressions of the log number of new products (log qN) and of log quality-adjusted new products (log
qN) in a firm × category over time as a function of the log number of patents. Our benchmark quality measure is defined in
Section 3.2.1. The alternative innovation-quality measures (q1, q2, q3) produce consistent results. Patents is the log number
of any patent applications in firm × category × year; Patents granted is the log number of granted patent applications; and
Patents non-granted is the log number of patent application that have not been granted (abandoned or pending). The inverse
hyperbolic sine transformation is used for logs. Standard errors robust against heteroskedasticity and serial correlation are
reported in parentheses. We use an aggregation of modules into product groups as defined by Nielsen.

Table A9: Product Innovation and Patenting: by Size (using the Nielsen product
group aggregation)

Log N (t) Log qN (t)
All Small Large All Small Large

Log P(t-1) 0.031*** 0.033* 0.040*** 0.017*** 0.037*** 0.024***
(0.008) (0.020) (0.014) (0.004) (0.008) (0.008)

Observations 309,718 45,838 66,697 309,718 45,838 66,697
R-squared 0.710 0.468 0.755 0.631 0.419 0.689
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table shows regressions of the log number of new products (log qN) and of log quality-adjusted new products (log
qN) in a firm × category over time as a function of the log number of patents. P is the number of patent applications for a
firm × category × year. For each firm × product category, we define size based on the average sales over our sample period.
The “All” column shows data for all sizes. The “Small” column is restricted to the bottom size quintile. “Large” is restricted
to the top size quintile. The inverse hyperbolic sine transformation is used for logarithms. We use an aggregation of modules
into product groups as defined by Nielsen.
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Table A10: Patenting and Sales Growth (using the Nielsen product group ag-
gregation)

∆ Log Sales (t) ∆ Log Sales (t)
All Small Large All Small Large

Log P(t-1) 0.060*** 0.052 0.101*** 0.072*** 0.068 0.111***
(0.017) (0.085) (0.019) (0.017) (0.085) (0.019)

Log N(t) 0.259*** 0.329*** 0.146***
(0.003) (0.012) (0.004)

Log qN(t) 0.368*** 0.540*** 0.176***
(0.006) (0.029) (0.007)

Observations 227,183 31,070 51,191 227,183 31,070 51,191
R-squared 0.287 0.326 0.284 0.270 0.315 0.270
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table presents estimated outcomes of changes in log sales at the firm × category level as a function of the log
number of patents (P) and log number of new products (log qN) and log quality-adjusted new products (log qN), by size
groups. We use the firm × product category data set for the period 2007–2015, restricting the analysis to observations with
sales above $1,000. For each firm × product category, we define size based on average sales over the sample period. “All”
column uses data for all sizes. “Small” column is restricted to the lowest size quintile. “Large” is restricted to the top size
quintile. The inverse hyperbolic sine transformation is used for logarithms. We use an aggregation of modules into product
groups as defined by Nielsen.

Table A11: Product Innovation and Patenting (higher similarity threshold)

Log N Log qN
(1) (2) (3) (4) (5) (6)

Patents(t-1) 0.0391*** 0.0188***
(0.009) (0.005)

Patents granted(t-1) 0.0439*** 0.0199***
(0.010) (0.005)

Patents non-granted(t-1) 0.0208 0.0071
(0.014) (0.007)

Observations 409,434 409,434 409,434 409,434 409,434 409,434
R-squared 0.692 0.692 0.692 0.623 0.623 0.623
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table shows regressions of the log number of new products (log qN) and of log quality-adjusted new products (log
qN) in a firm × category over time as a function of the log number of patents. Our benchmark quality measure is defined in
Section 3.2.1. The alternative innovation-quality measures (q1, q2, q3) produce consistent results. Patents is the log number
of any patent applications in firm × category × year; Patents granted is the log number of granted patent applications; and
Patents non-granted is the log number of patent application that have not been granted (abandoned or pending). The inverse
hyperbolic sine transformation is used for logs. Standard errors robust against heteroskedasticity and serial correlation are
reported in parentheses. We restrict the set of potential categories for each patent to the product categories whose similarity
score exceeds 0.05.
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Table A12: Product Innovation and Patenting: by Size (higher similarity thresh-
old)

Log N (t) Log qN (t)
All Small Large All Small Large

log P(t-1) 0.039*** 0.062*** 0.027** 0.019*** 0.032*** 0.015**
(0.007) (0.019) (0.013) (0.003) (0.007) (0.007)

Observations 409,434 61,597 86,787 409,434 61,597 86,787
R-squared 0.692 0.461 0.742 0.623 0.407 0.686
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table shows regressions of the log number of new products (log qN) and of log quality-adjusted new products (log
qN) in a firm × category over time as a function of the log number of patents. P is the number of patent applications for a
firm × category × year. For each firm × product category, we define size based on the average sales over our sample period.
The “All” column shows data for all sizes. “Small” column is restricted to the bottom size quintile. “Large” is restricted to the
top size quintile. The inverse hyperbolic sine transformation is used for logarithms. We restrict the set of potential categories
for each patent to the product categories whose similarity score exceeds 0.05.

Table A13: Patenting and Sales Growth (higher similarity threshold)

∆ Log Sales (t) ∆ Log Sales (t)
All Small Large All Small Large

log P(t-1) 0.061*** -0.132* 0.089*** 0.073*** -0.146* 0.100***
(0.016) (0.080) (0.020) (0.016) (0.080) (0.020)

log N(t) 0.265*** 0.316*** 0.160***
(0.003) (0.011) (0.004)

log qN(t) 0.406*** 0.581*** 0.215***
(0.006) (0.029) (0.007)

Observations 296,320 40,666 65,680 296,320 40,666 65,680
R-squared 0.291 0.377 0.296 0.275 0.368 0.281
Time-Category Y Y Y Y Y Y
Firm-Category Y Y Y Y Y Y

Notes: The table presents estimated outcomes of changes in log sales at the firm × category level as a function of the log
number of patents (P) and log number of new products (log qN) and log quality-adjusted new products (log qN), by size
groups. We use the firm × product category data set for the period 2007–2015, restricting the analysis to observations with
sales above $1,000. For each firm × product category, we define size based on average sales over the sample period. “All”
column uses data for all sizes. “Small” column is restricted to the lowest size quintile. “Large” is restricted to the top size
quintile. “Leaders” is restricted to the top size decile. The inverse hyperbolic sine transformation is used for logarithms.
Standard errors robust against heteroskedasticity and serial correlation are reported in parentheses. We restrict the set of
potential categories for each patent to the product categories whose similarity score exceeds 0.05.
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