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Abstract

Automation can lower costs and democratize access to many consumer services, but
human discomfort with automation can pose barriers to technology adoption. We build a
structural model of psychological “algorithm aversion,” which features ongoing disutility of
dealing with an algorithm, pessimism about the algorithm’s ability, and uncertainty about
the algorithm’s performance; all three components can be assuaged by human interaction.
We estimate model parameters using unique data from a “hybrid” robo-advising service in
which portfolio management is automated, but clients are randomly matched with human
advisors who provide different standards of support. Algorithm aversion is mainly driven
by ongoing disutility and uncertainty, and human advice is especially important in retaining
investors in robo-advice during market downturns.
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Introduction

Technological automation has displaced human employment in a variety of tasks over the past few

decades (Acemoglu and Restrepo, 2019). More recently, automation has progressed to highly-skilled

tasks in industries such as financial advice, portfolio management, accountancy, and legal services.

In principle, automation could either substitute for or complement the skills of human experts

(Autor, 2015). In the setting of financial services, for example, financial advisors may be prone to

biases and misconduct (Egan, Matvos, and Seru, 2019). Cheaper, automated “robo-advisors” are a

potentially appealing substitute that may be able to lower costs and democratize access to high-quality

financial management and advice—services routinely delivered by humans and often accessible only to

the wealthy (Gomes, Haliassos, and Ramadorai, 2021; D’Acunto and Rossi, 2022). On the other hand,

trusted human experts might help in the widespread adoption of such automated solutions, especially if

consumers view automation with skepticism, uncertainty, or aversion. While such “algorithm aversion”

has been observed repeatedly, there is as yet little consensus about the psychological underpinnings

of this phenomenon (Burton, Stein, and Jensen, 2020).1

In this paper, we attempt to understand whether human experts can complement the automated

provision of services by assuaging ongoing discomfort with algorithmic solutions or by helping clients

learn about the quality of such solutions. We unpack the different psychological channels that underpin

algorithm aversion by developing a structural model which we combine with novel evidence from the

economically important field setting of robo-advising.2

The model can be described in general terms. Clients in the model enroll in an automated service

whose quality they do not perfectly observe, and they experience a fixed per-period cost/disutility

from interfacing with the service. They are matched randomly with human experts who can affect

both the prior mean and precision of their beliefs about the expected quality of the service; human

experts can also help to assuage ongoing disutility. Clients learn about the quality of the automated

service/algorithm from observing noisy realized performance and decide in each period whether to

1For example, psychology experiments have shown that people prefer inferior human forecasters to superior algorithmic
forecasters even after observing differences in performance (Dietvorst, Simmons, and Massey, 2015).

2Robo-advising is a uniquely useful venue to understand algorithm aversion because of its current scale and expected
growth—estimated at over $10 trillion under management over the next decade (see, e.g., Deloitte and Touche, “The
expansion of robo-advisory in wealth management,” 2016).
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stay in the service or quit.

We customize this broad framework to the specific robo-advice portfolio management setting by

adapting a standard dynamic portfolio choice framework (Campbell and Viceira, 1999). In the context

of robo-advising, the per-period disutility from investing in the robo-advisor can be interpreted as an

ongoing psychological cost associated with dealing with automated portfolio management. In addition,

the investor learns about quality, i.e., the expected return available from the service, from the return

stream, which we model as a generic risky asset paying a positive risk premium. As time evolves,

the investor updates her prior belief using Bayes rule applied to the sequence of returns generated by

the algorithm. This focus on learning creates similarities between our work and Timmermann (1993),

Brennan and Xia (2001), and Pástor and Veronesi (2003).

This model setup allows for three conceptually distinct sources of algorithm aversion: the ongoing

disutility of dealing with the robo-advisor, investors’ prior pessimism about expected returns generated

by the algorithm, and investors’ prior uncertainty about expected returns. All three facets of algorithm

aversion can be affected by human advice. In particular, depending on their type, human advisors

can mitigate the investor’s ongoing disutility, shift the investor’s prior expectations, and affect the

investor’s prior uncertainty. Through this effect on uncertainty, human advisors affect the investor’s

rate of learning about the algorithm’s ability to perform the complex task of portfolio optimization.

However, the human advisor cannot affect the “true” return distribution, which is in keeping with the

standard institutional features of robo-advising and the empirical setting to which we map our model.

These model features have two possible interpretations. First, different prior beliefs across dif-

ferent types of human advisors could themselves be the result of rational Bayesian updating. More

specifically, imagine that the investor starts with an initial (meta-)prior about the algorithm’s ability

to deliver high expected returns, and assume that a human advisor can convey credible information

to explain the true ability of the algorithm. In this case, the starting points of investors advised by

advisors with different characteristics can be thought of as investors’ updated beliefs conditional on

such information. Second, different prior beliefs can also arise in a behavioral model, in which human

advisors can use salesmanship and persuasion to move investors’ beliefs, even if they convey no hard

information (Gennaioli, Shleifer, and Vishny (2015)).
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In addition, it is worth highlighting that the value of (algorithmic) advice can be interpreted

more broadly. In our formal model, we define it chiefly in terms of the expected returns it generates.

In reality, there are many possible dimensions of value-added, for example, helping investors set

goals for retirement, or providing behavioral coaching and “financial peace of mind” (Pagliaro and

Utkus, 2019; Rossi and Utkus, 2019). Our model can be viewed as incorporating these benefits while

converting them into (equivalent) units of expected return. That said, we do provide some evidence

that uncertainty about returns is a dimension of algorithm aversion in the setting that we study.

Key outcomes in the model, such as investor retention in the robo-advising service and the fraction

of the portfolio delegated to the algorithm, vary with the type of human advice. In theory, variation

in these outcomes can therefore identify the effects of the “deep” model parameters that capture

the different components of algorithm aversion. In our empirical setting, to accurately estimate the

model’s parameters, we require that the advisor type is randomly assigned to the investor in the

sense that advisor type assignment is orthogonal to shocks to performance as well as to the investor’s

preferences.

The data on robo-advising that we employ come from Personal Advisor Services (PAS), a division

of Vanguard. The service it provides is “hybrid,” complementing algorithmic robo-advice with human

advisory input.3 In the service we analyze, the algorithm manages the investment portfolio, while the

human advisor interacts with investors to help them understand what the algorithm does and advises

them on additional auxiliary services such as cash flow, tax, and estate planning. The data provide

information on trades, positions, demographic characteristics, and investor-advisor interactions for a

large set of previously self-directed investors who participated in the robo-advisor between January

2014 and March 2018.

An ideal experiment for estimating algorithm aversion would randomly assign clients to identical

portfolios, managed either by a robo-advisor (“treatment”) or a traditional human advisor (“control”).

Our empirical setting contains exogenous variation that approximates this ideal experiment, and we

use it to back out the model parameters. More specifically, after eliciting investors’ characteristics (age,

income, investment horizon, and preferences), the robo-component of the robo-advisor (the algorithm)

3Hybrid robo-advisors allow investors differing levels of interaction with human financial advisors in addition to the
algorithmic solution, as opposed to “pure” robo-advisors which simply provide access to the algorithmic solution.
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formulates a financial plan and an associated investment portfolio. The sign-up process then requires

the investor to schedule an appointment with a human financial advisor who explains the financial

plan, completes onboarding, and provides ongoing support to investors. Critically, the assignment

of investors to advisors follows mechanical rules. This assignment is driven by workload balancing

imperatives rather than any assessment of advisor type. Once the current client “load” of a given

advisor is accounted for, we confirm that there is no empirical relationship between the historical

retention rate of clients assigned to a given advisor and the assignment of new clients to the advisor.

This quasi-random assignment allows us to use client retention rates to measure advisor type.

We can think of clients randomly assigned human advisors with low client retention as closer to

the “treatment” group in the ideal experiment, and clients randomly assigned a high-client-retention

advisor as closer to the “control” group. Leveraging this reasoning, we use the treatment effect of

random assignment to advisors of different types to draw inferences about the parameters of our

structural model of algorithm aversion. We are careful when we do so to avoid any mechanical

association by using a “leave-one-out” estimator of advisor type (see, e.g., Collinson et al. (2022)).

In reduced-form estimates, the data reveal that assignment to advisors of different types predicts

future client retention. Put differently, assignment to low-retention advisors predicts a greater likeli-

hood of exiting robo-advising than assignment to a high-retention advisor. In addition, we find that

human advice is particularly effective during periods of market turbulence when extreme signals of re-

turns hit investors. Indeed, high-retention advisors’ clients are less likely to quit robo-advising during

periods of market distress than low-retention advisors’ clients.

These observed differences allow us to identify the different dimensions of algorithm aversion. We

derive an estimation equation that maps these reduced-form estimates to the structural parameters of

the model. Interpreting our empirical findings through this lens, we derive several further economic

insights. First, the presence of a high-retention human advisor removes a large proportion of the

uncertainty component of algorithm aversion. Indeed, our estimates are consistent with a model in

which a high-retention human advisor removes over 90% of the effect of investors’ prior about the

expected returns generated by the algorithm.

We also find that high-retention human advisors reduce clients’ propensity to quit in benign mar-
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ket conditions by around 23%. In the model, this estimate can be the result of either the pessimism

dimension of algorithm aversion (high-retention human advisors correct pessimistic priors about ex-

pected performance), or the disutility dimension (a completely automated service imposes a greater

psychological burden on investors). To get a sense of the relative importance of these two effects, we

employ an auxiliary prediction of the model, namely, that the effect of advice conditional on market

performance should be weaker on experienced robo-advising clients, who have substantially converged

on their posterior beliefs about the ability of the automated service. We confirm that this holds in

the data, where experienced clients, regardless of their advisor type, react less to market turbulence.

This finding is consistent with experienced clients having less to learn about the algorithm’s ability to

deliver returns.

This finding leads us to a second economic insight. Having confirmed that experienced clients’

beliefs are close to convergence to the algorithm’s true ability, it is natural to argue that prior pessimism

should not be important for these clients’ decisions going forward. In models of learning, the weight

that investors place on their prior beliefs converges to zero as they become more experienced. We can

therefore extract a cleaner estimate of the disutility component of algorithm aversion by studying the

behavior of experienced clients. Repeating our baseline empirical estimation in a sample of experienced

clients, we find that high-retention human advisors still reduce the baseline propensity to quit by about

21%. While a more comprehensive structural estimation of model parameters would shed additional

light on the decomposition between the disutility and pessimism components of algorithm aversion,

our estimates using this strategy suggest that the disutility component is relatively more important.

Overall, our empirical work provides evidence that human experts are complementary to automated

services and that both disutility and uncertainty are the most salient dimensions of algorithm aversion

in this important empirical setting. While we do map the model’s parameters to our empirical work,

in this draft of the paper we do not engage in full-blown structural estimation of the parameters.

We intend to pursue this as the next natural step in our agenda and use such structurally-estimated

parameters to evaluate counterfactual mechanisms to better understand the most effective approach

to use human experts to complement the broader rollout of automated services.

Our work contributes to several strands of the finance and economics literatures. First, we con-

6



tribute to the literature on labor displacement and reinstatement in the face of automation (see,

for example, Autor (2015); Acemoglu and Restrepo (2019)). Second, we contribute to the growing

literature about the costs and benefits of dealing with algorithms and the digital revolution (see, for ex-

ample, Allcott, Gentzkow, and Song (2021); Niszczota and Kaszás (2020); Castelo, Bos, and Lehmann

(2019); Fuster et al. (2022)). Third, we contribute to the growing literature on robo-advising (see,

for example, D’Acunto, Prabhala, and Rossi (2019); Reher and Sun (2019); Rossi and Utkus (2019,

2020)). This literature is now beginning to explore the role of trust in robo-advice, linked to the

broader literature on the role of trust in financial institutions and stock market participation (see,

e.g., Guiso, Sapienza, and Zingales (2008)). Fourth, we contribute to the household finance literature,

which seeks ways to both incentivize households to participate in financial markets and do so in an

efficient, well-diversified manner (see, e.g., Campbell (2006); Guiso and Sodini (2013); Gomes, Halias-

sos, and Ramadorai (2021)). Fifth, our work is related to the more general literature on the quality of

financial advice (see, e.g., Linnainmaa et al. (2018); Egan, Matvos, and Seru (2019). In this setting,

our focus is primarily on the ability of advisers to assuage investors’ concerns about the algorithmic

solution.

The remainder of this paper is organized as follows. Section 1 presents the model and its testable

implications. Section 2 describes the institutional details of our empirical setting and the details of

our identification strategy. Section 3 contains our main empirical results, and Section 4 concludes.

1 Model

In this section, we describe a general conceptual framework that models the effects of human expertise

in an automated service. In the appendix, we show that this framework nests a model of automated

or “robo” investment advice as a special case. We then use the application to investment advice to

obtain structural estimates of the parameters governing the effects of human expertise.

1.1 Model Environment

We consider clients indexed by i = 1, . . . , I who use an automated service for up to T periods. Clients

interact with human experts/advisors indexed by j = 1, . . . , J . The automated service is described
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by a parameter θ ∈ R, which measures its average quality, and which is not observed by clients.

This assumption reflects the idea that automated professional services, such as robo-advice, can be

somewhat opaque and difficult for a layperson to assess.

Client i enrols in the service at an initial time 0, and matches randomly with one human expert j.

She quits at an endogenously chosen time δi, where δi ∈ {1, . . . , T} denotes the length of her enrolment

in discrete time. We assume that clients cannot re-enrol after quitting, and cannot switch between

human experts at any time.

The assigned human expert affects both the client’s utility from consuming the service and the

client’s beliefs about the quality parameter θ. Concretely, we assume client i, upon matching with advi-

sor j, enjoys utility uj (.), which we define rigorously below. The client believes that θ ∼ N
(
mj

0,
1

τ j0

)
,

where mj
0 denotes expected quality, and τ j0 denotes the precision/inverse variance of beliefs about

quality. The goal of this paper is to obtain structural estimates of the parameters
{
uj ,mj

0, τ
j
0

}
, which

govern the value-added of human expertise for different types of experts.

After forming prior beliefs about quality θ, clients can learn from the service’s realized out-

put/performance. At each date t ∈ {1, . . . , δi} at which client i is enrolled, she observes a measure of

output

yit = θ + uit, (1)

where uit ∼ N
(

0, 1
τy

)
is a random shock with precision/inverse variance τy. In the appendix, we show

that yit can be micro-founded in our setting as the excess return on the investment portfolio managed

by a robo-advisor, relative to the return on the client’s portfolio outside robo-advice.

At date t, the client updates her beliefs about θ by Bayes’ rule, using the history of output{
yi1, . . . , y

i
t

}
. After updating at date t, the client believes that θ ∼ N

(
mi,j
t ,

1

τ jt

)
. The precision of τ jt

beliefs after observing t outputs is simply τ jt = τ j0 + tτy. The client’s expectation mi,j
t satisfies the

Kalman filtering equation:

mi,j
t = mi,j

t−1 +
τy

τ jt−1 + τy

(
yit −m

i,j
t−1

)
. (2)

Notice that expectations depend both on the identity of the client i and that of her assigned expert

j. This is because different clients may experience different output, and different advisors may induce
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different prior beliefs that also lead to different posteriors.

We write clients’ preferences recursively. We let V j
t (m) denote the continuation value of a client

who is still enrolled at date t and has formed a current expectation mi,j
t = m of service quality.

Continuation values satisfy the Bellman equation

V j
t (m) = max

{
uj (m) + Êj

[
Vt+1

(
m′
)∣∣m] , 0} . (3)

The first term in this expression, uj (m), stands for the expected flow of utility for a client who matches

with expert j, has formed current expectations m, and uses the service for one period. We show in the

appendix that, in the context of automated portfolio choice, this utility function maps one-to-one to

the Sharpe ratio of the robo-advisor’s investment portfolio, as long as the client’s utility is logarithmic

in final wealth. The second term, Êj [Vt+1 (m′)|m], measures the client’s expected continuation value

if she remains enrolled until t+ 1, where m′ denotes next period’s expectation. The notation Êj [.] is

used to emphasize that the expectation is computed using the beliefs induced by expert j.

When deciding whether to quit at date t, the client compares the sum of flow utility and expected

continuation values to the utility she can obtain outside the service, which we normalize to zero.

Therefore, conditional on being enrolled at t and having formed expectations m, it is optimal to quit

with δi = t if and only if

uj (m) + Êj
[
Vt+1

(
m′
)∣∣m] ≤ 0. (4)

Accordingly, the continuation value defined in Equation (3) is equal to the maximum of the left-hand

side of Equation (4) and zero. Finally, after the terminal date T , clients do not use the service by

assumption, so that the continuation value at this point becomes V j
T (m) ≡ 0.

For our structural estimates, we introduce an implementation error which generates cross-sectional

heterogeneity between clients. We assume that clients correctly calculate their continuation values and

expectations m, but then act as if their expectations are m− ξit, where ξit ∼ N
(

0, 1
τξ

)
independently

across time and individuals, and where ξit is uncorrelated with all performance shocks uit. In this

specification, clients quit with δi = t if and only if

uj
(
m− ξit

)
+ Êj

[
Vt+1

(
m′
)∣∣m] ≤ 0. (5)
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We introduce the implementation error ξit because it allows us to generate cross-sectional variation

in quit rates conditional on performance. We find it convenient to measure ξit in the same units as

beliefs, and to think of it as a negative shock (i.e., a high ξit makes the client more likely to quit), but

neither of these choices is essential for our results.

This model yields particularly clear estimation equations in the three-period case where T = 2.

Having enrolled at time 0, and knowing that she will not continue using the service at time 2, the

client’s only decision is whether to quit at date 1. Substituting V j
2 ≡ 0 in Equation (5), we find that

the client quits at date 1 under the following condition:

uj
(
mi,j

1 − ξ
i
1

)
≤ 0 (6)

Let φj ≡
(
uj
)−1

(0) denote the critical value for expected quality that makes the client indifferent

between quitting and continuation at date 1. Intuitively, φj is the amount by which expected output

needs to exceed the client’s outside option to make continued enrolment worthwhile. This parameter

can be interpreted as a fixed cost/disutility of participation that clients perceive when matched with

expert j.

Substituting formi,j
1 from Equation (2), we can now rearrange Equation (6) to obtain the equivalent

condition for optimal quitting at date 1:

φj − τ j0
τ j0 + τy

mj
0︸ ︷︷ ︸

Baseline quit rate

− τy

τ j0 + τy︸ ︷︷ ︸
Sensitivity

yi1 + ξi1 ≥ 0 (7)

The first two terms on the left-hand side of (7) capture the client’s propensity to quit for a given shock

ξit. The first term can be interpreted as a client’s baseline propensity to quit when matched with advisor

j. This propensity is high when the fixed cost parameter φj is large or when the prior expectation mj
0

is small (we later discuss how to separately identify these two subcomponents). Moreover, the weight

on prior expectations is large when the precision τ j0 of prior beliefs is large relative to the precision

τy of the signal contained in realized performance. Intuitively, Bayesian clients put a lot of weight on

their prior beliefs if they are either very confident in their prior, or if performance is a noisy signal.
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The second term in (7) measures the client’s response to realized performance yi1. The sensitivity

to performance is one minus the weight placed on prior beliefs. Therefore, as is standard in models

with learning, the client reacts more strongly to performance when she is either uncertain a priori or

if performance is a precise signal.

1.2 Empirical Estimation

In principle, one can estimate the baseline quit rate and sensitivity components in Equation (7) using

a standard econometric discrete choice model, such as a linear probability model if the distribution

of ξi1 is uniform, or a logistic regression model if it is a logistic/extreme value distribution. In such

an econometric model, a dummy variable for quits would be the dependent variable, the baseline quit

rate would appear as the constant term, and the sensitivity would appear as the coefficient on recent

performance as an explanatory variable.

A challenge in this approach is that these coefficients in equation (7) depend on the identity j of

the human expert that clients are assigned to. In principle, one could estimate the equation separately

for each human expert in the data, but that approach does not yield reasonable results unless every

advisor has a long history of clients, which is not the case in our data.

We therefore pursue the alternative strategy of grouping human experts into two types, which we

label as high retention (H) and low retention (L) types. Empirically, as we describe in detail in the

next section, we infer these types from each expert’s historical performance, which we measure as

the fraction of clients they are able to retain. We write
{
φH ,mH

0 , τ
H
0

}
for the preference and belief

parameters induced by a high type, and
{
φL,mL

0 , τ
L
0

}
for a low type. We then infer these parameters

by estimating Equation (7) separately for clients advised by high and low type experts in our data or,

equivalently, by running regressions that have expert type, performance, and the interaction between

the expert type and performance as explanatory variables.

This empirical approach requires us to make several assumptions/caveats. First, we must assume

that assignment of clients i to human experts j in the data is independent of shocks
{
ξit, u

i
t

}
. For

example, if clients with favorable performance or preference shocks were systematically assigned to

high type experts, we would estimate spuriously low baseline quit rates for that type. Empirically, it
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therefore becomes important to check that assignment to different experts is not systematically related

to subsequent performance, nor to clients’ other observable characteristics.

Second, since we use the same data to infer advisors’ types and estimate the parameters associated

with each type, we must be wary of mechanical relationships. Such relationships can arise, for example,

if one uses the fact that client i never quit the service as an indicator that her advisor j is a high

type, and then ran a regression of quit dummies on advisor types in a sample containing i. To avoid

this issue, we use leave-one-out estimators throughout our analysis below, which we describe in detail

after outlining the empirical setting.

2 Institutional Setting and Data

We use data from a large US-based hybrid robo-advisor called Personal Advisor Services (PAS), a

division of Vanguard, to estimate algorithmic aversion. The service is “hybrid” as it complements

algorithmic robo-advice with human advisory input. More broadly, robo-advisors are commonly clas-

sified as either pure or hybrid robo-advisors. Pure robo-advisors do not feature any substantive inter-

actions between investors and human financial advisors, whereas hybrid robo-advisors allow investors

differing levels of interaction with human financial advisors. In our setting, the algorithm manages the

investment portfolio, while the human advisor interacts with investors to help them understand what

the algorithm does and advises them on additional auxiliary services, such as opening IRA accounts

and estate planning.

2.1 Characteristics of Robo-advised Investors

Our data contains information on trades, positions, demographic characteristics, and investor-human

advisor mappings for previously self-directed investors who signed up for the robo-advisor service.

The trade data include all trades placed by the robo-advisor over the period January 2014 through

March 2018. The position data contain associated monthly holdings observations, i.e., the data track

both investments and trades. The data also track the dates on which investors initiated, enrolled,

implemented, and quit the advice service. The demographic characteristics include investor age,

gender, and tenure with the asset manager. The investor-advisor mapping data track the dates,
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times, length, and the initiator (advisor or investor) of all advisor-investor interactions, including

meetings and phone calls.

Table 1 reports summary statistics (mean, standard deviation, and percentiles of the distribution)

of different variables characterizing robo-advised investors in the sample recorded 12 months after

investors signed up for the service. Panel A focuses on investors’ demographic characteristics. The

average investor is 64 years old, 60% of the users are male, and the average investor has had an account

with the asset manager for almost 14 years. The robo-advised population comprises older, wealthier

investors who are more gender-balanced than datasets commonly used to study trading behavior.

In contrast with the demographics in these data, the average investor age is 51 in the brokerage

trading data employed by both Gargano and Rossi (2017) and Barber and Odean (2001), and women

constitute lower fractions in those datasets, with 27% in Gargano and Rossi (2017) and 21% in Barber

and Odean (2001).

Table 1 Panel B shows details of investors’ portfolio allocations. The average investor has $758,378

invested with the robo-advisor, which is substantial and more than 50% larger than the median

($478,929), reflecting significant right-skewness. There are 8 assets on average in each account, com-

prising mutual funds, stocks, bonds, and ETFs, with the bulk of the investors being invested in only

six assets and only 25% of the investors having more than 9 assets in their portfolio. This reflects

the different “glide paths” to which investors are assigned by the algorithm; we discuss this in greater

detail below. Almost all of the investors’ wealth (97.4%) is invested in Vanguard-affiliated products

(mostly indexed mutual funds).

Table 1 Panel C shows that 95% of investors’ wealth is in mutual funds, followed by cash (2%),

individual stocks (1.4%) and ETFs (0.8%). Only a negligible number of investors have direct exposure

to corporate bonds and options (not reported).

Given that the majority of investors’ wealth is in mutual funds, in Panel D, we analyze the

characteristics of the mutual funds held. The first row shows that 83% of mutual fund holdings are

in indexed mutual funds. The average management fee across all mutual fund holdings is 7 bp. The

expense ratios are also low, on average 9 bp with a median of 8 bp. Finally, the average turnover ratio

of the mutual funds in the portfolio is 27%.
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2.2 Robo-advisor Characteristics and Returns of Advised Clients

Over the sample period, the robo-advisor classifies investors into five risk glide paths based on their

financial objectives, investment horizons, and demographic characteristics. Although confidentiality

prohibits disclosing the details of the algorithm that generates the investors’ portfolio allocations,

we report facts that help to explain broad features of the allocations and the performance of the

robo-advised portfolios.

We compute average annualized monthly portfolio returns for all PAS investors. PAS investors

can be categorized into two tiers based on their investment commitment. Higher-tier investors have a

dedicated investment advisor, while lower-tier investors receive support from a pool of human advisors.

(Section 2.4 describes the (quasi-random) process of assignment of the dedicated human advisors to

higher-tier clients; lower-tier investors receive support based on scheduling/availability from the pool).

For the purposes of these summary statistics, we co-mingle the two groups because their investment

performance is virtually identical. For comparison, we also compute the average returns for non-robo-

advised clients in Vanguard who interacted with PAS at some point. This includes the returns of

clients who later signed up for PAS and those who did not subsequently sign up after considering the

service.

We show the cross-sectional distributions of both sets of average returns in Figure 1(a), with the

average returns of robo-advised investors in blue and those of self-directed investors in red. The plot

shows that robo-advised investors have higher mean returns than non-robo-advised investors, i.e., the

blue distribution is shifted to the right relative to the red distribution.4

There is considerable cross-sectional dispersion in both distributions and no visible reduction in

the variance of the average returns of robo-advised investors, which range from 0% to 20% per year.

However, the substantially greater mean creates a clear increase in Sharpe ratios for robo-advised

investors. In terms of our theoretical model in the previous section, this increase corresponds to the

case where the true expected return θ achieved by the algorithm, defined as an excess return above

clients’ outside option, is above zero, which is an important assumption in our structural analysis.5

4The red distribution exhibits prominent bunching at zero as some self-directed investors have the entirety of their
portfolio in cash.

5Our model is technically well-defined even in the case where true quality is θ < 0, and investors may choose to
participate in the service if their prior expectations about θ are (wrongly) optimistic. However, this case also implies
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To better understand the sources of variation in the returns of robo-advised investors, we conduct

the following three-step procedure. In the first step, following Balasubramaniam et al. (2022), we

compute principal components (PCs) of the equity share of 1,700 investors for which we have 36

continuous months of robo-advised returns. The first PC explains 46% of the variation in equity

shares, and the first five PCs explain 81% of this variation. These results are the first indication of a

pronounced factor structure in the robo-advisor portfolio allocations, arising from the small number

of glide-paths to which investors are assigned. In the second step, we regress the time series of the

equity share for each of the 55,000 investors in our data on the first five PCs estimated in the first

step. Finally, in the third step, we cluster investors’ loadings in five groups using a k-nearest neighbors

estimation procedure. We find that 82.37% of the investors are classified in the first group, followed

by the second and third groups with 13.51% and 3.37% of the investors, respectively. Finally, the last

two groups contain less than 1% of the advised investors. All in all, these results suggest that, while

5 risk glide paths exist, the majority of investors end up on two glide paths over our sample period.

We complement this simple analysis of equity shares by regressing monthly investor total portfolio

returns on the market portfolio, investors’ equity share, and the interaction of these two variables.

This regression has an R2 of over 75%, highlighting that the equity-bond allocation decision and the

variation in aggregate equity returns together explain the major share of variation in returns seen in

the data. We report realized monthly returns against the predicted returns from this regression in a

binned scatterplot, Figure 1(b), which shows that the two quantities line up very closely along the 45◦

line.

Given the robo-advising glide paths, the cross-sectional variation seen in the equity share and

returns is likely an outcome of investors’ preferences and demographic characteristics, which the al-

gorithm translates into different portfolio allocations. While we do not have information regarding

investors’ risk preferences, we do have investors’ age. We, therefore, regress monthly client returns

on the market portfolio, investors’ age, and their interaction. This regression has an R2 of over 71%,

which is very close to the R2 obtained using equity shares. The corresponding binned scatterplot of

realized vs. fitted returns reported in Figure 1(c) suggests that any risk preference variation over and

that, as investors obtain more information about the true θ, 100% of investors will eventually quit robo-advice. For
this reason, the case with θ > 0 is more interesting, and indeed appropriate for the empirical setting in which a large
proportion of clients do not quit.
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above that which is correlated with age likely plays a minor role in determining the portfolio allocation

implemented by the algorithm.

Figure 1(d) provides a different perspective. The black line shows the distribution of cross-

sectionally demeaned average returns on all robo-advised portfolios. The red and blue solid lines

show the residuals from regressions on the market and equity share, and the market and age, re-

spectively. The substantial reduction in the variance of the distribution of these residuals shows that

equity share and age explain a majority of the variation in average portfolio returns, which means

that performance is in large part homogenous for investors with similar demographic characteristics.

Figure 1(d) also shows dashed red and dashed blue distributions, which include advisor fixed

effects into the regressions of performance on equity share and age, respectively. If advisors were

instrumental in affecting the portfolio allocations recommended by the algorithm, we would expect

these two distributions to have a smaller variance than the corresponding solid distributions of residuals

from models that do not include advisor fixed effects. Instead, we find that the dashed blue and

red distributions are virtually identical to the respective solid distributions, suggesting that human

advisors play virtually no role in affecting investors’ portfolio allocation. In the remainder of the

paper, we use human advisor-client interactions to assess the degree to which human advisors are

complementary to the automated portfolio strategy. Along with the random assignment of human

advisors to clients, Figure 1(d) provides evidence that this complementarity in the data arises from

sources other than human advisors directly affecting portfolio strategy, aiding parameter estimation

from the structural model.

2.3 Measuring Advisor Type

We seek to understand how humans are complementary to automated solutions in this setting. Mea-

suring human financial advisor type is challenging for a number of reasons. First, success in this

setting is likely the combination of many different but complementary traits, including client-specific

assessments of advisor communication and relationship-management skills. Second, the skills needed

to be a successful “plain vanilla” financial advisor may be different from those needed as a hybrid

robo-financial advisor, so it is difficult to rely on “standard” personality assessments or financial com-
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petence scores in this novel setting. Third, an important determinant of customer satisfaction in the

financial domain is portfolio performance, which is controlled by the robo-advising algorithm rather

than human advisors, so using performance-related measures to measure advisor type—a common

strategy in financial economics—is not appropriate in this setting.

We, therefore, rely on revealed preference and measure advisor type using advisor-client-specific

average retention rates. More specifically, we construct a measure of advisor retention for each investor

using a leave-out estimator. For each client, we compute the average client retention of the human

advisor they are assigned to using all clients assigned to the advisor except for the client in question.

That is, the retention-rate of advisor j applied to investor i is the ratio between all clients of the

advisor who remain with robo-advice over the full sample, and the total number of clients assigned to

advisor j, excluding investor i. In our main specifications, in case investor i quits, we also exclude the

period in which they quit, to eliminate any potential bias arising from contemporaneous correlation

in quits across investors assigned to the same advisor. We then discretize the retention measure,

categorizing advisors as type-1 (high retention) or type-0 (low retention) using the median retention

rate as the breakpoint.

In our empirical work in this draft, we use advisor-specific client retention to measure advisors’

type, without taking a stance on specific skills that increase retention. In the model, we map type-1

advisors to the three dimensions defined in the previous section: fixed-cost/disutility associated with

ongoing participation, prior expectations of performance (which we term pessimism), or uncertainty

about the automated solution (which appears in sensitivity to performance in equation (7)).

2.4 Assignment of New Investors to Advisors

During the sample period, the robo-advisor assignment and onboarding process began by eliciting

investors’ characteristics (age, income, wealth, investment horizon, and preferences). Using this infor-

mation, the robo-component of the robo-advisor (i.e., the algorithm) formulated a financial plan and

an associated investment portfolio. The sign-up process then required the investor to schedule a time

to meet with a human financial advisor who explained the financial plan and completed onboarding.

The assignment of clients to advisors was quasi-random. Advisors were assigned based on the
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match between a prospective client’s availability for an initial onboarding call and the availability

of advisors in the system. Advisor availability was driven by the need to balance workload across

advisors (i.e., driven by advisor capacity) rather than any assessment of advisor type (i.e., advisor

skills, characteristics, or ability to retain clients). Put differently, the assignment of new clients to

advisors during the sample period was random with respect to advisor type, depending on advisors’

capacity and availability but not their skills or characteristics.

To verify random assignment, Table 2 shows the main attributes of investors assigned to high- and

low-attrition advisors the month before they sign up for PAS. The rows are separated into different

sets of covariates: 1) demographic characteristics of the investors, such as age, gender, and the tenure

of investors with Vanguard before signing up for the robo-advisory service; 2) portfolio-related charac-

teristics, such as the total assets at Vanguard, the number of assets, and the percentage of Vanguard

products (mutual funds and ETFs) in investors’ portfolios; 3) investors’ asset allocation characteris-

tics, such as the percentage of assets in mutual funds, cash, ETFs, individual stocks and bonds at

the time of sign up; 4) characteristics of the mutual funds held by the investors, such as degree of

indexation, fees charged, expense ratios and turnover ratios; and 5) investment performance measures,

such as the average annualized monthly returns realized by the investors before signing up for PAS

as well as the month-by-month cross-sectionally demeaned version that controls for time-variation in

returns.

Across all characteristics, the covariates are balanced in that investors assigned to high- and low-

attrition advisors are similar in their portfolio sizes, portfolio allocation across asset classes, the types

of mutual funds they invest in, and their returns before signing up for the service. The only covariates

where we detect statistical differences are age, gender dummies, and tenure at Vanguard before signing

up. For example, the average age of those assigned to high-retention advisors is 64.5, while it equals

65.6 for those assigned to low-retention advisors. In all cases, however, even when the differences are

statistically significant, they are economically small.

Figure 2 shows the relationship between advisor load, advisor leave-out retention, and the assign-

ment of clients to advisors. For each advisor, we compute the number of clients they advise at the

beginning of each month and sort advisors into quintiles based on their current workload. Figure 2 (a)
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shows the net increase in the number of clients allocated to advisors in each group on average every

month, computed as the number of investors allocated to each advisor minus the number of investors

lost by each advisor every month due to attrition, together with 95% confidence intervals. The plot

shows that there is a ramp up in the rate of net additions from the first up to the third quintile of

current capacity and a decline from then to the fifth quintile as advisors reach full capacity. The top

group of advisors that are close to full capacity has monthly net average growth that is not statistically

different from zero. Figure 2 (b) repeats the analysis sorted using deciles of current capacity instead

of quintiles, with qualitatively similar results.

To estimate the parameters of the model, we need the assignment of clients to advisors to be

independent of performance and preference shocks. Table 2 demonstrates that client characteristics

are balanced across advisor types. Figures 2 (c) and (d) plot client assignment rates to advisors

of different types. These figures show gross additions to advisors (i.e., ignoring attrition) and split

advisors into high- and low-retention, conditional on current capacity ((c) splits into quintiles of current

capacity and (d) deciles). Except for the very first group in both plots, where we find an economically

small difference in the assignment rates to high-retention advisors (in blue) and low-retention advisors

(in red), all other capacity groups show no differential in rates of assignment to advisors with different

retention rates.6

3 Empirical Estimates

The random assignment of advisors to clients allows us to estimate the causal effect of human advisors

of different types on retaining investors in the robo-advice service.

3.1 Cross-sectional Variation in Advisor Retention

Figure 3 (a) shows a histogram of the (leave-one-out estimated) advisor retention measures, scaled in

such a way that the highest leave-out retention estimates in the data are set to 100. The figure shows

substantial cross-advisor dispersion in the retention measure. Super-imposed on the histogram in red

is a non-parametric (lowess) estimate of the retention rate of clients who are randomly assigned to

6We later eliminate the lowest current capacity group in our results to check robustness. We note that with ten
deciles, finding one statistically significant difference is consistent with a 10% rate of significance.
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advisors of different quality, measured by their scaled leave-one-out retention rates. The plot shows

a clear near-linear relationship between the retention rate of clients that are randomly assigned to

advisors and the quality of these advisors.7 One possible concern with Figure 3 (a) is that quality

may be mismeasured because of outliers caused by small base effects—i.e., advisors who never got to

manage a large set of clients. Figure 3 (b) therefore removes advisors in the bottom decile of clients

under management throughout the sample period; and shows that the picture is virtually unchanged.

3.2 Non-Parametric Survival Estimates

We next estimate Kaplan-Meier survival functions for clients assigned to type-1 and type-0 advisors:

Ŝ(t) = Πi:ti≤t

(
1− di

ni

)
, (8)

where ti is a time when at least one investor quits robo-advice, di is the number of clients quitting

robo-advice at time t, and ni is the number of individuals that stayed with robo-advice (i.e., neither

quit nor censored) up to time ti.

Figure 4 (a) shows the Kaplan-Meier survival functions computed using all advisors in the data.

The blue lines (and associated 95% confidence intervals) show survival rates for clients that are assigned

to type-1 advisors, and the red lines show survival rates for investors assigned to type-0 advisors. The

figure shows that 96.2% of investors in the type-1 advisor group and 95.5% of investors in the type-0

advisor group stay with robo-advising at the one-year mark. These survival estimates diverge further

for the two groups over time—at the three-year mark, 90.6% of the investors assigned to type-1 advisors

are still with robo-advice. The corresponding value for type-0 advisors is 86.8%.

Figure 2 shows that high- and low-retention advisors are assigned very similar numbers of clients,

depending on their current load. The only exception is the bottom decile—the advisors with the

lightest load—where high-retention advisors are assigned more investors: 1.5 on average per month

versus 0.8. To ensure these advisors do not drive the results Figure 4 (b) reports survival estimates

that exclude this bottom decile; the results are virtually identical.

As an alternative, we estimate a Cox proportional hazard model for attrition from the robo-advising

7This figure is similar to Figure 5 in Collinson et al. (2022) who use a judge stringency instrument.
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service. Figure 4 (c) first plots the smoothed hazards to check if we satisfy the assumptions required

for the Cox model, and shows that they are parallel, with greater proportional hazards for investors

assigned to type-0 advisors. For this group of investors, the hazard estimates (red line and confidence

interval) increase and peak at 6% at the one-year mark, only to decline and reach their bottom of

2.8% at the three-year mark. The blue line (and confidence interval) shows hazard estimates for those

assigned to type-1 advisors, which follow similar dynamics at lower levels: the hazard estimates peak

at 4.2% at the one-year mark, declining and bottoming out at 1.9% in year three. The results in Figure

4 (d) that exclude the advisors in the bottom decile of capacity deliver virtually identical results.

We then estimate a Cox proportional-hazard model of the following form on the full set of advisors:

h(t|xj) = h0(t) · exp(xjβ),

where we estimate the model using a “type-1” dummy as the only regressor. The coefficient estimate

β = −0.293, implying that the ratio of the hazard between those clients assigned to type-0 and type-1

advisors is exp(−0.293) = 0.746. In other words, those assigned to type-1 human advisors have a

25.4% lower hazard than those assigned to type-0 human advisors.

We also use advisor retention as a continuous variable in a robustness exercise. Using this specifi-

cation, we obtain a highly statistically significant coefficient β = −0.045. Economically, the estimate

implies that the hazard ratio between those with a higher-retention advisor (a 1% higher retention

rate) and a lower-retention advisor is exp(−0.045) = 0.956. These estimates confirm the causal impact

of human advisor type on investor participation in robo-advising.

3.3 Estimating the Effect of Human Advice Across Market Conditions

In the model, advisor quality can affect the rate at which clients learn about the automated service

from realizations of performance. To check for this channel in the data, we evaluate how client quit

rates vary with market conditions and advisor type. To do so, we estimate regressions of the following
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form at the monthly frequency:

Dummy quiti,t = α+ β I{MKT RETt−1<0} + γ I{Type1 Advisori=1}

+ δ I{MKT RETt−1<0} × I{Type1 Advisori=1} + εi,t, (9)

where Dummy quiti,t is equal to 1 if investor i quits robo-advising in month t and 0 otherwise,

I{MKT RETt−1<0} is an indicator variable equal to 1 if the market return is negative in month t−1 and

0 otherwise, and I{Type1 Advisori=1} is equal to 1 if investor i is assigned to an advisor with retention

above the median and 0 otherwise.

In equation (9), α measures investors’ unconditional monthly quit probability, β estimates the

conditional increase in attrition from robo-advice in periods in which the market has performed poorly,

γ measures the differential quit rate associated with clients assigned to type-1 advisors, and δ measures

the extent to which the differential quit rate across clients assigned to type-1 and type-0 advisors varies

with market conditions.

Table 3 reports estimates of this equation, where all coefficient estimates are multiplied by 100 to

express magnitudes in percentage points. In the first column, returns on the CRSP value-weighted

index are used to capture variation in client portfolio performance. The α coefficient in this column

reveals an unconditional 0.369% quit probability per month, roughly translating to an annual attrition

rate of 0.369% × 12=4.43%, in line with the attrition rate in Figure 4. The β coefficient shows that

attrition from robo-advising increases by 0.136 percentage points in poor market conditions, i.e.,

when the CRSP value-weighted index return is lower than zero. This increase is large, translating to

a 0.136/0.369=37% increase in attrition in such times. The γ coefficient shows that being assigned to

type-1 advisors reduces attrition by 0.86% per month, confirming the results from our survival analysis.

Finally, δ is negative and significant, showing that clients randomly assigned to type-1 advisors have

lower attrition than those assigned to type-0 advisors during down markets.

The results in the first column of Table 3 use the returns on the CRSP value-weighted index to

capture variation in client portfolio performance. In the second column, instead of using the CRSP

returns, we directly use the returns on the portfolio of each client in the previous month and separate

these returns into periods in which they are above and below zero. Overall, the results are very similar
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to this change.

In Figure 5, we use the regression estimates from Equation (9) to plot attrition across different

market conditions and advisor types. Investors assigned to type-1 advisors have an attrition rate of

slightly below 0.3% per month; this does not vary greatly with movements in the market. Investors

assigned to type-0 advisors, on the other hand, have an attrition rate of 0.37% per month when the

market return is positive and a probability of attrition of 0.51% when it is negative. These results

are consistent with type-1 advisors reducing attrition both conditionally and unconditionally; type-1

advisors are particularly important when the market is down.

3.3.1 Using Past Volatility as Conditioning Information

We also check whether advisor type is important during periods of market stress, re-estimating equa-

tion 9 replacing periods of negative market returns with periods of high volatility, where the latter are

defined as periods where return volatility exceeds median volatility computed over the full sample. The

results from this exercise are reported in the last two columns of Table 3. In column (3) of this table,

monthly volatility is computed using daily returns on the CRSP value-weighted index. In column (4),

investor volatility is computed using the realized daily returns of each individual client portfolio. Over-

all, the results are economically and statistically in line with those in the first two columns of Table

3. In all cases, we find that type-1 advisors reduce client attrition from robo-advising unconditionally

as well as during periods of high return volatility.

3.4 Structural Implications of Empirical Estimates

Our reduced-form results in the previous section provide empirical estimates of the discrete choice

model implied by our theoretical analysis. Recall that Equation (7) describes the baseline quit rates

during the first period of enrolment, and the sensitivity to performance during this period, for different

types of human advisor.

The constants and coefficients on Type1 Advisor in the first column of Table 3 imply the following

structural estimates of annual baseline quit rates for high- and low-type advisors in Equation (7):
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̂
φL − τL0

τL0 + τy
mL

0 =0.369 ∗ 12 = 4.43%

̂
φH − τH0

τH0 + τy
mH

0 =(0.369− 0.086) ∗ 12 = 3.40% (10)

These estimates imply that a high-type advisor, relative to a low-type one, reduces baseline quit rates

by 1 − 3.4/4.43 = 23.25%. Economically, this can be the result of either differences in the fixed

cost/utility dimension of human expertise (φL vs. φH), or in differences in prior expectations brought

about by different types of human advisor (mL
0 vs. mH

0 ).

The coefficients on Bad Market and the interaction term in Table 3 imply the following structural

estimates of sensitivity of annual quit rates to performance:

τ̂y

τL0 + τy
= 0.136 ∗ 12 = 1.63%

τ̂y

τH0 + τy
= (0.136− 0.123) ∗ 12 = 0.16% (11)

These estimates imply that a high-type advisor, relative to a low type, reduces the sensitivity to

performance by 1− 0.16/1.63 = 90.18%. Notice also that we obtain very similar orders of magnitude

when we use clients’ own portfolio returns instead of market returns as the measure of performance,

as in the second column of Table 3. After a simple transformation,8 these estimates also imply that a

high-type human advisor reduces the variance in clients’ prior beliefs about service quality by around

90.3% relative to a low type.

In order to provide further insights, Table 4 reports results from an auxiliary empirical exercise.

We take the universe of investors and split them into low and high experience groups, where experience

is computed as the number of months investors have been enrolled in robo-advice. We then report

the same estimates as in Table 3 for both groups. An intriguing result is that more experienced/long

8Let gj =
τy

τ
j
0+τy

denote the model counterpart of the estimated sensitivities in Equation (11). We can rearrange this

expression to get
1 − gL
gL

gH
1 − gH

=
1/τH0
1/τL0

,

which is the ratio of prior variances induced by a high- versus low-type advisor in our model. This ratio of variances
given our estimates is 60.35/624 = 0.097, implying a 90.3% reduction.
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tenure investors are much less sensitive to recent performance. Indeed, the coefficient on “Bad Market”

for these investors is not statistically different from zero. In terms of our model, this result can be

interpreted as saying that beliefs of experienced investors have already “converged” to their steady

state values. Convergence further implies that the weight placed on prior beliefs by experienced

investors is close to zero. Therefore, we can use the constants and coefficients on Type1 Advisor in

the second column of Table 4 to obtain the following structural estimates of baseline quit rates for

experienced investors:

̂
φL − τL0

τL0 + τy
mL

0︸ ︷︷ ︸
'0 (convergence)

' φ̂L =0.417 ∗ 12 = 5.00%

̂
φH − τH0

τH0 + τy
mH

0︸ ︷︷ ︸
'0 (convergence)

' φ̂H =(0.417− 0.089) ∗ 12 = 3.94% (12)

When interpreted in this way, the estimates in Table 4 imply that a high-type human advisor reduces

the fixed cost/disutility of her clients by an average of 1−3.94/5 = 21.2%. These results indicate that

most of the 23% reduction in baseline quit rates, which we reported in Equation (10), is due to the

fixed cost/disutility channel, as opposed to prior expectations.

4 Conclusion

We study the extent to which human experts are complementary to technological innovation using a

simple model which we structurally map to evidence from a large hybrid robo-advising service. In the

model, investors experience a per-period fixed cost or disutility arising from their use or interaction

with the technology, as well as a “learning” channel in which they refine their understanding of the

performance of the technology over time and across states of the economy. In a unique dataset from a

large US hybrid robo-advisor, we leverage random assignment of human advisors to clients and clients

subsequent retention rates in the service, and map these patterns in the data back to the parameters

of the structural model.
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The robo-advisor we study automatically manages the investment portfolio using a set of codified

rules, while the human advisor interacts with investors to help them understand what the algorithm

does, as well as providing auxiliary advice on issues such as estate planning. A key feature of this

setting is that the assignment of investors to advisors follows mechanical rules driven by workload

balancing imperatives rather than any assessment of advisor type. This means that once the current

“load” of a given advisor is accounted for, the assignment of new clients to this advisor is orthogonal

to the historical client retention of the advisor (a useful proxy for advisor type).

This random assignment of clients to different types of advisors allows us to cleanly map our

empirical estimates to the parameters of the model. We find that this measure of advisor type

predicts the future retention rate of clients that are assigned to them. We also find that high-retention

advisors’ clients are less likely to quit robo-advising during periods of market turbulence than lower-

retention advisors’ clients. Finally, we find that experienced clients, regardless of their advisor type,

react less to market turbulence. These facts, when mapped back to the model, deliver the insight that

humans are complementary to automated services in two main ways. For one, the estimates imply

that high-quality human advisors help to reduce the variance in clients’ prior beliefs about service

quality, facilitating learning about the algorithm’s ability to deliver returns. Second, the behavior of

the attrition rates of experienced clients shows that human advisors can also significantly attenuate

ongoing disutility from the automated portfolio management solution.

Our results make the notion of algorithmic aversion more transparent, separating this puzzling

phenomenon into both learning and disutility components. In future drafts, we intend to rigorously

structurally estimate the parameters of the model and use these parameters to evaluate counterfactuals

to better understand how human advice can help to complement automation and the use of algorithms

to facilitate the broader scaling of customized solutions in household finance and other domains.
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(a) (b)

(c) (d)

Figure 1: This figure reports results on investors’ portfolio performance. We compute the cross-section of investment performance
across robo-advised and non-robo-advised investors in Subfigure (a). Subfigures (b) and (c) relate monthly client returns to predicted
returns on the basis of investors’ equity share and age, respectively. Subfigure (d) shows the extent to which investor returns are
determined by their equity share, demographic characteristics, and their assigned advisor.
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(a) (b)

(c) (d)

Figure 2: Subfigure (a) is constructed by computing, for every advisor, the number of investors they
advise at the beginning of each month and sorting all the available advisors into quintiles based on
their current workload. The figure then reports the average net increase in the number of clients
allocated to advisors in each group every month, computed as the number of investors allocated to
each advisor minus the number of investors lost by each advisor every month because of attrition,
together with 95% confidence intervals. Subfigure (b) repeats the analysis using deciles instead of
quintiles. Subfigures (c) and (d) repeat the exercise but focus only on investors’ additions and split
the advisors into high- and low-retention.
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(a) (b)

Figure 3: In Subfigure (a), the histogram reports the percentage of clients retained by each advisor-
client pairing, scaled in such a way that the advisor-client pairings with the highest retention are
assigned a value of 100. Super-imposed on the histogram, we report non-parametric estimates of the
relation between the scaled leave-one-out retention measure of each advisor-client pair on the scaled
retention rate of that specific client. Subfigure (b) repeats the exercise excluding the advisors in the
bottom decile in terms of clients advised.
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(a) All Advisors (b) Excluding Lowest 10% of Advisors

(c) All Advisors (d) Excluding Lowest 10% of Advisors

Figure 4: Subfigure (a) shows survival plots for investors assigned to advisors of different types.
Subfigure (b) repeats the survival estimates excluding advisors in the bottom decile in terms of load.
Subfigure (c) shows smooth hazards for investors assigned to advisors of different types. Subfigure
(d) repeats the hazard estimates excluding advisors in the bottom decile in terms of load. Investors
associated with type-1 advisors are in blue. Those with type-0 advisors are in red.
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(a) Poor Market Conditions (b) Good Market Conditions

Figure 5: This figure reports the monthly attrition (in percentages) of investors assigned to advisors
of different types, conditioning on different market conditions in subfigures (a) and (b).
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Table 1. Demographic and Portfolio Characteristics of Advised Investors

Panel A. Demographic Characteristics

N mean sd p25 p50 p75
Age 54,325 63.816 12.071 57.000 65.000 72.000
Male 54,744 0.598 0.490 0.000 1.000 1.000
Tenure 54,744 13.481 9.084 3.833 13.667 20.250

Panel B. Portfolio-Related Characteristics

N mean sd p25 p50 p75
Wealth 54,744 $758,378 $821,029 $210,800 $478,929 $981,330
NumAssets 54,744 7.952 4.910 5.000 6.000 9.000
PctVGProducts 54,744 0.974 0.069 1.000 1.000 1.000

Panel C. Asset Allocation Characteristics

N mean sd p25 p50 p75
PctMutualFunds 54,744 0.952 0.102 0.960 1.000 1.000
PctCash 54,744 0.018 0.046 0.000 0.000 0.008
PctETF 54,744 0.008 0.030 0.000 0.000 0.000
PctStocks 54,744 0.014 0.045 0.000 0.000 0.000
PctBonds 54,744 0.000 0.002 0.000 0.000 0.000

Panel D. Characteristics of Mutual Funds Held

N mean sd p25 p50 p75
AcctIndex 54,744 0.828 0.178 0.745 0.858 1.000
MgtFee 54,717 0.072 0.024 0.059 0.064 0.075
ExpRatio 54,707 0.093 0.027 0.078 0.083 0.096
TurnRatio 54,685 0.268 0.120 0.190 0.280 0.337

This table reports the demographic characteristics and portfolio allocation behavior of investors 12
months after signing up for advice. The results are computed at the investor level and include all
account types, that is, taxable and non-taxable (IRA) accounts. Panel A reports demographic char-
acteristics, Panel B focuses on portfolio-related characteristics, Panel C focuses on asset allocation
characteristics, and Panel D focuses on the characteristics of the mutual funds held. For each variable,
we report the number of accounts used in the computations, the mean, the standard deviation, and
the 25th, 50th, and 75th percentiles of the distribution.
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Table 2. Covariates Balancing Across Clients Assigned to High- and Low-Retention Advisors

High Retention Low Retention Diff
mean N mean N mean t-stat N

Age 64.540 24,514 65.657 23,511 1.117*** (3.33) 48,025
Male 0.577 25,739 0.618 24,085 0.041*** (4.76) 49,824
Tenure 14.666 25,739 15.635 24,085 0.969*** (3.03) 49,824

Wealth 946,754 25,739 993,861 24,085 47,107 (0.39) 49,824
NumAssets 10.717 25,739 11.438 24,085 0.721 (1.69) 49,824
PctVGProducts 0.853 25,706 0.850 24,062 -0.003 (-0.81) 49,768

PctMutualFunds 0.666 25,706 0.672 24,062 0.006 (0.61) 49,768
PctCash 0.234 25,706 0.226 24,062 -0.007 (-0.67) 49,768
PctETF 0.035 25,706 0.034 24,062 0.000 (-0.27) 49,768
PctStocks 0.046 25,706 0.047 24,062 0.001 (0.84) 49,768
PctBonds 0.002 25,706 0.002 24,062 0.000** (2.65) 49,768

AcctIndex 0.436 25,739 0.438 24,084 0.002 (0.14) 49,823
MgtFee 0.147 23,877 0.147 22,931 0.001 (0.28) 46,808
ExpRatio 0.209 23,299 0.206 22,396 -0.003 (-0.18) 45,695
TurnRatio 0.328 22,918 0.343 21,787 0.016** (2.16) 44,705

Ret. Pre-PAS 0.051 22,040 0.045 20,884 -0.005 (-0.98) 42,924
Adj. Ret. Pre-PAS -0.007 22,040 -0.009 20,884 -0.002 (-1.64) 42,924

This table reports balancing results for demographic characteristics and portfolio allocation behavior
for investors 1 month before signing up for advice. For each characteristic, in the first four columns
we report the mean and the number of observations for high- and low-retention advisors. In the last
three columns we report the difference in means, the associated t-statistic and the total number of
observations.
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Table 3. The Effect of Human Advice Across Market Conditions

CRSP Return Investor Return CRSP Volatility Investor Volatility

Bad Market 0.136*** 0.145*** 0.125*** 0.117***
(2.98) (3.96) (3.20) (4.02)

Type1 Advisor -0.086*** -0.078*** -0.051*** -0.056***
(-4.74) (-4.03) (-3.14) (-4.41)

Interaction -0.123*** -0.123*** -0.102*** -0.091***
(-3.77) (-3.90) (-3.21) (-3.61)

Constant 0.369*** 0.359*** 0.325*** 0.328***
(17.70) (16.23) (17.78) (17.87)

Clustering Date&User Date&User Date&User Date&User

R-square 0.00011 0.00013 0.00014 0.00013
N 938,314 938,314 938,314 938,314

This table reports coefficient estimates of the following baseline regression estimated at the monthly frequency:

Dummy quiti,t = α+ β I{BadMarkett−1=1} + γ I{Type1 Advisori=1}

+ δ I{BadMarkett−1=1} × I{Type1 Advisori=1} + εi,t,

where Dummy quiti,t is equal to 1 if investor i quits robo-advising in month t and 0 otherwise, I{BadMarkett−1<0}
is an indicator variable equal to 1 if market conditions are bad in month t − 1 and 0 otherwise, and
I{Type1 Advisori,t−1=1} is equal to 1 if investor i is assigned to an advisor with a past retention above the
median and 0 otherwise. We multiply all the coefficient estimates by 100 so they are expressed in percentages.
The standard errors are clustered by user and date. We use CRSP return, Investor Return, CRSP Volatility
and Investor Volatility as proxies for market conditions in columns (1) through (4).
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Table 4. The Effect of Human Advice Across Market Conditions
Long and Short Tenure Investors

Short Tenure Long Tenure
Bad Market 0.219*** 0.044

(7.69) (1.36)

Type1 Advisor -0.057*** -0.089***
(-3.29) (-3.62)

Interaction -0.158*** -0.102**
(-3.55) (-2.19)

Constant 0.302*** 0.417***
(23.77) (16.95)

Clustering Date&User Date&User
R-square 0.00020 0.00006
N 477,736 460,578

This table reports coefficient estimates of the following baseline regression estimated at the monthly frequency:

Dummy quiti,t = α+ β I{MKT RETt−1<0} + γ I{Type1 Advisori=1}

+ δ I{MKT RETt−1<0} × I{Type1 Advisori=1} + εi,t,

where Dummy quiti,t is equal to 1 if investor i quits robo-advising in month t and 0 otherwise, I{MKT RETt−1<0}
is an indicator variable equal to 1 if the market return is negative in month t − 1 and 0 otherwise, and
I{Type1 Advisori,t−1=1} is equal to 1 if investor i is assigned to an advisor with a past retention above the median
and 0 otherwise. We multiply all the coefficient estimates by 100, so they are expressed in percentages. We split
the sample of robo-advising users into two groups on the basis of their tenure and report the results for short
tenure in column (1) and long tenure in column (2). In both cases, the standard errors are double-clustered by
users and dates.
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Online Appendix

(Not for publication)

Online Appendix A.1 Micro-Founded Theory of Portfolio Choice

We interpret the client in our general model as an investor who can allocate a fraction αt ≥ 0 of her

wealth each period to a robo-advisor, and the remaining 1− αt of her wealth to an outside portfolio.

The client’s utility is given by wT = ln (WT ), where WT denotes her final wealth, and where we use

lowercase letters to denote logs. In each period where she uses the robo-advisor, the client suffers a

fixed cost/disutility f j which, as in the general model, depends on the identity of her assigned human

advisor.

We assume that the log return on the outside portfolio is deterministic and given by r̄. We further

assume that the robo-advisor, between dates t and t+1, invests in a portfolio that generates stochastic

log returns given by rit+1 = r̄+θ+uit+1. Thus, the performance measure yit+1 = θ+uit+1 in our general

model now stands for the excess log return on the robo-advisor’s portfolio, and the service quality

parameter θ measures the expected excess return. The investor’s beliefs about θ, as a function of her

human advisor/expert j, are as in the general model.

The investor’s log wealth, denoted wt at date t, evolves according to the following approximate

law of motion:

wit+1 − wt ' r̄ + αty
i
t+1 +

1

2
σ2αt (1− αt) , (13)

where σ2 = 1/τy is the variance of the shock to excess returns each period. This law of motion holds

exactly in continuous time. We present a derivation, which is similar to that in Campbell and Viceira

(2002), below. Intuitively, the change in log wealth is equal to the return on the outside portfolio,

captured by the first term, and the portfolio-weighted excess return on the robo-advisor’s portfolio,

captured by the second term. The third term, in addition, reflect’s Jensen’s inequality: Because the

log is a concave function, the log return on an average of two investments is greater than average of

the log returns.
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In the remainder of this appendix, we demonstrate that this setup is a special case of the general

model we have considered in the paper and derive the specific functional of the client’s utility function

that maps to the portfolio choice problem. We continue to write m for the state variable measuring

the investor’s current expectation of θ, and we write w for a state variable measuring the investor’s

current log wealth. As usual, we let variables with primes (e.g., m′ and w′) denote one-period-ahead

state variables.

We conjecture that the investor’s continuation value if still enrolled at date t < T , is given by

Ft (w,m) = w + (T − t) r̄ + Vt (m) . (14)

The investor at date t has two options: To quit, in which case her final utility takes the deterministic

value w+(T − t) r̄, or to continue enrolling with an optimally chosen portfolio weight αt. The investor’s

Bellman equation can therefore be written as

Ft (w,m) = max

{
w + (T − t) r̄,−f j + max

α≥0
Êj
[
Ft+1

(
w′,m′

)
|w,m,αt = α

]}
(15)

Substituting our conjecture and the law of motion for wealth, we can evaluate the last term more

explicitly as

Êj
[
Ft+1

(
w′,m′

)
|w,m,αt = α

]
= w′ + (T − (t+ 1)) r̄ + Êj

[
Vt
(
m′
)
|m
]

= w + (T − t) r̄ + αm+
1

2
σ2α (1− α) + Êj

[
Vt
(
m′
)
|m
]

(16)

since m = Êj [y′|m] by definition. Therefore, the inner maximization problem in Equation (15) is

solved by the optimal portfolio weight

α̂ = max

{
m+ 1

2σ
2

σ2
, 0

}
,
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and the value of (16) at this value is

E
[
Ft+1

(
w′,m′

)
|w,m,αt = α̂

]
= w + (T − t) r̄ +

(
m+

1

2
σ2
)
α̂− 1

2
σ2α̂2 + Êj

[
Vt+1

(
m′
)
|m
]

= w + (T − t) r̄ + Êj
[
Vt+1

(
m′
)
|m
]

+
1

2
[SR (m)]2 ,

where we have defined the (truncated) Sharpe ratio

SR (m) =


0, m+ 1

2σ
2 < 0,

m+ 1
2
σ2

σ , otherwise.

Substituting this result into (15), along with our conjectured solution, we obtain the following simpli-

fied Bellman equation:

Vt (m) = max

−f j +
1

2
[SR (m)]2︸ ︷︷ ︸

≡uj(m)

+ Êj
[
Vt+1

(
m′
)
|m
]
, 0

 .

This Bellman equation maps exactly to our general model, as soon as we define the investor’s utility

function as follows:

uj (m) = −f j +
1

2
[SR (m)]2 .

Derivation of Intertemporal Budget Constraint

For clarity, we omit client i superscripts in this derivation. Consider the equivalent continuous-time

economy in which the per-unit value Pt of the robo-advisor’s portfolio follows

dPt
Pt

=

(
r̄ + θ +

1

2
σ2
)
dt+ σdZt

where all parameters are defined as in our baseline model, and where Zt is a standard Brownian

motion. Notice that this model also implies the discrete-time representation of log returns

rt+1 ≡ log

(
Pt+1

Pt

)
= r̄ + θ + σut+1,
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where we have defined ut+1 = Zt+1−Zt, so that it is indeed equivalent to our baseline formulation in

Equation (1).

Further, assume that the per-unit value Bi
t of investor i’s outside portfolio evolves according to

dBt
Bt

= r̄dt

The investor’s wealth evolves according to

dWt

Wt
= αt

dPt
Pt

+ (1− αt)
dBt
Bt

= αt

[(
r̄ + θ +

1

2
σ2
)
dt+ σdZt

]
+ (1− αt) r̄dt

or, rearranging,

dWt =

[
αt

(
r̄ + θ +

1

2
σ2
)

+ (1− αt) r̄
]
Wtdt+ αtσWtdZt

Converting to log returns, and applying Ito’s lemma to f (W ) = logW , we obtain

d logWt = df (Wt)

= f ′ (Wt) dWt +
1

2
f ′′ (Wt) (dWt)

2 dt

=

[
αt

(
r̄ + θ +

1

2
σ2
)

+ (1− αt) r̄
]
dt+ αtσdZt

− 1

2
(αtσ)2 dt

=

[
αt

(
r̄ + θ +

1

2
σ2
)

+ (1− αt) r̄ +
1

2
σ2αt (1− αt)

]
dt+ αtσdZt

For our discrete time approximation, we set dt = 1 in the previous equation to get the budget
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constraint:

logW i
t+1 − logWt = αt (r̄ + θ) + (1− αt) r̄ +

1

2
σ2αt (1− αt) + αtσut+1

= αt (r̄ + θ + σut+1) + (1− αt) r̄ +
1

2
σ2αt (1− αt)

= αtrt+1 + (1− αt) r̄ +
1

2
σ2αt (1− αt)

= r̄ + αt (rt+1 − r̄) +
1

2
σ2αt (1− αt)

= r̄ + αtyt+1 +
1

2
σ2αt (1− αt) ,

which establishes Equation (13), where we have again used ut+1 = Zt+1 − Zt.
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