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Introduction (1) - Motivation

Figure 1: Mon. Policy, Micro-Macro uncertainty

1. Uncertainty rises in recessions :
Bloom et al. (2018), Bloom
(2014), Guvenen et al. (2014),
Shimer (2005)

2. Aggr. uncertainty interacts with
ZLB: Basu and Bundick (2016),
Basu and Bundick (2017),
Caggiano et al. (2017)

3. What about idiosyncratic risk at
the ZLB?

We are interested in
understanding this interaction...
via HANK-DSGE-model
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Introduction (2) - Literature (Model)

1. HANK: Kaplan et al. (2018), Achdou et al. (2022), Ahn et al. (2018), Auclert
et al. (2021), Auclert (2019), Bayer et al. (2019) ... Auclert et al. (2021)

2. ZLB: Eggertsson and Woodford (2003), Christiano et al. (2011), Eggertsson et al.
(2021)

3. HANK + ZLB: Eggertsson and Krugman (2012), Guerrieri and Lorenzoni (2017),
McKay et al. (2016), Benigno et al. (2020)...perfect foresight (PF)

4. HANK + ZLB + Aggregate Uncertainty: Fernández-Villaverde et al. (2021), Kase
et al. (2022), Schaab (2020)
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Introduction (3) - Contribution

Novel solution strategy for HANK models w/aggregate uncertainty (AU) and ZLB:

In practice: take standard HANK, add ZLB, add tractable AU, compare to PF

Solution allows to quantify interactions between AU-ZLB-HA

No ZLB ZLB

Perf. Fores. Agg. Unc. Perf. Fores. Agg. Unc.

Repr. Agent A A B C
Het. Agents A A D E

1. Quantify effect of aggregate uncertainty in HANK at the ZLB (E vs D)

2. Quantify effect of aggregate uncertainty in RANK at the ZLB (C vs B)

3. Decompose the role of HA in the amplification (E-D vs C-B)

3 / 33



Introduction (3) - Contribution

Novel solution strategy for HANK models w/aggregate uncertainty (AU) and ZLB:

In practice: take standard HANK, add ZLB, add tractable AU, compare to PF

Solution allows to quantify interactions between AU-ZLB-HA

No ZLB ZLB

Perf. Fores. Agg. Unc. Perf. Fores. Agg. Unc.

Repr. Agent A A B C
Het. Agents A A D E

1. Quantify effect of aggregate uncertainty in HANK at the ZLB (E vs D)

2. Quantify effect of aggregate uncertainty in RANK at the ZLB (C vs B)

3. Decompose the role of HA in the amplification (E-D vs C-B)

3 / 33



Introduction (3) - Contribution

Novel solution strategy for HANK models w/aggregate uncertainty (AU) and ZLB:

In practice: take standard HANK, add ZLB, add tractable AU, compare to PF

Solution allows to quantify interactions between AU-ZLB-HA

No ZLB ZLB

Perf. Fores. Agg. Unc. Perf. Fores. Agg. Unc.

Repr. Agent A A B C
Het. Agents A A D E

1. Quantify effect of aggregate uncertainty in HANK at the ZLB (E vs D)

2. Quantify effect of aggregate uncertainty in RANK at the ZLB (C vs B)

3. Decompose the role of HA in the amplification (E-D vs C-B)

3 / 33



Introduction (3) - Contribution

Novel solution strategy for HANK models w/aggregate uncertainty (AU) and ZLB:

In practice: take standard HANK, add ZLB, add tractable AU, compare to PF

Solution allows to quantify interactions between AU-ZLB-HA

No ZLB ZLB

Perf. Fores. Agg. Unc. Perf. Fores. Agg. Unc.

Repr. Agent A A B C
Het. Agents A A D E

1. Quantify effect of aggregate uncertainty in HANK at the ZLB (E vs D)

2. Quantify effect of aggregate uncertainty in RANK at the ZLB (C vs B)

3. Decompose the role of HA in the amplification (E-D vs C-B)

3 / 33



Introduction (3) - Contribution

Novel solution strategy for HANK models w/aggregate uncertainty (AU) and ZLB:

In practice: take standard HANK, add ZLB, add tractable AU, compare to PF

Solution allows to quantify interactions between AU-ZLB-HA

No ZLB ZLB

Perf. Fores. Agg. Unc. Perf. Fores. Agg. Unc.

Repr. Agent A A B C
Het. Agents A A D E

1. Quantify effect of aggregate uncertainty in HANK at the ZLB (E vs D)

2. Quantify effect of aggregate uncertainty in RANK at the ZLB (C vs B)

3. Decompose the role of HA in the amplification (E-D vs C-B)

3 / 33



Introduction (3.1) - Contribution Extra

Novel solution strategy...

but not limited to ZLB, can accomodate more general non-linearities (kinky PC,
aggregate borrowing constraints/financial accelerator, downward wage rigidity...)

4 / 33



Simple Model (1) - Description

Simple model to define ZLB-AU interactions

Infinitely lived households, standard consumption-savings decisions, CRRA
preferences, exogenous discount factor βt , rigid prices, Taylor rule

Idiosyncratic shock

c : constrained, no access to financial markets, earn zcYt

u: unconstrained, access to financial markets, earn zuYt

Yt
−σ =

βtRt

βRss
EtYt+1

−σ, (1)

Rt = max
{
R,RssYt

ϕ
}

(2)

Rss =
1

β

{
p
(
z−σ
u

)
+ (1− p)

[(
1−λzu
1−λ

)−σ
]}
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Simple Model (2) - Solution

Yt = f
(
EtY

−σ
t+1, βt

∣∣β, σ, ϕ,R,Rss

)
=


(
βt

β EtYt+1
−σ

)− 1
σ+ϕ

if βt ≤ β
(
Rss
R

)σ+ϕ
ϕ (

EtY
−σ
t+1

)−1(
βt

β
R
Rss

EtY
−σ
t+1

)− 1
σ

otherwise

, (3)

Higher future MU (or larger discount factor) leads to larger recession
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Simple Model (3) - Shocks

1. The economy is at steady state at t = 0.

2. Unexpected shock:

β0 = β
βt = β for any t > 1
AU) β1 = βL > β with probability µ, β1 = β otherwise
PF) β1 = βDET such that same effect absent ZLB (i.e. R = −∞)
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Simple Model (4) - Graphical Intuition

Figure 2: Equilibrium in the Simple Model
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Simple Model (5) - Results’ Intuitions

1. ZLB amplifies effect of shock because interest rate higher than it would have
been. True even with PF...

2. AU shock interacts with ZLB, implies further amplification, because of Jensen’s
inequality. True even with RA...

3. So what is the role of HA in this amplification?

in the steady state (closer to the ZLB in the steady state because of precautionary
savings - kink more to the left)
in the business cycle (lowers Rt towards ZLB because of precautionary savings and
MPCs - steeper slope)

9 / 33



Simple Model (5) - Results’ Intuitions

1. ZLB amplifies effect of shock because interest rate higher than it would have
been.

True even with PF...

2. AU shock interacts with ZLB, implies further amplification, because of Jensen’s
inequality. True even with RA...

3. So what is the role of HA in this amplification?

in the steady state (closer to the ZLB in the steady state because of precautionary
savings - kink more to the left)
in the business cycle (lowers Rt towards ZLB because of precautionary savings and
MPCs - steeper slope)

9 / 33



Simple Model (5) - Results’ Intuitions

1. ZLB amplifies effect of shock because interest rate higher than it would have
been. True even with PF...

2. AU shock interacts with ZLB, implies further amplification, because of Jensen’s
inequality. True even with RA...

3. So what is the role of HA in this amplification?

in the steady state (closer to the ZLB in the steady state because of precautionary
savings - kink more to the left)
in the business cycle (lowers Rt towards ZLB because of precautionary savings and
MPCs - steeper slope)

9 / 33



Simple Model (5) - Results’ Intuitions

1. ZLB amplifies effect of shock because interest rate higher than it would have
been. True even with PF...

2. AU shock interacts with ZLB, implies further amplification, because of Jensen’s
inequality.

True even with RA...

3. So what is the role of HA in this amplification?

in the steady state (closer to the ZLB in the steady state because of precautionary
savings - kink more to the left)
in the business cycle (lowers Rt towards ZLB because of precautionary savings and
MPCs - steeper slope)

9 / 33



Simple Model (5) - Results’ Intuitions

1. ZLB amplifies effect of shock because interest rate higher than it would have
been. True even with PF...

2. AU shock interacts with ZLB, implies further amplification, because of Jensen’s
inequality. True even with RA...

3. So what is the role of HA in this amplification?

in the steady state (closer to the ZLB in the steady state because of precautionary
savings - kink more to the left)
in the business cycle (lowers Rt towards ZLB because of precautionary savings and
MPCs - steeper slope)

9 / 33



Simple Model (5) - Results’ Intuitions

1. ZLB amplifies effect of shock because interest rate higher than it would have
been. True even with PF...

2. AU shock interacts with ZLB, implies further amplification, because of Jensen’s
inequality. True even with RA...

3. So what is the role of HA in this amplification?

in the steady state (closer to the ZLB in the steady state because of precautionary
savings - kink more to the left)
in the business cycle (lowers Rt towards ZLB because of precautionary savings and
MPCs - steeper slope)

9 / 33



Simple Model (5) - Results’ Intuitions

1. ZLB amplifies effect of shock because interest rate higher than it would have
been. True even with PF...

2. AU shock interacts with ZLB, implies further amplification, because of Jensen’s
inequality. True even with RA...

3. So what is the role of HA in this amplification?

in the steady state (closer to the ZLB in the steady state because of precautionary
savings - kink more to the left)
in the business cycle (lowers Rt towards ZLB because of precautionary savings and
MPCs - steeper slope)

9 / 33



HANK Model (1) - Overview

Standard one-asset HANK model (McKay et al. (2016), Guerrieri and Lorenzoni
(2017)):

Demand side (idiosyncratic risk, borrowing constraint)
New-Keynesian Phillips Curve
Supply of bonds from government
Taylor rule + ZLB
Preference shock

Calibration: standard parameter values + Great Recession
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HANK Model (2) - Households

Household i with assets ait−1 and shock zit maximizes:

Vt (zit , ait−1) = max
cit ,ait≥a

c1−σ
it

1− σ
+ βtEtVt+1 (zit+1, at)

subject to:

cit +
ait
Rt

=
ait−1

Πt
+ zit (Yt − tt)

zit ∼ a Markov chain following Q = P(zit+1|zit) (time invariant)
=⇒ earnings risk is acyclical

Aggregate Asset Demand

At =

∫
ga
t (z , a)dDt(z , a)
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HANK Model (3) - Rest of economy

New Keynesian Phillips Curve (from Rotemberg):(
Πt − Π

)
Πt = Etβt

(
Yt+1

Yt

)1−σ

×
(
Πt+1 − Π

)
Πt+1 + κ̃

[
Y ω+σ
t − 1

]
Government Budget and Fiscal Policy

Tt +
bt
Rt

=
bt−1

Πt
bt = b

Market Clearing

bt =

∫
ga
t (a, z) dDt (z , a)

Monetary Policy

Rt = max

{
1,R

(
Πt

Π

)ϕπ
(
Yt

Ȳ

)ϕY
}
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HANK Model (4) - Shock Structure

economy at steady state (t = −1)

time preference shock β materializes: β0 = βL

every period: probability 1− µ to revert (and a contingency realizes)

Compare to deterministic shock: βDET
t = E0βt

no restrictions on values, only on µ (must be the same).
13 / 33



HANK Model (4) - Shock Structure

βt =


β w.p. = 1, if βt−1 = β

β w.p. = 1-µ, if βt−1 = βL

βL w.p. = µ, if βt−1 = βL

βPF
t = µtβL +

(
1− µt

)
β (4)

13 / 33



HANK Model (5) - Calibration

Table 1: Calibration

Parameter Value Source Note

σ 1.5 Smets and Wouters (2007) EIS
β 0.9805 Calibrated Discount Factor
κ 0.01 Eggertsson et al. (2021) NKPC
Π 1.020.25 Standard Inflation target
ϕπ 1.5 Standard Monetary Policy
ϕy 0.125 Standard Monetary Policy
z Guerrieri and Lorenzoni (2017) Idiosyncratic Shocks
Q Guerrieri and Lorenzoni (2017) Idiosyncratic Shocks

µ 0.9 Eggertsson et al. (2021) Switching Probability
βL 0.993 Calibrated Shock

T 300 - Horizon Truncation
τmax 100 - Largest Contingency

14 / 33



HANK Model (6) - Challenges

Wealth distribution is state variable

affects the evolution of the economy
infinite-dimensional object =⇒ curse of dimensionality

Known solutions:

summarize distribution in few moments (Krusell and Smith, 1998)
aggregate economy behaves linearly (Reiter, 2009) (certainty equivalence)

ZLB introduces aggregate nonlinearity

potentially computationally burdensome
some solutions: Schaab (2020), Fernández-Villaverde et al. (2021), Kase et al.
(2022)

We instead solve the model in the space of sequences

shock structure =⇒ finite # of paths the economy can follow

15 / 33
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Solution Approach (2) - Notation and Terminology

Notation and terminology:
A contingency refers to the time τ when then shock switched back
as well to the aggregate equilibrium dynamics following such event.
xτt is the value of economic object x at time t under contingency τ ,
xt is the value of economic object x at time t, if the shock has not yet reverted.

Value functions become

Vt (zit , ait−1) = max
cit ,ait≥a

c1−σ
it

1− σ
+ βtEt

[
µVt+1 (zit+1, at) + (1− µ)V t+1

t+1 (zit+1, at)
]

V τ
t (zit , ait−1) = max

cit ,ait≥a

c1−σ
it

1− σ
+ βτ

t EtV
τ
t+1 (zit+1, at)

(linearized) NK Phillips curve becomes

Π̂t = β
[
µΠ̂t+1 + (1− µ)Π̂t+1

t+1

]
+ κŶt

Π̂τ
t = βΠ̂τ

t+1 + κŶ τ
t
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Solution Approach (3) - Equilibrium

Numerically, an equilibrium is represented by systems of equations

0 = FPF (Xτ ,Zτ ;Xτ−1,D
τ
τ ) (5)

0 = FTS(XTS ,ZTS ;VPF
1 ,XPF

1 ) (6)

where Xτ (Zτ ) contains all the aggregate variables (shocks) in contingency τ

XTS (ZTS) contains all the aggr. variables (shocks) on the ”uncertain” diagonal

VPF
1 ,XPF

1 contain all the ”forward looking” information relevant for the diagonal
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Solution Approach (4) - Algorithm Details

1. Guess path of state variable(s) on uncertain path

2. Solve the τmax PF paths

3. Given the value functions and forw. looking vars, solve the uncertain path*

4. Iterate until convergence

5. (optional) Use quasi-Newton method for higher order

19 / 33



Solution Approach (4) - Algorithm Details

1. Guess path of state variable(s) on uncertain path
2. Solve the τmax PF paths

0 = FPF (Xτ ,Zτ ;Xτ−1,D
τ
τ )

dXτ = FPF
X

−1
(
FPF
D dDτ

τ + FPF
Xτ−1

dXτ−1

)
FPF
D dDτ

τ ≈ FPF
(
XPF
ss |Dτ

τ ,Xss

)
︸ ︷︷ ︸

ya
ss
′(Λ′

ss)
t−τdDτ

τ

−FPF
(
XPF
ss |DssXss

)

use Sequence Space Jacobian + OccBin
collect value functions and forw. looking vars at first period of PFs
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Results (0) - Fixing ideas on what we are after

Measuring amplification due to uncertainty:

Aggregate Uncertainty vs Deterministic Counterfactual

Shocks with the same expected values from t = 0 perspective

IRF-AU: E0Yt − Y , weighted average of all contingencies. IRF-PF: Y PF
t − Ȳ

Amplification if
∣∣E0Yt − Y PF

t

∣∣ >> 0

Quantification with PDV:
∑∞

t=0 β
t
(
E0Yt − Y

)
vs

∑∞
t=0 β

t
(
Y PF
t − Y

)
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Results (1) - Uncertainty and Amplification

Figure 3: IRF - HANK - No ZLB

AU vs PF in HANK without the
ZLB

linear behavior to aggregate
shocks
E0Yt ≈ Y PF

t

certainty equivalence
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Results (2) - Uncertainty and Amplification

Figure 4: IRF - HANK - with ZLB

AU vs PF in HANK at the ZLB

certainty equivalence broken

E0Yt < Y PF
t

amplification in PDV: 2x

Uncertainty: ZLB binds for longer

On average, 10 quarters
vs. 4 quarters in PF
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Results (3) - Uncertainty and Amplification in RANK

Figure 5: IRF - RANK - without ZLB AU vs PF in RANK at the ZLB

Calibrate shocks such that:

RA economy exhibits same
response as HANK w/o ZLB
(Werning, 2015)

Xt(RANK ) = Xt(HANK )

X τ
t (RANK ) = X τ

t (HANK )

Introduce ZLB

Amplification in PDV: 1.6x
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Results (4) - Uncertainty and Amplification - Summary (Y)

No ZLB ZLB

Perf. Fores. Agg. Unc. Perf. Fores. Agg. Unc.

Repr. Agent A A B C C-B
Het. Agents A A D E E-D
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Results (4) - Uncertainty and Amplification - Summary (Y)

No ZLB ZLB

Perf. Fores. Agg. Unc. Perf. Fores. Agg. Unc.

Repr. Agent 100 100 102.3 166.7 64.4
Het. Agents 100 100 104.5 225 120.5
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Results (5) - Computing Time

Table 2: Running Times - Seconds

Specification Benchmark MNP
Step Time Max. Err. Time Max. Err.

Steady State 0.7 - 6 -
All Jacobians 4 - 179 -
Algorithm 1 - First-Order 20 0.5% 144 0.5%
Algorithm 1 - Exact only on TS 26 0.008% 216 0.002%
Algorithm 1 - Exact Equilibrium 116 0.00000006% 7735 0.00000002%

Matlab, ASUS laptop, 1.80Ghz processor, 16GB RAM, and 8 cores

MNP: Mendicino et al. (2021), richer income risk
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Results (6) - Shock Size

Figure 6: Effects on Impact as a function of shock size
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Results (7) - Decomposition of Consumption Demand

Define a consumption function:

CPF = CPF
(
XPF ,ZPF

)
(7)

CTS = CAU
(
XTS ,ZTS , {Xτ}τ

max

τ=1 , {Z
τ}τ

max

τ=1

)
(8)

CInterm = CPF
(
IRF

(
XTS ,ZTS , {Xτ}τ

max

τ=1 , {Z
τ}τ

max

τ=1

))
(9)

Which aggregate is driving the amplification? Y ,Π,R, t, β

Is uncertainty important per se? Feed IRF of AU in a deterministic world
(captures indirect effect via ”average” aggregates).
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Results (8) - Decomposition of Consumption Demand

Figure 7: Decomposition of discounted IRF - Consumption

What price is driving the amplification?
Feed average prices of AU, in a deterministic world
Aggregate income is largest driver.
Expected aggregate income does most of it.
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Other Applications (1) - Forward Guidance

One policy application: forward guidance

Central bank announces to keep rates at ZLB for q quarters on top of what
prescribed in main exercise

FG powerful when there is uncertainty (6 quarters can revert recession)
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Application (2) - Two Asset HANK

1. Households

illiquid physical capital
Calvo fairy for portfolio re-balancing

⇒ heterogeneous in income, wealth, and portfolio composition

2. Other Blocks

intermediate-goods producer - Cobb-Douglas production
Labor Union with adjustment costs (Wage Phillips Curve)
Capital production subject to adjustment cost
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Application (2.1) - Cyclical Income Risk
Deterministic Shock Stochastic Shock
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Application (2.2) - Earnings Risk

Earnings risk as in Mendicino et al. (2021):
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Conclusions

We study the interaction b/w aggregate uncertainty and household heterogeneity:

new methodology for HANK models with aggregate uncertainty and non-linearities
simulations suggest that interaction is strong at the ZLB, even with acyclical risk
quantify the interaction in a simple way, during GR (55% amplification)

Applications:

Forward Guidance
Two Asset HANK

Methodology can be used for many applications involving HA, AU, aggregate
non-linearities
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Results (5) - Uncertainty and Amplification - Summary (Π)

No ZLB ZLB (y/Pi)

Perf. Fores. Agg. Unc. Perf. Fores. Agg. Unc.

Repr. Agent 100 100 100.45 167.3
Het. Agents 100 100 101.9 227
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Solution Approach (3) - Heterogeneous Agents Block

Similar to Sequence-Space Jacobian. Heterogeneous block is represented by:

vt = vTS
(
vt+1, v

t+1
t+1,Xt

)
(10)

Dt+1
t+1 = Dt+1 = ΛTS

(
vt+1, v

t+1
t+1,Xt

)′
Dt (11)

Yt = yTS
(
vt+1, v

t+1
t+1,Xt

)′
Dt (12)

vτt = v
(
vτt+1,X

τ
t

)
(13)

Dτ
t+1 = Λ

(
vτt+1,X

τ
t

)′
Dτ
t (14)

Yτ
t = y

(
vτt+1,X

τ
t

)′
Dτ
t (15)
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Solution Approach (4) - Equilibrium

A competitive equilibrium is
Aggregate variables

▶ a sequence {Yt ,Πt ,Rt , bt , tt}τ
max−1

t=0 = {Xt}τ
max−1

t=0 = XTS

▶ τmax sequences
{
{Y τ

t ,Π
τ
t ,R

τ
t , b

τ
t , t

τ
t }τ+T

t=τ

}τmax

τ=1
=

{
{X τ

t }τ+T
t=τ

}τmax

τ=1
= {Xτ}τ

max

τ=1 ,

Individual agents objects (wealth distribution, value function)

▶ a sequence {Dt+1,Vt}τ
max−1

t=0

▶ τmax sequences
{
{Dτ

t ,V
τ
t }τ+T

t=τ

}τmax

τ=1

s.t. given exogenous processes {βt}τ
max

t=0 = ZTS and
{
{βτ

t }
τmax

t=0

}τmax

τ=1
= {Zτ}τ

max

τ=1,

aggregate equations hold, agents solve their maximization problem, and Dt = Dt
t
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Solution Approach (6) - Occasionally Binding

Occasionally binding constraints sub-algorithm

1. Consider dXTS = (FTS
X )−1

(
FTS
Z dZ+ FTS

X dXPF
1 + FTS

V dVPF
1

)
2. Guess periods in which the constraint binds, place them in an binary vector IZLB
3. Adjust the main matrix so that

dXTS = [(1− IZLB)× FTS
X + IZLB × F̃TS

X ]−1

[(1− IZLB)×
(
FTS
Z dZ+ FTS

X dXPF
1 + FTS

V dVPF
1

)
+ IZLB × (R − R)] (16)

where F̃TS
X substitutes the Taylor rule with Rt = R

Generate shadow rates by simply multiplying dXTS and FTS
X , is the guess is

correct, stop. Otherwise go to 2 and update IZLB .
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Solution Approach (7) - Others

We exploit:

fake news algorithm
expectations vector

We do not exploit:

DAG-part

New Jacobian ∂At
∂Ys

:

different µ
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Results (6) - Shock Size

Figure 8: Effects on Discounted IRF as a function of shock size
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